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We use local polynomial fitting to estimate the nonparametric M-regression function
for strongly mixing stationary processes {(¥;, X;)}. We establish a strong uniform
consistency rate for the Bahadur representation of estimators of the regression func-
tion and its derivatives. These results are fundamental for statistical inference and for
applications that involve plugging such estimators into other functionals where some
control over higher order terms is required. We apply our results to the estimation of
an additive M-regression model.

1. INTRODUCTION

In many contexts one wants to evaluate the properties of some procedure that is a
functional of some given estimators. It is useful to be able to work with some plau-
sible high level assumptions about those estimators rather than to rederive their
properties for each different application. In a fully parametric (and stationary,
weakly dependent data) context, it is quite common to assume that estimators
are root-n consistent and asymptotically normal. In some cases this property suf-
fices; in other cases one needs to be more explicit in terms of the linear expansion
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of these estimators, but in any case such expansions are quite natural and widely
applicable. In a nonparametric context there is less agreement about the use of
such expansions, and one often sees standard properties of standard estimators
derived anew for a different purpose. It is our objective to provide results that
can circumvent this. The types of applications we have in mind are estimations,
of semiparametric models where the parameters of interest are explicit or im-
plicit functionals of nonparametric regression functions and their derivatives; see
Powell (1994), Andrews (1994), and Chen, Linton, and Van Keilegom (2003).
Another class of applications includes estimations of structured nonparametric
models like the additive models (Linton and Nielsen, 1995) or the generalized
additive models (Linton, Sperlich, and Van Keilegom, 2008).

We motivate our results in a simple i.i.d. setting. Suppose we have a random
sample {Y;, X;}7_, and consider the Nadaraya-Watson estimator of the regression
function m(x) = E(Y;|X; = x),

Fo) T S Kn(Xi =Y
fey T I KX —x)
where K(.) is a symmetric density function, /# is a bandwidth, and Kj(.) =

K(./h)/h. Standard arguments (Hirdle, 1990) show that under suitable smooth-
ness conditions,

m(x) =

(x) —m(x) = 2b(x>+%21<h<x —x)&; + Ry (x), (1)

where b(x) = [u?K (u)du[m” (x)+2m’(x) f'(x)/f (x)]/2, while f(x) is the co-
variate density function and ¢; = ¥; — m(X;) is the error term. The remainder
term R, (x) is of smaller order (almost surely) than the two leading terms. Such
an expansion is sufficient to derive the central limit theorem for /1 (x) itself, but
generally is not sufficient if 712(x) is to be plugged into some semiparametric pro-
cedure. For example, suppose we estimate the parameter 6y = [ m(x)%dx # 0 by
6 = [ #1(x)? dx, where the integral is over some compact set D; we would expect
to find that n'/2(4 — 6p) is asymptotically normal. Based on expansion (1), the
argument goes as follows.
First we obtain

n'2( —0p) :2n]/2/m(x){rh(x)—m(x)}dx—l—n]/z/[n%(x)—m(x)]zdx

If it can be shown that /i(x) —m(x) = o(n~'/#) a.s. uniformly in x € D (such
results are widely available; see, for example, Masry, 1996), we have

nl/z(é—&)):2n1/2/m(x){n%(x)—m(x)}dx+0(l) a.s.

Note that the quantity on the right-hand side is the term in Assumption 2.6 of Chen
et al. (2003), which is assumed to be asymptotically normal. It is the verification
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of this condition with which we are now concerned. We substitute in expansion
(1) and obtain

m(x)

d.
o

n
n'2(0 —0y) :2n]/2hz/m(x)b()c)dx—i—2nl/2/n_1 Zs,-Kh(Xi —X)
i=I
+2n1/2/m(x)Rn(x)dx+0(1) a.s.

If nh* — 0, then the first term (the smoothing bias term) is o(1). The second term
(the stochastic term) is a sum of independent random variables with mean zero,
which can be rewritten, using a change of variables, as

w2 [ 7 com™ 3 K0 =g de =072 3 (K,
i=1 i=1

& (X)) = / m(X; +uh) £~ (X; +uh)K (u) du,

and this term obeys the Lindeberg central limit theorem under standard condi-
tions. The problem is with the third term, as equation (1) only guarantees that
[m(x)R,(x)dx = o(n™?/3) a.s. at best. In fact, it is possible to derive a more
useful Bahadur representation (Bahadur, 1966) for the kernel estimator

A1) —m(x) = W2y (0) HEFN 0™ S Kn(Xi —)er + R (o), @)
i=1

where b, (x) is deterministic and satisfies b, (x) — b(x) and E f (x) = f(x) uni-
formly in x € D, while the remainder term now satisfies

1
sup ’R;(x)| =0 ( ogn) a.s. 3)
xeD nh

This property is a consequence of the uniform convergence rate of f (x)—E f (x),
ntSE L Kn(xe —X){im(Xi) — m(x)} — EK,(X; — x){m(X;) — m(x)}, and
n~! > Kn(Xi —x)e; that follow from, for example Masry (1996). Clearly, by
appropriate choice of the bandwidth &, R (x) can be made o(n™1?) a.s. uni-
formly over D and thus 2n!/? [ m(x)R)(x)dx = o(1) a.s. Therefore, to derive
asymptotic normality for n!/? (9 —0p), one can just work with the two leading
terms in (2). These terms are slightly more complicated than in the previous ex-
pansion but are still sufficiently simple for many purposes; in particular, b, (x)
is uniformly bounded so that, provided nh* — 0, the smoothing bias term satis-
fies hn'/? [ m(x)b,(x)dx — 0, while the stochastic term is a sum of zero mean
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independent random variables

n1/2/’;g;n_l ig Kn(Xi—x)ejdx= n_l/2i§fn(xi)8i,

m(X; +uh)

K(u)du,

and obeys the Lindeberg central limit theorem under standard conditions, where
f(x)=E f (x). This argument shows the utility of Bahadur representation (2).
There are many other applications of this result because a host of probabilistic re-
sults are available for random variables like ™! >'_ Kp(X; —x)e; and integrals
thereof.

The one-dimensional Nadaraya-Watson estimator for i.i.d. data is particularly
easy to analyze and the above arguments are well known. However, the limitations
of this estimator are manyfold and there are good theoretical reasons for working
instead with the local polynomial class of estimators (Fan and Gijbels, 1996).
In addition, for many data, especially financial time series data, one may have
concerns about heavy tails or outliers that point in the direction of using robust
estimators like the local median or local quantile method, perhaps combined with
local polynomial fitting. We examine a general class of (nonlinear) M-regression
functions (that is, location functionals defined through minimization of a general
objective function p(.)) and derivative estimators. We treat a general time series
setting where the multivariate data are strongly mixing. Under mild conditions, we
establish a uniform strong Bahadur representation like (2) and (3) with remainder
term of order (logn/nh®)3/* almost surely, a rate that is almost optimal or in other
words can’t be improved further based on the results in Kiefer (1967) under i.i.d.
setting. The leading terms are linear, and functionals of them can be analyzed
simply. The remainder term can be made to be o(n~!/?) a.s. under restrictions
on the dimensionality in relation to the amount of smoothness possessed by the
M-regression function.

The best convergence rate of unrestricted nonparametric estimators strongly
depends on d, the dimension of the covariates. The rate decreases dramatically
as d increases (Stone, 1982). This phenomenon is the so-called “curse of dimen-
sionality.” One approach to reduce the curse is by imposing model structure. A
popular model structure is the additive model assuming that

mxy,...,xq) =c+mp(xy)+---+mg(xq), @

where c is an unknown constant and my(.), k = 1,...,d are unknown functions
that have been normalized such that Emy(xz) =0, k = 1,...,d. In this case, the
optimal rate of convergence is the same as in univariate nonparametric regression
(Stone, 1986). An additive M-regression function is given by (4), where m(x)
is the M-regression function defined in (5) for some loss function p(.;.). Pre-
vious work on additive quantile regression, for example, includes Linton (2001)
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and Horowitz and Lee (2005) for the i.i.d. case. An interesting application of the
additive M-regression model is to combine (4) with the volatility model

Y; =o0;e; and lnal-zzm(Xi),

where X; = (Y;_1,...,Yi_q) . We suppose that ¢; satisfies E[¢ (lne?; 0)|X;1=0
with ¢(.;.) the piecewise derivative of p(.;.), whence m(.) is the conditional
M-regression of In Yl-2 given X;. Peng and Yao (2003) applied LAD estimation
to parametric ARCH and GARCH models and showed the superior robustness
property of this procedure over Gaussian QMLE with regard to heavy-tailed
innovations. This heavy tail issue also arises in nonparametric regression mod-
els, and empirical evidences suggest that moderately high frequency financial
data are often heavy tailed, which is why our procedures may be useful. We
apply the Bahadur representations to the study of the marginal integration es-
timators (Linton and Nielsen, 1995) of the component functions in the addi-
tive M-regression model, in which case we only need the remainder term to be
o(n=P/CrtDY a5 where p is a smoothness index.

Bahadur representations (Bahadur, 1966) have been widely studied and ap-
plied, with notable refinements in the i.i.d. setting by Kiefer (1967). A recent
paper of Wu (2005) extends these results to a general class of dependent pro-
cesses and provides a review. The closest paper to ours is Hong (2003), which
establishes the Bahadur representation for essentially the same local polynomial
M-regression estimator as ours. However, his results are (a) pointwise, i.e., for a
single x only; (b) with a covariate that is univariate; and (c) for i.i.d. data. Clearly,
this limits the range of applicability of his results, and specifically, the applica-
tions to semiparametric or additive models are perforce precluded.

2. THE GENERAL SETTING

Let {(Y;,X;)} be a jointly stationary process, where X; = (Xi1,...,%Xiqg)" with
d > 1 and Y; is a scalar. As dependent observations are considered in this paper,
we introduce here the mixing coefficient. Let F/ be the o-algebra of events gen-
erated by random variables {(Y;, X;),s <i <r}. A stationary stochastic processes
{(Y:, X;)} is strongly mixing if

sup |P[AB]— P[A]P[B]|=y[k] > 0, ask— oo,
AEF(lOo
BeF°
and y [k] is called the strong mixing coefficient.
Suppose p(.;.) is a loss function. Our first goal is to estimate the multivariate
M-regression function

mxi, ..., xq) = argminE{p (Yi; 1X; = (x1, ..., xa)}, ®)

and its partial derivatives based on observations {(¥;, X;)}?_,. An important
example of the M-function is the gth (0 < ¢ < 1) quantile of Y; given
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X; = (x1,...,x4)", with loss function p(y;0) = (2g — 1)(y —0) + |y — 0|. An-
other example is the L, criterion: p(y;8) = |y — 0|9 for g > 1, which includes
the least square criterion p(y; @) = (y —&)? with m(.) the conditional expectation
of ¥; given X;. Yet another example is the celebrated Huber’s function (Huber,
1973)

p(t) =12 /21{|1] <k} + (k|t| —k*/2)I{]t] > k). (6)

Suppose m(x) is differentiable up to order p+ 1 at x = (x1,...,x4)". Then the
multivariate pth order local polynomial approximation of m(z) for any z close to
X is given by

1
m@~ Y, =Dm@)E-x

0<|rl<p ="

where r = (ry, ..., rq), Irl =3¢ (i, rl=ri! x---xrg!, and

=

Dr _ otm(x) ;L on ry 3 P J
*m@)—m, X=X XXXy, —z 22
1 d O<irl<p  j=0 rn=0 ry=0

ritetrg=j
(7

Let K (1) be a density function on R, h a bandwidth, and K}, (u) = K (u/ h). With
observations {(Y;, X;)}_,, we consider minimizing the following quantity with
respect to f,, 0 < |r| < p:

KX —0p(Ys Y pX-0r). (8)
i=1

0<lr|<p

Denote by ,61 (x), 0 <|r| < p, the minima of (8). The M-regression function m (x)
and its partial derivatives D-m (x), 1 < |r| < p are then estimated, respectively, by

m(x) = fo(x) and Dm(x) =r!f,(x), 1<|r| < p. 9

3. MAIN RESULTS

In Theorem 1 below we give our main result, the uniform strong Bahadur repre-
sentation for the vector ﬁp (x). We first need to develop some notations to define
the leading terms in the representation.

Let N; = (l;‘i_ll) be the number of distinct d—tuples r with |r| =i. Arrange
these d—tuples as a sequence in a lexicographical order (with the highest pri-
ority given to the last position so that (0,...,0,7) is the first element in the

sequence and (7,0, ...,0) the last element). Let 7; denote this 1-to-1 mapping,
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ie., 7;(1) =(0,...,0,i),...,7:(N;) = (i,0,...,0). Foreach i = 1,..., p, define
an N; x 1 vector u;(x) with its kth element given by x%® and write u(x) =
(L1 (x)", -+, 1p(x)")T, which is a column vector of length N = ¥ N;. Sim-
ilarly define vectors f8,(x) and f through the same lexicographical arrangement
of D¥m(x) and S, in (8) for O < |r| < p. Thus (8) can be rewritten as

N Kn(X; —x)p(Yi; w(X; =) ). (10)
i=1

Suppose the minimizer of (10) is denoted as ﬁn (x). Let ﬁ p(x)=W, ﬁn (x), where
W, is a diagonal matrix with diagonal entries the lexicographical arrangement of
rl, 0<|r[ < p.

Letv; = [ K (u)utdu. For g(.) given in (A.7) in the Appendix, define

Vi (x) = / K ()utg(x + hu) f (x + hu) du.

For 0 < j,k < p,let S;; and S, j x(x) be two N; x Ny matrices with their (/,m)
elements, respectively, given by

[Sj,k}l = Vg m)» [Sn,j,k (&)} = V2 (D)1 (m) (2)- an

I,m

Now define the N x N matrices S, and S, ,(x) by

[So,0 So1 -+ So,p
S0 St Sip
S[)Z )
Spo Spit o Spp
[81,00X)  Sno1(x) -+ Spo,p&)
Sn1,0X)  Sp11x) o Sppp)
Sn,p(l)z
Sn,p,O(l) Sn,p,l(&) Srz,p,p@)

According to Lemma 8, S, ,(x) converges to g(x) f(x)S, uniformly in x € D
almost surely. Hence for |S,| # 0, we can define

1 n
Br@) == W, Sy L O H YK =)0 (Y, 1 =) B () (X —),
i=l

12)
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where ¢(.;.) is the piecewise derivative of p(.,.) as defined in Assumption Al
and H,, is a diagonal matrix with diagonal entries 42!, 0 < |r| < p in the afore-
mentioned lexicographical order. The quantity S (x) is the leading term in the
Bahadur representation of ﬁp (x) — Bp(x); it is the sum of a bias term, Ef; (x),
and a stochastic term S (x) —ES; (x).

Denote the typical element of £ (x) by S, (x), 0 < |r| < p and the probability
density function of X by f(.). The following results on EB},(x) are an extension
of Proposition 2.2 in Hong (2003) to the multivariate case.

PROPOSITION 1. If f(x) > 0 and Assumptions AI-AS5 in the Appendix hold,
then

—hPH e Wy, Bimy, 1 (x) +o(hPT), for p—1r| odd,

Efur @) = —hr+2ey oy W, S5 [(f8) ™ (0)mper () (M (x)
—N, Sy Bi} + Bomy ()] +0(hPF2),  for p—Ir| even,

where N(r) = TIZII r)+ Zﬂal Ny, ej is an N x 1 vector having 1 as the ith entry,

with all other entries 0, and By = [So,p+1, S1,p+15-- - Sp,p+1]T, By =[S0, p+2,
Stptseees Spprall -

We next present our main result, the Bahadur representation for the local poly-
nomial estimates £, (x).

THEOREM 1. Suppose Assumptions AI-A7 in the Appendix hold with A, =
(p+1)/2(p+s+1) for some s >0, and D is any compact subset of R. Then

A 1 A(s)
sup | Ha (B () = B, @)} = B0l = 0 ({251 ) - atmost surely,

xeD nh‘l

where |.| is taken to be the sup norm and

1 3 342
/I(S)Zmin{ Pt pHo+ s}.

pts+1" dp+ds+4

Remark 1. According to Theorem 1 in Kiefer (1967), the pointwise sharpest
bound of the remainder term in the Bahadur representation of the sample quantiles
is (loglogn/n)3/4. As 1(0) = 3/4, we could safely claim the results here could
not be further improved for a general class of loss functions p(.) specified by
Assumptions Al and A2. Nevertheless, it is possible to derive stronger results,
if the concerned loss functions enjoy a higher degree of smoothness; e.g., (3),
in which case p(.) is the squared loss function. More specifically, suppose that
@ (.) is Lipschitz continuous and Assumptions A1-A7 in the Appendix hold with
A2 =1/2 and A; = 1. Then we prove in the Appendix that

(logn
nhd

sup | Hu{Bp(x) — Bp(x)} = B (x)| = O

) almost surely. (13)
xeD
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Remark 2. The dependence among the observations doesn’t have any impact
on the rate of uniform convergence, provided that the degree of the dependence,
as measured by the mixing coefficient y [k], is weak enough such that (A.3) and
(A.4) are satisfied. This is in accordance with the results in Masry (1996), where
he proved that for a local polynomial estimator of the conditional mean function,
the uniform convergence rate is (nh?/logn)~!/2, the same as in the independent
case.

Remark 3. It is of practical interest to provide an explicit rate of decay for the
strong mixing coefficient y [k] of the form y [k] = O(1/k¢) for some ¢ > O (to
be determined) for Theorem 1 to hold. It is easy to see that, among all the con-
ditions imposed on y [k], the summability condition (A.4) is the most restrictive.
We assume that

1

h=h, ~ (logn/n)® forsome ———
n ~ (logn/n) 20p+s+1)+d

1 4
<a<-— {1 - } >
d (1=2722)vp —44 —I-Z(l—l—/{z)
whence (A.2) holds. Algebraic calculations show that (A.4) would be true if

(1—ad){(1 = 12)(4N + 1)+ 8N A1} + 10+ (4+8N)ad _
P2 (0= 22)(1—ad)vs —8ad +4(1 —ad)(1— 42— 24;)

=c(d, p,v2,a, A1, A2). 14

Note that we would need the condition

alad + (1 —ad)i}
(I—ad)(1—12)

vy > 24+

to secure a positive denominator for (14). As c¢(d, p,va,a, A1, A2) is decreasing in
v2(< 1), there is a trade-off between the order v| of the moment E|g (¢;)|"! < oo
and the decay rate of the strong mixing coefficient y [k]: The existence of higher
order moments allows y [k] to decay more slowly.

Remark 4. It is trivial to generalize the result in Theorem 1 to functionals
of the M-estimates ﬁp (x). Denote the typical elements of ﬁA,, (x) and B,(x) by
ﬂApL(Q and B,,(x), 0 < |r| < p, respectively. Suppose G(.) : R? — R satisfies
that for any compact set D C R4, there exists some constant C > 0, such that
|G"(Bpr(x))| < C and |G” (B, (x))| < C for all x € D. Then, with probability 1,

A 1 A(s)
sup| G (B, (1)) = G (6D} = G B ) B, )| = 0 ({25 }7). (15)

xeD I’l/’ld

The following proposition follows from Theorem 1 and the uniform convergence
of the sum of weakly dependent zero mean random variables.
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COROLLARY 1. Suppose conditions in Theorem 1 hold with s = 0. Then
with probability 1 we have, uniformly in x € D,

Hylfp(@) — iy @)} — EB: () — H"_ L)th@—x)go(sl)ﬂ(x 1)

~o({2)").

4. M-ESTIMATION OF THE ADDITIVE MODEL

In this section, we apply our main result to derive the properties of a class of esti-
mators in the additive M-regression model (4). In terms of estimating the compo-
nent functions my(.), k =1, ...,d in (4), the marginal integration method (Linton
and Nielsen, 1995) is known to achieve the optimal rate under certain conditions.
This involves estimating first the unrestricted M-regression function m(.) and then
integrating it over some directions. Partition X; = (x1,...,xg) as X; = (x1;, X5;),
where x/; is the one-dimensional direction of interest and X,; is a d — 1 dimen-
sional nuisance direction. Let x = (x1, x,) and define the functional

P10 = [men, ) ) dy, (16)

where f2(x,) is the joint probability density of X,;. Under the additive structure
4), ¢1(.) is m(.) up to a constant. Replace m(.) in (16) with ﬁo(xl,gz) = /3)9@)
given by (9), and ¢ (x1) can thus be estimated by the sample version of (16):

n

¢n1(xl):n 2 (xl’X2l

As noted by Linton and Hérdle (1996) and Hengartner and Sperlich (2005), cau-
tious choice of the bandwidth is crucial for ¢,1(.) to be asymptotically normal.
They suggest different bandwidths be used for the direction of interest X; and
the d — 1 dimensional nuisance direction X5, say /1 and h, respectively. Sperlich,
Linton, and Hérdle (1998) provides an extensive study of the small sample prop-
erties of the marginal integration estimators, including an evaluation of bandwidth
choice.
The following corollary concerns the asymptotic properties of ¢, (.).

COROLLARY 2. Suppose the support of X is [0, 11%¢ with strictly positive
probability density function. Assume that conditions in Corollary 1 hold with T,, =
{(r(n)/min(hy, )} and the h? replaced by h1h?=" in all the notations defined
either in (A.1) or (A.2). If hy x n=Y@P+3) b = O(hy), and (A.2) is modified as

nhih3 @D jlogdn — 0o, nTHr(n))*%d,logn/MP — oo, (17)
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then we have

1/2 L -1 ~2
(nh1) a1 (x1) —p1(x1)} = N(e1 W, S, BiIEmp41(x1, X5),57(x1)),
where 5 stands for convergence in distribution,
#uo:{A@p%;m%”ubzyﬁ@gwﬁmu&yggagfnﬁigﬂa,

o2(x) = E[p2()|X = x], and K» = f[o’l]@,d K@)u(@)dv. In particular, for the
additive quantile regression model, i.e., p(y;0) = 2q —1)(y —0)+ |y — 0|, we
have

P =qt-9{ |

e £ O X0 700, Xo) (X)X, |

-1 To—1,T
xelSp KzKZSp er.

Remark 5. For conditions in Corollary 2 to hold, we would need 3d <2p+5,
i.e., the order p of local polynomial approximation should increase with the di-
mension of the covariates X. See also the discussion in Hengartner and Sperlich
(2005).

Remark 6. Besides asymptotic normality, by applying Theorem 1 we could
also develop Bahadur representations for ¢, (x1), like those assumed in Linton
et al. (2008). Based on (15), similar results are also applicable to the generalized
additive M-regression model, i.e., G(m(xy,...,xg)) =c+mi(x1)+---+mg(xq)
for some known smooth function G(.), in which case the marginal integration
estimator is defined as the sample average of G (m(x1, X5;)).

5. CONCLUSION

We have obtained an asymptotic expansion for a nonlinear local polynomial M-
estimator of a conditional location functional for stationary weakly dependent
processes. The approximations we have obtained are to a high enough order for
many applications based on computing functionals of said estimators. The error
from the omitted terms is established in two cases, the smooth case and the un-
smooth case, and in both cases we achieve what appears to be the optimal rate.
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APPENDIX: Proofs

We will need the following notations: For any 4, € (0, 1), 41 € (42, (14+43)/2],and M > 2,
define

dy = (nh? Jlogn)~ 121D pd 10gn) V2, r(n) = mh? /logn)1 =4/ (AL

O = M@nd jlogny™1,  MP = M4 hd flogn) ™2, T, = {r(n)/ )Y,
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and L, as the smallest integer such that logn(M /2)1‘"‘H > nM,(,z) /dy. Let ||.|| denote the
Euclidean norm and C be a generic constant, which may take different values in each
appearance. Let ¢; = ¥; —m(X;) and assume that the following hold.

Assumption A1. Foreach y € R, p(y;#) is absolutely continuous in ; i.e., there exists
a function ¢ (y; 0) = ¢(y —0) such that for any § € R, p(y;0) = p(y;0) +fg¢;(y; t)dt.
The probability density function of ¢; is bounded with E|p(g;)|"! < oo for some vy > 2,
and E{p(¢&;)|X;} = 0 almost surely.

Assumption A2. Assume that ¢ (.) satisfies the Lipschitz condition in (aj,a;11), j =
0,...,m, where ay = —00, a;, 41 = 400 and aj < --- < ay, are a finite number of jump
discontinuity points of ¢(.).

Assumption A3. Assume K (.) has a compact support, say [—1, 1]®d, and |Hj (u) —
Hj(v)| < Cllu—vll forall j with O < |j| <2p+1, where H; (u) :glK@).

Assumption A4. The probability density function of X, f(.) is bounded with bounded
first order derivatives. The joint probability density of (X, X;) satisfies f(u,v;l) < C <
oo forall [ > 1.

Assumption AS5. For r with |r| = p+ 1, DYm(x) is bounded with bounded first order
derivatives.

Assumption A6. The bandwidth 2 — 0, such that

nh? /logn — oo, nhdH (P02 fogn < 0o,

=)y 2dy logn/ M - oo, A2)
for some 2 < vy < vy and the processes {(¥;, X;)} are strongly mixing with mixing coeffi-
cient y [k] satisfying

o0

3 Ky kY722 <00 forsomea > (p+d+1)(1—2/vp)/d. (A3)
k=1

Moreover, the bandwidth 4 and y [k] should jointly satisty the condition

" <00,

12
§n3/2T,, MOy 1r () (222 My w02 R
n=1 dn r(n)(2”2/2/];/1)2Ln/p2

vM > 0. (A4)

Assumption A7. The conditional density fx|y of X given Y exists and is bounded. The
conditional density function f(x, X DIV Y of (X1,X ;1) given (Y1,Y41) exists
and is bounded for all / > 1.

Remark 7. Conditions on ¢(.) as in Assumptions Al and A2 are satisfied in almost all
known robust and likelihood type regressions. For example, in the gth quantile regression,
we have ¢(t) = 2q1{t > 0} + (2¢g —2)I{r < 0}, while for the Huber’s function (6), its
piecewise derivative is given by

(1) = t1{|t] <k} +sign(t)kI{|7] > k}.
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Note that the condition E{¢ (¢;)|X;} = 0 a.e. is necessary for model specification. More-
over, if the conditional density f(y|x) of Y given X is also continuously differentiable with
respect to y, then as shown in Hong (2003) there exists a constant C > 0, such that for all
small ¢ and x,

2
E[{orit+a—o(ria} 1X =u < cin (A.5)
holds for all (a, #) in a neighborhood of (m(x), x). Define
G@tw) =Ep(V;nIX=u),  Gi,w)=@"/a")G(t,w), i=12. (A-6)

Then it holds that

gx)=G i (mx),x)>C>0, G (t,x) is bounded for all x € D and ¢ near m(x).
(A7)

Assumptions A3—A7 are standard for nonparametric smoothing in multivariate time series
analysis; see Masry (1996). For example, condition (A.3) is needed to bound the covariance
of the partial sums of time series as in Lemma 5, while (A.4) plays a similar role to (4.7b) in
Masry (1996). It guarantees that the dependence of the time series is weak enough such that
the deviance caused by the approximation of dependent random variables by independent
ones (through Bradley’s strong approximation theorem) is negligible; see Lemma 4. Of
course, (A.4) is more stringent than (4.7b) in Masry (1996), due to the nonlinear nature
of the estimates obtained by using the loss function p(.) instead of the method of least
squares.

Proof of Proposition 1. Write £ (x) = =W, S, LX) S1_| Z,; (x)/n, where

Zpi () = Hy 'K (X = ) Vi, (X =) Bp() (X — ).
We first focus on EZ,; (x). Based on (A.6) and (A.7), we have

E{p (Y, u(X; =) Bp(0)1X;} = G(u(X; —2) Bp(x), X;)
= —g(X))m(X;) — u(X; —x) Bpx)}
+Go (& (), X)) m(X)) — p(X; —x)" fp(x))?/2

for some &; (x) between u(X; — ;)Tﬁp (x) and m(X;). Apparently, if X; = x + ho, then

)~ u; — ) fpwy =+t 3 PO

ki=p+1 K

WA Drm@)

U
|k|=p+2 k!

+o(hPt?).
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Therefore,
£2,i =1 [ K fermuw 3 P kg
|k|=p+1 =
#4772 [K@ fel+hue 3 DO Jk gy 4 o(h?+2)
w=p+2 K

=N +71.

Now arrange the N, 1| elements of the derivatives DEm(x)/r! for [r| = p+1 as a column
vector my, 1 (x) using the lexicographical order introduced earlier and define m, 15 (x)
in a similar way. Let the N x N), | matrix B,j(x) and the N x Nj, 15 matrix By (x) be
defined as

Sn,0, p+1() Sn,0, p+2(X)

Sn,l,p+1@) Sn,l,p+2(£)
Bnl(ﬁ) = . 5 Bn2@) = . 5

Sn,p.p+1 () Sn.p.p+2(&)

where S, ; ,+1(x) and S, ; ,42(x) are as given by (11). Therefore, 77 = hP'HBnl@)
my, 41 (x), Tr = hPT2 B, (x)mp 45 (x), and

BB (x) = —WphP TS, ] () By (0)myy g (1)
— WphP 28, (1) o (x)m 2 (x) + 0(hPF2).
Lete;, i =1,...,d bethe d x 1 vector having 1 in the ith entry and all other entries 0. For

0<j<p, 0<k<p+1,let Nj(x)be an N; x Ny matrix with its (/,m) element given
by

d
Naw], =3 puise) [ KOy,
i=1

I,m

and use these N; x (x) to constructan N x N matrix Np(x) and an N x Nj, 1 matrix M(x)
via

No,o(x) No,1(x) -+ No, p(x)

Np@=| L L Mw=| .
Mool Np1 @) Npp @ Np,p+1()

Then Sy, (x) = { fg}x)Sp +hNp(x) + O(h?), Byi(x) ={fg}(x)B) +hM(x)+ O (h?),
and Byn(x) = {fg}(x)By + O(h). As S, ,(x) = {fe}" @S, — h{fe} 2 (@)S,!
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Np(@)S; 1+ 0(h?), we have
—Ef ) =Wpht (1) @55 - £ W) Ny )8,
x [(/8h@) By + i1 @) my 11 )+ Wph P2 (12}~ 08, (f8)@)

x Bymyy(x) +o(h? )

=P W, S Bimy, 4 (x)+hP T W, 8!
x [ (o)™ @m0 @) — Ny S, B1)
+ Bymy ()] +o(h ).

We claim that for elements Ef;,.(x) of Ef;(x) with p —[r| even, the P! term will
vanish. This means for any given r with |r| < p and rp with |ry| = p+1,

> 18 W) N Ve, =0 (A8)
O<lrl<p
To prove this, first note that for any r| with 0 < |r|| < p and rp with |ry| = p+1,
Y 0 NG N@) Ve, = / w2 Ky p(w)du, (A.9)
O<|rl<p

where Ky p(u) ={|My pw)|/|Sp|}K (u) and My , () is the same as S, but with the N (r)
column replaced by u(u). Let ¢;; denote the cofactor of {Sp}; ;, and expand the determi-
nant of My ,(u) along the N(r) column. We can see that

/zﬁzKL,p(z)dzﬂSpl_l/ > eN@)NG R TEK (w) du,
0<|r|<p

whence (A.9) follows, because CN@),N(Ll)/|Sp| = {S;l}NQI),N(L) from the symmetry
of Sp and a standard result concerning cofactors. As a generalization of Lemma 4 in Fan,
Heckman, and Wand (1995) to the multivariate case, we can further show that for any r
withO < |ry| < p and p —|r;| even,

[uPKpp@du=0, forany lral = p+1,
which together with (A.9) leads to (A.8). u

We proceed to prove Theorem 1. Define X;, = X; —x, pu;x = u(X;y), Kix =
Kp(Xy). and gy (x5 1) = (Y ] Bp(x) +1). Forany a, f e RV, define

i (30, B) = Kin{p (Vi3 el @+ B+ Bp D) =p (Vs el (B + Bp () = 03 (5 O |

tiy(@+p)
=K [ s =i 0}

ix

and Ry (x; &, f) = @ (x; &, f) = BDy; (x; a1, ).
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LEMMA 1. Under Assumptions A1-A6, we have for all large M > 0,

sup sup < M3/2dn almost surely, (A.10)

ielDaEB,Sl),

Z Rni@;a:ﬂ)

i=1

peB?

where BS) = (8 e RN : |Hppl < MP), i = 1,2.

Proof. Since D is compact, it can be covered by a finite number T}, of cubes Dy =Dy, i
with side length 1, = O(T, "/¥) = O{h(nhd logn)~(1=42)/2} and centers x; = x,, 4.

Write

n
sup sup | Y Ryi(x;a, )

xe€D, g i=1
peB?
n
Y, Opiagi ) =By (i3 . B)|

acBl, i=1
peBy?

< max  sup
1<k<T,

n
+ max sup sup Z{Q)ni@k;a,ﬁ)—q’ni(&;a,ﬁ)}’

1SkSTn£€Dk(XEBn(1) i=1

pe Bﬁz)
n

+ max sup sup | 3 {EOu(eaf) B0 )}
ISkSTnielD/"(ZEB,SI), i=1

ﬂeB,gz)
=01+02+03.

In Lemma 2, it is shown that Oy < M3/2dn/3 almost surely and thus Q3 < M3/2d, /3.
It remains to bound Q1. To this end, partition B,g'), i =1,2, into a sequence of disjoint
subrectangles D(l), e, D(jl), such that

D1 =sup{1Hn@—pl: 0 pe DY} < oM~ M logn, 1< i<y,

Apparently, J; < (M1logn)N. For every 1 < j| < Ji,1 < kj < Jj, choose a point aj, €
D/(.]l) and fy, € Dlg). Then

n
01 < max sup | Y {Rpi (X3 0y Bry) — Rni (s . B}
1<k<Ty aeD(l) i=1
1<ji,kp < Jp J1°
2
ﬂeD,E,l)

n
+  max Y Rui(xg; @)y Bry)| = Hut + Hyo. (A.11)
I<k<T, |/

1< ji.ky < Jq
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We first consider H,,1. For each j1 =1,...,J; and i = 1,2, partition each rectangle D](f)
further into a sequence of subrectangles Dj(ll) [oees DJ(:) I Repeat this process recursively
as follows: Suppose after the /th round we get a sequence of rectangles DJ(|) vt with
1 < ji < Ji, 1 <k <I;then inthe (/ + 1)th round, each rectangle Dj(f?jz,...,j] is partitioned

into a sequence of subrectangles {D( 2

. < j <
J1sJ2s sl Jz+1’l < Jji = Jp} such that

@) _ { ey - (@) }
|Djl:j2a~~=j/>jl+l | =supy|Hp(a—p)l:a.f e D11,12, wJlsJi1

<o (M ogn), 1< g1 < i,
where Jj41 <M N End this process after the (L, 4+ 1)th round, with L, given at the be-
ginning of Section 3. Let D(l), i = 1,2, denote the set of all subrectangles of D(()i) after the
[th round of partition and a typical element DJ(:) vt of Dl(i) is denoted as Dél;) Choose

apointa(j € Dg]l.])) and B(j € Dg‘z)) and define

M3/24
V[ZZ {‘ Z{RnlLk’ajlaﬁk]) Rnth7ajl+1:ﬁk1+1)}‘ n}a 1 <l<Ly,

(j[) i=1
(k

M3/24
0y :z P{ SUB) ‘ Z{Rnl(xk’ajlsﬁk[) Ryi(xy; a, /7))}‘ n}’ I1<I<Lp+1.
((%1))’ aeDj), i=1
2
ﬂeDEkl))
: i 1 M (2
B};z?ssumptlon A4 it is easy to see that, for any a € D(J'Ln+1) € DLn+l and f§ € D(kL €
L +1°
2)
cm
|Rm'(£k,0‘a,3) - Rni(lk,ajLM_] ,ﬁkLn+1)| < ms

which together with the choice of L, implies that O, 11 =0.As Q; < V;+0;, 1 <l <Ly,

M3/2d L,
P (Hnl > 3 L <ThQ1 <Ty z V. (A12)
=1

Tobound V;, [ =1,...,L,, let

n
Wn = z Zni» Zni = Rni@k;ajl,ﬂlq)_Rni(ik§aj,+1’ﬂj,+1)~ (A.13)
i=1
Note that by Assumption A2 we have, uniformly in x, a, and £, that

1
| (. )] < MV, (A.14)
Therefore, |Z,;]| < C M,(,l). Using Lemma 6, we can apply Lemma 4 to each V; with
=cimy), By =nnd (D)2 (M 0gn) 22,
rn:r,llE(ZUZ/Z/M)ZZ/VZr(n), q:n/r,ll, n=M>3%d, )2,

=eamPr)7h W =gy i Mgy 2.
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Note that nM,(,l)/n — 00, r,l1 — oo forall 1 </ <L, from (A.2) and

an=CM"*1ognm?/v2 /22 22By = Clogn'=2/V201%/v2 122l — 5(ay),
which hold uniformly for all 1 </ < L. Therefore,

141
v < ( 1 1]2)4exp{—C1logn(M/sz)zl/vz}—i—Czr,l,,
j=1

where, because J; < 2(Mlogn)™ and J; <2M" for2 <1< Ly, f,l, is given by

l (1)y1/2
I _ gl 2N (+1) o, 3/2 7 I iMn } 77
m=4M (logn)™"n rL{dn )12

It is tedious but easy to check that, for M large enough,

Ly . 1+1
T, Y [( 1 Jj2)4exp{—C1 logn(M/2")2!/ ”2}] is summable over 1. (A.15)
j=1

=1
Asy [rfl]/rfl is increasing in /, we have

Ly (Dy1/2 . 1 lny Ly
M, [r"]
=1 {dn} y =1

which is again summable over n according to (A.4). This along with (A.12) and (A.15)
implies that H,; < M 324, /2 almost surely, using the Borel-Cantelli lemma.
For H,5, first note that

n
S Rui(xiaj,, Br)

i=1

P(Hyy > 1) < TpJEP < > ;7) . (A.16)

We apply Lemma 4 to quantify P(|X}_; Ryi(x; @, i, | > 1), with ry = r(n), By =
20, MY, By = Connd M2 MP), 2, = (riyM{Y)1 /aCy, and y = M3/2d,,. Then
nBy/n— oo and

dnn/4 = (nh®) =22/ 2(10g ) 1+42)/2 /116C, 1 (n)} = M ?logn/(16Cy),
22By = M4 (nh?) =2 (logn)*2 /{16C3r% (n)) = M/ *logn/(16C?),
W(n) = gninBy/m}" %y Iral = T d2a ()2 /0"y lr)lir ()M /2,

where W (n) is summable over n under condition (A.4). Therefore,

1
P(Hyy > 1) <2TJ2/nP +¥ (), b= W(Ml/2 —M'Acy/c)). (A.17)
1

By selecting M large enough, we can ensure that the right-hand side of (A.17) is summable
over n. Thus, for M large enough, H,;» < M 3/24,, almost surely. By (A.39), we know that
for large M, Q1 <M 3/24,, almost surely. n

The quantification of Q5 is relatively more involved, so we put it as a separate lemma.
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LEMMA 2. Under conditions in Lemma 1, Qo < M3/24, /3 almost surely.

Proof. Let X ;= X; —xy, uik = u(X ), and Kj = Kpp (X ). Write @ (x 43 @, f) —
D (x;a, f) =& +&p + &3, where

T 1
G = (Kik#ik—Kixﬂix) 0!/0 {Wni(&k?ﬂ-ll'—k(ﬁ'f'at))_(ﬂm’(ik;O)}dt
1
iz = Kisulyot [ {oni s aly B 4+a) = pui x5 ], (B +an)

&3 = Kix 1] 0{pni (;0) = 0 (x4 0)).
Then P(Q3 > M3/2dy,/3) < T,(Py1 + Pya+ Py3). with

P,i= max P(su sup |3 &1 > MY 9) i=1,2.3.
nj = max xerk g) ;1 n/ j

ﬂeB,SZ)

Based on the Borel-Cantelli lemma, Qr < M 3/ 2d,, almost surely, if ¥, Ty, Pyj <o, j=
1,2,3.

We first study P, 1. For any fixed o € B( ) and f € B,EZ) , let I “p _ = 1, if there exists some
t € [0, 1], such that there are discontinuity points of ¢ (Y;;6) between ,ul-k(ﬂka) + 4+
ot)) and /[l!—kﬂp (xf); and Iiol({’ﬂ =0, otherwise. Write & = g‘,-llio;{’ﬂ +<&1(1— If,;’ﬂ). Note
that by Assumption A3, [(Kjruir — Kix,uix)Ta| < C2M,51)ln/h. Then by Assumption
A2 and the fact that |,u—l-rk(,3 +at)| < CM,(ZZ), we have |&1(1 — Iio;{’ﬂ)| < CM,gz)M,(,l)ln/h
uniformly in i, a, f, and x € Dy. Define U = I{|X ;| < 2h}, whence &1 = &1 Uj since
I = o(h). Therefore,

P( sup sup ‘Zfll(l—l ‘ Zd’l)

() xeDy =1
p’EB(2
n M1/4nhd n M1/4nhd
< P( U 7) P( Ui —EU; 7) A.18
< ig,l ik > 18C = |,§1 ik ikl > 36C ( )

where the second inequality follows from the fact that Var(Z?= X il <2h) = O(nhd)
implied by Lemma 5. To quantify (A.18), we apply Lemma 4 with By =1, = M1/4nhd/
(18C), By = nh?, ry = r(n). As Ay = CM'/* logn(nhd/logn)(]+’12)/2, A%Bz =
o(An1n), and T, ¥, is summable over n under condition (A.4), we know that

( sup i1(1 —Ikﬁ)‘ > M3/2a, /18) is summable over n, (A.19)
aeBD, i=1

pes®
whence Y, T, P, < 00, is equivalent to
( Sup ‘ 24:11[,](

aeB i=l
ﬂeB(z)

> M>/2d, /18) is summable over 7. (A.20)
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To prove (A.20), first note that / I.D;C’ﬁ <lI{g € Sl?’k/j }, where

m
Sfé’kﬂZU U [aj_A(Xi,ék)‘l‘ﬂ—l!—k(ﬁ‘f‘at)aaj_A(Xiaik)]
j=11€[0,1]

m
C U [aj — CM,(IZ),aj +CM,(,2)] =D,, forsomeC >0,
j=1

1 1
A=+ T S =x) [ DEme+ () —x)(1 - w) dw,
rl=p+1 % 0

where in the derivation of Sz’,f C Dy, we have used the fact that | X ;. |<2h and A(X;,x;) =

O(hP‘H) = O(M,gz)) uniformly ini. As Iio;(’ﬂ < I{e¢; € Dy}, we have |1 |1i‘2’ﬁ <|&11Uni,
where Uy,; = I(|X ;| < 2h)I{e; € Dy}, which is independent of the choice of o and .
Therefore,

n (1/8
P( sup ‘Zgillik’
aeB,(ll), i=1
peB?

n
> M3/2dn/18) < P( S Ui > Ml/znhdM,(,z)/uSC))
i=1

n Ml/znher(lZ)
< P(ig,l(Um' —EUy;) > T)’

(A.21)

where the first inequality is because || < CM,SI)Z,, /h and the second one is because
EU,; = O(hdM,g)) by Assumption Al. As EUr%i = EU,;, by Lemma 5, we know that
Var(¥}_ Upi) = CnhdM,(lz). We can then apply Lemma 4 to the last term in (A.21) with

By=CnhimM®,  Bi=1, r=r), n5=M"2unMPG60).

Apparently, 1,7 = Clogn(nhd/logn)(l_’12)/2 and A%Bg =0(Ann). As in this case T, ¥,
is still summable over n by (A.4), (A.20) follows.
For P, first note that using the approach for P,,1, we can show that

n
TnP< sup  sup Z {&in —fiz}‘ > M3/2dn/18) is summable over n,
aggfll),éepk i=1

pes?

where
% T ! T T
G2 = Kkt | {omi Cops i+ a0) = pui i T (B ar) .

Therefore, we would have Y T), P,5 < oo, if

n
TnP( sup  sup ‘ 2 Eiz > M3/2d,,/18) is summable over n. (A.22)

aeB{V x€Dy ' i=1
peB?
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For any fixed o € Bf, € B, and x € Dy, let Iiof}{ﬂ . = 1, if there exists some interval
[t1, 2] C [0, 1], such that

Yi— i Bp)+B+an) <aj <Y —p (Bp@)+p+ar),  Vieln.nl, (A23)
with aj € {ay,...,am}; and Iio'f;fx = 0, otherwise. Write El-z = 5,-211-0:}5( +é§i2(1 l k x)
Note that Kipfa = OMR") and gy (e ]y (B + 1)) = i (63 11, (B + ar) = O

MP 1,/ 1) if 1 kﬂx = 0. Then again as &, = &, 1{|X ;| < 2h}, we have similar to (A.19)
that

( sup th M3/2d,,/18) is summable over n.
aeB(l) i=1

peb?

Therefore, by (A.22), to show Y, T, P,;» < oo, it is sufficient to show that

T, P ( sup  sup ’ Z flg M3/2d,,/36) is summable over n. (A.24)
B(l) x€Dy 'i=
/,e B<2)
To this end, define ¢; = ¢; + A(X;, x;). Then Ilakﬁ)C = 1;1i.e., (A.23) is equivalent to

AX,x0) — AKX, x) 4+l (BHar) <€ —a;j < ul (B +an), vt € [t1,1].  (A.25)

Let 6y = M\P1y/h. Then |A(X ;,x4) — A(X 1, )| < Con, |(ttik — i)' Bl < Cp, and
(A.25) thus implies that

—2Co + pu (Btat) <€ —aj < wp(B+a)+2Co,  Vieln,nl. (A.26)
Without loss of generality, assume ,u-l!—ka > (. Then from (A.26) we can see that
—2C0 + uly (B+an) < & —aj < pl (B+ar)+2Co,, (A.27)

which in turn means that if Iﬁ}(ﬂx =1, then [&n| < C(rp — t1)|,u-l!—ka| < 4CJ;, uniformly in
i, a € B(l) pe B(2) and x € Dy. Therefore, as &ip :5i21{|lik| < 2h}, we have

N M3/2dn
- 36

P( sup  sup ‘zfﬂzkﬂx

B(l)xe'Dk i=1
/363(2)
M3/ 4and D
gP( sup  sup 21{|X,k|<2h}1 o #) (A.28)
eV xeDL =1 36C

ﬂeB(z)

We will bound I ’ﬂ . by a random variable that is independent of the choice of a € B(l)

and x € Di. By the definition of I p

ik and (A.27), the necessary condition for 17 wp_ 1
is

isk,x —

m
ceJlaj+ulpp-2mP,  aj+ i p+2mV1= D’
j=1

(A.29)

nl’
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which is indeed independent of the choice of & and x € Djy. Therefore,

M5 nh? m) )

n
o.f
P( sup - sup 3 I{IX il < 2M i > —— =

aeB{) x€Dyi=1
peB?
M3/4nd M,(ll)
_ ). (A.30)

n
sP( sup 3\ H{IX x| < 2h)1le; € D)) = =

peB?i=1

Now we partition B,(,z) into a sequence of subrectangles Sy, ..., Sy, such that

ISl =sup{|1Ha(B=p): . eSi} =MD, 1<i<m.

Obviously, m < (Méz)/Mn(]))N = M_3N/4(nhd/logn)(;'1_’12)N. Choose a point f; € S;
foreach 1 </ < m, and thus

n 5/4,pd 1s(1)
P( sup Zl{miuszh}l{qebﬁ}zw>

pep it 36C
n M5/ Aand D
< mP< > H{IX k| <2h} (e € fo} > 7”)
et 72C
n 5 P M5 Anpd (D
+mP( sup 2 I{|X | < 2h}|I{e; € Dm{}_l{fi €D} > T)
peSii=1
=m(T1 +Tr). (A.31)
We deal with 77 first. Let
Ul = H{IX;) < 2h}I{e; € DI, (A32)

Then by the definition of D/ given in (A.29), EUJ, = 0(h?mD) < M54nd M),
(144C) for large M, and we have

no S Aand gD
T\ <P Ul —EU’ ) > ————
b= <i§( ni ~EUn) 2 —c
We can thus apply Lemma 4 to the quantity on the right-hand side with By = 1, B, given
by (A51), rp = r(n), o M34nhd MY, and 4, = 1/(2ry). It follows that
/lnn:CMS/4 logn(nhd/logn)(l'HZ)/z_A1 s A%Bz = Clogn(nhd/logn)_z(h_’12)/‘)2.
As (1+17)/2> 11 and Ao < A1, we have T| = O(n_b) for any b > 0.
For T,, note that as |,u-l!—k(ﬁ -ADl < CM,(ll) forany f € S;, 1 <1 < m, we have
I{e; e DIy~ I{e; € D))
=I{e e D Py

m
1 1
<I{eel [q;+ulTkﬁl—CM,(,),aj+ﬂ,Tkﬁl+CM,$) = Uy,
j=1
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for some C > 0, which is independent of the choice of S € §;. Therefore,

n M5/4nhdM,(,1)
<P Z H{|X x| <2h}Up; > e )

i=1

which can be dealt with similarly as with 77, and thus 7, = 0(n="?) for any b > 0.
Thus from (A.28), (A.30), and (A.31), we can claim that (A.24) is true and thus T) P,
is summable over n.

Dealing with P,3 is simpler, as no £ is involved in ¢&;3. For any given x € Dy, let
I;.x.x = 1, if there is a discontinuity point of ¢ (¥;; &) between ﬂ—l!—kﬂ,,(gk) and #szﬂP@);
and I;. = 0, otherwise. Write ;3 = i3/ x +&i3(1 — [k ). Again by Assumption
A2 and the fact that | K ] ol = O(MAY) and | Bp xg0) = ] fp (0] = 1A (X xp) —
AX;,x)| = O(MP 1,/ h), we have, similar to (A.19), that

n
T,,P( sup ‘2§i3(l_li;k,x) >M3/2dn/18) is summable over 7.

aEB,(ll) i=l1
x€Dy

It is easy to see that /;.; y < I{e; + A(X;,x}) € Sj.k x}, Where

m
Siie=U U [0 = 140020 = AKX 014 14X, 20 = A0
j=11€[0,1]

m
c Utaj —cMPly/hya;+CMPl, /) = Dy, for some C > 0.
j=1

Therefore, [&;311;;k,x = 1S3 1T {1 X ik | < 20}k x < Upi, with
1
Upi = MV T X 4| < 20} {e; + A(X . x) € Da),

which is independent of the choice of a € B,(ll) and x € Dy. Therefore,

n n
TnP( sup S G| > M3/2dn/18) < TnP( S [Upi —EUpi1 > M3/2dn/36),
aeBy’ =1 i=1
1Dy (A.33)

where we have used the fact that EU,,; = O(hdM,gl)Mn(z)ln/h) = O(dp/n). We will have
> Ty Py3 < oo if the right-hand side in (A.33) is summable over n; i.e.,

n
T,,P( Y [Upi —EU,;1 > M3/2dn/36) is summable over 7. (A.34)
i=1

It is easy to check that Lemma 5 again holds with wy (X ;, ¥;) standing for U,;. Applying

Lemma 4 to (A.34) with B; = M\, By = Cuhd (M2 M1, /1, = M3/2d,, /36, and

rp =r(n), we have (note that n B /n — oo indeed)
InnjA=CM" 2logn, 2By =Cry " logn = o(inn).

Thus, T,V is again summable over n and (A.34) indeed holds. |
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Proof of Theorem 1. Let 1; = A(s). Then according to Lemmas 1 and 9, we know that
with probability 1, there exists some C; > 1, such that for all large M > 0,

sup sup | Y @yl - —(Hna) Sup () Hy(a+25)
XEDaeB(l) i=1
pes?
< M3 (dyy +dy) < 20, M3 2 (k) =241 (logn)?1 for large n, (A.35)

where d;| = (nhd)1—41=242 (logn))‘1 +222 Note that based on (12), we can write

n
> Knio(Yis 0 Bp @) o0 = nh B () Wy S, (x) Hy .
i=1

Replace B( ) in (A.35) with B( ) = {a eRN k<M~ 1(nhd/logn)’11|Hnoc| <k+ 1}
and M with (k+ 1)M. We have, by the definition of ®,; (x; a, /), that

inf - inf {3 p(Fis 1 @B+ Bp N Kni = X, p(Yis 13 (B4 Bp ) K

xeD aeB i=1 i=1
ﬂEBll)

+nh? (W5 B3 @) = Ha)T Sup () Hot}

d

h
> inf inf L(Hna) Sup () Hyat — 20 M3/ (nh®) 1 =241 (1og )21
XEDOLEB(I

> {c3 (kM)2 )2 —2C; (k+1)3/2m%/ 2}(;11161)‘—”1 (logn)**1

> (8 —25/2)C1C3/2(nhd)1_211 (logn)y‘1 >0 almost surely, (A.36)

where the last term is independent of the choice of £ > 1. The last inequality is derived as
follows: As Sp, > 0, suppose its minimum eigenvalue is 7y > 0. As S (x) = g(x) f(x)S)
uniformly in x € D by Lemma 8 and g(x) f(x) is bounded away from zero by Assump-
tion AS and (A.7), there exists some constant C3 > 0, such that for all x € D, the mini-
mum eigenvalue of Sy (x) is greater than C3. The last inequality thus holds if M > C4 =
(16C /C3)2. Note that

* ) N nh N\ 21 N
U B = {a| eRrN . (logn) |Hya| > M} = BN, (A37)

Therefore, from (A.36) and (A.37), we have

inf  inf {ZP(YZ’:“m(a"'ﬁ_"ﬂpL)))Knl Zﬂ(Yi;#Ii(ﬁ+ﬁp@)))Kni

iED"‘EB i=1 i=1
pesd

+nh® (W, B (x) — Hy ﬁ)TSnp@)Hna} >0 almostsurely.  (A.38)
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Note that by (A.40), Lemma 10, and Proposition 1, we have | (x)| < C3 (nhd/logn)_’12
uniformly in x € D almost surely. Namely, S (x) € B,(l2) forallx e D, if M > C§ . This
implies that if M > max(C3, C4), (A.38) still holds with § replaced with H,”' W1 g (x).
Therefore,

inf inf { Y Knip (Vs 0k Hy W5 B )+ p )

iEIDaEBéV i=1

= Knip (Vi iy (H W3 B+ Bp @) | > 0,
i=1

which is equivalent to Theorem 1. n

Proof of (13). Let d, = (nhd)l_z’ll (log n)z’ll. Following the proof lines of Theorem
1, we can see that (13) will follow if

n
sup sup | z Ryi(x;o,p)| < M3/2dn almost surely,
2D 450 =1
peB?

with A1 =1, 1p =1/2, and B,(,i), i = 1,2 defined as in Lemma 1.
To prove this, cover D by a finite number T,, = {(nhd/ logn) /2, h}? of cubes Dy =Dy
with side length /,, = O{h(nhd/logn)_l/z} and centers x; = x, . Write

n
sup sup | D Ryi (x;a, )

XE'DaeB,(,l), i=1
peBy

n
< max sup | Y ilrgsan f) —E@ui(xyia, B)|
1<k<T gD i

peB?

+ max sup sup ’i{q)m(&k;a,ﬁ)—@ni(&;a,ﬁ)}‘

1<k<T, x€Dy 4epV, i=1
peB?

n
+ max sup sup | Y {E@u (i)~ i) }|
15k§T,,£eDk,Z€B£1)’ i=1

pes?

=01+ 02+ 03.

We will show that with probability 1, Q¢ < M3/%d,,/3, k =1,2,3.
Define &; as in Lemma 1. As P(Q2 > M*/2dy,/2) < Ty(Py1 + Pya + Py3), where

n
Pyj= max P( sup  sup |2g’,'j|2M3/2dn/9), j=1,2,3.
1<k<Ty \x€Dr,4ep®, i=1

pes?
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Then, by the Borel-Cantelli lemma, Q> < M 3/ 23,1 /2 almost surely, if Y, Tn Pyj <00, for
j =1,2,3. We only prove that for P, to illustrate. Recall that

T

il :(Kikﬂik_Kixﬂix) 0!/0 {fﬂm’@k;#,Tk(ﬁ+al))—¢ni@k;0)}dl~

B Kipptir — Kix i) al < CoMVT, 7, T, <cM? and p() is Lip-
ecause |(Kik ik ixtix) ol < CoMyp ln/h, \py (B+at)| < n and ¢ () is Lip

schitz continuous, we have |&;1| < CMP MVl /h. Define Uy = I{IX;x| < 2h). As
ln = o(h), we can see that &1 = &1 U and, similar to (A.18), we have

n M3/24 n M4 nd
P( sup sup thl > ")SP(ZU,-/C>7”)
aeB{) 2Dy i=1 i=1 oC
ﬂEB)EZ)
= = ik ik 18C 5

and ¥, T, P, j < oo thus follows from similar arguments as those lying between (A.18)
and (A.19).

The proof of Q1 < M3/2LG/2 almost surely is much easier than in Lemma 1, if ¢(.)
is Lipschitz continuous. Instead of the iterative partition approach adopted there, we once

and for all partition B,(li), i = 1,2, into a sequence of disjoint subrectangles D(i), e Dyl)
such that

IDP1=sup{IHn@ =)l 0, € D} < M Gogn/m! 2, 1< <.

Obviously, J; < (n/logn)N/z. Choose a point o, € D](ll) and fi, € D,E?). Then

n
01 < max sup | 3 {Ryi (xgs @y, Br,) — Rui (kg5 0, B))
I1<k<Tn ,cpO |i=1
1<ji.ki <y -’32)’
B K

n
+ max | Y Ryi(xgsaj.Bry)| = Hyl + Hyo. (A.39)
1<k <Ty i=1

L<ji,ky <0y

By Lipschitz continuity of ¢ (.), we have for any a € D;ll) and f € D]g),

D (513 6y iy ) — P G gis 0, )P = OUMEP P logn /) < M2,/ (4n).

Therefore, it remains to show that P(H,, > M 324, /4) is summable over n.
First, note that by Cauchy inequality |Rm-@;oz,ﬂ)|2 = 0({M,(LI)M,§2)}2) and E|R;;
(é;oz,ﬁ)|2 = O(hd{M,(,l)M,(lz)}2) uniformly in X;, x, a € M,(ll), and f € M,gz). Next,

for any > 0,
n
Z Ry (x; o, Br)| > -

P(Hyy > n) < Ty JEP <
i=1
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We apply Lemma 4 with r, = (nhd/logn)l/z, B| = 2C1M,(,])M,(,2), By = Cznhd
(M,SI)M,(,Z))Z, An= (4C1rn{M,g2)}2)_1,and n= M3/25n/4. Ttis easy to see that n By /n—
oo and

Ann/4=Mlogn/(16C1), 3By = o(inn),
¥(n) = gu(nBy/m' 2y ral = > (logm) =12y [r()]/r(w).
As T, le‘{’(n) is summable over n by condition (A.4), so is P(H,) > MS/ZJH /4). u
Proof of Corollary 1. As 141, > 241, itis sufficient to prove that, with probability 1,

] n
@) —Ef @) = — 5 Wy S 0 Hy ! 3 K (X = 0)p @) (X = x)
i=1

o))

uniformly in x € D. As ¢(¢;) = ¢(Y;,m(X;)) and Ep(e;) = 0, the term on the left-hand
side of (A.40) stands for

1 &
WPSn_,p@)W z {Zni (x) —EZy; (x)},

i=1
where
Zui () = Hy K = 0X; =) {0 (Vi 0 (X =) ) —oen) |-

Next, similar to what we did in Lemma 1, we cover D with number T, cubes Dy = D, i

with side length [;, = O(T,Tl/ d) and centers x; = x,, ;. Write

n
su Zni(x)—EZ,;(x)] < max
ie%li; ni (X) ni ()] < 1R,

Y Zpixy) —EZm'@k)‘
i=1

n
+ max sup’ Zm‘(i)—zni(lk)’
L2 AP

n
+ max su EZ~x—EZ~x‘
lsksTuegk ig,] i (X) ni Lk)
=01+ 02+ 0s.

AS Zyi (1) = Zpi (xp) = Hy 'Ky (X = 00X = 0){ni (63 0) = gpi (24 0)), through ap-
proaches similar to that for &3 in the proof of Lemma 2, we can show that

hd N\ (1=42)/2
0= 0{ ( " )( 2/ logn} almost surely,
logn

and the same result for Q3 also holds. To bound Qi, first note that EZ,ZH.(;,() =
O (hP 114y uniformly in i and k. As |Z,;(x)] < C for some constant C by Assump-
tion A2, we can see that from Lemma 5,

n
S EZZ (1) + D 1COV(Zyi (x1), Zpj (x4))] < ConhPTIH,

i=1 i<j
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Finally, by Lemma 4 with B; = C; , By = Cnh?144 = A3(nh? /logn)(1=42)/210gn,
and r, = r(n), we have, as nBy /5 — oo, that

dnn=A3/QCp)logn, 2By =Cy/(4C})logn.

Therefore,

P( max
1<k<T,

2 Zpi(x3)—EZpi(xp)| > A3 (”hd/IOgn)(l_h)/z logn) <Tp/n+CTy ¥y,

where a = A3/(8Cy) — C2/(4C12). By selecting A3z large enough, we can ensure that
Tp/n“ is summable over n. As T,,¥,, is summable over n from (A.4), we can conclude
that

01 = 0{ (lr(z)lgzi)(l—/lz)ﬂ logn} almost surely.

This together with Lemma 8 completes the proof. n

Proof of Corollary 2. Through the proof lines for Theorem 1 and Corollary 1, it is not
difficult to see that Corollary 2 still holds under the conditions imposed here. Under the
additive structure (4), we thus have

1
¢n1(x1)—¢1(x1)+ Zmsz) h”Helpr Bl Zmp+l(xl X5i)
l—l

1 n
+ nzh]hd_l eljg,](o(gj)

n
X D S (01, X0 K (X xj /11, Xo i /W (X1 yj/ hy. X 7/ h)
i=1

+op(fmax(hy, WP + 0, {(nh h? =1 Jlogn) =34y, (A.41)

where X yj = X1j —x, X5 ;; = Xo; — X, and ey is as in Proposition 1. Note that by
a7, (nhl)l/z(nhlhd_l/logn)_?’/4 — 0, the Op(.) term can thus be safely ignored.

By the central limit theorem for strongly mixing processes (Bosq, 1998, Thm. 1.7), we
have

1 & -
*Zmszz) Op(n™112), ¥y (01, Xo) =Bmy (11, X0)+0p (0™ 172).
iz i=1

As the expectations of all other terms in (A.41) are 0, the leading term in the asymptotic
bias of ¢ (x1) — ¢1(x1) is thus given by

~{max(hy, W) e WS, BiBmy,4 1 (v1. Xo).

Again through standard arguments in Masry (1996), we can see that

&
=T 2 S 01, X0 Kn (X1 o X0, ) (X1 11> X 1/ )
1=

=S (xl,ij)fzuzj)/ (KX g/ 0 do{ 140 ({ l,?ffl }1/2)}
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uniformly in 1 <i < n. Therefore, the leading term in the asymptotic variance of ¢, 1 (x1) —
¢1(x1) is the variance of the term

{Kp}(Xy,xj/h1,0)do,

n
mh)) " er Y 08 1, Xo) aXoj)
j=1 [0’1]®z

which is asymptotically

)T [ U8 01 X0 B2 1, X)X fer S5 KaKT S, o]
(A42)

I p(y:6) = Qg — 1)(y =) +]y—6] and (8) = 2¢1{0 > 0} + (2q —2)I{6 < 0}, we have
g(x) =2f:(0]x) and

a2 (x) = E[p%(e)1X = x] = 4¢>(1 — F;(0)) +4(1 — ¢)? F;(0) = 49 (1 —¢),

which when substituted into (A.42), yields the asymptotic variance of the quantile regres-
sion estimator,

P =q-o{ |

-1 -2 2
oot 1O X O, Xo) (X)X e

x Sy Ky K]Sy el
The next lemma is due to Davydov (Hall and Heyde, 1980, Cor. A.2). n

LEMMA 3. Suppose X and Y are random variables that are respectively G— and H—
measurable, where G— and H— are two o-algebras. E|X|P < oo, E|Y|? < oo, with p >

1, qg>1, andp_1 —I—q_l < 1. Then
l—p_l—q_l
[EXY —EXEY| < 8IXI,1¥lg{ swp |P(AB)=P(A)P(BI}

AeG,BeH

The next lemma is a generalization of some results in the proof of Theorem 2 in Masry
(1996).

LEMMA 4. Suppose {Z; }?i | Is a zero-mean strictly stationary process with strong mix-

ing coefficient y [k], and that |Z;| < By, YV EZi2 +2i<j|Cov(Z;, Zj)| < By. Then for

i=1
any n > 0 and integer series r, — 00, if nBy/n — 00 and gy, = [n/ry] — 00, we have

'

where ¥ (n) = gn{nBy/m}"/?y [ral, An = 1/{2rn By}

n
2 Zi

i=1

A
> n) < 4exp{—%77 +/1,2132} +C¥(n),

Proof. We partition the set {1,...,n} into 2¢g = 2g, consecutive blocks of size r = ry,
withn =2qr+v and 0 <o <r. Write

jr
Va()= Y Zi, j=1..2
i=(j—1)r+1
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and

q q n
Wr=3 Vu@j—1, W)=Y V.@2j), W)= Y Zz.
j=1 j=1 i=2qr+1

Then Wy, =37, Z; = W, + W,/ + W,/ The contribution of W," is negligible, as it con-
sists of at most r terms compared with gr terms in W,, or W,/. Then by the stationarity of
the processes, for any # > 0,

P(Wy > n) < P(W), > n/2)+ P(W) > /2) =2P(W,, > 1/2). (A.43)

To bound P(W,, > n/2), using recursively Bradley’s Lemma, we can approximate the
random variables V; (1), V,,(3), ..., V,(2¢ — 1) by independent random variables V," (1),
Vr@3), ...,V (2q — 1), which satisfy that for 1 < j < ¢, V,*(2j — 1) has the same distri-
bution as V,;(2j — 1) and

P(|Vn*(2j — )= Va2j— 1) > u)

< 18(| Va2 = Dlloo/u)'/* sup|[P(AB) = P(A) P(B), (A44)
where u is any positive value such that 0 < u < ||V,(2j — 1)||cc < 0o and the supremum is
taken over all sets of A and B in the o -algebras of events generated by {V,, (1), V,;(3), ...,

V,(2j —3)} and V(25 — 1), respectively. By the definition of V;,(j), we can see that
sup|P(AB) — P(A)P(B)| =y [rn]. Write

P(W;, > g) < P(’ i v,;*(zj—1)) > g)+P(‘ évn(zj—l)—v,,*(zj—l)( > g)
=1 +11;. . (A45)

We bound I as follows: Let A = 1/{2Br}. Since | Z;| < By, M|V, (j)| < 1/2, then using
the fact that e¥ < 1+x +x2/2 holds for |x| < 1/2, we have

E{eﬂvrf (21'-1)} < 14+ 2BV, (j))? < X BV @j=1), (A.46)

By Markov inequality, (A.46), and the independence of the {V," (2 — 1)}}]:], we have

Iy < e /4 [Eexp (/1]:1 V) — 1)) +Eexp (—Aé V(2 — 1))}

q
<2exp (= in/4+ 4 3 BV 2j - D)
j=1

< 2exp{ —An/4+C2,1282}. (A47)

We now bound the term /; in (A.45). Notice that

q
L=y P
=1

TR Lo l
Va2j—1) =V, () 1)‘>4q>.
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If [ Ve (2j — Dlloo > 11/(4q), substitute 77/ (4q) for u in (A.44),

L < 18q{1Va2j = DIl/n/ G} 2y ral < Cq>2 /02y 1ral (ra B2, (A48)
If | Va(2j — Dlloo < n/(4q),letu = ||V, (2j — 1)|lco in (A.44) and we have

I < Cqylral,

which is of smaller order than (A.48), if nB/# — oo. Thus, by (A.43), (A.45), (A.47),
and (A.48),

P(Wy > 1) < 4exp{—inn/4+ CyBai2} + C¥y,
where the constant C is independent of 7. u

LEMMA 5. For any x € R4, let wx (X, Y) =1(1X | < h)yx(X;y, Y;), a measurable
function of (X;,Y;) with |yx(X;,Y;)| < B and V = El//i(&,-, Y;). Suppose the mixing
coefficient y [k] satisfies (A.3). Then

S 2, prd+l ) TV
Cov(( X Iy (X;, ¥l ) =nV [140{ (BaPT4+1 V) H
i=1
Proof. Denote yy (X;,Y;) by w;. First note that

V=Bl =i [ BRI = e ot b
n—d n—d

> 1CoV (i, i) = Y, (n—=1—=d+1)|Cov(yoy, yix)| <n Y, 1Cov(wox, wix)l
i<j =1 =1

d—1 Tn n—d
=n z +n ) +n z =nJy1 +nJy+nJy,
=1 I=d =41

where 7, = h(PTd+D@/v2=D/a_For J,,  there might be an overlap between the com-
ponents of X and X, for example, when X; = (X;_g4,..., X;_1), where {X;} is a uni-
variate time series. Without loss of generality, let #’,u”, and ¥ of dimensions /,d —1,
and /, respectively, be the d + 1 distinct random variables in (X ¢, /h, X,/ h). Write u) =

@, u"")" and up = @™, u”")". Then by Cauchy inequality, we have

. 1/2
Xo=x+hu 2 2
Yoz < {Ewddxo = +hup BRI =x+huy)}

’E (V/Ox> Wix
=V/he,
(A.49)

and through a transformation of variables, we have

ICOV(p0es 1l < AV, < 1 Gty x+ Bty D)

lupl <1

— f(x+huy) f(x+huy;l+d—1)|du' du” du””,
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where, by Assumptions A4 and AS, the integral is bounded. Therefore,

d—1
nJy; < CnV 2 h=omV).

=1
For Jp;, there is no overlap between the components of Xy and X ;. Let X, = hu and
X, = ho, and we have

X0 :£+hﬂ) du dv

2d
[Cov(yox, wix)l < B f, < 1E(W()x= Vix| X, =x+ho

o] <1
x[f(x4+hu,x+hv;l+d—1)— f(x+hu) f(x+ho)]
=cnly,

where the last equality follows from Assumptions A4 and AS and (A.49). Therefore, as
d
Tnh? — 0,

nJy = Ofna,h? V) =o@mV).

For J,3, using Davydov’s lemma (Lemma 3), we have

ICov(wox, i)l < 8y (1 —d+ 11} 722 (Bly; |21/, asvy > 2. (A.50)
As |yix| < B,E|®,;|"2 < B2V,

o0
Iy < CBUTD2 22 it N 1y (L =d 4 1) 72,
I=m,+1

1-2/v
where the summation termis o(1), as 7, — co. Thus J»3 =0{V (B2hp+d+1/V) 2},
which completes the proof. n

LEMMA 6. Suppose Assumptions A2—-A6 hold. Then for Url”-,l =1,...,m defined in
(A.32)and Z,,;,1 =1,...,L, defined in (A.13), we have

n

Y EWUL + X ICovUy;, Up )l < Cnh MV 2 D)1=, (A1)
i=1 i<j

n

Y EZyi+ X ICOV(Zni, Znj)| = nhd (MDY P (M 1ogn) =2/, (A.52)
i=1 i<j

uniformly in x, 1 <k <Ty.

Proof. We only prove (A.52), which is more involved than (A.51). To simplify the nota-
tions, denote a;,, i, , o, and Bj, by a1, f1, 07, and B, respectively. Clearly,
/i Hy (az+p2)
ul Hy B2

{@ni i3 1) — 0oni (xg; 0) e

u” Hy (a2+p1)

= T {oni gt + ' Ha(Ba — B1)) — oni (x; 0))dlt,
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and
ZTHn(al'i‘ﬁl)
ni :/

u Hy By {pni (Xgs 1) — 0pi (x g5 0)}dt
u’ Hy(a2+p2)
_/QTHn/gZ {oni (X g5 1) — pi (xg; 0)}dt

ZTHn(al'i‘ﬁl)

= o G0 onir +u” Ha (B2~ p1)))d

HTHH((ZZJFﬁl) T

—/ {oni (x5t +u Hy(Ba— B1)) — oni (x4 0)}dt = A+ Ag.
ul Hy (a14p1)
Therefore, E{Z,;}? = hdez(g)f@k +h)E{(A1 4+ Ap)2|X; = X +hu}du. The con-
clusion is thus obvious, observing that by Cauchy inequality and (A.5),
1 2
B(ATIX; = xg+hu) < | Hyayu! Ho(By = o’ ool < 20402 M2 /(M logn),
E(A31X; = x g +hu) < (" Ha(az —00)Y (4" Hool +1u Hyay|+21u’ Hyfa))
<42 m P (' logn)?,

where we used the facts that o] — an| < 2M,§1)/(Ml logn) and |f; — fo| < 2M,(12)/
(M'logn). Therefore, E{Zy;}> = Chd (M{V)2MP /(M logn). As |Zyi] < MY and
hp'H/M,(,z) < o0, the rest of the proof can be completed following the proof of
Lemma 5. u

LEMMA 7. Suppose Assumptions A2—A6 hold.

n
1 2
3 EOZ + Y [Cov(®,;, @) < Cnh? (MM M2, (A.53)
i=1 i<j
uniformly in x € D, a € B,Sl) and f € B,(lz) .
Proof. By Cauchy inequality and (A.5), we have
E®2,

zhd/Kz(z)EH /#L%T)Znﬂ(ﬁﬂ) (wni@; 1) = opi (x5 0))6”}2

X; =£+hﬂ]

X f(x+hu)du

d ) .- 1@ Hy(a+p)
< il [ fa+h K @ue o [

u iy

[ (ni @) = pni 05 0) 1 = x4 hu]

w()' Hy (a+p)
< nd / K2 p ) Hya /

_ dyMy2,,2)
R S R L R

(A.54)

uniformly in x € D, a € B,(,l) and f € B,(,z). Then (A.53) follows from (A.54) and
Lemma 5. |
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LEMMA 8. Let Assumptions A3—-A6 hold. Then

sup [Spp(x) —g(x) f(x)Spl = O(h+ (nhd/logn)_l/z) almost surely.
xeD

Proof. The result is almost the same as Theorem 2 in Masry (1996). Especially if (A. 4)
holds, then the condition (3.8a) there on the mixing coefficient y [k] is true.

LEMMA 9. Denote d,;| = (nhd)l_)‘l_z’12 (logn)’11+2’12 and let 11 and B,(li), i=1,2,
be as in Lemma 1. Suppose that Assumptions AI-AS and (A.2) hold. Then there is a con-
stant C > 0 such that, for each M > 0 and all large n,

sup  sup i (X5 0, ) — —(Hna) SppX)Hn (0 +28)| < CM32d,.
xe€D, c p» li=I1

peB?

Proof. Recall that G(¢,u) =E(p(Y;1)|X = u),

d #@)" Hy(a+p)
By (i) =h! [ K@ f@+hwdex [ (A.55)

@' Hafp
{G(r +0(@)" HyBp(x), x +hu) — G(u() Hap(x), x + h@}d:
By Assumptions A3 and AS, we have

Gt + ()" Hyfp(x), x +hu) — G (u ()" Hy B (x), x + hue)

2
=1G(u()" Hyfp(x), x +hu) + %Gz(fn(t,z; X),x +hu),

G1(u()" Hufp(x), x +hu) = g(x +hu) + 0 (hPF1),

where &, (¢,u; x) falls between y@)T Hyfp(x) and t + ,u(g)T Hypp(x), and the term
O(hp'H) is uniform in x € D. Therefore, the inner integral in (A.55) is given by

logn)/11+2/12}

1 T T 32
S8 ) (Hao)| pwp @ Hu(a+24)+ 0{ M2 (25

uniformly in x € D, where we have used the fact that nhd“'(f""l)ﬂz/logn < 00. By the
definition of Sy (x), the proof is thus completed. u

LEMMA 10. Under conditions in Theorem 1, we have

SUP’ — 7 WoSup WH, ! ZKhL —)p(e)p(X; — )

O{(22)"™) dimoss e
= aimost surely.
nhd Y
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Proof. Note that under conditions of Theorem 1, the assumptions imposed by Masry
(1996) in Theorem 5 hold. Specifically, (4.5) there follows from (A.2), and (4.7b) there
from (A.4). Therefore, mimicking the proof lines there, we can show that

1 & logny1/2
sup |— H Kn(X; —x)p(e)u(X; — ‘:0{( ) }
le%‘nhd p E,l WX =09 (e)p(X; —x) d

which together with Lemma 8 yields the desired results.



