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We use local polynomial fitting to estimate the nonparametric M-regression function
for strongly mixing stationary processes {(Yi , Xi )}. We establish a strong uniform
consistency rate for the Bahadur representation of estimators of the regression func-
tion and its derivatives. These results are fundamental for statistical inference and for
applications that involve plugging such estimators into other functionals where some
control over higher order terms is required. We apply our results to the estimation of
an additive M-regression model.

1. INTRODUCTION

In many contexts one wants to evaluate the properties of some procedure that is a
functional of some given estimators. It is useful to be able to work with some plau-
sible high level assumptions about those estimators rather than to rederive their
properties for each different application. In a fully parametric (and stationary,
weakly dependent data) context, it is quite common to assume that estimators
are root-n consistent and asymptotically normal. In some cases this property suf-
fices; in other cases one needs to be more explicit in terms of the linear expansion
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of these estimators, but in any case such expansions are quite natural and widely
applicable. In a nonparametric context there is less agreement about the use of
such expansions, and one often sees standard properties of standard estimators
derived anew for a different purpose. It is our objective to provide results that
can circumvent this. The types of applications we have in mind are estimations,
of semiparametric models where the parameters of interest are explicit or im-
plicit functionals of nonparametric regression functions and their derivatives; see
Powell (1994), Andrews (1994), and Chen, Linton, and Van Keilegom (2003).
Another class of applications includes estimations of structured nonparametric
models like the additive models (Linton and Nielsen, 1995) or the generalized
additive models (Linton, Sperlich, and Van Keilegom, 2008).

We motivate our results in a simple i.i.d. setting. Suppose we have a random
sample {Yi , Xi }n

i=1 and consider the Nadaraya-Watson estimator of the regression
function m(x) = E(Yi |Xi = x),

m̂(x) = r̂(x)

f̂ (x)
= n−1 ∑n

i=1 Kh(Xi − x)Yi

n−1 ∑n
i=1 Kh(Xi − x)

,

where K (.) is a symmetric density function, h is a bandwidth, and Kh(.) =
K (./h)/h. Standard arguments (Härdle, 1990) show that under suitable smooth-
ness conditions,

m̂(x)−m(x) = h2b(x)+ 1

n f (x)

n

∑
i=1

Kh(Xi − x)εi + Rn(x), (1)

where b(x) = ∫
u2 K (u)du [m′′(x)+2m′(x) f ′(x)/ f (x)]/2, while f (x) is the co-

variate density function and εi ≡ Yi − m(Xi ) is the error term. The remainder
term Rn(x) is of smaller order (almost surely) than the two leading terms. Such
an expansion is sufficient to derive the central limit theorem for m̂(x) itself, but
generally is not sufficient if m̂(x) is to be plugged into some semiparametric pro-
cedure. For example, suppose we estimate the parameter θ0 = ∫

m(x)2 dx �= 0 by
θ̂ = ∫

m̂(x)2 dx, where the integral is over some compact set D; we would expect
to find that n1/2(θ̂ − θ0) is asymptotically normal. Based on expansion (1), the
argument goes as follows.

First we obtain

n1/2(θ̂ − θ0) = 2n1/2
∫

m(x){m̂(x)−m(x)}dx+n1/2
∫

[m̂(x)−m(x)]2 dx.

If it can be shown that m̂(x) − m(x) = o(n−1/4) a.s. uniformly in x ∈ D (such
results are widely available; see, for example, Masry, 1996), we have

n1/2(θ̂ − θ0) = 2n1/2
∫

m(x){m̂(x)−m(x)}dx+o(1) a.s.

Note that the quantity on the right-hand side is the term in Assumption 2.6 of Chen
et al. (2003), which is assumed to be asymptotically normal. It is the verification
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of this condition with which we are now concerned. We substitute in expansion
(1) and obtain

n1/2(θ̂ − θ0) = 2n1/2h2
∫

m(x)b(x)dx+2n1/2
∫

n−1
n

∑
i=1

εi Kh(Xi − x)
m(x)

f (x)
dx

+2n1/2
∫

m(x)Rn(x)dx+o(1) a.s.

If nh4 → 0, then the first term (the smoothing bias term) is o(1). The second term
(the stochastic term) is a sum of independent random variables with mean zero,
which can be rewritten, using a change of variables, as

n1/2
∫

m(x) f −1(x)n−1
n

∑
i=1

Kh(Xi − x)εi dx = n−1/2
n

∑
i=1

ξn(Xi )εi ,

ξn(Xi ) =
∫

m(Xi +uh) f −1(Xi +uh)K (u)du,

and this term obeys the Lindeberg central limit theorem under standard condi-
tions. The problem is with the third term, as equation (1) only guarantees that∫

m(x)Rn(x)dx = o(n−2/5) a.s. at best. In fact, it is possible to derive a more
useful Bahadur representation (Bahadur, 1966) for the kernel estimator

m̂(x)−m(x) = h2bn(x)+{E f̂ (x)}−1n−1
n

∑
i=1

Kh(Xi − x)εi + R∗
n(x), (2)

where bn(x) is deterministic and satisfies bn(x) → b(x) and E f̂ (x) → f (x) uni-
formly in x ∈D, while the remainder term now satisfies

sup
x∈D

∣∣R∗
n(x)

∣∣= O

(
logn

nh

)
a.s. (3)

This property is a consequence of the uniform convergence rate of f̂ (x)−E f̂ (x),
n−1 ∑n

i=1 Kh(x −Xi ){m(Xi ) − m(x)} − EKh(Xi − x){m(Xi ) − m(x)}, and
n−1 ∑n

i=1 Kh(Xi − x)εi that follow from, for example Masry (1996). Clearly, by
appropriate choice of the bandwidth h, R∗

n(x) can be made o(n−1/2) a.s. uni-
formly over D and thus 2n1/2 ∫ m(x)R∗

n(x)dx = o(1) a.s. Therefore, to derive
asymptotic normality for n1/2(θ̂ − θ0), one can just work with the two leading
terms in (2). These terms are slightly more complicated than in the previous ex-
pansion but are still sufficiently simple for many purposes; in particular, bn(x)
is uniformly bounded so that, provided nh4 → 0, the smoothing bias term satis-
fies h2n1/2 ∫ m(x)bn(x)dx → 0, while the stochastic term is a sum of zero mean
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independent random variables

n1/2
∫ m(x)

f (x)
n−1

n

∑
i=1

Kh(Xi − x)εi dx = n−1/2
n

∑
i=1

ξn(Xi )εi ,

ξn(Xi ) =
∫ m(Xi +uh)

f (Xi +uh)
K (u)du,

and obeys the Lindeberg central limit theorem under standard conditions, where
f (x) = E f̂ (x). This argument shows the utility of Bahadur representation (2).
There are many other applications of this result because a host of probabilistic re-
sults are available for random variables like n−1 ∑n

i=1 Kh(Xi − x)εi and integrals
thereof.

The one-dimensional Nadaraya-Watson estimator for i.i.d. data is particularly
easy to analyze and the above arguments are well known. However, the limitations
of this estimator are manyfold and there are good theoretical reasons for working
instead with the local polynomial class of estimators (Fan and Gijbels, 1996).
In addition, for many data, especially financial time series data, one may have
concerns about heavy tails or outliers that point in the direction of using robust
estimators like the local median or local quantile method, perhaps combined with
local polynomial fitting. We examine a general class of (nonlinear) M-regression
functions (that is, location functionals defined through minimization of a general
objective function ρ(.)) and derivative estimators. We treat a general time series
setting where the multivariate data are strongly mixing. Under mild conditions, we
establish a uniform strong Bahadur representation like (2) and (3) with remainder
term of order (logn/nhd)3/4 almost surely, a rate that is almost optimal or in other
words can’t be improved further based on the results in Kiefer (1967) under i.i.d.
setting. The leading terms are linear, and functionals of them can be analyzed
simply. The remainder term can be made to be o(n−1/2) a.s. under restrictions
on the dimensionality in relation to the amount of smoothness possessed by the
M-regression function.

The best convergence rate of unrestricted nonparametric estimators strongly
depends on d , the dimension of the covariates. The rate decreases dramatically
as d increases (Stone, 1982). This phenomenon is the so-called “curse of dimen-
sionality.” One approach to reduce the curse is by imposing model structure. A
popular model structure is the additive model assuming that

m(x1, . . . , xd) = c +m1(x1)+·· ·+md(xd), (4)

where c is an unknown constant and mk(.), k = 1, . . . ,d are unknown functions
that have been normalized such that Emk(xk) = 0, k = 1, . . . ,d. In this case, the
optimal rate of convergence is the same as in univariate nonparametric regression
(Stone, 1986). An additive M-regression function is given by (4), where m(x)
is the M-regression function defined in (5) for some loss function ρ(.; .). Pre-
vious work on additive quantile regression, for example, includes Linton (2001)
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and Horowitz and Lee (2005) for the i.i.d. case. An interesting application of the
additive M-regression model is to combine (4) with the volatility model

Yi = σiεi and lnσ 2
i = m(Xi ),

where Xi = (Yi−1, . . . ,Yi−d)	. We suppose that εi satisfies E[ϕ(lnε2
i ; 0)|Xi ] = 0

with ϕ(.; .) the piecewise derivative of ρ(.; .), whence m(.) is the conditional
M-regression of lnY 2

i given Xi . Peng and Yao (2003) applied LAD estimation
to parametric ARCH and GARCH models and showed the superior robustness
property of this procedure over Gaussian QMLE with regard to heavy-tailed
innovations. This heavy tail issue also arises in nonparametric regression mod-
els, and empirical evidences suggest that moderately high frequency financial
data are often heavy tailed, which is why our procedures may be useful. We
apply the Bahadur representations to the study of the marginal integration es-
timators (Linton and Nielsen, 1995) of the component functions in the addi-
tive M-regression model, in which case we only need the remainder term to be
o(n−p/(2p+1)) a.s., where p is a smoothness index.

Bahadur representations (Bahadur, 1966) have been widely studied and ap-
plied, with notable refinements in the i.i.d. setting by Kiefer (1967). A recent
paper of Wu (2005) extends these results to a general class of dependent pro-
cesses and provides a review. The closest paper to ours is Hong (2003), which
establishes the Bahadur representation for essentially the same local polynomial
M-regression estimator as ours. However, his results are (a) pointwise, i.e., for a
single x only; (b) with a covariate that is univariate; and (c) for i.i.d. data. Clearly,
this limits the range of applicability of his results, and specifically, the applica-
tions to semiparametric or additive models are perforce precluded.

2. THE GENERAL SETTING

Let {(Yi , Xi )} be a jointly stationary process, where Xi = (xi1, . . . ,xid)	 with
d ≥ 1 and Yi is a scalar. As dependent observations are considered in this paper,
we introduce here the mixing coefficient. Let Ft

s be the σ -algebra of events gen-
erated by random variables {(Yi , Xi ),s ≤ i ≤ t}. A stationary stochastic processes
{(Yi , Xi )} is strongly mixing if

sup
A∈F0−∞
B∈F∞

k

|P[AB]− P[A]P[B]| = γ [k] → 0, as k → ∞,

and γ [k] is called the strong mixing coefficient.
Suppose ρ(.; .) is a loss function. Our first goal is to estimate the multivariate

M-regression function

m(x1, . . . , xd) = argmin
θ

E{ρ(Yi ; θ)|Xi = (x1, . . . , xd)}, (5)

and its partial derivatives based on observations {(Yi , Xi )}n
i=1. An important

example of the M-function is the qth (0 < q < 1) quantile of Yi given
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Xi = (x1, . . . , xd)	, with loss function ρ(y; θ) = (2q − 1)(y − θ)+ |y − θ |. An-
other example is the Lq criterion: ρ(y; θ) = |y − θ |q for q > 1, which includes
the least square criterion ρ(y; θ) = (y −θ)2 with m(.) the conditional expectation
of Yi given Xi . Yet another example is the celebrated Huber’s function (Huber,
1973)

ρ(t) = t2/2I{|t | < k}+ (k|t |− k2/2)I{|t | ≥ k}. (6)

Suppose m(x) is differentiable up to order p + 1 at x = (x1, ..., xd)	. Then the
multivariate pth order local polynomial approximation of m(z) for any z close to
x is given by

m(z) ≈ ∑
0≤|r |≤p

1

r !
Dr m(x)(z − x)r ,

where r = (r1, ...,rd), |r | = ∑d
i=1 ri , r ! = r1!×·· ·× rd !, and

Dr m(x) = ∂r m(x)

∂xr1
1 · · ·∂xrd

d
, xr = xr1

1 ×·· ·×xrd
d , ∑

0≤|r |≤p

=
p

∑
j=0

j

∑
r1=0

...
j

∑
rd=0

r1+···+rd= j

.

(7)

Let K (u) be a density function on Rd , h a bandwidth, and Kh(u) = K (u/h). With
observations {(Yi , Xi )}n

i=1, we consider minimizing the following quantity with
respect to βr , 0 ≤ |r | ≤ p:

n

∑
i=1

Kh(Xi − x)ρ
(

Yi ; ∑
0≤|r |≤p

βr (Xi − x)r
)
. (8)

Denote by β̂r (x), 0 ≤ |r | ≤ p, the minima of (8). The M-regression function m(x)
and its partial derivatives Dr m(x), 1 ≤ |r | ≤ p are then estimated, respectively, by

m̂(x) = β̂0(x) and D̂r m(x) = r !β̂r (x), 1 ≤ |r | ≤ p. (9)

3. MAIN RESULTS

In Theorem 1 below we give our main result, the uniform strong Bahadur repre-
sentation for the vector β̂p(x). We first need to develop some notations to define
the leading terms in the representation.

Let Ni = (i+d−1
d−1

)
be the number of distinct d−tuples r with |r | = i . Arrange

these d−tuples as a sequence in a lexicographical order (with the highest pri-
ority given to the last position so that (0, . . . ,0, i) is the first element in the
sequence and (i,0, . . . ,0) the last element). Let τi denote this 1-to-1 mapping,
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i.e., τi (1) = (0, . . . ,0, i), . . . ,τi (Ni ) = (i,0, . . . ,0). For each i = 1, . . . , p, define
an Ni × 1 vector μi (x) with its kth element given by xτi (k) and write μ(x) =
(1,μ1(x)	, · · · ,μp(x)	)	, which is a column vector of length N = ∑p

i=0 Ni . Sim-
ilarly define vectors βp(x) and β through the same lexicographical arrangement
of Dr m(x) and βr in (8) for 0 ≤ |r | ≤ p. Thus (8) can be rewritten as

n

∑
i=1

Kh(Xi − x)ρ(Yi ; μ(Xi − x)	β). (10)

Suppose the minimizer of (10) is denoted as β̂n(x). Let β̂p(x) = Wpβ̂n(x), where
Wp is a diagonal matrix with diagonal entries the lexicographical arrangement of
r !, 0 ≤ |r | ≤ p.

Let νi = ∫
K (u)ui du. For g(.) given in (A.7) in the Appendix, define

νni (x) =
∫

K (u)ui g(x +hu) f (x +hu)du.

For 0 ≤ j,k ≤ p, let Sj,k and Sn, j,k(x) be two Nj × Nk matrices with their (l,m)
elements, respectively, given by[

Sj,k

]
l,m

= ντj (l)+τk (m),
[

Sn, j,k(x)
]

l,m
= νn,τj (l)+τk (m)(x). (11)

Now define the N × N matrices Sp and Sn,p(x) by

Sp =

⎡
⎢⎢⎢⎢⎢⎢⎣

S0,0 S0,1 · · · S0,p

S1,0 S1,1 · · · S1,p

...
. . .

...

Sp,0 Sp,1 · · · Sp,p

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Sn,p(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Sn,0,0(x) Sn,0,1(x) · · · Sn,0,p(x)

Sn,1,0(x) Sn,1,1(x) · · · Sn,1,p(x)

...
. . .

...

Sn,p,0(x) Sn,p,1(x) · · · Sn,p,p(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

According to Lemma 8, Sn,p(x) converges to g(x) f (x)Sp uniformly in x ∈ D
almost surely. Hence for |Sp| �= 0, we can define

β∗
n (x) = − 1

nhd
Wp S−1

n,p(x)H−1
n

n

∑
i=1

Kh(Xi −x)ϕ(Yi ,μ(Xi −x)	βp(x))μ(Xi −x),

(12)
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where ϕ(.; .) is the piecewise derivative of ρ(., .) as defined in Assumption A1
and Hn is a diagonal matrix with diagonal entries h|r |, 0 ≤ |r | ≤ p in the afore-
mentioned lexicographical order. The quantity β∗

n (x) is the leading term in the
Bahadur representation of β̂p(x) − βp(x); it is the sum of a bias term, Eβ∗

n (x),
and a stochastic term β∗

n (x)−Eβ∗
n (x).

Denote the typical element of β∗
n (x) by β∗

nr (x), 0 ≤ |r | ≤ p and the probability
density function of X by f (.). The following results on Eβ∗

nr (x) are an extension
of Proposition 2.2 in Hong (2003) to the multivariate case.

PROPOSITION 1. If f (x) > 0 and Assumptions A1–A5 in the Appendix hold,
then

Eβ∗
nr (x) =

⎧⎪⎪⎨
⎪⎪⎩

−h p+1eN (r)Wp S−1
p B1mp+1(x)+o(h p+1), for p −|r | odd,

−h p+2eN (r)Wp S−1
p

[{ f g}−1(x)mp+1(x){M̃(x)

−Np S−1
p B1}+ B2mp+2(x)

]+o(h p+2), for p −|r | even,

where N (r) = τ−1
|r | (r)+∑|r |−1

k=0 Nk, ei is an N ×1 vector having 1 as the i th entry,

with all other entries 0, and B1 = [S0,p+1, S1,p+1, . . . , Sp,p+1]	, B2 = [S0,p+2,
S1,p+2, . . . , Sp,p+2]	.

We next present our main result, the Bahadur representation for the local poly-
nomial estimates β̂p(x).

THEOREM 1. Suppose Assumptions A1–A7 in the Appendix hold with λ2 =
(p +1)/2(p + s +1) for some s ≥ 0, and D is any compact subset of Rd . Then

sup
x∈D

|Hn{β̂p(x)−βp(x)}−β∗
n (x)| = O

({ logn

nhd

}λ(s))
almost surely,

where |.| is taken to be the sup norm and

λ(s) = min

{
p +1

p + s +1
,

3p +3+2s

4p +4s +4

}
.

Remark 1. According to Theorem 1 in Kiefer (1967), the pointwise sharpest
bound of the remainder term in the Bahadur representation of the sample quantiles
is (log logn/n)3/4. As λ(0) = 3/4, we could safely claim the results here could
not be further improved for a general class of loss functions ρ(.) specified by
Assumptions A1 and A2. Nevertheless, it is possible to derive stronger results,
if the concerned loss functions enjoy a higher degree of smoothness; e.g., (3),
in which case ρ(.) is the squared loss function. More specifically, suppose that
ϕ(.) is Lipschitz continuous and Assumptions A1–A7 in the Appendix hold with
λ2 = 1/2 and λ1 = 1. Then we prove in the Appendix that

sup
x∈D

|Hn{β̂p(x)−βp(x)}−β∗
n (x)| = O

( logn

nhd

)
almost surely. (13)
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Remark 2. The dependence among the observations doesn’t have any impact
on the rate of uniform convergence, provided that the degree of the dependence,
as measured by the mixing coefficient γ [k], is weak enough such that (A.3) and
(A.4) are satisfied. This is in accordance with the results in Masry (1996), where
he proved that for a local polynomial estimator of the conditional mean function,
the uniform convergence rate is (nhd/ logn)−1/2, the same as in the independent
case.

Remark 3. It is of practical interest to provide an explicit rate of decay for the
strong mixing coefficient γ [k] of the form γ [k] = O(1/kc) for some c > 0 (to
be determined) for Theorem 1 to hold. It is easy to see that, among all the con-
ditions imposed on γ [k], the summability condition (A.4) is the most restrictive.
We assume that

h = hn ∼ (logn/n)ā for some
1

2(p + s +1)+d

≤ ā <
1

d

{
1− 4

(1−λ2)ν2 −4λ1 +2(1+λ2)

}
,

whence (A.2) holds. Algebraic calculations show that (A.4) would be true if

c > ν2
(1− ād){(1−λ2)(4N +1)+8Nλ1}+10+ (4+8N )ād

2(1−λ2)(1− ād)ν2 −8ād +4(1− ād)(1−λ2 −2λ1)
−1

≡ c(d, p,ν2, ā,λ1,λ2). (14)

Note that we would need the condition

ν2 > 2+ 4{ād + (1− ād)λ1}
(1− ād)(1−λ2)

to secure a positive denominator for (14). As c(d, p,ν2, ā, λ1,λ2) is decreasing in
ν2(≤ ν1), there is a trade-off between the order ν1 of the moment E|ϕ(εi )|ν1 < ∞
and the decay rate of the strong mixing coefficient γ [k]: The existence of higher
order moments allows γ [k] to decay more slowly.

Remark 4. It is trivial to generalize the result in Theorem 1 to functionals
of the M-estimates β̂p(x). Denote the typical elements of β̂p(x) and βp(x) by
β̂pr (x) and βpr (x), 0 ≤ |r | ≤ p, respectively. Suppose G(.) : Rd → R satisfies
that for any compact set D ⊂ Rd , there exists some constant C > 0, such that
|G ′(βpr (x))| ≤ C and |G ′′(βpr (x))| ≤ C for all x ∈D. Then, with probability 1,

sup
x∈D

∣∣∣h|r |{G(β̂pr (x))− G(βpr (x))}− G ′(βpr (x))β∗
nr (x)

∣∣∣= O
({ logn

nhd

}λ(s))
. (15)

The following proposition follows from Theorem 1 and the uniform convergence
of the sum of weakly dependent zero mean random variables.
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COROLLARY 1. Suppose conditions in Theorem 1 hold with s = 0. Then
with probability 1 we have, uniformly in x ∈D,

Hn{β̂p(x)−βp(x)}−Eβ∗
n (x)− Wp H−1

n

nhd
S−1

np (x)
n

∑
i=1

Kh(Xi − x)ϕ(εi )μ(Xi − x)

= O
({ logn

nhd

}3/4)
.

4. M-ESTIMATION OF THE ADDITIVE MODEL

In this section, we apply our main result to derive the properties of a class of esti-
mators in the additive M-regression model (4). In terms of estimating the compo-
nent functions mk(.), k = 1, . . . ,d in (4), the marginal integration method (Linton
and Nielsen, 1995) is known to achieve the optimal rate under certain conditions.
This involves estimating first the unrestricted M-regression function m(.) and then
integrating it over some directions. Partition Xi = (x1, . . . , xd) as Xi = (x1i , X2i ),
where x1i is the one-dimensional direction of interest and X2i is a d − 1 dimen-
sional nuisance direction. Let x = (x1, x2) and define the functional

φ1(x1) =
∫

m(x1, x2) f2(x2)dx2, (16)

where f2(x2) is the joint probability density of X2i . Under the additive structure
(4), φ1(.) is m1(.) up to a constant. Replace m(.) in (16) with β̂0(x1, x2) ≡ β̂0(x)
given by (9), and φ1(x1) can thus be estimated by the sample version of (16):

φn1(x1) = n−1
n

∑
i=1

β̂0(x1, X2i ).

As noted by Linton and Härdle (1996) and Hengartner and Sperlich (2005), cau-
tious choice of the bandwidth is crucial for φn1(.) to be asymptotically normal.
They suggest different bandwidths be used for the direction of interest X1 and
the d −1 dimensional nuisance direction X2, say h1 and h, respectively. Sperlich,
Linton, and Härdle (1998) provides an extensive study of the small sample prop-
erties of the marginal integration estimators, including an evaluation of bandwidth
choice.

The following corollary concerns the asymptotic properties of φn1(.).

COROLLARY 2. Suppose the support of X is [0,1]⊗d with strictly positive
probability density function. Assume that conditions in Corollary 1 hold with Tn ≡
{r(n)/min(h1,h)}d and the hd replaced by h1hd−1 in all the notations defined
either in (A.1) or (A.2). If h1 ∝ n−1/(2p+3), h = O(h1), and (A.2) is modified as

nh1h3(d−1)/ log3 n → ∞, n−1{r(n)}ν2/2dn logn/M (2)
n → ∞, (17)
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then we have

(nh1)
1/2{φn1(x1)−φ1(x1)} L→ N (e1Wp S−1

p B1Emp+1(x1, X2), σ̃
2(x1)),

where
L→ stands for convergence in distribution,

σ̃ 2(x1) =
{∫

[0,1]⊗d−1
{ f g2}−1(x1, X2) f 2

2 (X2)σ
2(x1, X2)dX2

}
e1S−1

p K2 K	
2 S−1

p e	1,

σ 2(x) = E[ϕ2(ε)|X = x], and K2 = ∫
[0,1]⊗d K (v)μ(v)dv . In particular, for the

additive quantile regression model, i.e., ρ(y; θ) = (2q − 1)(y − θ)+|y − θ |, we
have

σ̃ 2(x1) = q(1−q)
{∫

[0,1]⊗d−1
f −1(x1, X2) f −2

ε (0|x1, X2) f 2
2 (X2)dX2

}

× e1S−1
p K2 K	

2 S−1
p e	1 .

Remark 5. For conditions in Corollary 2 to hold, we would need 3d < 2p +5,
i.e., the order p of local polynomial approximation should increase with the di-
mension of the covariates X . See also the discussion in Hengartner and Sperlich
(2005).

Remark 6. Besides asymptotic normality, by applying Theorem 1 we could
also develop Bahadur representations for φn1(x1), like those assumed in Linton
et al. (2008). Based on (15), similar results are also applicable to the generalized
additive M-regression model, i.e., G(m(x1, . . . , xd)) = c+m1(x1)+·· ·+md(xd)
for some known smooth function G(.), in which case the marginal integration
estimator is defined as the sample average of G(m̂(x1, X2i )).

5. CONCLUSION

We have obtained an asymptotic expansion for a nonlinear local polynomial M-
estimator of a conditional location functional for stationary weakly dependent
processes. The approximations we have obtained are to a high enough order for
many applications based on computing functionals of said estimators. The error
from the omitted terms is established in two cases, the smooth case and the un-
smooth case, and in both cases we achieve what appears to be the optimal rate.
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APPENDIX: Proofs

We will need the following notations: For any λ2 ∈ (0,1), λ1 ∈ (λ2, (1+λ2)/2], and M > 2,
define

dn = (nhd/ logn)−(λ1+λ2/2)(nhd logn)1/2, r(n) = (nhd/ logn)(1−λ2)/2, (A.1)

M(1)
n = M(nhd/ logn)−λ1 , M(2)

n = M1/4(nhd/ logn)−λ2 , Tn = {r(n)/h}d ,



UNIFORM BAHADUR REPRESENTATION IN M-REGRESSION 1541

and Ln as the smallest integer such that logn(M/2)Ln+1 > nM(2)
n /dn . Let ‖.‖ denote the

Euclidean norm and C be a generic constant, which may take different values in each
appearance. Let εi ≡ Yi −m(Xi ) and assume that the following hold.

Assumption A1. For each y ∈R, ρ(y; θ) is absolutely continuous in θ ; i.e., there exists
a function ϕ(y; θ) ≡ ϕ(y − θ) such that for any θ ∈R, ρ(y; θ) = ρ(y; 0)+ ∫ θ

0 ϕ(y; t)dt.
The probability density function of εi is bounded with E|ϕ(εi )|ν1 < ∞ for some ν1 > 2,
and E{ϕ(εi )|Xi } = 0 almost surely.

Assumption A2. Assume that ϕ(.) satisfies the Lipschitz condition in (aj ,aj+1), j =
0, . . . ,m, where a0 ≡ −∞, am+1 ≡ +∞ and a1 < · · · < am are a finite number of jump
discontinuity points of ϕ(.).

Assumption A3. Assume K (.) has a compact support, say [−1,1]⊗d , and |H j (u) −
H j (v)| ≤ C‖u − v‖ for all j with 0 ≤ | j | ≤ 2p +1, where H j (u) = u j K (u).

Assumption A4. The probability density function of X , f (.) is bounded with bounded
first order derivatives. The joint probability density of (X0, Xl ) satisfies f (u,v; l) ≤ C <
∞ for all l ≥ 1.

Assumption A5. For r with |r | = p + 1, Dr m(x) is bounded with bounded first order
derivatives.

Assumption A6. The bandwidth h → 0, such that

nhd/ logn → ∞, nhd+(p+1)/λ2/ logn < ∞,

n−1{r(n)}ν2/2dn logn/M(2)
n → ∞, (A.2)

for some 2 < ν2 ≤ ν1 and the processes {(Yi , Xi )} are strongly mixing with mixing coeffi-
cient γ [k] satisfying

∞
∑

k=1
ka{γ [k]}1−2/ν2 < ∞ for some a > (p +d +1)(1−2/ν2)/d. (A.3)

Moreover, the bandwidth h and γ [k] should jointly satisfy the condition

∞
∑

n=1
n3/2Tn

{
M(1)

n

dn

}1/2
γ [r(n)(2ν2/2/M)2Ln/ν2 ]

r(n)(2ν2/2/M)2Ln/ν2
{4M2N }Ln <∞,

∀M > 0. (A.4)

Assumption A7. The conditional density fX |Y of X given Y exists and is bounded. The
conditional density function f(X1,X l+1)|(Y1,Yl+1) of (X1, X l+1) given (Y1,Yl+1) exists
and is bounded for all l ≥ 1.

Remark 7. Conditions on ϕ(.) as in Assumptions A1 and A2 are satisfied in almost all
known robust and likelihood type regressions. For example, in the qth quantile regression,
we have ϕ(t) = 2q I{t ≥ 0} + (2q − 2)I{t < 0}, while for the Huber’s function (6), its
piecewise derivative is given by

ϕ(t) = t I{|t | < k}+ sign(t)k I{|t | ≥ k}.
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Note that the condition E{ϕ(εi )|Xi } = 0 a.e. is necessary for model specification. More-
over, if the conditional density f (y|x) of Y given X is also continuously differentiable with
respect to y, then as shown in Hong (2003) there exists a constant C > 0, such that for all
small t and x ,

E
[{

ϕ(Y ; t +a)−ϕ(Y ; a)
}2|X = u

]
≤ C |t | (A.5)

holds for all (a,u) in a neighborhood of (m(x), x). Define

G(t,u) = E{ϕ(Y ; t)|X = u}, Gi (t,u) = (∂ i /∂t i )G(t,u), i = 1,2. (A.6)

Then it holds that

g(x) = G1(m(x), x) ≥ C > 0, G2(t, x) is bounded for all x ∈D and t near m(x).

(A.7)

Assumptions A3–A7 are standard for nonparametric smoothing in multivariate time series
analysis; see Masry (1996). For example, condition (A.3) is needed to bound the covariance
of the partial sums of time series as in Lemma 5, while (A.4) plays a similar role to (4.7b) in
Masry (1996). It guarantees that the dependence of the time series is weak enough such that
the deviance caused by the approximation of dependent random variables by independent
ones (through Bradley’s strong approximation theorem) is negligible; see Lemma 4. Of
course, (A.4) is more stringent than (4.7b) in Masry (1996), due to the nonlinear nature
of the estimates obtained by using the loss function ρ(.) instead of the method of least
squares.

Proof of Proposition 1. Write β∗
n (x) = −Wp S−1

n,p(x)∑n
i=1 Zni (x)/n, where

Zni (x) = H−1
n h−d Kh(Xi − x)ϕ(Yi ,μ(Xi − x)	βp(x))μ(Xi − x).

We first focus on EZni (x). Based on (A.6) and (A.7), we have

E{ϕ(Yi ,μ(Xi − x)	βp(x))|Xi } = G(μ(Xi − x)	βp(x), Xi )

= −g(Xi ){m(Xi )−μ(Xi − x)	βp(x)}
+G2(ξi (x), Xi ){m(Xi )−μ(Xi − x)	βp(x)}2/2

for some ξi (x) between μ(Xi − x)	βp(x) and m(Xi ). Apparently, if Xi = x +hv , then

m(Xi )−μ(Xi − x)	βp(x) = h p+1 ∑
|k|=p+1

Dr m(x)

k!
vk

+h p+2 ∑
|k|=p+2

Dr m(x)

k!
vk +o(h p+2).
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Therefore,

EZni (x) = h p+1
∫

K (v) f g(x +hv)μ(v) ∑
|k|=p+1

Dr m(x)

k!
vk dv

+h p+2
∫

K (v) f g(x +hv)μ(v) ∑
|k|=p+2

Dr m(x)

k!
vk dv +o(h p+2)

≡ T1 + T2.

Now arrange the Np+1 elements of the derivatives Dr m(x)/r ! for |r | = p +1 as a column
vector mp+1(x) using the lexicographical order introduced earlier and define mp+2(x)
in a similar way. Let the N × Np+1 matrix Bn1(x) and the N × Np+2 matrix Bn2(x) be
defined as

Bn1(x) =

⎡
⎢⎢⎢⎣

Sn,0,p+1(x)

Sn,1,p+1(x)
...

Sn,p,p+1(x)

⎤
⎥⎥⎥⎦ , Bn2(x) =

⎡
⎢⎢⎢⎣

Sn,0,p+2(x)

Sn,1,p+2(x)
...

Sn,p,p+2(x)

⎤
⎥⎥⎥⎦ ,

where Sn,i,p+1(x) and Sn,i,p+2(x) are as given by (11). Therefore, T1 = h p+1 Bn1(x)

mp+1(x), T2 = h p+2 Bn2(x)mp+2(x), and

Eβ∗
n (x) = −Wph p+1S−1

n,p(x)Bn1(x)mp+1(x)

− Wph p+2S−1
n,p(x)Bn2(x)mp+2(x)+o(h p+2).

Let ei , i = 1, . . . ,d be the d ×1 vector having 1 in the i th entry and all other entries 0. For
0 ≤ j ≤ p, 0 ≤ k ≤ p +1, let Nj,k(x) be an Nj × Nk matrix with its (l,m) element given
by

[
Nj,k(x)

]
l,m

=
d

∑
i=1

Dei { f g}(x)

∫
K (u)uτj (l)+τk (m)+ei du,

and use these Nj,k(x) to construct an N × N matrix Np(x) and an N × Np+1 matrix M̃(x)
via

Np(x) =

⎡
⎢⎢⎢⎢⎢⎣

N0,0(x) N0,1(x) · · · N0,p(x)

N1,0(x) N1,1(x) · · · N1,p(x)
...

. . .
...

Np,0(x) Np,1(x) · · · Np,p(x)

⎤
⎥⎥⎥⎥⎥⎦ , M̃(x) =

⎡
⎢⎢⎢⎣

N0,p+1(x)

N1,p+1(x)
...

Np,p+1(x)

⎤
⎥⎥⎥⎦ .

Then Sn,p(x) = { f g}(x)Sp +hNp(x)+ O(h2), Bn1(x) = { f g}(x)B1 +hM̃(x)+ O(h2),
and Bn2(x) = { f g}(x)B2 + O(h). As S−1

n,p(x) = { f g}−1(x)S−1
p − h{ f g}−2(x)S−1

p
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Np(x)S−1
p + O(h2), we have

−Eβ∗
n (x) =Wph p+1

[
{ f g}−1(x)S−1

p −h{ f g}−2(x)S−1
p Np(x)S−1

p

]

×
[
{ f g}(x)B1 +hM̃(x)

]
mp+1(x)+ Wph p+2{ f g}−1(x)S−1

p { f g}(x)

× B2mp+2(x)+o(h p+2)

= h p+1Wp S−1
p B1mp+1(x)+h p+2Wp S−1

p

×
[
{ f g}−1(x)mp+1(x){M̃(x)− Np(x)S−1

p B1}

+ B2mp+2(x)
]
+o(h p+2).

We claim that for elements Eβ∗
nr (x) of Eβ∗

n (x) with p − |r | even, the h p+1 term will
vanish. This means for any given r with |r | ≤ p and r2 with |r2| = p +1,

∑
0≤|r |≤p

{S−1
p }N (r1),N (r) νr+r2 = 0. (A.8)

To prove this, first note that for any r1 with 0 ≤ |r1| ≤ p and r2 with |r2| = p +1,

∑
0≤|r |≤p

{S−1
p }N (r1),N (r) νr+r2 =

∫
ur2 Kr1,p(u)du, (A.9)

where Kr ,p(u) = {|Mr ,p(u)|/|Sp|}K (u) and Mr ,p(u) is the same as Sp , but with the N (r)
column replaced by μ(u). Let ci j denote the cofactor of {Sp}i, j , and expand the determi-
nant of Mr ,p(u) along the N (r) column. We can see that∫

ur2 Kr ,p(u)du = |Sp|−1
∫

∑
0≤|r |≤p

cN (r),N (r1)
ur2+r K (u)du,

whence (A.9) follows, because cN (r),N (r1)
/|Sp| = {S−1

p }N (r1),N (r) from the symmetry
of Sp and a standard result concerning cofactors. As a generalization of Lemma 4 in Fan,
Heckman, and Wand (1995) to the multivariate case, we can further show that for any r1
with 0 ≤ |r1| ≤ p and p −|r1| even,∫

ur2 Kr ,p(u)du = 0, for any |r2| = p +1,

which together with (A.9) leads to (A.8). n

We proceed to prove Theorem 1. Define X ix = X i − x, μi x = μ(X ix ), Kix =
Kh(X ix ), and ϕni (x ; t) = ϕ(Yi ; μ	

i xβp(x)+ t). For any α, β ∈RN , define

�ni (x ; α,β) = Kix

{
ρ(Yi ; μ	

i x (α +β +βp(x)))−ρ(Yi ; μ	
i x (β +βp(x)))−ϕi (x ; 0)μ	

i xα
}

= Kix

∫ μ	
i x (α+β)

μ	
i x β

{ϕni (x ; t)−ϕni (x ; 0)}dt

and Rni (x ; α,β) = �ni (x ; α,β)−E�ni (x ; α,β).
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LEMMA 1. Under Assumptions A1–A6, we have for all large M > 0,

sup
x∈D

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣∣∣
n

∑
i=1

Rni (x ; α,β)

∣∣∣∣∣≤ M3/2dn almost surely, (A.10)

where B(i)
n ≡ {β ∈RN : |Hnβ| ≤ M(i)

n }, i = 1,2.

Proof. SinceD is compact, it can be covered by a finite number Tn of cubesDk =Dn,k

with side length ln = O(T−1/d
n ) = O{h(nhd/logn)−(1−λ2)/2} and centers x k = x n,k .

Write

sup
x∈D

sup
α∈B(1)

n ,

β∈B(2)
n

|
n

∑
i=1

Rni (x ; α,β)|

≤ max
1≤k≤Tn

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

�ni (x k ; α,β)−E�ni (x k ; α,β)
∣∣∣

+ max
1≤k≤Tn

sup
x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

{
�ni (x k ; α,β)−�ni (x ; α,β)

}∣∣∣

+ max
1≤k≤Tn

sup
x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

{
E�ni (x k ; α,β)−E�ni (x ; α,β)

}∣∣∣

≡ Q1 + Q2 + Q3.

In Lemma 2, it is shown that Q2 ≤ M3/2dn/3 almost surely and thus Q3 ≤ M3/2dn/3.

It remains to bound Q1. To this end, partition B(i)
n , i = 1,2, into a sequence of disjoint

subrectangles D(i)
1 , . . . , D(i)

J1
, such that

|D(i)
j1

| = sup
{
|Hn(α −β)| : α,β ∈ D(i)

j1

}
≤ 2M−1 M(i)

n / logn, 1 ≤ j1 ≤ J1.

Apparently, J1 ≤ (M logn)N . For every 1 ≤ j1 ≤ J1,1 ≤ k1 ≤ J1, choose a point αj1 ∈
D(1)

j1
and βk1 ∈ D(2)

k1
. Then

Q1 ≤ max
1 ≤ k ≤ Tn

1 ≤ j1,k1 ≤ J1

sup
α∈D(1)

j1
,

β∈D(2)
k1

∣∣∣∣∣
n

∑
i=1

{Rni (x k ; αj1 ,βk1)− Rni (x k ; α,β)}
∣∣∣∣∣

+ max
1 ≤ k ≤ Tn

1 ≤ j1,k1 ≤ J1

∣∣∣∣∣
n

∑
i=1

Rni (x k ; αj1 ,βk1)

∣∣∣∣∣= Hn1 + Hn2. (A.11)
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We first consider Hn1. For each j1 = 1, . . . , J1 and i = 1,2, partition each rectangle D(i)
j1

further into a sequence of subrectangles D(i)
j1,1

, . . . , D(i)
j1,J2

. Repeat this process recursively

as follows: Suppose after the lth round we get a sequence of rectangles D(i)
j1, j2,..., jl

with

1 ≤ jk ≤ Jk , 1 ≤ k ≤ l; then in the (l +1)th round, each rectangle D(i)
j1, j2,..., jl

is partitioned

into a sequence of subrectangles {D(i)
j1, j2,..., jl , jl+1

,1 ≤ jl ≤ Jl } such that

|D(i)
j1, j2,..., jl , jl+1

| = sup
{
|Hn(α −β)| : α,β ∈ D(i)

j1, j2,..., jl , jl+1

}
≤ 2M(i)

n /(Ml logn), 1 ≤ jl+1 ≤ Jl+1,

where Jl+1 ≤ M N . End this process after the (Ln + 1)th round, with Ln given at the be-

ginning of Section 3. Let D(i)
l , i = 1,2, denote the set of all subrectangles of D(i)

0 after the

lth round of partition and a typical element D(i)
j1, j2,..., jl

of D(i)
l is denoted as D(i)

( jl )
. Choose

a point α( jl ) ∈ D(1)
( jl )

and β( jl ) ∈ D(2)
( jl )

and define

Vl = ∑
( jl ),
(kl )

P

{∣∣∣ n

∑
i=1

{Rni (x k ; αjl ,βkl )− Rni (x k ; αjl+1 ,βkl+1)}
∣∣∣≥ M3/2dn

2l

}
, 1 ≤ l ≤ Ln,

Ql = ∑
( jl ),
(kl )

P

{
sup

α∈D(1)
( jl )

,

β∈D(2)
(kl )

∣∣∣ n

∑
i=1

{Rni (x k ; αjl ,βkl )−Rni (x k ; α,β)}
∣∣∣≥ M3/2dn

2l

}
, 1≤ l ≤Ln+1.

By Assumption A4 it is easy to see that, for any α ∈ D(1)
( jLn+1)

∈ D(1)
Ln+1 and β ∈ D(2)

(kLn+1)
∈

D(2)
Ln+1,

|Rni (x k ; α,β) − Rni (x k ; αjLn+1 ,βkLn+1)| ≤ C M(2)
n

MLn+1 logn
,

which together with the choice of Ln implies that QLn+1 = 0. As Ql ≤ Vl + Ql , 1 ≤ l ≤ Ln,

P

(
Hn1 >

M3/2dn

2

)
≤ Tn Q1 ≤ Tn

Ln

∑
l=1

Vl . (A.12)

To bound Vl , l = 1, . . . ,Ln , let

Wn =
n

∑
i=1

Zni , Zni ≡ Rni (x k ; αjl ,βkl )− Rni (x k ; αjl+1 ,βjl+1). (A.13)

Note that by Assumption A2 we have, uniformly in x, α, and β , that

|�ni (x ; α,β)| ≤ C M(1)
n . (A.14)

Therefore, |Zni | ≤ C M(1)
n . Using Lemma 6, we can apply Lemma 4 to each Vl with

B1 = C1 M(1)
n , B2 = nhd (M(1)

n )2 M(2)
n {Ml logn}−2/ν2 ,

rn = rl
n ≡ (2ν2/2/M)2l/ν2r(n), q = n/rl

n, η = M3/2dn/2l ,

λn = (2C1 M(1)
n rl

n)−1, �(n) = Cq3/2/η1/2γ [rl
n]{rl

n M(1)
n }1/2.
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Note that nM(1)
n /η → ∞, rl

n → ∞ for all 1 ≤ l ≤ Ln from (A.2) and

λη = C M1/2 lognM2l/ν2/22l , λ2 B2 = C logn1−2/ν2 M2l/ν2/22l = o(λη),

which hold uniformly for all 1 ≤ l ≤ Ln . Therefore,

Vl ≤
( l+1

∏
j=1

J 2
j

)
4exp{−C1 logn(M/2ν2)2l/ν2}+C2τ l

n,

where, because J1 ≤ 2(M logn)N and Jl ≤ 2M N for 2 ≤ l ≤ Ln, τ l
n is given by

τ l
n = 4l M2N (l+1)(logn)2N n3/2 γ [rl

n]{M(1)
n }1/2

rl
n{dn}1/2 .

It is tedious but easy to check that, for M large enough,

Tn

Ln

∑
l=1

[( l+1

∏
j=1

J 2
j

)
4exp{−C1 logn(M/2ν2)2l/ν2 }

]
is summable over n. (A.15)

As γ [rl
n]/rl

n is increasing in l, we have

Tn

Ln

∑
l=1

τ l
n ≤ Tn(logn)2N n3/2 {M(1)

n }1/2

{dn}1/2
γ [r Ln

n ]

r Ln
n

Ln

∏
l=1

4l M2N (l+1),

which is again summable over n according to (A.4). This along with (A.12) and (A.15)
implies that Hn1 ≤ M3/2dn/2 almost surely, using the Borel-Cantelli lemma.

For Hn2, first note that

P(Hn2 > η) ≤ Tn J 2
1 P

(∣∣∣∣∣
n

∑
i=1

Rni (x ; αj1 ,βk1)

∣∣∣∣∣> η

)
. (A.16)

We apply Lemma 4 to quantify P(|∑n
i=1 Rni (x ; αj1 ,βk1 | > η), with rn = r(n), B1 =

2C1 M(1)
n , B2 = C2nhd (M(1)

n )2 M(2)
n , λn = {r(n)M(1)

n }−1/4C1, and η = M3/2dn . Then
nB1/η → ∞ and

λnη/4 = (nhd )(1−λ2)/2(logn)(1+λ2)/2/{16C1r(n)} = M1/2 logn/(16C1),

λ2
n B2 = M1/4(nhd )1−λ2(logn)λ2/{16C2

1r2(n)} = M1/4 logn/(16C2
1 ),

�(n) ≡ qn{nB1/η}1/2γ [rn] = Tn J 2
1 q(n)3/2/η1/2γ [r(n)]{r(n)M(1)

n }1/2,

where �(n) is summable over n under condition (A.4). Therefore,

P(Hn2 > η) ≤ 2Tn J 2
1 /nb +�(n), b = 1

16C1
(M1/2 − M1/4C2/C1). (A.17)

By selecting M large enough, we can ensure that the right-hand side of (A.17) is summable
over n. Thus, for M large enough, Hn2 ≤ M3/2dn almost surely. By (A.39), we know that
for large M , Q1 ≤ M3/2dn almost surely. n

The quantification of Q2 is relatively more involved, so we put it as a separate lemma.
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LEMMA 2. Under conditions in Lemma 1, Q2 ≤ M3/2dn/3 almost surely.

Proof. Let X ik = X i −x k , μ ik = μ(X ik), and Kik = Kh(X ik). Write �ni (x k ; α,β)−
�ni (x ; α,β) = ξi1 + ξi2 + ξi3, where

ξi1 =
(

Kikμik − Kixμi x

)	
α

∫ 1

0

{
ϕni (x k ; μ	

ik(β +αt))−ϕni (x k ; 0)
}

dt,

ξi2 = Kixμ	
i xα

∫ 1

0

{
ϕni (x k ; μ	

ik(β +αt))−ϕni (x ; μ	
i x (β +αt))

}
dt,

ξi3 = Kixμ	
i xα{ϕni (x ; 0)−ϕni (x k ; 0)}.

Then P(Q2 > M3/2dn/3) ≤ Tn(Pn1 + Pn2 + Pn3), with

Pnj ≡ max
1≤k≤Tn

P
(

sup
x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

|
n

∑
i=1

ξi j | ≥ M3/2dn/9
)
, j = 1,2,3.

Based on the Borel-Cantelli lemma, Q2 ≤ M3/2dn almost surely, if ∑n Tn Pnj < ∞, j =
1,2,3.

We first study Pn1. For any fixed α ∈ B(1)
n and β ∈ B(2)

n , let Iα,β
ik = 1, if there exists some

t ∈ [0,1] , such that there are discontinuity points of ϕ(Yi ; θ) between μ	
ik(βp(x k)+β +

αt)) and μ	
ikβp(x k); and Iα,β

ik = 0, otherwise. Write ξi1 = ξi1 Iα,β
ik + ξi1(1− Iα,β

ik ). Note

that by Assumption A3, |(Kikμik − Kixμi x )	α| ≤ C2 M(1)
n ln/h. Then by Assumption

A2 and the fact that |μ	
ik(β +αt)| ≤ C M(2)

n , we have |ξi1(1 − Iα,β
ik )| ≤ C M(2)

n M(1)
n ln/h

uniformly in i,α, β, and x ∈Dk . Define Uik = I{|X ik | ≤ 2h}, whence ξi1 = ξi1Uik since
ln = o(h). Therefore,

P

(
sup

α∈B(1)
n ,

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

ξi1(1− Iα,β
ik )

∣∣∣> M3/2dn

18

)

≤ P
( n

∑
i=1

Uik >
M1/4nhd

18C

)
≤ P

(
|

n

∑
i=1

Uik −EUik | >
M1/4nhd

36C

)
, (A.18)

where the second inequality follows from the fact that Var(∑n
i=1 I{|X ik | ≤ 2h) = O(nhd )

implied by Lemma 5. To quantify (A.18), we apply Lemma 4 with B1 = 1, η = M1/4nhd/
(18C), B2 = nhd , rn = r(n). As λnη = C M1/4 logn(nhd/ logn)(1+λ2)/2, λ2

n B2 =
o(λnη), and Tn�n is summable over n under condition (A.4), we know that

Tn P

(
sup

α∈B(1)
n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

ξi1(1− Iα,β
ik )

∣∣∣> M3/2dn/18

)
is summable over n, (A.19)

whence ∑n Tn Pn1 < ∞, is equivalent to

Tn P

(
sup

α∈B(1)
n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

ξi1 Iα,β
ik

∣∣∣> M3/2dn/18

)
is summable over n. (A.20)



UNIFORM BAHADUR REPRESENTATION IN M-REGRESSION 1549

To prove (A.20), first note that Iα,β
ik ≤ I{εi ∈ Sα,β

i ;k }, where

Sα,β
i ;k =

m⋃
j=1

⋃
t∈[0,1]

[aj − A(X i , x k)+μ	
ik(β +αt),aj − A(X i , x k)]

⊆
m⋃

j=1

[aj −C M(2)
n ,aj +C M(2)

n ] ≡ Dn, for some C > 0,

A(x1, x2) = (p +1) ∑
|r |=p+1

1

r !
(x1 − x2)r

∫ 1

0
Dr m(x2 +w(x1 − x2))(1−w)pdw,

where in the derivation of Sα,β
i ;k ⊆Dn , we have used the fact that |X ik |≤2h and A(X i , x k) =

O(h p+1) = O(M(2)
n ) uniformly in i . As Iα,β

ik ≤ I{εi ∈ Dn}, we have |ξi1|Iα,β
ik ≤ |ξi1|Uni ,

where Uni ≡ I (|X ik | ≤ 2h)I{εi ∈ Dn}, which is independent of the choice of α and β.
Therefore,

P

(
sup

α∈B(1)
n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

ξi1 Iα,β
ik

∣∣∣> M3/2dn/18

)
≤ P

( n

∑
i=1

Uni > M1/2nhd M(2)
n /(18C)

)

≤ P
( n

∑
i=1

(Uni −EUni ) >
M1/2nhd M(2)

n

36C

)
,

(A.21)

where the first inequality is because |ξi1| ≤ C M(1)
n ln/h and the second one is because

EUni = O(hd M(2)
n ) by Assumption A1. As EU2

ni = EUni , by Lemma 5, we know that

Var(∑n
i=1 Uni ) = Cnhd M(2)

n . We can then apply Lemma 4 to the last term in (A.21) with

B2 = Cnhd M(2)
n , B1 ≡ 1, rn = r(n), η ≡ M1/2nhd M(2)

n /(36C).

Apparently, λnη = C logn(nhd/logn)(1−λ2)/2 and λ2
n B2 = o(λnη). As in this case Tn�n

is still summable over n by (A.4), (A.20) follows.
For Pn2, first note that using the approach for Pn1, we can show that

Tn P

(
sup

α∈B(1)
n ,

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

{ξi2 − ξ̃i2}
∣∣∣≥ M3/2dn/18

)
is summable over n,

where

ξ̃i2 = Kikμ	
ikα

∫ 1

0

{
ϕni (x k ; μ	

ik(β +αt))−ϕni (x ; μ	
i x (β +αt))

}
dt.

Therefore, we would have ∑Tn Pn2 < ∞, if

Tn P

(
sup

α∈B(1)
n ,

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

ξ̃i2

∣∣∣≥ M3/2dn/18

)
is summable over n. (A.22)
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For any fixed α ∈ B(1)
n , β ∈ B(2)

n , and x ∈Dk , let Iα,β
i ;k,x = 1, if there exists some interval

[t1, t2] ⊆ [0,1], such that

Yi −μ	
ik(βp(x k)+β +αt) ≤ aj ≤ Yi −μ	

i x (βp(x)+β +αt), ∀t ∈ [t1, t2], (A.23)

with aj ∈ {a1, . . . ,am}; and Iα,β
i ;k,x = 0, otherwise. Write ξ̃i2 = ξ̃i2 Iα,β

i ;k,x + ξ̃i2(1 − Iα,β
i ;k,x ).

Note that Kikμ	
ikα = O(M(1)

n ) and ϕni (x k ; μ	
ik(β + αt)) − ϕni (x ; μ	

i x (β + αt)) = O

(M(2)
n ln/h) if Iα,β

i ;k,x = 0. Then again as ξ̃i2 = ξ̃i2 I{|X ik | ≤ 2h}, we have similar to (A.19)
that

Tn P

(
sup

α∈B(1)
n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

ξ̃i2(1− Iα,β
i ;k,x )

∣∣∣> M3/2dn/18

)
is summable over n.

Therefore, by (A.22), to show ∑Tn Pn2 < ∞, it is sufficient to show that

Tn P
(

sup
α∈B(1)

n ,

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

ξ̃i2 Iα,β
i ;k,x

∣∣∣≥ M3/2dn/36
)

is summable over n. (A.24)

To this end, define εi = εi + A(Xi , xk). Then Iα,β
i ;k,x = 1; i.e., (A.23) is equivalent to

A(X i , x k)− A(Xi , x)+μ	
i x (β +αt) ≤ εi −aj ≤ μ	

ik(β +αt), ∀t ∈ [t1, t2]. (A.25)

Let δn ≡ M(2)
n ln/h. Then |A(X i , x k) − A(X i , x)| ≤ Cδn , |(μik − μi x )	β| ≤ Cδn , and

(A.25) thus implies that

−2Cδn +μ	
ik(β +αt) ≤ εi −aj ≤ μ	

ik(β +αt)+2Cδn, ∀t ∈ [t1, t2]. (A.26)

Without loss of generality, assume μ	
ikα > 0. Then from (A.26) we can see that

−2Cδn +μ	
ik(β +αt2) ≤ εi −aj ≤ μ	

ik(β +αt1)+2Cδn, (A.27)

which in turn means that if Iα,β
i ;k,x = 1, then |ξi2| ≤ C(t2 − t1)|μ	

ikα| ≤ 4Cδn uniformly in

i, α ∈ B(1)
n , β ∈ B(2)

n , and x ∈Dk . Therefore, as ξ̃i2 = ξ̃i2 I{|X ik | ≤ 2h}, we have

P

(
sup

α∈B(1)
n

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

ξ̃i2 Iα,β
i ;k,x

∣∣∣≥ M3/2dn

36

)

≤ P

(
sup

α∈B(1)
n

β∈B(2)
n

sup
x∈Dk

n

∑
i=1

I{|Xik | ≤ 2h}Iα,β
i ;k,x ≥ M5/4nhd M(1)

n

36C

)
. (A.28)

We will bound Iα,β
i ;k,x by a random variable that is independent of the choice of α ∈ B(1)

n

and x ∈ Dk . By the definition of Iα,β
i ;k,x and (A.27), the necessary condition for Iα,β

i ;k,x = 1
is

εi ∈
m⋃

j=1

[aj +μ	
ikβ −2M(1)

n , aj +μ	
ikβ +2M(1)

n ] ≡ Dβ
ni , (A.29)
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which is indeed independent of the choice of α and x ∈Dk . Therefore,

P

(
sup

α∈B(1)
n ,

β∈B(2)
n

sup
x∈Dk

n

∑
i=1

I{|X ik | ≤ 2h}Iα,β
i ;k,x ≥ M5/4nhd M(1)

n

36C

)

≤ P

(
sup

β∈B(2)
n

n

∑
i=1

I{|X ik | ≤ 2h}I{εi ∈ Dβ
ni } ≥ M5/4nhd M(1)

n

36C

)
. (A.30)

Now we partition B(2)
n into a sequence of subrectangles S1, . . . , Sm , such that

|Sl | = sup
{
|Hn(β −β ′)| : β,β ′ ∈ Sl

}
≤ M(1)

n , 1 ≤ l ≤ m.

Obviously, m ≤ (M(2)
n /M(1)

n )N = M−3N/4(nhd/ logn)(λ1−λ2)N . Choose a point βl ∈ Sl
for each 1 ≤ l ≤ m, and thus

P

(
sup

β∈B(2)
n

n

∑
i=1

I{|X ik | ≤ 2h}I{εi ∈ Dβ
ni } ≥ M5/4nhd M(1)

n

36C

)

≤ m P

( n

∑
i=1

I{|X ik | ≤ 2h}I{εi ∈ Dβl
ni } ≥ M5/4nhd M(1)

n

72C

)

+m P

(
sup

β ′∈Sl

n

∑
i=1

I{|X ik | ≤ 2h}|I{εi ∈ Dβl
ni }− I{εi ∈ Dβ ′

ni }| ≥ M5/4nhd M(1)
n

72C

)

≡ m(T1 + T2). (A.31)

We deal with T1 first. Let

U j
ni ≡ I{|Xik | ≤ 2h}I{εi ∈ Dβl

ni }. (A.32)

Then by the definition of D
βj
ni given in (A.29), EU j

ni = O(hd M(1)
n ) < M5/4hd M(1)

n /
(144C) for large M , and we have

T1 ≤ P

( n

∑
i=1

(U j
ni −EU j

ni ) ≥ M5/4nhd M(1)
n

144C

)
.

We can thus apply Lemma 4 to the quantity on the right-hand side with B1 ≡ 1, B2 given

by (A.51), rn = r(n), η ∝ M5/4nhd M(1)
n , and λn = 1/(2rn). It follows that

λnη=C M5/4 logn(nhd/ logn)(1+λ2)/2−λ1 , λ2
n B2 = C logn(nhd/logn)−2(λ1−λ2)/ν2 .

As (1+λ2)/2 ≥ λ1 and λ2 < λ1, we have T1 = O(n−b) for any b > 0.

For T2, note that as |μ	
ik(β −βl )| ≤ C M(1)

n for any β ∈ Sl , 1 ≤ l ≤ m, we have

|I{εi ∈ Dβl
ni }− I{εi ∈ Dβ

ni }|
= I{εi ∈ Dβl

ni �Dβ
ni }

≤ I

⎧⎨
⎩εi ∈

m⋃
j=1

[
aj +μ	

ikβl −C M(1)
n ,aj +μ	

ikβl +C M(1)
n

]⎫⎬
⎭≡ Uni ,
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for some C > 0, which is independent of the choice of β ∈ Sl . Therefore,

T2 ≤ P

( n

∑
i=1

I{|X ik | ≤ 2h}Uni ≥ M5/4nhd M(1)
n

72C

)
,

which can be dealt with similarly as with T1, and thus T2 = O(n−b) for any b > 0.
Thus from (A.28), (A.30), and (A.31), we can claim that (A.24) is true and thus Tn Pn2
is summable over n.

Dealing with Pn3 is simpler, as no β is involved in ξi3. For any given x ∈ Dk , let
Ii ;k,x = 1, if there is a discontinuity point of ϕ(Yi ; θ) between μ	

ikβp(xk) and μ	
i xβp(x);

and Ii ;k,x = 0, otherwise. Write ξi3 = ξi3 Ii ;k,x + ξi3(1 − Ii ;k,x ). Again by Assumption

A2 and the fact that |Kixμ	
i xα| = O(M(1)

n ) and |μ	
ikβp(x k)−μ	

i xβp(x)| = |A(Xi , xk)−
A(X i , x)| = O(M(2)

n ln/h), we have, similar to (A.19), that

Tn P
(

sup
α∈B(1)

n
x∈Dk

∣∣∣ n

∑
i=1

ξi3(1− Ii ;k,x )
∣∣∣> M3/2dn/18

)
is summable over n.

It is easy to see that Ii ;k,x ≤ I{εi + A(Xi , xk) ∈ Si ;k,x }, where

Si ;k,x =
m⋃

j=1

⋃
t∈[0,1]

[
aj −|A(X i , x k)− A(X i , x)|,aj +|A(X i , xk)− A(Xi , x)|

]

⊆
m⋃

j=1

[aj −C M(2)
n ln/h,aj +C M(2)

n ln/h] ≡ Dn, for some C > 0.

Therefore, |ξi3|Ii ;k,x = |ξi3|I{|X ik | ≤ 2h}Ii ;k,x ≤ Uni , with

Uni ≡ M(1)
n I{|X ik | ≤ 2h}I{εi + A(X i , x k) ∈ Dn},

which is independent of the choice of α ∈ B(1)
n and x ∈Dk . Therefore,

Tn P
(

sup
α∈B(1)

n
x∈Dk

∣∣∣ n

∑
i=1

ξi3 Ii ;k,x

∣∣∣> M3/2dn/18
)

≤ Tn P
( n

∑
i=1

[Uni −EUni ] > M3/2dn/36
)
,

(A.33)

where we have used the fact that EUni = O(hd M(1)
n M(2)

n ln/h) = O(dn/n). We will have
∑Tn Pn3 < ∞ if the right-hand side in (A.33) is summable over n; i.e.,

Tn P
( n

∑
i=1

[Uni −EUni ] > M3/2dn/36
)

is summable over n. (A.34)

It is easy to check that Lemma 5 again holds with ψx (X i ,Yi ) standing for Uni . Applying

Lemma 4 to (A.34) with B1 ≡ M(1)
n , B2 ≡ Cnhd (M(1)

n )2 M(2)
n ln/h, η ≡ M3/2dn/36, and

rn = r(n), we have (note that nB1/η → ∞ indeed)

λnη/4 = C M1/2 logn, λ2
n B2 = Cr−2/ν2

n logn = o(λnη).

Thus, Tn�n is again summable over n and (A.34) indeed holds. n
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Proof of Theorem 1. Let λ1 = λ(s). Then according to Lemmas 1 and 9, we know that
with probability 1, there exists some C1 > 1, such that for all large M > 0,

sup
x∈D

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

�ni (x ; α,β)− nhd

2
(Hnα)	Snp(x)Hn(α +2β)

∣∣∣

≤ C1 M3/2(dn1 +dn) ≤ 2C1 M3/2(nhd )1−2λ1(logn)2λ1 for large n, (A.35)

where dn1 = (nhd )1−λ1−2λ2(logn)λ1+2λ2 . Note that based on (12), we can write

n

∑
i=1

Kni ϕ(Yi ; μ	
ni βp(x))μ	

ni α = nhdβ∗
n (x)	W−1

p Snp(x)Hnα.

Replace B(1)
n in (A.35) with B(1)

nk =
{
α ∈RN : k ≤ M−1(nhd/ logn)λ1 |Hnα| ≤ k + 1

}
and M with (k +1)M . We have, by the definition of �ni (x ; α,β), that

inf
x∈D inf

α∈B(1)
nk ,

β∈B(2)
n

{ n

∑
i=1

ρ(Yi ; μ	
ni (α +β +βp(x)))Kni −

n

∑
i=1

ρ(Yi ; μ	
ni (β +βp(x)))Kni

+nhd (W−1
p β∗

n (x)− Hnβ)	Snp(x)Hnα
}

≥ inf
x∈D inf

α∈B(1)
nk

nhd

2
(Hnα)	Snp(x)Hnα −2C M3/2(nhd )1−2λ1(logn)2λ1

≥
{

C3(kM)2/2−2C1(k +1)3/2 M3/2
}
(nhd )1−2λ1(logn)2λ1

≥ (8−25/2)C1C3/2
4 (nhd )1−2λ1(logn)2λ1 > 0 almost surely, (A.36)

where the last term is independent of the choice of k ≥ 1. The last inequality is derived as
follows: As Sp > 0, suppose its minimum eigenvalue is τ1 > 0. As Snp(x) → g(x) f (x)Sp
uniformly in x ∈ D by Lemma 8 and g(x) f (x) is bounded away from zero by Assump-
tion A5 and (A.7), there exists some constant C3 > 0, such that for all x ∈ D, the mini-
mum eigenvalue of Snp(x) is greater than C3. The last inequality thus holds if M ≥ C4 =
(16C1/C3)2. Note that

∞⋃
k=1

B(1)
nk =

{
α| ∈RN :

( nhd

logn

)λ1 |Hnα| ≥ M
}

:= B N
n . (A.37)

Therefore, from (A.36) and (A.37), we have

inf
x∈D inf

α∈B N
n ,

β∈B(2)
n

{ n

∑
i=1

ρ(Yi ; μ	
ni (α +β +βp(x)))Kni −

n

∑
i=1

ρ(Yi ; μ	
ni (β +βp(x)))Kni

+nhd (W−1
p β∗

n (x)− Hnβ)	Snp(x)Hnα

}
> 0 almost surely. (A.38)
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Note that by (A.40), Lemma 10, and Proposition 1, we have |β∗
n (x)| ≤ C3(nhd/ logn)−λ2

uniformly in x ∈ D almost surely. Namely, β∗
n (x) ∈ B(2)

n for all x ∈ D, if M > C4
3 . This

implies that if M > max(C4
3 ,C4), (A.38) still holds with β replaced with H−1

n W−1
p β∗

n (x).
Therefore,

inf
x∈D inf

α∈B N
n

{ n

∑
i=1

Kni ρ(Yi ; μ	
ni (α + H−1

n W−1
p β∗

n (x)+βp(x)))

−
n

∑
i=1

Kni ρ(Yi ; μ	
ni (H−1

n W−1
p β∗

n (x)+βp(x)))
}

> 0,

which is equivalent to Theorem 1. n

Proof of (13). Let d̃n = (nhd )1−2λ1(logn)2λ1 . Following the proof lines of Theorem
1, we can see that (13) will follow if

sup
x∈D

sup
α∈B(1)

n ,

β∈B(2)
n

|
n

∑
i=1

Rni (x ; α,β)| ≤ M3/2d̃n almost surely,

with λ1 = 1, λ2 = 1/2, and B(i)
n , i = 1,2 defined as in Lemma 1.

To prove this, coverD by a finite number T̃n = {(nhd/ logn)1/2/h}d of cubesDk =Dnk
with side length l̃n = O{h(nhd/ logn)−1/2} and centers x k = x n,k . Write

sup
x∈D

sup
α∈B(1)

n ,

β∈B(2)
n

|
n

∑
i=1

Rni (x ; α,β)|

≤ max
1≤k≤T̃n

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

�ni (x k ; α,β)−E�ni (x k ; α,β)
∣∣∣

+ max
1≤k≤T̃n

sup
x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

{
�ni (x k ; α,β)−�ni (x ; α,β)

}∣∣∣

+ max
1≤k≤T̃n

sup
x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

∣∣∣ n

∑
i=1

{
E�ni (x k ; α,β)−E�ni (x ; α,β)

}∣∣∣

≡ Q1 + Q2 + Q3.

We will show that with probability 1, Qk ≤ M3/2d̃n/3, k = 1,2,3.
Define ξi j as in Lemma 1. As P(Q2 > M3/2d̃n/2) ≤ T̃n(Pn1 + Pn2 + Pn3), where

Pnj ≡ max
1≤k≤T̃n

P

(
sup

x∈Dk

sup
α∈B(1)

n ,

β∈B(2)
n

|
n

∑
i=1

ξi j | ≥ M3/2d̃n/9

)
, j = 1,2,3.
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Then, by the Borel-Cantelli lemma, Q2 ≤ M3/2d̃n/2 almost surely, if ∑n T̃n Pnj < ∞, for
j = 1,2,3. We only prove that for Pn1 to illustrate. Recall that

ξi1 =
(

Kikμik − Kixμi x

)	
α

∫ 1

0

{
ϕni (x k ; μ	

ik(β +αt))−ϕni (x k ; 0)
}

dt.

Because |(Kikμik − Kixμi x )	α| ≤ C2 M(1)
n l̃n/h, |μ	

ik(β +αt)| ≤ C M(2)
n and ϕ(.) is Lip-

schitz continuous, we have |ξi1| ≤ C M(2)
n M(1)

n l̃n/h. Define Uik = I{|Xik | ≤ 2h}. As
l̃n = o(h), we can see that ξi1 = ξi1Uik and, similar to (A.18), we have

P

(
sup

α∈B(1)
n ,

β∈B(2)
n

sup
x∈Dk

∣∣∣ n

∑
i=1

ξi1

∣∣∣> M3/2d̃n

9

)
≤ P

( n

∑
i=1

Uik >
M1/4nhd

9C

)

≤ P

(∣∣∣∣ n

∑
i=1

Uik −EUik

∣∣∣∣> M1/4nhd

18C

)
,

and ∑n T̃n Pnj < ∞ thus follows from similar arguments as those lying between (A.18)
and (A.19).

The proof of Q1 ≤ M3/2d̃n/2 almost surely is much easier than in Lemma 1, if ϕ(.)
is Lipschitz continuous. Instead of the iterative partition approach adopted there, we once

and for all partition B(i)
n , i = 1,2, into a sequence of disjoint subrectangles D(i)

1 , . . . , D(i)
J1

such that

|D(i)
j1

| = sup
{
|Hn(α −β)| : α,β ∈ D(i)

j1

}
≤ M(i)

n (logn/n)1/2, 1 ≤ j1 ≤ J1.

Obviously, J1 ≤ (n/ logn)N/2. Choose a point αj1 ∈ D(1)
j1

and βk1 ∈ D(2)
k1

. Then

Q1 ≤ max
1≤k ≤ T̃n

1≤ j1,k1 ≤ J1

sup
α ∈ D(1)

j1
,

β ∈ D(2)
k1

∣∣∣∣∣
n

∑
i=1

{Rni (x k ; αj1 ,βk1)− Rni (x k ; α,β)}
∣∣∣∣∣

+ max
1≤k ≤Tn

1≤ j1,k1 ≤ J1

∣∣∣∣∣
n

∑
i=1

Rni (x k ; αj1 ,βk1)

∣∣∣∣∣= Hn1 + Hn2. (A.39)

By Lipschitz continuity of ϕ(.), we have for any α ∈ D(1)
j1

and β ∈ D(2)
k1

,

|�ni (x k ; αj1 ,βk1)−�ni (x k ; α,β)|2 = O({M(2)
n }3 logn/n) < M3/2d̃n/(4n).

Therefore, it remains to show that P(Hn2 > M3/2d̃n/4) is summable over n.

First, note that by Cauchy inequality |Rni (x ; α,β)|2 = O({M(1)
n M(2)

n }2) and E|Rni

(x ; α,β)|2 = O(hd{M(1)
n M(2)

n }2) uniformly in X i , x, α ∈ M(1)
n , and β ∈ M(2)

n . Next,
for any η > 0,

P(Hn2 > η) ≤ T̃n J 2
1 P

(∣∣∣∣∣
n

∑
i=1

Rni (x ; αj1 ,βk1)

∣∣∣∣∣> η

)
.
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We apply Lemma 4 with rn = (nhd/ logn)1/2, B1 = 2C1 M(1)
n M(2)

n , B2 = C2nhd

(M(1)
n M(2)

n )2, λn = (4C1rn{M(2)
n }2)−1, and η = M3/2d̃n/4. It is easy to see that nB1/η→

∞ and

λnη/4 = M logn/(16C1), λ2
n B2 = o(λnη),

�(n) ≡ qn{nB1/η}1/2γ [rn] = n3/2(logn)−1/2γ [r(n)]/r(n).

As T̃n J 2
1 �(n) is summable over n by condition (A.4), so is P(Hn2 > M3/2d̃n/4). n

Proof of Corollary 1. As 1+λ2 ≥ 2λ1, it is sufficient to prove that, with probability 1,

β∗
n (x)−Eβ∗

n (x)− 1

nhd Wp S−1
np (x)H−1

n

n

∑
i=1

Kh(X i − x)ϕ(εi )μ(X i − x)

= O
{( logn

nhd

)(1+λ2)/2}
, (A.40)

uniformly in x ∈ D. As ϕ(εi ) ≡ ϕ(Yi ,m(Xi )) and Eϕ(εi ) = 0, the term on the left-hand
side of (A.40) stands for

Wp S−1
n,p(x)

1

nhd

n

∑
i=1

{Zni (x)−EZni (x)},

where

Zni (x) = H−1
n Kh(X i − x)μ(X i − x)

{
ϕ(Yi ,μ(X i − x)	βp(x))−ϕ(εi )

}
.

Next, similar to what we did in Lemma 1, we cover D with number Tn cubes Dk =Dn,k

with side length ln = O(T−1/d
n ) and centers xk = xn,k . Write

sup
x∈D

|
n

∑
i=1

Zni (x)−EZni (x)| ≤ max
1≤k≤Tn

∣∣∣ n

∑
i=1

Zni (x k)−EZni (x k)
∣∣∣

+ max
1≤k≤Tn

sup
x∈Dk

∣∣∣ n

∑
i=1

Zni (x)− Zni (x k)
∣∣∣

+ max
1≤k≤Tn

sup
x∈Dk

∣∣∣ n

∑
i=1

EZni (x)−EZni (x k)
∣∣∣

≡Q1 + Q2 + Q3.

As Zni (x)− Zni (x k) = H−1
n Kh(X i − x)μ(X i − x){ϕni (x ; 0)−ϕni (x k ; 0)}, through ap-

proaches similar to that for ξi3 in the proof of Lemma 2, we can show that

Q2 = O
{( nhd

logn

)(1−λ2)/2
logn

}
almost surely,

and the same result for Q3 also holds. To bound Q1, first note that EZ2
ni (x k) =

O(h p+1+d ) uniformly in i and k. As |Zni (x)| ≤ C for some constant C by Assump-
tion A2, we can see that from Lemma 5,

n

∑
i=1

EZ2
ni (x k)+ ∑

i< j
|Cov(Zni (x k), Znj (x k))| ≤ C2nh p+1+d .
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Finally, by Lemma 4 with B1 = C1 , B2 ≡ Cnh p+1+d , η = A3(nhd/ logn)(1−λ2)/2 logn,
and rn = r(n), we have, as nB1/η → ∞, that

λnη = A3/(2C1) logn, λ2
n B2 = C2/(4C2

1 ) logn.

Therefore,

P
(

max
1≤k≤Tn

∣∣∣ n

∑
i=1

Zni (x k)−EZni (x k)
∣∣∣≥ A3(nhd/ logn)(1−λ2)/2 logn

)
≤Tn/na+CTn�n,

where a = A3/(8C1) − C2/(4C2
1 ). By selecting A3 large enough, we can ensure that

Tn/na is summable over n. As Tn�n is summable over n from (A.4), we can conclude
that

Q1 = O
{( nhd

logn

)(1−λ2)/2
logn

}
almost surely.

This together with Lemma 8 completes the proof. n

Proof of Corollary 2. Through the proof lines for Theorem 1 and Corollary 1, it is not
difficult to see that Corollary 2 still holds under the conditions imposed here. Under the
additive structure (4), we thus have

φn1(x1) = φ1(x1)+ 1

n

n

∑
i=1

m2(X2i )−h p+1e1Wp S−1
p B1

1

n

n

∑
i=1
mp+1(x1, X2i )

+ 1

n2h1hd−1 e1

n

∑
j=1

ϕ(εj )

×
n

∑
i=1

S−1
np (x1, X2i )K (X1,x j /h1, X2,i j /h)μ(X1,x j /h1, X2,i j /h)

+op({max(h1,h)}p+1)+ Op{(nh1hd−1/logn)−3/4}, (A.41)

where X1,x j = X1 j − x , X2,i j = X2i − X2 j , and e1 is as in Proposition 1. Note that by

(17), (nh1)1/2(nh1hd−1/logn)−3/4 → 0, the Op(.) term can thus be safely ignored.
By the central limit theorem for strongly mixing processes (Bosq, 1998, Thm. 1.7), we

have

1

n

n

∑
i=1

m2(X2i )= Op(n−1/2),
1

n

n

∑
i=1
mp+1(x1, X2i )=Emp+1(x1, X2)+Op(n−1/2).

As the expectations of all other terms in (A.41) are 0, the leading term in the asymptotic
bias of φ̃1(x1)−φ1(x1) is thus given by

−{max(h1,h)}p+1e1Wp S−1
p B1Emp+1(x1, X2).

Again through standard arguments in Masry (1996), we can see that

1

nhd−1

n

∑
i=1

S−1
np (x1, X2i )Kh(X1,x j , X2,i j )μ(X1,x j /h1, X2,i j /h)

= S−1
np (x1, X2 j ) f2(X2 j )

∫
[0,1]⊗d−1

{Kμ}(X1,x j /h1,v)dv
{

1+ O
({ logn

nhd−1

}1/2)}
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uniformly in 1 ≤ i ≤ n. Therefore, the leading term in the asymptotic variance of φn1(x1)−
φ1(x1) is the variance of the term

(nh1)−1e1

n

∑
j=1

ϕ(εj )S−1
np (x1, X2 j ) f2(X2 j )

∫
[0,1]⊗d−1

{Kμ}(X1,x j /h1,v)dv,

which is asymptotically

(nh1)−1
{∫

[0,1]⊗d−1
{ f g2}−1(x1, X2) f 2

2 (X2)σ 2(x1, X2)dX2

}
e1S−1

p K2 K	
2 S−1

p e	1 .

(A.42)

If ρ(y; θ) = (2q −1)(y −θ)+|y −θ | and ϕ(θ) = 2q I{θ > 0}+ (2q −2)I{θ < 0}, we have
g(x) = 2 fε(0|x) and

σ 2(x) = E[ϕ2(ε)|X = x] = 4q2(1− Fε(0))+4(1−q)2 Fε(0) = 4q(1−q),

which when substituted into (A.42), yields the asymptotic variance of the quantile regres-
sion estimator,

σ̃ 2(x1) = q(1−q)
{∫

[0,1]⊗d−1
f −1(x1, X2) f −2

ε (0|x1, X2) f 2
2 (X2)dX2

}
e1

× S−1
p K2 K	

2 S−1
p e	1 .

The next lemma is due to Davydov (Hall and Heyde, 1980, Cor. A.2). n

LEMMA 3. Suppose X and Y are random variables that are respectively G− and H−
measurable, where G− and H− are two σ-algebras. E|X |p < ∞, E|Y |q < ∞, with p >
1, q > 1, and p−1 +q−1 < 1. Then

|EXY −EXEY | ≤ 8‖X‖p‖Y‖q

{
sup

A∈G,B∈H
|P(AB)− P(A)P(B)|

}1−p−1−q−1

.

The next lemma is a generalization of some results in the proof of Theorem 2 in Masry
(1996).

LEMMA 4. Suppose {Zi }∞i=1 is a zero-mean strictly stationary process with strong mix-

ing coefficient γ [k], and that |Zi | ≤ B1, ∑n
i=1 EZ2

i + ∑i< j |Cov(Zi , Zj )| ≤ B2. Then for
any η > 0 and integer series rn → ∞, if nB1/η → ∞ and qn ≡ [n/rn] → ∞, we have

P

(∣∣∣∣∣
n

∑
i=1

Zi

∣∣∣∣∣≥ η

)
≤ 4exp

{
−λnη

4
+λ2

n B2

}
+C�(n),

where �(n) = qn{nB1/η}1/2γ [rn], λn = 1/{2rn B1}.
Proof. We partition the set {1, . . . ,n} into 2q ≡ 2qn consecutive blocks of size r ≡ rn

with n = 2qr + v and 0 ≤ v < r . Write

Vn( j) =
jr

∑
i=( j−1)r+1

Zi , j = 1, . . . ,2q
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and

W ′
n =

q

∑
j=1

Vn(2 j −1), W ′′
n =

q

∑
j=1

Vn(2 j), W ′′′
n =

n

∑
i=2qr+1

Zi .

Then Wn ≡ ∑n
i=1 Zi = W ′

n + W ′′
n + W ′′′

n . The contribution of W ′′′
n is negligible, as it con-

sists of at most r terms compared with qr terms in W ′
n or W ′′

n . Then by the stationarity of
the processes, for any η > 0,

P(Wn > η) ≤ P(W ′
n > η/2)+ P(W ′′

n > η/2) = 2P(W ′
n > η/2). (A.43)

To bound P(W ′
n > η/2), using recursively Bradley’s Lemma, we can approximate the

random variables Vn(1),Vn(3), . . . ,Vn(2q − 1) by independent random variables V ∗
n (1),

V ∗
n (3), . . . ,V ∗

n (2q − 1), which satisfy that for 1 ≤ j ≤ q, V ∗
n (2 j − 1) has the same distri-

bution as Vn(2 j −1) and

P
(
|V ∗

n (2 j −1)− Vn(2 j −1)| > u
)

≤ 18(‖Vn(2 j −1)‖∞/u)1/2 sup |P(AB)− P(A)P(B)|, (A.44)

where u is any positive value such that 0 < u ≤ ‖Vn(2 j −1)‖∞ < ∞ and the supremum is
taken over all sets of A and B in the σ -algebras of events generated by {Vn(1),Vn(3), . . . ,
Vn(2 j − 3)} and Vn(2 j − 1), respectively. By the definition of Vn( j), we can see that
sup |P(AB)− P(A)P(B)| = γ [rn]. Write

P
(

W ′
n >

η

2

)
≤ P

(∣∣∣ q

∑
j=1

V ∗
n (2 j −1)

∣∣∣> η

4

)
+ P

(∣∣∣ q

∑
j=1

Vn(2 j −1)− V ∗
n (2 j −1)

∣∣∣> η

4

)
≡ I1 + I2. (A.45)

We bound I1 as follows: Let λ = 1/{2B1r}. Since |Zi | ≤ B1, λ|Vn( j)| ≤ 1/2, then using
the fact that ex ≤ 1+ x + x2/2 holds for |x | ≤ 1/2, we have

E
{

e±λV ∗
n (2 j−1)

}
≤ 1+λ2E{Vn( j)}2 ≤ eλ2E{V ∗

n (2 j−1)}2
. (A.46)

By Markov inequality, (A.46), and the independence of the {V ∗
n (2 j −1)}q

j=1, we have

I1 ≤ e−λη/4
[
Eexp

(
λ

q

∑
j=1

V ∗
n (2 j −1)

)
+Eexp

(
−λ

q

∑
j=1

V ∗
n (2 j −1)

)]

≤ 2exp
(

−λη/4+λ2
q

∑
j=1

E{V ∗
n (2 j −1)}2

)

≤ 2exp
{

−λη/4+C2λ2 B2

}
. (A.47)

We now bound the term I2 in (A.45). Notice that

I2 ≤
q

∑
j=1

P
(∣∣∣Vn(2 j −1)− V ∗

n (2 j −1)
∣∣∣> η

4q

)
.
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If ‖Vn(2 j −1)‖∞ ≥ η/(4q), substitute η/(4q) for u in (A.44),

I2 ≤ 18q{‖Vn(2 j −1)‖/η/(4q)}1/2γ [rn] ≤ Cq3/2/η1/2γ [rn](rn B1)1/2, (A.48)

If ‖Vn(2 j −1)‖∞ < η/(4q), let u ≡ ‖Vn(2 j −1)‖∞ in (A.44) and we have

I2 ≤ Cqγ [rn],

which is of smaller order than (A.48), if nB1/η → ∞. Thus, by (A.43), (A.45), (A.47),
and (A.48),

P(Wn > η) ≤ 4exp{−λnη/4+C2 B2λ2
n}+C�n,

where the constant C is independent of n. n

LEMMA 5. For any x ∈ Rd , let ψx (Xi ,Yi ) = I (|Xix | ≤ h)ψx (Xix ,Yi ), a measurable

function of (Xi ,Yi ) with |ψx (Xi ,Yi )| ≤ B and V = Eψ2
x (Xi ,Yi ). Suppose the mixing

coefficient γ [k] satisfies (A.3). Then

Cov
( n

∑
i=1

|ψx (Xi ,Yi )|
)

= nV
[
1+o

{(
B2h p+d+1/V

)1−2/ν2
}]

.

Proof. Denote ψx (Xi ,Yi ) by ψi x . First note that

V = Eψ2
i x = hd

∫
|u|≤1

E(ψ2
i x |Xi = x +hu) f (x +hu)du,

∑
i< j

|Cov(ψi x ,ψj x )| =
n−d

∑
l=1

(n − l −d +1)|Cov(ψ0x ,ψlx )| ≤ n
n−d

∑
l=1

|Cov(ψ0x ,ψlx )|

= n
d−1

∑
l=1

+n
πn

∑
l=d

+n
n−d

∑
l=πn+1

≡ n J21 +n J22 +n J23,

where πn = h(p+d+1)(2/ν2−1)/a . For J21, there might be an overlap between the com-
ponents of X 0 and X l , for example, when X i = (Xi−d , . . . , Xi−1), where {Xi } is a uni-
variate time series. Without loss of generality, let u′,u′′, and u′′′ of dimensions l,d − l,
and l, respectively, be the d + l distinct random variables in (X 0x/h, X lx/h). Write u1 =
(u′	,u′′	)	 and u2 = (u′′	,u′′′	)	. Then by Cauchy inequality, we have

∣∣∣E(ψ0x ,ψlx

∣∣∣X 0 = x +hu1
X l = x +hu2

)∣∣∣≤{E(ψ2
0x |X0 = x +hu1)E(ψ2

j x |X j = x +hu2)
}1/2

= V/hd ,

(A.49)

and through a transformation of variables, we have

|Cov(ψ0x ,ψlx )| ≤ hl V
∫
|u1| ≤ 1
|u2| ≤ 1

| f (x +hu1, x +hu2; l)

− f (x +hu1) f (x +hu2; l +d −1)|du′ du′′ du′′′,
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where, by Assumptions A4 and A5, the integral is bounded. Therefore,

n J21 ≤ CnV
d−1

∑
l=1

hl = o(nV ).

For J22, there is no overlap between the components of X 0 and X l . Let X 0x = hu and
Xlx = hv , and we have

|Cov(ψ0x ,ψlx )| ≤ h2d
∫
|u| ≤ 1
|v| ≤ 1

E
(
ψ0x ,ψlx

∣∣∣X 0 = x +hu
X l = x +hv

)
du dv

×[ f (x +hu, x +hv; l +d −1)− f (x +hu) f (x +hv)]

= Chd V,

where the last equality follows from Assumptions A4 and A5 and (A.49). Therefore, as
πnhd → 0,

n J22 = O{nπnhd V } = o(nV ).

For J23, using Davydov’s lemma (Lemma 3), we have

|Cov(ψ0x ,ψlx )| ≤ 8{γ [l −d +1]}1−2/ν2{E|ψi x |ν2}2/ν2 , as ν2 > 2. (A.50)

As |ψi x | ≤ B, E|�ni |ν2 ≤ Bν2−2V ,

J23 ≤ C B(ν−2)2/ν2 V 2/ν2/πa
n

∞
∑

l=πn+1
la{γ [l −d +1]}1−2/ν2 ,

where the summation term is o(1), as πn → ∞. Thus J23=o
{

V
(

B2h p+d+1/V
)1−2/ν2

}
,

which completes the proof. n

LEMMA 6. Suppose Assumptions A2–A6 hold. Then for Ul
ni , l = 1, . . . ,m defined in

(A.32) and Zni , l = 1, . . . ,Ln defined in (A.13), we have

n

∑
i=1

E(Ul
ni )

2 + ∑
i< j

|Cov(Ul
ni ,Ul

nj )| ≤ Cnhd M(1)
n {M(2)

n /M(1)
n }1−2/ν2 , (A.51)

n

∑
i=1

EZ2
ni + ∑

i< j
|Cov(Zni , Znj )| = nhd (M(1)

n )2 M(2)
n {Ml logn}−2/ν2 , (A.52)

uniformly in x k , 1 ≤ k ≤ Tn.

Proof. We only prove (A.52), which is more involved than (A.51). To simplify the nota-
tions, denote αjl ,βkl ,αjl , and βjl by α1,β1,α2, and β2, respectively. Clearly,

∫ u	 Hn(α2+β2)

u	 Hnβ2

{ϕni (xk ; t)−ϕni (xk ; 0)}dt

=
∫ u	 Hn(α2+β1)

u	 Hnβ1

{ϕni (xk ; t +u	Hn(β2 −β1))−ϕni (xk ; 0)}dt,



1562 EFANG KONG ET AL.

and

Zni =
∫ u	 Hn(α1+β1)

u	 Hnβ1

{ϕni (x k ; t)−ϕni (x k ; 0)}dt

−
∫ u	 Hn(α2+β2)

u	 Hnβ2

{ϕni (x k ; t)−ϕni (x k ; 0)}dt

=
∫ u	 Hn(α1+β1)

u	 Hnβ1

{ϕni (x k ; t)−ϕni (x k ; t +u	Hn(β2 −β1))}dt

−
∫ u	 Hn(α2+β1)

u	 Hn(α1+β1)
{ϕni (x k ; t +u	Hn(β2 −β1))−ϕni (x k ; 0)}dt ≡ �1 +�2.

Therefore, E{Zni }2 = hd ∫ K 2(u) f (x k + hu)E{(�1 +�2)2|Xi = x k + hu}du. The con-
clusion is thus obvious, observing that by Cauchy inequality and (A.5),

E(�2
1|Xi = x k +hu) ≤ |u	Hnα1u	Hn(β2 −β1)u	Hnα1| ≤ 2(M(1)

n )2 M(2)
n /(Ml logn),

E(�2
2|Xi = x k +hu) ≤ {u	Hn(α2 −α1)}2(|u	Hnα2|+ |u	Hnα1|+2|u	Hnβ2|)

≤ 4(M(1)
n )2 M(2)

n /(Ml logn)2,

where we used the facts that |α1 − α2| ≤ 2M(1)
n /(Ml logn) and |β1 − β2| ≤ 2M(2)

n /

(Ml logn). Therefore, E{Zni }2 = Chd (M(1)
n )2 M(2)

n /(Ml logn). As |Zni | ≤ C M(1)
n and

h p+1/M(2)
n < ∞, the rest of the proof can be completed following the proof of

Lemma 5. n

LEMMA 7. Suppose Assumptions A2–A6 hold.
n

∑
i=1

E�2
ni + ∑

i< j
|Cov(�ni ,�nj )| ≤ Cnhd (M(1)

n )2 M(2)
n , (A.53)

uniformly in x ∈D,α ∈ B(1)
n and β ∈ B(2)

n .

Proof. By Cauchy inequality and (A.5), we have

E�2
ni

= hd
∫

K 2(u)E
[{∫ μ(u)	 Hn(α+β)

μ(u)	 Hnβ

(
ϕni (x ; t)−ϕni (x ; 0)

)
dt
}2
∣∣∣∣Xi = x +hu

]
× f (x +hu)du

≤ hd
∫

f (x +hu)K 2(u)μ(u)	Hnα

∫ μ(u)	 Hn(α+β)

u	 Hnβ

E
[(

ϕni (x ; t)−ϕni (x ; 0)
)2|Xi = x +hu

]
dt du

≤ hd
∫

K 2(u)μ(u)	Hnα

∫ μ(u)	 Hn(α+β)

μ(u)	 Hnβ
C |t |dt f (x +hu)du = O

{
hd (M(1)

n )2 M(2)
n

}
,

(A.54)

uniformly in x ∈ D, α ∈ B(1)
n and β ∈ B(2)

n . Then (A.53) follows from (A.54) and
Lemma 5. n
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LEMMA 8. Let Assumptions A3–A6 hold. Then

sup
x∈D

|Snp(x)− g(x) f (x)Sp| = O(h + (nhd/ logn)−1/2) almost surely.

Proof. The result is almost the same as Theorem 2 in Masry (1996). Especially if (A.4)
holds, then the condition (3.8a) there on the mixing coefficient γ [k] is true. n

LEMMA 9. Denote dn1 = (nhd )1−λ1−2λ2(logn)λ1+2λ2 and let λ1 and B(i)
n , i = 1,2,

be as in Lemma 1. Suppose that Assumptions A1–A5 and (A.2) hold. Then there is a con-
stant C > 0 such that, for each M > 0 and all large n,

sup
x∈D

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣ n

∑
i=1

E�ni (x ; α,β)− nhd

2
(Hnα)	Snp(x)Hn(α +2β)

∣∣∣≤ C M3/2dn1.

Proof. Recall that G(t,u) = E(ϕ(Y ; t)|X = u),

E�ni (x ; α,β) = hd
∫

K (u) f (x +hu)du ×
∫ μ(u)	 Hn(α+β)

μ(u)	 Hnβ
(A.55)

{
G(t +μ(u)	Hnβp(x), x +hu)− G(μ(u)	Hnβp(x), x +hu)

}
dt.

By Assumptions A3 and A5, we have

G(t +μ(u)	Hnβp(x), x +hu)− G(μ(u)	Hnβp(x), x +hu)

= tG1(μ(u)	Hnβp(x), x +hu)+ t2

2
G2(ξn(t,u; x), x +hu),

G1(μ(u)	Hnβp(x), x +hu) = g(x +hu)+ O(h p+1),

where ξn(t,u; x) falls between μ(u)	Hnβp(x) and t + μ(u)	Hnβp(x), and the term
O(h p+1) is uniform in x ∈D. Therefore, the inner integral in (A.55) is given by

1

2
g(x +hu)(Hnα)	μ(u)μ(u)	Hn(α +2β)+ O

{
M3/2

( logn

nhd

)λ1+2λ2
}

uniformly in x ∈ D, where we have used the fact that nhd+(p+1)/λ2/ logn < ∞. By the
definition of Snp(x), the proof is thus completed. n

LEMMA 10. Under conditions in Theorem 1, we have

sup
x∈D

∣∣∣ 1

nhd Wp S−1
np (x)H−1

n

n

∑
i=1

Kh(X i − x)ϕ(εi )μ(X i − x)
∣∣∣

= O
{( logn

nhd

)1/2}
almost surely.
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Proof. Note that under conditions of Theorem 1, the assumptions imposed by Masry
(1996) in Theorem 5 hold. Specifically, (4.5) there follows from (A.2), and (4.7b) there
from (A.4). Therefore, mimicking the proof lines there, we can show that

sup
x∈D

∣∣∣ 1

nhd H−1
n

n

∑
i=1

Kh(X i − x)ϕ(εi )μ(X i − x)
∣∣∣= O

{( logn

nhd

)1/2}
,

which together with Lemma 8 yields the desired results. n


