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Models with single-index structures are among the many existing popular semipara-
metric approaches for either the conditional mean or the conditional variance. This
paper focuses on a single-index model for the conditional quantile. We propose an
adaptive estimation procedure and an iterative algorithm which, under mild regular-
ity conditions, is proved to converge with probability 1. The resulted estimator of
the single-index parametric vector is root-n consistent, asymptotically normal, and
based on simulation study, is more efficient than the average derivative method in
Chaudhuri, Doksum, and Samarov (1997, Annals of Statistics 19, 760–777). The es-
timator of the link function converges at the usual rate for nonparametric estimation
of a univariate function. As an empirical study, we apply the single-index quantile
regression model to Boston housing data. By considering different levels of quantile,
we explore how the covariates, of either social or environmental nature, could have
different effects on individuals targeting the low, the median, and the high end of the
housing market.

1. INTRODUCTION

The idea of regression quantiles (Koenker and Bassett, 1978) is one of the major
breakthroughs in the past few decades. It is more robust against possible outliers
or extreme values than the the conditional mean. In addition, the model can be
used to explore the possibly different effects of covariates on different levels of
quantiles, thus leading to more comprehensive statistical understanding of the
stochastic relationships among variables. Suppose Y is the response variable and
X is the d-dimensional covariate vector. For any fixed 0 < τ < 1, the quantile
regression function Qτ (x), for any given x ∈ Rd is defined as

Qτ (x)
de f= inf{y : P(Y ≤ y|X = x) ≥ τ } = argmin

a
E{ρτ (Y −a)|X = x},
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where ρτ (v) = |v|+(2τ −1)v. Denote by ϕτ (.), the piecewise derivative of ρτ (.),
and we essentially have

Y = Qτ (X)+ ετ , with E{ϕτ (ετ )|X} = 0, a.s. (1)

Estimation of Qτ (x) and its derivatives has since attracted significant attention
in theoretical statistics as well as applied statistics; see, for example, Fan, Hu,
and Truong (1995), Jurec̆ková and Sen (1996), Yu and Jones (1998), Chaudhuri
(1991), Hong (2003), and Kong, Linton, and Xia (2010), with the latter three arti-
cles focusing on the Bahadur representations of the estimator with multivariate X .

As in the case of conditional mean regression, estimation of Qτ (x) suffers
from the so-called curse of dimensionality. Another problem with nonparametric
quantile regression is that the estimated function can be difficult to visualize and
interpret with multivariate X . One way to get around these issues, again as in con-
ditional mean regression, is to consider semiparametric models. See, e.g., Linton
(1995) and Liang, Härdle, and Gao (2000). In this paper we focus on the single-
index model, which is well motivated in both econometrics and statistics; see,
e.g., Härdle, Hall, and Ichimura (1993), Klein and Spady (1993), Chaudhuri et al.
(1997), and Yin and Cook (2005). Single-index models possess strong approxima-
tion ability in the sense that any nonlinear relationship can be invariably detected
by the model (Jones, 1987). Moreover, in the conditional mean regression it has
been proved that the parametric vector in a single-index model can usually be
estimated with root-n consistency, and the nonparametric link function, which is
univariate, can be estimated at the optimal nonparametric consistency rate.

Due to the reasons stated above, we consider for any fixed 0 < τ < 1, the τ th
quantile single-index model defined as

Y = Qτ (X)+ ετ ≡ mτ

(
X�θτ

)
+ ετ , E{ϕτ (ετ )|X} = 0 a.s., (2)

where θτ is referred to as the τ th quantile single-index parameter vector and mτ (.)
the link function. Note that ετ is not necessarily independent of X. For identi-

fication purposes, we require |θτ | de f= (θ�τ θτ )
1/2 = 1 and that its first component

is positive. See Ichimura (1993) and Yu and Ruppert (2002) for detailed discus-
sion. A potential use of model (2) is that by observing how the coefficient vector
θτ changes along with τ, we can evaluate the variation of the relative importance
of the covariates at different quantile levels. In other words, the parameter vector
θτ summarizes the key features of the possible different influences of X on the
values of Y in the lower and upper tails of the conditional distribution.

We here give some examples of (2). First consider the transformation model in
survival analysis

g(Y ) = β� X + ε, (3)

where g(v) is a monotonic function and ε is independent of X . For this model,
we have Qτ (x) = g−1(β�x +qτ (ε)), where qτ (ε) is the τ th quantile of ε. Many
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important parametric and semiparametric survival models may be expressed in the
form of model (3). For example, the Cox proportional hazard model logλ(t |x) =
logλ0(t) − β� X can be rewritten as log	0(Y ) = β� X + u, where 	0(Y ) =∫ t

0 λ0(s)ds and u is a random error and is independent of X . See Koenker and
Bilias (2001) for more details. Second, consider the single-index volatility model

Y = σ
(
θ�

0 X
)

ε, (4)

where ε is independent of X . In this case, Qτ (x) = σ(x�θ0)qτ (ε). The well-
known ARCH(p) model (Engle, 1982) can be written in the form of (4) with
X = (y2

t−1, ..., y2
t−p)

� and Y = yt . Note that for both (3) and (4), the parameter
vector θτ remains constant as θ0 for any τ . So as our last example, we consider a
model where θτ varies along with τ ,

Y = G
(
θ�

0 X +β�
0 Xε

)
, (5)

where G(.) is an unknown monotonic function, and ε is independent of X . It is
easy to see that Qτ (x) = G(x�θ0 +β�

0 xqτ (ε)) = G[X�(θ0 +β0qτ (ε))], and that
the single-index parameter vector θ0 + β0qτ (ε) is different for different values
of τ .

For ease of exposition, for any fixed 0 < τ < 1, we drop the subscript in
θτ ,mτ (.) and ϕτ (.), and use instead θ0,m(.) and ϕ(.) to denote the parameter
vector, the link function, and the piecewise derivative of the corresponding loss
function. Rewrite (2) as

Y = Qτ (X)+ ε ≡ m
(
θ�0 X

)
+ ε, with E(ϕ(ε)|X) = 0 a.s. (6)

Presumably, the estimation of model (6) could be carried out in a manner similar
to that in conditional mean regression (Härdle et al., 1993; Hristache, Juditsky,
Polzehl, and Spokoiny, 2001; and Xia, Tong, Li, and Zhu, 2002), with the squared
loss function replaced with ρ(.). Delecroix, Hristache, and Patilea (2006) consid-
ered the general M-estimator of the single-index model. Ichimura and Lee (2006)
and Chen and Pouzo (2009) both considered a two-step M-estimator for θ0, which

minimizes
n
∑

i=1
ρ(Yi −mn(Xi ,θ)), where mn(.,θ) is the estimated link function for

any fixed θ , obtained through either approximating the link function with a ten-
sor product sieve or smoothed local linear quantile regression estimator. However,
neither provided any insights as to how the minimization could be implemented in
practice, which presumably involves astronomical amounts of computation time.
To develop an estimation procedure that is easy to implement, we engage an idea
similar to the “structure adaptive approach” of Hristache et al. (2001), the mini-
mum average variance estimation (MAVE) by Xia et al. (2002) and Wu, Yu, and
Yu (2010) Nevertheless, the algorithm proposed here does differ from the afore-
mentioned methods, in that a penalty term is introduced that assures not only
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the almost sure convergence of algorithm, but also the root-n consistency of the
resulted estimator in theory.

The rest of the paper is organized as follows: Section 2 describes the details
on the proposed algorithm, including how to obtain a starting value and the selec-
tion of bandwidth. In Section 3 we compare the performance of various estimation
methods using simulated data. We also report some results and discussions from
an empirical study of the Boston housing data. Regularity conditions and asymp-
totic results are presented in Section 4. Proofs of results in the text are given in
the Appendix.

2. THE ESTIMATION ALGORITHM AND RELATED ISSUES

Let � = {θ ∈ Rd : |θ | = 1} and {(Xi ,Yi ), i = 1, ...,n} denote independent and
identically distributed (i.i.d.) observations from model (6). Note that the idea and
results presented here can be extended to time series data without foreseeable dif-
ficulty under mild regularity conditions; e.g., the dependence among the sequence
decreases to 0 fast enough.

As the dependency of the conditional quantile of Y given X is summarized by
the index θ�0 X , we can thus follow the structure adaptive approach of Hristache
et al. (2001) or Xia et al. (2002) and obtain an estimate of θ0 by solving the
minimization problem

argmin
θ∈�

min
aj ,bj

n

∑
i=1

n

∑
j=1

Kh

(
θ� Xi j

)
ρ
(

Yi −aj −bjθ
� Xi j

)
, (7)

where Xi j = Xi − X j , K (.) is a kernel function, h is a bandwidth, and Kh(.) =
K (./h)/h. Minimization in (7) with respect to θ , aj , and bj simultaneously can
be difficult, so we consider instead an iterative algorithm. Suppose ϑ ∈ � is the
current estimate of θ0. For any 1 ≤ i, j ≤ n, denote by [âi

ϑ(X j ), b̂i
ϑ(X j )], the min-

ima of

∑
l �=i, j

Kh

(
ϑ� Xl j

)
ρ
(

Yl −a −bϑ� Xl j

)
, (8)

with respect to a and b. The reason for us to construct “leave-two-out” estimator
[âi

ϑ(X j ), b̂i
ϑ(X j )] instead of using all data points is that (7) involves a double sum-

mation, and a leave-two-out estimator will simplify the use of a conditioning ar-
gument when it comes to calculations such as E[ρ(Yi − âi

ϑ(X j )− b̂i
ϑ(X j )ϑ

� Xi j )];
see Lemma 4.5. Chaudhuri et al. (1997) adopted the same technique, except that
their estimator is “leave-one-out,” as only a single summation is involved.

Substitute âi
ϑ(X j ) and b̂i

ϑ(X j ) into (7) for aj and bj in ρ(Yi − aj − bjθ
� Xi j ).

One would surmise that a natural substitute solution of θ for (7), also as an update
of ϑ, would be

argmin
θ∈�

n

∑
i=1

n

∑
j=1

K ϑ
i jρ

{
Yi − âi

ϑ(X j )− b̂i
ϑ(X j )θ

� Xi j

}
, (9)
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where K ϑ
i j = Kh(ϑ� Xi j ). Note that the quantity to be minimized in (9) can be

regarded as “average cross-validation loss.” In this article, however, we adopt a
slightly different approach in the sense that, instead of (9), we suggest the use of

ϑ ′ = argmin
θ∈�

1

n2

n

∑
i=1

n

∑
j=1

K ϑ
i jρ

{
Yi − âi

ϑ(X j )− b̂i
ϑ(X j )θ

� Xi j
}

+ 1

2
(θ −ϑ)�ϑϑ�(θ −ϑ). (10)

The motivation for introducing the extra term in (10) is explained subsequently.
Substitute ϑ ′ for ϑ , and repeat (8) and (10) until convergence. The single-index
parameter θ0 is thus estimated by the standardized θ̂ , the limiting point of ϑ ′. We
call this estimation procedure the adaptive quantile estimation (AQE). Note that
minimizations in (8) and (10) are both simple quantile regression problems, for
which efficient algorithms are readily available; see a survey in Koenker (2005).

It is well known that minimization algorithm through iterations is not guaran-
teed to converge, and even if it does, it may not converge to the desired value. For
algorithms (8) and (10), however, we can prove that under mild assumptions, and
with a consistent starting point ϑ , the algorithm converges almost surely and that
θ0 is asymptotically the converging point; see Theorem 4.1 below. Note that un-
like Wu et al. (2010), we do not require the initial estimate to be root-n consistent,
thus relaxing the restrictions on the smoothness of m(.); see Lemma 4.1 for more
details.

As previously mentioned, the estimation procedure in Wu et al. (2010) is basi-
cally a modified version of the MAVE algorithm proposed by Xia et al. (2002),
while our AQE minimizes a somewhat different target function (10), which in-
volves an extra penalty term (θ −ϑ)�ϑϑ�(θ −ϑ). Originally, it is intended purely
for the sake of proving the updated estimator admits the asymptotic representation
specified in Theorem 4.1, details of which are found in the proof. Without this
penalty term, the singularity of the matrix S2, definition given in Theorem 4.1,
will invalidate the methodologies involving the use of the almost-sure convexity
lemma (Lemma 4.4), a parallel to that in Pollard (1991). From a more heuristic
point of view, through introducing this term, we encourage changes orthogonal to
the current estimator ϑ, as it penalizes those θ lying in the same direction as ϑ,
thus alleviating the effect of the initial estimate.

Once we have obtained an estimator of θ0, the link function m(.) can be esti-
mated in the same way as in univariate quantile regression; see, for example, Yu
and Jones (1998). Simply put, for any x ∈ Rd , an estimator of m(θ�

0 x) is given
by âθ̂ (x), derived through minimizing (8) with ϑ replaced with θ̂ . Its asymptotic
normality is given in Theorem 4.3.

2.1. Initial Estimator of θ0θ0θ0

Many estimators proposed for conditional mean regression can be applied here
to serve this purpose, for example, the outer product of gradients (OPG) estimate
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(Samarov, 1993; Hristache et al., 2001; Xia et al., 2002). Here we choose to use
the the average derivative estimate (ADE) of Chaudhuri et al. (1997).

The basic idea of ADE is that the gradient ∇Q(X j ) = θ0m′(θ�0 X j ) at every
point X j is proportional to θ0. It follows that E[∇Q(X)] = θ0E[m′(θ�0 X)].
Since |θ0| = 1, we have

θ0 = E[∇Q(X)]/|E[∇Q(X)]|.
To estimate θ0, it suffices to obtain an estimate of E[∇Q(X)]. Note that ∇Q(x)
can be estimated by b̂(x), which minimizes

min
a,b

n

∑
i=1

H(Xix/h0)ρ
{

Yi −a −b� Xix

}
, (11)

where H(.) : Rd → R+ is a kernel function, h0 > 0 is the bandwidth, and Xix =
Xi − x . One can then estimate E[∇Q(X)] by the weighted average n−1 ∑n

j=1

c(X j )b̂(X j ), where c(.) is some weight function, introduced to deal with bound-
ary points. An initial estimate of θ0 can then be constructed as

ϑ =
n

∑
j=1

c(X j )b̂(X j )

/∣∣∣∣∣ n

∑
j=1

c(X j )b̂(X j )

∣∣∣∣∣ . (12)

It can be shown that under certain regularity conditions, ϑ is a strongly consistent
estimator of θ0; see Lemma 4.1 below.

2.2. Bandwidth Selection

Recall that in single-index conditional mean regression, as shown in Härdle et al.
(1993) and Xia (2006), the commonly used bandwidth selection methods for non-
parametric regression can be employed to estimate the link function as well as
the parameters. For quantile regression, the optimal bandwidth minimizing the
mean squared error (MSE) should be proportional to n−1/5; see Fan et al. (1995),
Yu and Jones (1998), and Cheng (1997). Our theoretical computation also shows
that such a bandwidth can guarantee the estimators to achieve the optimal consis-
tency rates for both the link function and the single-index parameter vector; see
Condition 5 below. Specifically, we may follow the suggestion of Yu and Jones
by considering the relationship between the optimal bandwidth for conditional
quantile regression and that for conditional mean,

hτ = hmean

{
τ(1− τ)

/
φ
(
�−1(τ )

)}1/5
,

where hmean is the optimal bandwidth for local linear smoothing estimator in
single-index mean regression, and hτ is that for single-index quantile regression.
Functions φ(.) and �(.) are the standard normal probability density function and
cumulative distribution function, respectively. For hmean , many available band-
width selection methods, such as the cross-validation bandwidth selection method
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and the rule-of-thumb method, can be used to choose it. See Silverman (1986),
Fan and Gijbels (1996), and Cheng (1997) for more details.

3. SIMULATION AND EMPIRICAL STUDIES

In this section we illustrate the performance of AQE and some other existing
methods on simulated examples. For any estimate θ̂τ of θτ , the index parameter
associated with quantile level τ, define the estimation error (EE) as

EE
(
θ̂τ

)
=
√

1−
∣∣∣θ̂�

τ θτ

∣∣∣.
Here EE(θ̂τ ) takes values between 0 and 1 and the smaller value corresponding to
the better estimator; see also Fan et al. (2005).

We will compare the performance of AQE, the quantile average derivative esti-
mate (Chaudhuri et al., 1997) as well as the estimator in Wu et al. (2010), labeled
as WYY. In the first example we also study the performance of MAVE (Xia et al.,
2002) in a quantile regression model.

Example 3.1 (Single-index median regression)
Consider the model

y = cos
(
θ�

0 X
)

+ ε, (13)

where θ0 = (2,0,−1,0,2)�/3, X ∼ �1/2(u1, ...,u5)
� with u1, ...,u5

I I D∼ N (0,1),
and � = (0.5|i− j |)0≤i, j≤5. For the error term ε, we consider several distribution
functions varying from symmetric to asymmetric, and from heavy tailed to thin
tailed. For each sample size n = 100,200,400 and different distributions for the
error term, the average and standard deviation of the estimation error of 100 repli-
cations for each combination of different sample sizes and error distributions are
given in Table 1.

As expected, the performance of the MAVE method is less than satisfactory
when the residual distribution is fat tailed (e.g., t (1)) or asymmetric (e.g., N (0,1)4).
Even in the case when ε is normally distributed, which is to the advantage of
MAVE, the performance of AQE is still comparable to that of MAVE. Noticeably,
the AQE method outperforms qADE in all cases, and WYY in most cases.

Example 3.2 (A single-index volatility model)
Consider the model

Y = exp
(
θ�

0 X
)

ε, (14)

where X is designed as in the previous example, θ0 = (2,0,−1,0,2)�/3, and
ε ∼ N (0,1). For such a setup, the MAVE method, which is based on the least
squares distance, is not capable of estimating the parameter vector θ0. Comparison
of AQE and qADE with different quantile level τ( �= 0.5) is tabulated as Table 2.
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TABLE 1. Mean and standard error (in parentheses) of EE for model (13)

Distribution of ε

Size Method N(0,1)/2
√

3t (3)/10 t (1)/10 0.3(N (0,1)4 −3)

MAVE 0.1582(0.0980) 0.1760(0.1577) 0.4818(0.2894) 0.7110(0.2334)
100 qADE 0.2894(0.1415) 0.2261(0.0832) 0.2740(0.2142) 0.4095(0.2615)

WYY 0.2262(0.1978) 0.1574(0.1021) 0.1093(0.1386) 0.1485(0.2062)
AQE 0.2074(0.1444) 0.1306(0.0797) 0.0837(0.1289) 0.1123(0.1985)

MAVE 0.0922(0,0392) 0.1075(0.0940) 0.5069(0.3097) 0.7002(0.2547)
200 qADE 0.2143(0.0696) 0.1813(0.0578) 0.2408(0.1987) 0.3388(0.2554)

WYY 0.1111(0.0694) 0.0926(0.0378) 0.0581(0.1029) 0.0695(0.1739)
AQE 0.1170(0.0557) 0.0867(0.0381) 0.0469(0.0864) 0.0670(0.1710)

MAVE 0.0719(0.0463) 0.0396(0.0154) 0.6338(0.3094) 0.5576(0.3101)
400 qADE 0.1683(0.0287) 0.1603(0.0298) 0.2125(0.1855) 0.1786(0.2701)

WYY 0.0853(0.0402) 0.0410(0.0142) 0.0301(0.0205) 0.0200(0.0150)
AQE 0.0860(0.0304) 0.0322(0.0118) 0.0257(0.0117) 0.0182(0.0118)

TABLE 2. Mean and standard error (in parentheses) of EE(θ̂τ ) for model (14)

Size Method τ = 0.70 τ = 0.80 τ = 0.90 τ = 0.95

100 qADE 0.5019(0.2199) 0.4140(0.1753) 0.3687(0.1480) 0.3894(0.1559)
WYY 0.4211(0.1545) 0.3379(0.1877) 0.3017(0.1220) 0.2818(0.1116)
AQE 0.3752(0.2119) 0.2995(0.1625) 0.2392(0.1135) 0.2517(0.1085)

200 qADE 0.4878(0.1873) 0.3825(0.1459) 0.3413(0.1237) 0.3587(0.1271)
WYY 0.3005(0.1353) 0.1838(0.0900) 0.1765(0.0889) 0.1919(0.1110)
AQE 0.2846(0.1234) 0.1930(0.0812) 0.1528(0.0712) 0.1653(0.1018)

400 qADE 0.2726(0.1188) 0.3658(0.1422) 0.3159(0.1201) 0.3194(0.1041)
WYY 0.2278(0.1156) 0.1345(0.0592) 0.1368(0.0656) 0.1875(0.0949)
AQE 0.2231(0.1095) 0.1316(0.0694) 0.1294(0.0457) 0.1834(0.0842)

Example 3.3
Last, we consider a model where the single-index parameter vector changes with
the quantile,

Y =
exp

(
3
√

2x1 +3
√

2x5 −6+6x3ε
)

1+ exp
(

3
√

2x1 +3
√

2x5 −6+6x3ε
) , (15)

where X = (x1, ...,x5)
� = �1/2(u1, ...,u5)

� with u1, ...,u5
I I D∼ Uniform(0,1) and

ε ∼ Uniform(−1,1). The single-index parameter vector associated with quantile
level τ is specified as

θτ =
(√

2,0,2(2τ −1),0,
√

2
)�/√

4+4(2τ −1)2.
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TABLE 3. Mean and standard error (in parentheses) of EE(θ̂τ ) for model (15)

n Method τ = 0.50 τ = 0.80 τ = 0.90 τ = 0.95

200 qADE 0.3004(0.0964) 0.2949(0.0842) 0.2983(0.0801) 0.3108(0.0682)
WYY 0.2785(0.1185) 0.2102(0.0870) 0.1917(0.0942) 0.1859(0.0886)
AQE 0.2771(0.1129) 0.2069(0.0836) 0.1816(0.0758) 0.1700(0.0805)

400 qADE 0.2719(0.0870) 0.2747(0.0730) 0.2884(0.0586) 0.2899(0.0577)
WYY 0.2172(0.1017) 0.1563(0.0561) 0.1310(0.0652) 0.1173(0.0477)
AQE 0.2102(0.0877) 0.1445(0.0666) 0.1211(0.0536) 0.1043(0.0456)

800 qADE 0.2414(0.0563) 0.2430(0.0594) 0.2403(0.0628) 0.2504(0.0524)
WYY 0.1452(0.0507) 0.1080(0.0572) 0.0927(0.0404) 0.0906(0.0405)
AQE 0.1454(0.0640) 0.1073(0.0435) 0.0904(0.0402) 0.0842(0.0510)

For combinations of different sample size n and quantile level τ , the estimation
errors of both methods are summarized in Table 3. Similar conclusions as in
Example 3.2 can be drawn regarding the performance of AQE and qADE.

Example 3.4 (Boston housing data)
We now fit the single-index quantile regression model (2) to the Boston housing
data, available in R package mlbench (http://cran.r-project.org/). The data have
been analyzed by several statisticians; see, e.g., Harrison and Rubinfeld (1978),
Doksum and Samarov (1995), Fan and Huang (2005), and the references therein.
There are 506 observations, and the response variable is MEDV (median value
in $1,000s of owner-occupied homes in a given area). One noteworthy feature in
the data is that the values of Y that are larger than 50,000 have been recorded as
50,000. Such a truncation in the upper tail of the response variable makes quan-
tile regression a very appropriate tool to investigate the data. The 13 covariates
are CRIM (per capita crime rate by town), ZN (proportion of residential land
zoned for lots over 25,000 square feet), INDUS (proportion of nonretail busi-
ness acres per town, a proxy for externalities associated with industry—noise,
heavy traffic, and unpleasant visual effects), CHAS (Charles River dummy vari-
able, 1 if tract bounds river; 0 otherwise), NOX (nitric oxides concentration in
parts per 10 million), RM (average number of rooms per dwelling), AGE (propor-
tion of owner-occupied units built prior to 1940), DIS (weighted distances to five
Boston employment centers), RAD (index of accessibility to radial highways),
TAX (full-value property-tax rate per $10,000), PTRATIO (pupil-teacher ratio by
town), B (=1000(Bk − 0.63)2 where Bk is the proportion of blacks by town),
and LSTAT (percentage of lower status of the population). The reason that its
quadratic function B is used as the covariate instead of Bk, as argued by Harrison
and Rubinfeld, is that “at low to moderate levels of Bk, an increase in Bk should
have a negative influence on housing value if Blacks are regarded as undesirable
neighbors by Whites. However, market discrimination means that housing values



SINGLE-INDEX QUANTILE REGRESSION 739

FIGURE 1. The estimated link functions of the single-index quantile model at quantile
level 0.3, 0.5, 0.7, 0.8, 0.9, and 0.95, respectively. The dots are the observations; the central
curve is the estimated link function, and the other two curves are 95% confidence intervals
based on Theorem 4.3.

are higher at very high levels of B. One expects therefore a parabolic relationship
between Bk and housing prices.” The only information available in Harrison and
Rubinfeld of the data on Bk is that it has sample mean 0.06 and standard devia-
tion 0.18, so 0.63 is well beyond three times the standard deviation away from the
mean.

To preprocess the data, we take logarithm to Y . All covariates (except INT)
are transformed and standardized so that their marginal distribution is approx-
imately normal. Denote the estimated value of the single-index parameter by
θ̂ = (θ̂(1), ..., θ̂(13))

�, at a sequence of different quantile levels τ = 0.3,0.5,0.7,
0.8,0.9, and 0.95. The estimated link functions are shown in Figure 1; a graphic
summary of how the single-index parameters of each of the 13 covariate changes
with the quantile level is plotted in Figure 2. It reveals some interesting features
about the effects of covariates on house price in different price ranges. (1) The
estimated link functions at all quantile levels show nonlinear increasing trends as
the value of θ̂�

τ X increases, and the patterns also look similar. (2) In conformity
with the findings in Doksum and Samarov (1995), LSTAT, RM, and DIS are very
influential factors on prices for house in all categories. Figure 2 also suggests that
air quality (NOX), property-tax rate (TAX), public sector benefit (PTRATIO), and
highway accessibility (RAD) also have significant impact, although the extent is
different for houses in different price ranges; more discussion is given below.
(3) Among the important covariates, NOX, DIS, TAX, PTRATIO, and LSTAT



740 EFANG KONG AND YINGCUN XIA

FIGURE 2. The estimated single-index θτ = (θ(1),θ(2), ....,θ(13))
� at quantile level

τ = 0.3, 0.5, 0.7, 0.8, 0.9, and 0.95, respectively. The central curve is the estimated values
of θ(k); the other two curves are 95% confidence intervals based on Theorem 4.2.

have negative effects on house prices, while the influence of RM and RAD is
positive. These observations are clearly in line with the heuristics about their
effects on house prices. They are also in line with the conclusions of Harrison and
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Rubinfeld (1978) based on a linear regression analysis. One noteworthy point
is that similar to the result in Harrison and Rubinfeld, CRIM has an almost
negligible but nevertheless negative effect, which might be explained by the strong
collinearity between CRIM and other covariates: The correlation coefficient with
CRIM is 0.705 for INDUS, 0.807 for NOX, 0.85 for TAX, and 0.82 for RAD.

As houses in high price range are usually targeted only by people with high
income, it is helpful for the study of consumption behavior of individuals from
different income groups to examine how the coefficient of each specific covariate
changes as the quantile level varies. Our findings are as follows: (1) for people
with low or median income, INDUS has a very small positive effect (the coeffi-
cient takes a value of around 0.05) and a fairly significant negative impact on the
rich. One possible explanation is that a high INDUS area may be very slightly
attractive to low-income factory workers, who want to save time on commuting
and who could not afford to avoid the hazardous externality and unpleasant vi-
sual effects associated with industry. (2) NOX is another influential adverse factor
for the obvious reason that people invariably prefer clean air. Its coefficient de-
creases from −0.2 to −0.4 as the quantile level moves up from 0.3 to 0.95. This
lends support to the hypothesis by Harrison and Rubinfeld (1978) that house-
holds in different income groups have different elasticities of willingness to pay
for cleaner air. More specifically, rich people are willing to spend more money
for cleaner air than people with lower income. (3) The number of rooms factor
becomes less important for expensive house buyers. This again in part reflects
the varying marginal benefits from extra increments of interior space (Harrison
and Rubinfeld). As for the age factor, its coefficient changes from negative to
positive for high-end houses. A possible explanation is that for high-end houses,
having a long history is sometimes a major selling point. (4) Accessibility to ra-
dial highways (RAD) is universally valued by people rich or poor. Yet rich peo-
ple are ready to pay more, which suggests again the varying elasticities of will-
ingness to pay for “quality of life,” e.g., less time spent on commuting. (5) A
similar explanation applies to DIS. Note that in Chaudhuri et al. (1997), the esti-
mated coefficient of DIS is positive (0.593) at τ = 0.10 and remains positive up
to τ = 0.50. Results presented here seem to make more sense, according to the
traditional theories of urban land rent gradients (Harrison and Rubinfeld, 1978).
(6) TAX has a universal negative impact on house prices. However, as it mea-
sures the cost of public services in each community (Harrison and Rubinfeld),
explanations for NOX can be applied here. Specifically, compared with the poor,
rich people are more willing to pay for good public services, i.e., better commu-
nity facilities and environment. (7) PTRATIO is another negative factor, and its
coefficient fluctuates very mildly around −0.2 throughout. Though the relation
between PTRATIO and school quality is not entirely clear, a lower PTRATIO
should imply more individual attention from the teacher. The constant negative
effect reflects the fact that PTRATIO is equally valued by rich or poor. (8) For
factor B, recall that it is defined as 1000(Bk −0.63)2, where Bk is the proportion
of blacks by town. In Harrison and Rubinfeld (1978), where the linear model was
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considered, the coefficient of B was significantly positive, which is in line with
our result here. Moreover, the panel for θ(12) in Figure 2 provides more insight
into the extent to which people from different income groups care about the black
proportion in their neighborhood. It is regarded as an increasingly negative factor
by families with income from the lower middle to the upper middle. However,
as far as top scale communities are concerned, the effect of this BK factor is
almost negligible. There are two possible explanations: (i) different from low-
and middle-income blacks, high-income blacks are not considered as undesir-
able neighbors; and (ii) race-related prejudice is rare among high-income (white)
people.

4. ASYMPTOTIC PROPERTIES OF ESTIMATORS

Let D denote any compact subset of the support of X , and �̃ denote a neighbor-
hood of θ0. Unless otherwise stated, we assume that the following conditions hold
throughout.

Condition 1. The probability density function f (.) of X is bounded with
bounded absolutely continuous first-order derivatives on D.

Condition 2. The conditional probability density function of ε in (6) given X ,
fε(.|X), is bounded and continuously differentiable.

Condition 3. The link function Q(.) has bounded second- and third-order par-
tial derivatives on D.

Condition 4. Kernel function K (.) is a symmetric density function with a com-
pact support and satisfies |u j K (u)−v j K (v)| ≤ C |u −v| for all j with 0 ≤ j ≤ 3.

Condition 5. The smoothing parameter h satisfies nh4 → ∞ and nh5/
logn < ∞.

Conditions 1–5 are standard in kernel smoothing estimation. It is easy to see
that under Condition 1 there exists a constant C > 0 such that, for all small t ,

E
[
{ϕ(Y − t −a)−ϕ(Y −a)}2

∣∣∣X = v
]

≤ C |t | (16)

holds for all (a,v) in a neighborhood of {m(x�θ0), x}. Note that although here we
restrict our attention to quantile regression, essentially cases where the piecewise
derivative function ϕ(.) is bounded, there is no foreseeable difficulty to generalize
our results to the case when ϕ(.) is unbounded, e.g., the least square loss function,
if conditions on the existence of the moment of ϕ(ε) are met, such as E|ϕ(εi )|ν1 is
finite, for some ν1 > 2. The proof then would involve truncating techniques used
in Masry (1996), as well as in Kong et al. (2010).

Note that E(ϕ(ε)|X) = 0 assumed for model (6) is essentially a consequence
of the definition of m(.) and ϕ(.) given in Condition 2. To this aim, consider the
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derivative of E{ρ(Y − s)|X = x} with respect to s and we have

∂E{ρ(Y − s)|X = x}/∂s = ∂

{∫
ρ(ε + Q(x)− s) fε(.|x)dε

}/
∂s

=
∫

ϕ(ε + Q(x)− s) fε(.|x)dε,

where the second equality follows from the Leibniz integral rule (Knoepfel,
2000)about the change of orders of integral as ρ(.) is almost surely differen-
tiable with respect to the Lebesgue measure, implying correct model specifica-
tion. Similar conditions can be found in Hong (2003) and Jurec̆ková and Sen
(1996).

As in Hong (2003) and Kong et al. (2010), define

G(t, x) = E{ρ(Y − Q(x)+ t)|X = x}, Gi(t, x) = (∂ i/∂t i )G(t, x),

i = 1,2,3, (17)

and g(x)
de f= G2(Q(x), x) ≡ fε(0|X = x). As the “adaptive kernel” Kh(X�

i xϑ)

is used when constructing âϑ(x) and b̂ϑ(x) for any given ϑ , we also need the
adaptive version of the notations in (17) and assume uniform continuity property
of them over a compact set in terms of both ϑ and x , to ensure the model is
estimable.

For any given ϑ ∈ �, denote by fϑ(x) the probability density function of ϑ� X
at ϑ�x . Moreover, for any u ∈ R and x ∈D, define

mϑ(u) = argmin
a

E
{
ρ(Y −a)|X�ϑ = u

}
,

Gϑ(t, x) = E
{
ρ
(
Y −mϑ

(
ϑ�x

)+ t
)|ϑ� X = ϑ�x

}
,

Gi
ϑ(t, x) = (∂ i/∂t i )Gϑ(t, x), i = 1,2,3;
gϑ(x) = G2

ϑ(mϑ(x), x).

Condition 6. Function mϑ(u) satisfies Lipschitz condition in ϑ ∈ �̃ and u ∈
{ϑ�x : ϑ ∈ �̃, x ∈D}; i.e., there exists some C > 0, such that

|mϑ(u)−mϑ̃ (ũ)| ≤ C(|ϑ − ϑ̃ |+ |u − ũ|),
and that its derivative with respect to u exists and is denoted as m′

ϑ(u).

Condition 7. In a neighborhood band of {(Q(x), x) : x ∈ D}, G3(t,v) is con-
tinuous; there exists some δ0 > 0, such that g(x) > δ0 for all x ∈D.

Condition 7′. In a neighborhood band of {(Q(x), x) : x ∈D}, G3
ϑ(t, x) is con-

tinuous and bounded uniformly in ϑ ∈ �̃; there exists some δ2 > δ1 > 0, such that
δ2 > gϑ(x) > δ1, for all x ∈D and ϑ ∈ �̃.
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Condition 8. For any ϑ ∈ �̃, σ 2
ϑ(x) = E(ϕ2(ε)|ϑ� X = ϑ�x) ≡ τ 2 + (1 − 2τ)

P{ε ≤ 0|ϑ� X = ϑ�x} has bounded first-order derivative with respect to both ϑ
and x .

Condition 6 is about the smoothness of the quantile regression function. As
for Conditions 7 and 7′, note that gϑ(x) ≡ fε(0|ϑ� X = ϑ�x). Parallel conditions
can be found in, e.g., Condition 3 in Chaudhuri et al. (1997) for nonparamet-
ric quantile regression models. Note that Condition 8 automatically holds if ε is
independent of X with σϑ(x) ≡ τ 2 + (1 − 2τ)P{ε ≤ 0}. Though the continuity
property of σϑ(.) in Condition 8 is not required for either the convergence of
the algorithm or the root-n consistency of θ̂ , it is necessary for the asymptotic
variance of both θ̂ and the estimated link function to have a neat expression; see
Theorems 4.2 and 4.3.

We state the asymptotic properties of the estimation below; their proofs are
given in the Appendix.

LEMMA 4.1 (Initial estimator). Suppose kernel function H(.) is symmetric
about 0 in each coordinate direction and has a compact support, say [−1,1]⊗d

and |ua
i ub

j uc
k H(u)−va

i vb
j v

c
k H(v)| ≤ C |u −v| for all integer 0 ≤ a +b+c ≤ 3 and

0 ≤ i, j,k ≤ d, where u = (u1, ...,ud)� and v = (v1, ...,vd)�. If Conditions 1–3
hold and h0 is chosen such that nhd

0/ logn → ∞ and nhd+4
0 / logn < ∞, then the

initial estimator is consistent with

θ0 −ϑ = O
{

h−1
0

(
nhd

0/ logn
)−1/2

}
(18)

almost surely.

Note that the result in Lemma 4.1 appears to be weaker than the asymptotic
normality of n1/2(θ0 − ϑ) obtained in Chaudhuri et al. (1997). The reasons are
twofold. First, we need almost sure convergence of the initial estimator, however
slow the rate might be, in order to show the almost sure convergence of the algo-
rithm specified through (10). Second, conditions in Lemma 4.1 are weaker than
those assumed in Chaudhuri et al., where the degree of smoothness of H(.) and
the functions specified in Conditions 1–3 are assumed to increase with d, the di-
mension of the covariate X .

Based on the above result, we can restrict our parameter space to �n ≡ {ϑ :
|θ0 −ϑ | ≤ C(nhd+2

0 / logn)−1/2}, for some C > 0, which as n increases will be-
come a subset of �̃, any neighborhood region around θ0. This implies that all
assumptions made on ϑ ∈ �̃ will automatically hold for ϑ ∈ �n .

THEOREM 4.1 (Convergence of the algorithm). For any starting value ϑ ∈ �n,
let ϑ ′ denote the updated estimate after one round of implementation of (8) and
(10). If Conditions 1–7 and 7′ hold, there exists a constant d ×d matrix �1, whose
eigenvalues all fall into [0,1), such that

ϑ ′ − θ0 = (�1 +an)(ϑ − θ0)+En +o
(

n−1/2
)

(19)
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almost surely, where an = o(1) and o(n−1/2) are both uniform in ϑ ∈ �n, and

En =
(

S2 + θ0θ
�
0

)−1
n−1

n

∑
i=1

ϕ(εi )m
′(θ�

0 Xi

)
�θ0(Xi ) fθ0(Xi ),

�θ (x) = E
(

X
∣∣X�θ = x�θ

)
− x, S2 = E

[{
m′(X�θ0

)}2
ωθ0(X)

]
,

ωθ (x) = E
{

g(X)(X − x)(X − x)�|X�θ = x�θ
}
.

Note that θ�
0 S2θ0 = 0 due to the definition of S2. Since En does not depend on ϑ ,

the almost sure convergence of the algorithm follows easily from (19).
A direct result of Theorem 4.1 is the asymptotic normality of the final estimate

of θ0 and the estimated link function.

THEOREM 4.2 ( Root-n consistency of estimator of θ0). Under Conditions
1–8, the final estimator θ̂ is asymptotic normal with

√
n(θ̂ − θ0)

D→ N

{
0,
(

S2 + θ0θ
�
0

)−1
�0

(
S2 + θ0θ

�
0

)−1
}

,

where �0 = E

[
σ 2

θ0
(X)

{
m′
(
θ�

0 X
)}2{

fθ0(X)
}2

�θ0(X)��
θ0

(X)

]
.

Remark (Efficiency considerations). Here we consider, through an example,
the asymptotic efficiency of our estimator of θ0, relative to the ADE estimator
by Chaudhuri et al. (1997). Suppose X is multivariate normal N (0, Id), and is
independent of ε. Let fε(0) denote the value of the probability density function of
ε at 0, θ̃0 denote components 1 through d −1 of θ0, and θ0d , its last entry. We need
to work out in this special case, the expressions of S0 and �0 defined in Theorem
4.2. First note that E(X |X�θ0 = x�θ0) = x�θ0θ0, and

E
{

(X − x)(X − x)�
∣∣X�θ0 = x�θ0

}
=
(

Id − θ0θ
�
0

)
xx�(Id − θ0θ

�
0

)
+ Id − θ0θ

�
0 .

Let �̃ = Id − θ0θ
�
0 . Therefore,

S2 = 2 fε(0)E
[{

m′(θ�0 X
)}2 ]

�̃, �0 = �̃τ (1− τ)E
[{

m′(θ�0 X
)

fθ0(X)
}2 ]

.

To simplify, suppose the coefficient of the penalty term in (10) is
fε(0)E[{m′(θ�0 X)}2], instead of 1/2, and we have

(
S2 + θ0θ

�
0

)−1
�0

(
S2 + θ0θ

�
0

)−1 =
τ(1− τ)E

[{
m′
(
θ�0 X

)
fθ0(X)

}2]
4 f 2

ε (0)
[
E
{

m′
(
θ�0 X

)}2]2 �̃

≤ τ(1− τ)

8π f 2
ε (0)

[
E
{

m′
(
θ�0 X

)}2] (Id − θ0θ
�
0

)
.
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Compare this with the asymptotic variance-covariance matrix of ADE, with the
weight function w(.) there equal to one, is (Chaudhuri et al., 1997)

τ(1− τ)

f 2
ε (0)

Id +Var
[
m′(θ�0 X

)]
θ0θ

�
0 ,

and we can see that the relative efficiency of AQE relative to ADE is, roughly
speaking, at least 8πE{m′(θ�0 X)}2, which is much greater than 1, if the link func-
tion m(.) is not too close to a constant function.

For any x with θ�
0 x in the interior of the support of θ�

0 X , we have the following.

THEOREM 4.3 (Asymptotics of the estimated link function). Under Condi-
tions 1–8, we have
√

nh

{
âθ̂ (x)−m

(
θ�0 x

)
− 1

2
m′′(θ�0 x

)
h2
}

D→N

[
0,

∫
K 2(μ)dμ

{
g2 f/σ 2)

}
θ0

(x)−1
]
.

For statistical inference and diagnostic purposes, we here outline how to esti-
mate the asymptotic covariances (matrix) given in the above theorems. With the
fitted residuals ei = Yi − âθ̂ (Xi ), g(x) and ωθ0(x) can be respectively estimated by

ĝ(x) = ∑n
i=1 H(Xix/h0)Kh̄(ei )

∑n
i=1 H(Xix/h0)

,

ω̂θ̂ (x) =
∑n

i=1 Kh

(
θ̂� Xix

)
ĝ(Xi )Xix X�

i x

∑n
i=1 Kh

(
θ̂� Xix

) ,

where h̄ is another bandwidth, which can be taken as 2.34sen−1/(p+4), if the
Epanechnikov kernel is used, with se the standard deviation of ei , i = 1, . . . ,n;
see Fan and Gijbels (1996) for more details. Note that if ε is independent of X ,
g(x) ≡ fε(0), which means we can use f̂e(0) = n−1 ∑n

i=1 Kh̄(ei ) as the estimate
of g(x). We estimate σ 2

θ0
(x) by

σ̂ 2
θ̂
(x) = τ 2 + (1−2τ)

∑n
i=1 Kh

(
θ̂� Xix

)
I (ei < 0)

∑n
i=1 Kh

(
θ̂� Xix

) ,

fθ0(x) by f̂θ̂ (x) = n−1 ∑n
i=1 Kh

(
θ̂� Xix

)
, S2 by Ŝ2 = n−1 ∑n

j=1 b̂2
θ̂
(X j )ω̂θ̂ (X j ),

�θ0(x) by

�̂θ̂ (x) =
∑n

i=1 Kh

(
θ̂� Xix

)
Xi

∑n
i=1 Kh

(
θ̂� Xix

) − x,

and �0 by

�̂0 = n−1
n

∑
i=1

σ̂ 2
θ̂

(
θ̂� Xi

)
b̂2
θ̂
(Xi ) f̂ 2

θ̂
(Xi )�̂θ̂ (Xi )�̂

�
θ̂

(x).
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Consequently, (S2 + θ0θ
�
0 )−1�0(S2 + θ0θ

�
0 )−1 is estimated as (Ŝ2 + θ̂ θ̂�)−1�̂0

(Ŝ2 + θ̂ θ̂�)−1. Since θ̂ is a consistent estimator of θ0, it is not difficult to verify
that all the above estimators are consistent.
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APPENDIX: Proofs of Results

For any ϑ ∈ �n and x ∈ Rd , define

μϑ(x) = E
[
g(X)

∣∣X�ϑ = x�ϑ
]
, νϑ (x) = E

[
g(X)X

∣∣X�ϑ = x�ϑ
]
.

However, for expressions like μϑ(v) and νϑ (v) where v ∈ R, they should be understood as

μϑ(v) = E
[
g(X)

∣∣X�ϑ = v
]
, νϑ (v) = E

[
g(X)X

∣∣X�ϑ = v
]
.

Proof of Lemma 4.1. The strong consistency of ϑ in (12) follows from the results of
Kong et al. (2010) on the almost sure uniform Bahadur representation of b̂(x) over any
compact subset of the support of X . Namely, with probability 1,

b̂(x) = m′(θ�0 x
)

θ0 + 1

nhd+1
0 { f g}(x)

n

∑
i=1

H(Xix/h0)ϕ(εi )Xix/h0

+ O

⎧⎨⎩h−1
0

(
logn

nhd
0

)3/4
⎫⎬⎭ (A.1)

uniformly in x ∈D. Consequently, with probability 1,

1

n

n

∑
j=1

c
(

X j
)

b̂
(

X j
) = 1

n

n

∑
j=1

c
(

X j
)

m′(θ�0 X j

)
θ0 + 1

n2hd+1
0

n

∑
i, j=1

c
(

X j
){ f g}−1 (X j

)

× H
(

Xi j /h0
)
ϕ(εi )Xi j /h0 + O

⎧⎨⎩h−1
0

(
logn

nhd
0

)3/4
⎫⎬⎭ . (A.2)



SINGLE-INDEX QUANTILE REGRESSION 749

Since E(ϕ(ε)|X) = 0 a.s., we can apply Theorem 2 of Masry (1996) and that with
probability 1,

1

nhd
0

n

∑
i=1

H(Xix/h0)ϕ(εi )
Xix

h0
= O

{(
nhd

0/ logn
)−1/2}

uniformly in x ∈D, whence

1

n2hd+1
0

n

∑
i, j=1

c
(

X j
){ f g}−1 (X j

)
H
(

Xi j /h0
)
ϕ(εi )

Xi j

h0

= O
{

h−1
0

(
nhd

0/ logn
)−1/2}

a.s.

Substituting this into (A.2), we have (18) as long as Em′(θ�0 X) �= 0. n

Proof of Theorem 4.1. For ease of exposition, let ai
j ≡ âi

ϑ (X j ) and bi
j ≡ b̂i

ϑ (X j ). It is

easy to see that θ̂ given by (10) also minimizes

�̃n(θ) = �n(θ)+ 1

2
(θ − θ0)�ϑϑ�(θ − θ0)+ (θ0 −ϑ)�ϑϑ�(θ − θ0),

where

�n(θ) = 1

n2

n

∑
i=1

n

∑
j=1

K ϑ
i j

{
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi j

)}
, Yi j ≡ Yi − âi

j − b̂i
j X�

i j θ0.

The idea behind the proof, as in Pollard (1991), is to approximate �̃n(θ) by a quadratic
function whose minima have an explicit expression, and then to show that θ̂ is close enough
to those minima to share their asymptotic behavior. Note that what makes the proof here
more complicated than in Pollard is that âi

j and b̂j are stochastic instead of deterministic.

For any ϑ, let δϑ = θ0 −ϑ and anϑ = max{(n log logn)−1/2, |δϑ |}. Based on Lemma
4.1, anϑ = o(1) a.s. As ϑϑ� = θ0θ�0 + O(anϑ ) for any θ with δθ = O(anϑ ), we have

�̃n(θ) = �n(θ)+
{

1

2
δ�θ θ0θ�0 δθ − δ�ϑθ0θ�0 δθ

}
+o

(
a2

nϑ

)
. (A.3)

We now set out to approximate �n(θ) by a quadratic function of θ or, equivalently, a
quadratic function of δθ . Write

�n(θ) = E[�n(θ)]+ δ�θ {Rn1 −ERn1}+ Rn2(θ)−ERn2(θ), (A.4)

where Rn1 = n−2 ∑
i, j

K ϑ
i j ϕ(Yi j )b̂j Xi j , which does not depend on θ , and

Rn2(θ) = n−2 ∑
i, j

K ϑ
i j

[
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi j

)− δ�θ ϕ
(
Yi j

)
b̂i

j Xi j

]
.

For E(�n(θ)), we will prove in Lemma 4.5 that

E�n(θ) = δ�θ ERn1 + 1

2
δ�θ Gnϑδθ +o

(
|δθ |2

)
, (A.5)
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where

Gnϑ = n−2 ∑
i, j

E
[

K ϑ
i j g(Xi )

(
b̂i

j

)2
Xi j X�

i j

]
= S2

{
1+ O(δϑ )

}
.

Substituting this into (A.4), we have

�n(θ) = δ�θ Rn1 + 1

2
δ�θ Gnϑδθ{1+o(1)}+ Rn2(θ)−ERn2(θ). (A.6)

Combining (A.3) and (A.6), we have

�̃n(θ) = δ�θ
(

Rn1 − θ0θ�0 δϑ

)
+ 1

2
δ�θ

(
Gnϑ + θ0θ�0

)
δθ{1+o(1)}

+ Rn2(θ)−ERn2(θ). (A.7)

For Rn1, it will be proved in Lemma 4.6 that

Rn1 = 1

n ∑
i

ϕ(εi )bi {� f }θ0(Xi )−�0δϑ +αn |ϑ − θ0|+o
(

n−1/2
)

(A.8)

almost surely, where αn = o(1) uniformly in ϑ ∈ �n and

�0 = E
[{

m′(X�θ0

)}2
μθ0(X)

{
(ν/μ)θ0(X)− X

}{
(ν/μ)θ0(X)− X

}� ]
.

If we can show that

θ̂ − θ0 =
(

S2 + θ0θ�0
)−1(

Rn1 − θ0θ�0 δϑ

)
a.s., (A.9)

then Theorem 4.1 follows easily from (A.8) with �1 = (S2 + θ0θ�0 )−1(�0 + θ0θ�0 ). Note
that the eigenvalues of �1 are all positive and smaller than 1; see Lemma 4.7.

To prove (A.9), we need to show the uniform approximation of �̃n(θ) by the first two
terms in (A.7), which are quadratic in θ . To this end, we first need to show that for each
fixed θ ,

a−2
nϑ [Rn2(θ)−ERn2(θ)] = o(1) a.s. (A.10)

uniformly in ϑ ∈ �n ; see Lemma 4.11 and Lemma 4.12. Substituting this into (A.7) and
noticing the fact that Gnϑ = S2{1+ O(δϑ )}, we have for any fixed θ ∈ �n ,

a−2
nϑ

[
�̃n(θ)− δ�θ

(
Rn1 − θ0θ�0 δϑ

)
− 1

2
δ�θ
(

S2 + θ0θ�0
)
δθ

]
→ 0, a.s. (A.11)

Note that though �̃n(θ)− δ�θ (Rn1 − θ0θ�0 δϑ ) and δ�θ (S2 + θ0θ�0 )δθ are both convex in θ ,
the uniform approximation

sup
θ∈�nθ

a−2
nϑ |�̃n(θ)− δ�θ

(
Rn1 − θ0θ�0 δϑ

)
− 1

2
δ�θ
(

S2 + θ0θ�0
)
δθ | → 0 a.s. (A.12)

where �nθ is any compact subset of �n , does not follow directly from (A.11) by sim-
ply applying Theorem 10.8 in Rockafellar (1970), as one might expect. The reason is that
(A.11) simply means that for every fixed θ, there exists a subset, Cθ say, of the sample
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space, such that Pr(Cθ ) = 1 and for any sample point w ∈ Cθ , (A.11) holds. The prob-
lem is that different θ may define different Cθ , while (A.12) requires the existence of one
subset with probability measure 1 that will do for all θ . We will state and prove a result
in Lemma 4.4 that is stronger than the convexity lemma of Pollard (1991). Based on this
result, (A.12) is straightforward based on (A.11).

The rest of the arguments to prove (A.9) are essentially the same as in Pollard (1991).
Let ηn = (S2 + θ0θ�0 )−1(Rn1 + θ0θ�0 δϑ ). We want to prove the equivalent of (A.9), i.e.,

with probability 1, for any δ > 0, |θ̂ − θ0 −ηn |/anϑ ≤ δ for sufficiently large n. First note
that for any small enough δ, �n contains Bδ

n , a closed ball with center θ0 +ηn and radius
δanϑ . Replacing �nθ in (A.12) by Bδ

n , we have

�n ≡ sup
θ∈Bδ

n

a−2
nϑ |�̃n(θ)− δ�θ

(
Rn1 − θ0θ�0 δϑ

)
− 1

2
δ�θ
(

S2 + θ0θ�0
)
δθ | = o(1) a.s. (A.13)

Now consider the behavior of �̃n(θ) outside Bδ
n . For any θ = θ0 +ηn +anϑβν, and some

β > δ and ν a unit vector, define θ∗ as the boundary point of Bδ
n that lies on the line segment

from θ0 + ηn to θ, i.e., θ∗ = θ0 + ηn + anϑδν. Convexity of �̃n(θ) and the definition of
�n imply

δ

β
�̃n(θ)+

(
1− δ

β

)
�̃n(θ0 +ηn) ≥ �̃n(θ∗)

≥ 1

2
δ2a2

nϑν�
(

S2 + θ0θ�0
)
ν − 1

2
R�

n1

(
S2 + θ0θ�0

)−1

× Rn1 −a2
nϑ�n

≥ 1

2
δ2a2

nϑν�
(

S2 + θ0θ�0
)
ν + �̃n(θ0 +ηn)−2a2

nϑ�n .

It follows that

inf|θ−θ0−ηn |>δanϑ

�̃n(θ) ≥ �̃n(θ0 +ηn)+ β

δ
a2

nϑ

[
1

2
δ2ν�

(
S2 + θ0θ�0

)
ν −2�n

]
.

As S2 + θ0θ�0 is positive definite, then according to (A.13), with probability 1, δ2ν�(S2 +
θ0θ�0 )ν > 4�n for large enough n. This implies that for any δ > 0 and for large enough n,

the minimum of �̃n(θ) must be achieved within Bδ
n ; i.e., |θ̂ − θ0 −ηn | ≤ δanϑ . n

Proof of Theorem 4.3. For convenience of later reference, we will state here the asymp-
totic results for any âi

ϑ(X j ) and b̂i
ϑ (x), for any given i, j = 1, . . . ,n. To simplify notation,

we suppress ϑ , and write âi
ϑ (X j ) as âi

j , and b̂i
ϑ (X j ) as b̂i

j , which should always be inter-
preted as estimators when the current estimate of θ0 is ϑ.

Now suppose the bandwidth h is chosen such that nh4/ logn → ∞ and nh5/ logn < ∞.
Using the results in Kong et al. (2010) on uniform Bahadur representation, we have with
probability 1,

âi
j −mϑ

(
X j
) = 1

n
{g f }−1

ϑ

(
X j
)

∑
l �=i, j

K ϑ
i j ϕ

(
Y ∗

l j

)
+ O

{(
logn

nh

)3/4
}

, (A.14)

h
{

b̂i
j −m′

ϑ

(
X j
)}= 1

n
{g f }−1

ϑ (X j ) ∑
i �=i, j

K ϑ
i j ϕ

(
Y ∗

l j

)
X�

l j ϑ/h + O

{(
logn

nh

)3/4
}

,
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uniformly in 1 ≤ i, j ≤ n, and ϑ ∈ �n, where mϑ (X j ) ≡ mϑ (X�
j ϑ), m′

ϑ (X j ) ≡ m′
ϑ (X�

j ϑ),

Y ∗
i j = Yi −mϑ (X j )−m′

ϑ (X j )X�
i j ϑ . Note that although âi

j as defined through minimizing

(8) is the leave-two-out version of what was studied in Kong et al., the uniform Bahadur
representation (A.14) still holds. Heuristically speaking, this is due to the fact that this
uniform result was proved through the “continuity argument”; see Lemma 5.1 therein.
Changes incurred by at most four terms due to leaving-two-out therefore asymptotically
has no effect. Repeating the steps in Kong et al. will lead to a rigorous proof. The fact
that the leaving-one-out estimator is asymptotically equivalent to the non-leave-one-out
estimator at least in the first order has been used without proof in Chaudhuri et al. (1997).

By Lemma 4.9 on the deviance of mϑ (.) and m′
ϑ (.) from mθ0(.) and m′

θ0
(.), and Lemma

4.10 on the expectation of the stochastic terms on the right-hand side of (A.14), we have

âi
j −aj = 1

2
m′′(X�

j θ0

)
h2 +bj δ

�
ϑ

{
(ν/μ)ϑ

(
X j
)− X j

}+n−1{g f }−1
ϑ

(
X j
)

∑
l �=i, j

ϕl j

+ O

{(
logn

nh

)3/4
+h4 +hδϑ

}
, (A.15)

b̂i
j −bj = h2

[
1

2
m′′(X�

j θ0

){
( f μ)′/( f g)

}
ϑ (X j )+ 1

6
m(3)

(
X�

j θ0

){
( f μ)/( f g)

}
ϑ (X j )

]
+bj δ

�
ϑ

{(
μν′ −μ′ν

)
/μ2

}
ϑ

(
X j
)+ (nh)−1{g f }−1

ϑ

(
X j
)

∑
l �=i, j

ϕ̃l j

+ O

{
h4 +h2δϑ +

(
logn

nh

)3/4/
h

}

uniformly in D̃, where (ν/μ)ϑ (X j ) ≡ νϑ (X j )/μϑ(X j ), and ϕi j and ϕ̃i j are zero-mean
i.i.d. random variables defined as

ϕl j = K ϑ
i j ϕ

(
Y ∗

l j

)
−E

[
K ϑ

l j ϕ
(

Y ∗
l j

)]
, (A.16)

ϕ̃l j = K ϑ
l j ϕ

(
Y ∗

l j

)
X�

i j ϑ/h −E
[

K ϑ
l j ϕ

(
Y ∗

l j

)
X�

l j ϑ/h
]
.

Substituting the final estimate θ̂ for ϑ in (A.15), we have

âi
j −aj = 1

2
m′′(X�

j θ0

)
h2 +n−1{g f }−1

θ̂

(
X j
)

∑
l �=i, j

ϕl j

+ Op

{(
logn

nh

)3/4
+h4 + O

(
n−1/2

)}
,

with ϕl j = K θ̂
l j ϕ(Y ∗

l j )−El [K θ̂
l j ϕ(Y ∗

l j )] and Y ∗
l j = Yl −m

θ̂
−m′

θ̂
(X j )X�

l j θ̂ . By Condition 5,

it is easy to see that Varl (ϕl j ) = h−1{σ 2 f }θ0(X j )R(K ){1 + o(1)}, where R(K ) =∫
K 2(u)du. Theorem 4.3 thus follows from the central limit theorem. n

The “almost sure” version of the convexity lemma of Pollard (1991) follows easily from
Rockafellar (1970, Thm. 10.8). We nevertheless state it here as a separate lemma.
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LEMMA 4.4. Let {λn(θ) : θ ∈ �} be a sequence of random convex functions defined on
a convex open subset � of Rd . Suppose λ(θ) is a real valued function on �, such that for
each fixed θ , λn(θ) tends to λ(θ) with probability 1. Then for each compact set K of �,
with probability 1, sup

θ∈K
|λn(θ)−λ(θ)| → 0.

Proof. Let θ1, θ2, . . . , be a countable dense set of points in Rd . Then for each θk ,k =
1, . . ., there exists an �k , such that P{�k} = 1, and λn(θk ,w) → λ(θk ,w), for all w ∈
�k . Let � = ∞⋂

k=1
�k , then P{�} = 1 and for any w ∈ �, λn(θk ,w) → λ(θk ,w), k =

1, . . . ,∞. It then follows from Theorem 10.8 of Rockafellar (1970), that for any w ∈
� and any compact subset K of Rd , sup

θ∈K
|λn(θ,w) − λ(θ,w)| → 0. The proof is thus

complete. n

LEMMA 4.5. Under Conditions 1–7, equation (A.5) holds; i.e.,

E�n(θ) = δ�θ ERn1 + 1

2
δ�θ Gnϑδθ +o

(|δθ |2).
Proof. It suffices to show that

EK ϑ
i j

{
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi − âi

j − b̂i
j θ

�
0 Xi j

)}
= δ�θ E

[
K ϑ

i j ϕ
(

Yi − âi
j − b̂i

j θ
�
0 Xi j

)
b̂i

j Xi j

]
+ 1

2
δ�θ E

[
K ϑ

i j Xi j X�
i j g(X1)

(
b̂i

j

)2
]
δθ

+o
(
|δθ |2

)
.

By the continuity of E[ρ(Yi − âi
j − t b̂i

j )|X ] in t , where X = σ(X1, . . . , Xn), we have

E
{
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi − âi

j − b̂i
j θ

�
0 Xi j

)∣∣∣X}
= δ�θ Xi j E

[
ϕ
(

Yi − âi
j − b̂i

j θ
�
0 Xi j

)
b̂i

j

∣∣∣X ]
+ 1

2
δ�θ X1i j X�

i j δθ

∂
[
E
{
ϕ
(

Yi − âi
j − b̂i

j t
)

b̂i
j

∣∣∣X}]
∂t

∣∣∣
t= X�

i j θ0

+ 1

2
δ�θ Xi j X�

i j δθ

⎡⎣∂
[
E
{
ϕ
(

Yi − âi
j − b̂i

j t
)

b̂i
j

∣∣∣X}]
∂t

∣∣∣
t=t∗

−
∂
[
E
{
ϕ
(

Yi − âi
j − b̂i

j t
)

b̂i
j

∣∣∣X}]
∂t

∣∣∣
t=X�

i j θ0

⎤⎦ ,

where t∗ is some value between θ� Xi j and θ�0 Xi j . Multiplying both sides by K ϑ
i j and

taking expectations, we have

EK ϑ
i j

{
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi − âi

j − b̂i
j θ

�
0 Xi j

)}
= δ�θ E

[
K ϑ

i j ϕ
(

Yi − âi
j − b̂i

j θ
�
0 Xi j

)
b̂i

j Xi j

]
+ 1

2
δ�θ (�1 +�2)δθ , (A.17)
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where �1 = E

{
K ϑ

i j Xi j X�
i j ∂

[
E
{
ϕ
(

Yi − âi
j − b̂i

j t
)

b̂ i
j

∣∣∣X}]/∂t |t=X�
i j θ0

}
and

�2 = E
{

K ϑ
i j Xi j X�

i j ∂
[
E
{
ϕ
(

Yi − âi
j − b̂i

j t
)

b̂i
j

∣∣X}]/∂t |t=t∗ −�1.

To study �1, notice that due to the construction of (âi
j , b̂i

j ), they are independent of Yi .
Thus for any δ → 0,

E

[
ϕ
(

Yi − âi
j − b̂j (t + δ)

)
b̂j

∣∣∣X]−E

[
ϕ
(

Yi − âi
j − b̂j t

)
b̂j

∣∣∣X]
= E

[{
G1

(
ai − âi

j − b̂i
j (t + δ); X1

)
− G1

(
ai − âi

j − b̃j t ; Xi

)}
b̂j

∣∣∣X]
= δE

[
G2

(
ai − âi

j − b̂i
j t ; Xi

)(
b̂i

j

)2 ∣∣∣X]+o(δ), (A.18)

where the last equality follows from the continuity of G1(s; X) in s. Therefore,

∂

[
Eϕ

(
Yi − âi

j − b̂i
j t
)

b̂j

∣∣∣X]/∂t = E

[
G2

(
ai − âi

j − b̂i
j t ; Xi

)(
b̂i

j

)2 ∣∣∣X] . (A.19)

Applying this result to both �1 and �2, we have

�1 = E

[
K ϑ

i j Xi j X�
i j G2

(
ai − âi

j − b̂i
j X�

i j θ0; X1

)
b̂2

j

]
, �2 = O(δθ ).

This together with (A.17) leads to

EK ϑ
i j

{
ρ
(

Yi − âi
j − b̂i

jθ
� Xi j

)
−ρ

(
Yi − âi

j − b̂i
jθ

�
0 Xi j

)}
= δ�θ E

[
K ϑ

i j ϕ
(

Yi − âi
j − b̂i

j X�
i j θ0

)
b̂j X1 j

]
+1

2
δ�θ E

[
K ϑ

i j Xi j X�
i j G2

(
a1 − âi

j − b̂i
j X�

i j θ0; Xi

)(
b̂i

j

)2
]
δθ +o

(
|δθ |2

)
= δ�θ E

[
K ϑ

i j ϕ
(

Yi − âi
j − b̂i

jθ
�
0 Xi j

)
b̂j Xi j

]
+ 1

2
δ�θ E

[
K ϑ

i j Xi j X�
i j g(Xi )b

2
j

]
δθ +o

(
|δθ |2

)
,

where the last equality follows from the continuity of G2(t ; X1) in t and dominated
convergence theorem. n

LEMMA 4.6. Equation (A.8) holds under conditions in Theorem 4.1; i.e.,

Rn1 = 1

n2 ∑
i, j

K ϑ
i j ϕ

(
Yi j

)
b̂i

j Xi j

= 1

n ∑
i

ϕ(εi )bi {� f }θ0(Xi )−�nϑδϑ +αn |ϑ − θ0|+o
(

n−1/2
)

= 1

n ∑
i

ϕ(εi )bi {� f }θ0(Xi )−�0δϑ +αn |ϑ − θ0|+o
(

n−1/2
)

(A.20)
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almost surely, where αn = o(1) uniformly in ϑ ∈ �n and

�nϑ = n−1
n

∑
j=1

b2
j μϑ

(
X j
){

(ν/μ)ϑ
(

X j
)− X j

}{
(ν/μ)ϑ

(
X j
)− X j

}�
.

Proof. Write

n2 Rn1 = ∑
i, j

K ϑ
i j ϕ(εi )bj Xi j +∑

i, j
K ϑ

i j ϕ(εi )
(

b̂i
j −bj

)
Xi j +∑

i, j
K ϑ

i j b̂i
j Xi j {ϕ(Yi j)−ϕ(εi )}.

(A.21)

Start with the first term. Through the “continuity argument” approach used to prove Lemma
6.6 in Xia (2006), we can show that

1

n ∑
j

K ϑ
i j bj Xi j = Ej

[
K ϑ

i j bj Xi j

]
+ O

{
(log logn/n)1/2(h2 + δϑ )

}
, (A.22)

uniformly in ϑ ∈ � and Xi ∈D, where Ej denote the expectation taken with respect to X j
for given Xi . As

Ej

[
K ϑ

i j bj Xi j

]
= bi {� f }ϑ (Xi )− δϑm′′(X�

i θ0

)
{� f }θ0(Xi )+h2bi {� f }′′θ0

(Xi )

+O
(
|δϑ |2 +h4

)
,

we have from (A.22) and the Lipschitz continuity of functions {� f }ϑ (.) in ϑ , that

1

n2 ∑
i, j

K ϑ
i j ϕ(εi )bj Xi j = 1

n ∑
i

ϕ(εi )bi {� f }θ0(Xi )+ O{(log logn/n)1/2(h2 + δϑ )},

uniformly in ϑ ∈ �.
We now move on to the second term in (A.21). Specifically, write the two leading “bias”

terms in b̂i
j − bj , given in (A.15) as h2ξ1

ϑ (X j ) and δ�ϑξ2
ϑ (X j ). Then by Lemma 6.7 in Xia

(2006), we have

1

n2 ∑
i, j

K ϑ
i j ϕ(εi )ξ

ι
ϑ

(
X j
)

Xi j − 1

n ∑
i

ϕ(εi )Ej

[
K ϑ

i j ξ
ι
ϑ (X j )Xi j

]
= o

(
n−1/2

)
, ι = 1,2

uniformly in ϑ ∈ �n . It is easy to work out Ej [K ϑ
i j ξ

ι
ϑ (X j )Xi j ], whence to see that

1

n2 ∑
i, j

K ϑ
i j ϕ(εi )

[
h2ξ ι

ϑ

(
X j
)+ δ�ϑξ2

ϑ

(
X j
)]

Xi j = O
(

h2 + δϑ

)
o
(

n−1/2
)
,

where o(n−1/2) is uniform in ϑ ∈ �n .

For the remaining term of ∑
i, j

K ϑ
i j ϕ(εi )

(
b̂i

j −bj

)
Xi j , note that Ek ϕ̃jk = 0. Slight mod-

ification of the proof of Lemma 6.7 in Xia (2006) can be used to show that

sup
ϑ∈�n ,x∈D

∣∣∣∣ 1

n2 ∑
i,k

ϕ̃j x K ϑ
i x K ϑ

j xϕ(εi )Xi j

∣∣∣∣ = O

(
logn

nh

)
.
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As for the third term in (A.21), we first need to quantify its expectation, which is done
in Lemma 4.8. Its deviance from its expectation can be handled in a similar manner as in
Lemma 4.12. The proof is thus complete. n

LEMMA 4.7. All eigenvalues of
(

S2 + θ0θ�0
)−1(

�0 + θ0θ�0
)

fall into the interval

(0,1), under the trivial assumption that for all ϑ ,

if E

[
ϑ�

1 (X − x)
∣∣∣X�ϑ = x�ϑ

]
= 0 for all x ∈ D, then ϑ1 ≡ ϑ. (A.23)

Proof. By the Cauchy-Schwarz inequality that for any x ∈ Rd , we have

E
{

g(X)(X − x)
∣∣∣X�ϑ = x�ϑ

}
E
{

g(X)(X − x)
∣∣∣X�ϑ = x�ϑ

}�

≤ E
{

g(X)
∣∣∣X�ϑ = x�ϑ

}
E
{

g(X)(X − x)(X − x)�
∣∣∣X�ϑ = x�ϑ

}
,

which is equivalent to

{νϑ (x)− xμϑ(x)}{νϑ (x)− xμϑ(x)}� ≤ μϑ(x)ωϑ(x)

or μϑ(x){(ν/μ)ϑ (x)− x}{(ν/μ)ϑ (x)− x}� ≤ ωϑ(x).

Multiplying both sides by m′(X�θ0)2 and taking expectation, we have that S2 −�0 ≥ 0,
which could be strengthened as S2 −�0 > 0. This is because if there exists some ϑ1 �= 0,
such that ϑ�

1 (S2 −�0)ϑ1 = 0, then for any x, there exists some C , such that

{g(X)}1/2ϑ�
1 (X − x) ≡ C{g(X)}1/2, for all X�ϑ = x�ϑ.

It follows that

ϑ�
1 (X − x) ≡ C, for all X�ϑ = x�ϑ,

which implies that ϑ1 ≡ ϑ based on (A.23).
Next we show that θ0 is the only eigenvector of S2 and �0 that corresponds to eigenvalue

0. We argue this by contradiction. Suppose there exists some ϑ such that ϑ⊥θ0 and

E
{

g(X)ϑ�(X − x)(X − x)�ϑ
∣∣θ�0 X = θ�0 x

}
= 0, for any x ∈ Rd , (A.24)

E
{

g(X)ϑ�(X − x)
∣∣θ�0 X = θ�0 x

}
= 0, for any x ∈ Rd . (A.25)

Note that as g(X) > 0, (A.24) in fact implies that E{ϑ�(X − x)|θ�0 X = θ�0 x} = 0, which
in turn means that ϑ = θ0; this contradicts the fact that ϑ⊥θ0. To show that (A.25) can-
not be true, let {b1, . . . ,bd−1,θ0} constitute the orthogonal basis Rd , whence b�i θ0 = 0,
i = 1, . . . ,d −1. Substituting bi , i = 1, . . . ,d −1 for x in (A.25), we have

E
{

g(X)ϑ�(X −bi )
∣∣∣θ�0 X = 0

}
= 0, i = 1, . . . ,d −1,

or, equivalently,

ϑ�E
{

g(X)X
∣∣∣θ�0 X = 0

}
= ϑ�bi E

{
g(X)

∣∣∣θ�0 X = 0
}
, i = 1, . . . ,d −1. (A.26)
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As E{g(X)|θ�0 X = 0} > 0, the constant vector b = E{g(X)X |θ�0 X = 0}/E{g(X)|θ�0 X = 0}
is well defined and b⊥θ0. From (A.26), we further have

ϑ�b = ϑ�bi −→ ϑ�(b −bi ) = 0, i = 1, . . . ,d −1,

but this cannot be true unless ϑ = θ0, as b−bi , i = 1, . . . ,d −1, constitute the basis of the
orthogonal space to vector θ0.

Now we are ready to show that any eigenvalue λ of (S2 + θ0θ�0 )−1(�0 + θ0θ�0 ) is pos-

itive and smaller than 1. Suppose b is the corresponding eigenvector, then S2 + θ0θ�0 )−1

(�0 + θ0θ�0 )b = λb and thus (�0 + θ0θ�0 )b = λ(S2 + θ0θ�0 )b. It follows that b�(�0 +
θ0θ�0 )b = λb�(S2 + θ0θ�0 )b, which implies

0 < λ < 1

as 0 < b�(�0 + θ0θ�0 )b < b�(S2 + θ0θ�0 )b. n

LEMMA 4.8. Let δn = (nh/ logn)−1/2, and define Zi j = K ϑ
i j b̂i

j Xi j {ϕ(Yi j ) − ϕ(εi )}.
Then under Conditions 1–8 we have

Ei Zi j = −δ�ϑb2
j

{
(ν/μ)ϑ

(
X j
)− X j

}{
νϑ
(

X j
)− X j μϑ

(
X j
)}� +o

(
|δϑ |+n−1/2

)
,

uniformly in ϑ ∈ �n.

Proof. Once again, note that Yj is independent of [âi
j , b̂i

j ], j = 1, . . . ,n. Note that

Ei

[
K ϑ

i j

{
ϕ
(
Yi − âi

j − b̂i
j X�

1 j θ0
)−ϕ(ε1)

}
b̂i

j

∣∣∣X]
= E

[
K ϑ

i j

{
G1

(
ai − âi

j − b̂i
j X�

i j θ0; Xi
)− G1(0; Xi )

}
b̂i

j

∣∣∣X] (A.27)

= K ϑ
i j g(Xi )E

{
b̂i

j

(
ai − âi

j − b̂i
j X�

i j θ0

)∣∣∣X}+ O

[
E
{(

ai − âi
j − b̂j X�

i j θ0
)2
∣∣∣X}].

By dominated convergence theorem, it is easy to see that

Ei

{
K ϑ

i j

(
ai − âi

j − b̂i
j X�

i j θ0

)2}= O
{
δ2
ϑ + (nh)−1}.

Next, consider the first term in (A.27). Using (A.15), it follows that

ai − âi
j − b̂i

j X�
i j θ0

= ai −aj +aj − âi
j − b̂i

j X�
i j θ0

= 1

2
m′′(X�

j θ0

){(
X�

i j θ0

)2}− 1

2
m′′(X�

j θ0

)
h2 + O

{(
X�

i j θ0

)3}
−bj δ

�
ϑ

{
(ν/μ)ϑ

(
X j
)− X j

}
−bj δ

�
ϑ

{(
μν′ −μ′ν

)/
μ2

}
ϑ

(
X j
)

X�
i j θ0

−h2
[

1

2
m

′′ (
X�

j θ0

){
( f μ)′/( f g)

}
ϑ

(
X j
)+ 1

6
m(3)

(
X�

j θ0

)
( f μ)ϑ

(
X j
)]

X�
i j θ0

+{g f }−1
ϑ

(
X j
) 1

nh

n

∑
l �=i, j

ϕl j −{g f }−1
ϑ

(
X j
){ 1

nh2 ∑
l �=i, j

ϕ̃l j

}
X�

l j θ0

+ O
{
δ

3/2
n (1+ δϑ/h)+h3

}
, (A.28)
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where ϕi j , ϕ̃i j are zero-mean i.i.d. random variables defined in (A.16). Therefore,

Ei

[
K ϑ

i j

{
ϕ
(

Yi − âi
j − b̂i

j X�
i j θ0

)
−ϕ(εi )

}
b̂i

j

]
= Ei

[
K ϑ

i j g(Xi )Xi j b̂i
i

(
ai − âi

j − b̂i
j X�

i j θ0

)]
+o

(
h|δϑ |+n−1/2h

)
= −δ�ϑb2

j

{
(ν/μ)ϑ

(
X j
)− X j

}{
νϑ
(

X j
)− X j μϑ

(
X j
)}+o

(
|δϑ |+n−1/2

)
(A.29)

uniformly in ϑ ∈ �n , due to dominated convergence theorem and the independence be-
tween Yi and (âi

j , b̂i
j ). n

LEMMA 4.9. If the second-order derivative of E{|X −x |3|X�ϑ = x�ϑ + t} with respect
to t and of (ν/μ)ϑ (v) with respect to v are both uniformly bounded for all x ∈D, ϑ ∈ �n,
and small t , then

mϑ (x)−m
(
θ�

0 x
)

= m′(θ�
0 x

)
δ�ϑ{(ν/μ)ϑ (x)− x}+o(|δϑ |), (A.30)

m′
ϑ (x)−m′(θ�

0 x
)

= m′(θ�
0 x

)
δ�ϑ
{
(μν′ −μ′ν)/μ2}

ϑ (x)+o(|δϑ |) (A.31)

for all x ∈D.

Proof. We only prove (A.30) to illustrate. By definition, mϑ (x) minimizes E{ρ(Y −a)
|X�ϑ = x�ϑ} with respect to a. Moreover, based on Condition 6, mϑ (x) should be in a
neighborhood of m(x�θ0) of radius c|δϑ | for some c > 0.

First, it follows from the property of the conditional expectation that

E
{
ρ(Y −a)

∣∣∣X�ϑ = x�ϑ
}

= E
[
E
{
ρ(Y −a)|X

}∣∣∣X�ϑ = x�ϑ
]

= E
[
G
{

m
(
θ�0 X

)
−a; X

}∣∣∣X�ϑ = x�ϑ
]
.

Using the differentiability of G(t ; X) in t , we have

G
{

m
(
θ�0 X

)
−a; X

}
= G(0; X)+ g(X)

(
m
(
θ�0 X

)
−a

)2/
2

+ O
{

m
(
θ�0 X

)
−a

)3}
. (A.32)

Let â denote the minima of E

[
g(X)

(
m
(
θ�0 X

)
−a

)2∣∣∣X�ϑ = x�ϑ

]
; i.e.,

â = E
[
g(X)m

(
θ�0 X

)∣∣∣X�ϑ = x�ϑ
]/

E
[
g(X)

∣∣X�ϑ = x�ϑ
]
.

We claim that the distance between â and mϑ (x) is of order o(δθ ). If this is not true, then
there exists some c0 > 0, such that |mϑ (x)− â| ≥ c0|δθ |. Substituting this expression of
mϑ (x) for a in (A.32), we have

E
{
ρ(Y −mϑ (x))

∣∣X�ϑ = x�ϑ
}

−E
{
ρ(Y − â)

∣∣X�ϑ = x�ϑ
}

= c2
0
∣∣δθ ∣∣2 + O(|δθ |3) > 0,

since δθ = o(1). This contradicts the definition of mϑ (x), which is the minimizer of
E{ρ(Y − a)|X�ϑ = x�ϑ} with respect to a. Apply the Taylor expansion of m(.) around
θ�0 x ,
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m
(
θ�0 X

)
= m

(
θ�0 x

)
+m′(θ�0 x

)
θ�0 (X − x)+m′′(θ�0 X∗)[θ�0 (X − x)

]3
,

where X∗ lies between X and x . Therefore,

E
[
g(X)m

(
θ�0 X

)∣∣∣X�ϑ = x�ϑ
]

= m
(
θ�0 x

)
μϑ

(
x�ϑ

)
+m′(θ�0 x

)
δ�ϑ{ν − xμ}ϑ

(
x�ϑ

)
+E

[
g(X)m′′(θ�0 X∗){δ�ϑ (X − x)

}3∣∣∣X�ϑ = x�ϑ
]
,

and (A.30) thus follows. n

LEMMA 4.10. Under Conditions 1, 4, and conditions in Lemma 4.9, we have

Ei

{
K ϑ

i j ϕ
(

Y ∗
i j

)}
= 1

2
m

′′(
X�

j θ0

)
( f g)ϑ

(
X j
)
h2 + O

(
h3)+o(δϑ ), (A.33)

Ei

{
K ϑ

i j ϕ
(

Y ∗
i j

)
X�

i j ϑ
}

= h3
{

1

2
m

′′(
X�

j θ0

)
( f μ)′ϑ

(
X j
)+ 1

6
m(3)

(
X�

j θ0

)
( f μ)ϑ

(
X j
)}

+O
(
h3δϑ +h5), (A.34)

where Y ∗
i j is as given in (A.14).

Proof. Based on (A.30) and (A.31), we have

m
(

X�
i θ0

)
−mϑ

(
X j
)−m′

ϑ

(
X j
)

X�
i j ϑ

= m
(

X�
i θ0

)
−m

(
X�

j θ0

)
−bj δ

�
ϑ

{
(ν/μ)ϑ

(
X j
)− X j

}
−
{

bj +bj δ
�
ϑ

{
(μν′ −μ′ν)/μ2

}
ϑ

(
X j
)}

X�
i j ϑ +o(|δϑ |)

= bj X�
i j δϑ + 1

2
m

′′(
X�

j θ0

)(
θ�0 Xi j

)2 + 1

6
m(3)

(
X�

j θ0

)(
θ�0 Xi j

)3

−bj δ
�
ϑ

{(
μν′ −μ′ν

)/
μ2

}
ϑ

(
X j
)

X�
i j ϑ

−bj δ
�
ϑ

{
(ν/μ)ϑ

(
X j
)− X j

}
+o(|δϑ |)+ O

{(
X�

i j ϑ
)4 + δϑ

}
.

As m
(

X�
i θ0

)− mϑ (X j ) − m′
ϑ (X j )X�

i j ϑ = o(1), by the continuity of G1(t ; X) in t , we
have

E

[
ϕ
{

Yi −mϑ
(

X j
)−m′

ϑ (X j )X�
i j ϑ

}∣∣∣Xi

]
= G1

{
m
(

X�
i θ0

)
−mϑ

(
X j
)−m′

ϑ

(
X j
)

X�
i j ϑ ; Xi

}
= bj δ

�
ϑ g(Xi )Xi j

−bj δ
�
ϑ

{
(ν/μ)ϑ

(
X j
)− X j

}
g(Xi )−bj δ

�
ϑ

{(
μν′ −μ′ν

)
/μ2

}
ϑ

(
X j
)
g
(

Xi
)

X�
i j ϑ

+ 1

2
m

′′(
X�

j θ0

)
g(Xi )

(
θ�0 Xi j

)2 + 1

6
m(3)

(
X�

j θ0

)
g(Xi )

(
θ�0 Xi j

)3

+o(|δϑ |)+ O
((

X�
i j ϑ

)4)
, (A.35)

and thus

Ei

[
K ϑ

i j ϕ
{

Yi −mϑ (X j )−m′
ϑ

(
X j
)

X�
i j ϑ

}]
= 1

2
m

′′(
X�

j θ0

)
(g f )ϑ

(
X j
)
h2

+o(|δϑ |)+ O
(
h3).
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This is (A.33). Similarly, (A.34) follows from (A.35) and the following facts.

E
[
g(Xi )Xi j

∣∣X�
i ϑ = X�

j ϑ +hu
]

= νϑ

(
X�

j ϑ +hu
)

− X j μϑ

(
X�

j ϑ +hu
)

= νϑ

(
X�

j ϑ
)

+huν′
ϑ

(
X�

j ϑ
)

− X j μϑ

(
X�

j ϑ
)

−hu X j μ
′
ϑ

(
X�

j ϑ
)

+ O
(
h2),

E
[
g(Xi )

∣∣X�
i ϑ = X�

j ϑ +hu
]

= μϑ

(
X�

j ϑ
)

+huμ′
ϑ

(
X�

j ϑ
)

+ O
(
h2),

∫
K (u)E

[
g(Xi )Xi j

∣∣∣X�
i ϑ = X�

j ϑ +hu
]
hudu = h2

{(
f ν′)

ϑ

(
X�

j ϑ
)

− X j
(

f μ′)
ϑ

(
X�

j ϑ
)}

+h2
{(

f ′ν
)
ϑ

(
X�

j ϑ
)

− X j
(

f ′μ
)
ϑ

(
X�

j ϑ
)}

+ O
(
h4),∫

K (u)E
[
g(Xi )

∣∣∣X�
i ϑ = X�

j ϑ +hu
]
hudu = h2(μ′ f +μ f ′)

ϑ

(
X�

j ϑ
)

+ O
(
h4),∫

K (u)E
[
g(Xi )

∣∣∣X�
i ϑ = X�

j ϑ +hu
]
h2u2du = h2(μ f

)
ϑ

(
X�

j ϑ
)

+ O
(
h4). �

LEMMA 4.11. Let R∗
n2(θ) = ∑

i, j
K ϑ

i j

[
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ(Yi j )− δ�θ ϕ(Yi −aj −

bj X�
i j θ0)b̂i

j Xi j

]
. Then with probability 1, we have under Conditions 1–7,

(n2a2
nϑ )−1[R∗

n2(θ)−ER∗
n2(θ)

]= o(1) (A.36)

uniformly in ϑ.

Proof. Let Xix = Xi −x, μi x =
(

1, X�
i x

)�
, Kix = K

(
X�

i xϑ/h
)
, β(x) =

[
m(θ�0 x),m′

(θ�0 x)θ�0
]�

, and ϕni (x ; t) = ϕ
(

Yi ; μ�
i xβ(x)+ t

)
. For any α, β ∈Rd+1, let

�ni (x ; α,β) = Kix

[
ρ
{

Yi ; μ�
i x (α +β +β(x))

}
−ρ

{
Yi ; μ�

i x (β +β(x))
}

−ϕni (x ; 0)μ�
i xα

]

= Kix

μ�
i x (α+β)∫
μ�

i x β

{ϕni (x ; t)−ϕni (x ; 0)}dt

and Rni (x ; α,β) = �ni (x ; α,β)−E�ni (x ; α,β). It easy to see that

K ϑ
i j

[
ρ
(

Yi − âi
j − b̂i

j θ
�Xi j

)
−ρ

(
Yi j

)− δ�θ ϕ
(

Yi −aj −bj X�
i j θ0

)
b̂i

j Xi j

]
≡ �ni (X j ; α,β)

with α = [0, b̂i
j δ

�
θ ]� and β = [âi

j − aj , (b̂
i
j − bj )θ

�
0 ]�. Let [ax ,bx ] ≡ [m(θ�0 x),m′(θ�0 x)]

and D be any compact subset of the support of X . For any M > 0 and ϑ ∈ �n, define

Mϑ
n1 = Canϑ , Mϑ

n2 = C{|δϑ |+ δn},
Mϑ

n3 = C{|δϑ |+ δn/h}, B(1)
n =

{
α ∈ Rd+1

∣∣∣α =
[
0,α�

1

]�
, |α1| ≤ Mϑ

n1

}
,

B(2)
n =

{
β ∈ Rd+1∣∣β = [

b1,b2θ�0
]�

, |b1| ≤ Mϑ
n2, |b2| ≤ Mϑ

n3

}
.
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As |b̂i
j δθ | ≤ Canϑ , |âi

j −aj | = O{|δϑ |+δn} and |(b̂i
j −bi

j )| = O{|δϑ |+δn/h}, (A.36) will
follow if for any ε > 0

sup
x∈D

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣∣ n

∑
i=1

Rni (x ; α,β)

∣∣∣∣∣ ≤ εdn (A.37)

almost surely, where dn = nha2
nϑ . This is done in a similar style as Lemma 4.2 in Kong

et al. (2010). Cover D by a finite number Tn of cubes Dk = Dn,k with side length ln =
O{h(nh/ logn)−1/4} and centers xk = xn,k . Write

sup
x∈D

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣∣ n

∑
i=1

Rni (x ; α,β)

∣∣∣∣∣

≤ max
1≤k≤Tn

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣∣ n

∑
i=1

Rni (xk ; α,β)

∣∣∣∣∣
+ max

1≤k≤Tn

sup
x∈Dk

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣∣ n

∑
i=1

{
�ni (xk ; α,β)−�ni (x ; α,β)

}∣∣∣∣∣
+ max

1≤k≤Tn

sup
x∈Dk

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣∣ n

∑
i=1

{
E�ni (xk ; α,β)−E�ni (x ; α,β)

}∣∣∣∣∣
≡ Q1 + Q2 + Q3.

In Lemma 4.13, we will prove that Q2 = o(dn) a.s., whence Q3 ≤ EQ2 = o(dn). It re-
mains to show that Q1 ≤ εdn/3 a.s., which can be done following a similar proof style as
in Lemma 4.2 in Kong et al. (2010).

Partition B(i)
n , i = 1,2 into a sequence of subrectangles D(i)

1 , . . . , D(i)
J1

, i = 1,2,

such that for all 1 ≤ j1 ≤ J1 ≤ Md+1 (M = ε−1) and for all α,α′ ∈ D(1)
j1

, we have

|α−α′| ≤ Mϑ
n1/M ; for all β = [b1,b2θ�0 ]�,β ′ = [b′

1,b′
2θ�0 ]� ∈ D(2)

j1
, we have |b1 −b′

1| ≤
Mϑ

n2/M, |b2 −b′
2| ≤ Mϑ

n3/M . Choose a point αj1 ∈ D(1)
j1

and bk1 ∈ D(2)
k1

, 1 ≤ j1,k1 ≤ J1.
Then, for any x,

sup
α ∈ B(1)

n

β ∈ B(2)
n

∣∣∣∣∣∑i Rni (x ; α,β)

∣∣∣∣∣ ≤ max
1≤ j1,k1≤J1

sup
α ∈ D(1)

j1
,

β ∈ D(2)
k1

∣∣∣∣∣ n

∑
i=1

{
Rni

(
x ; αj1 ,bk1

)− Rni (x ; α,β)
}∣∣∣∣∣

+ max
1≤ j1,k1≤J1

∣∣∣∣∣ n

∑
i=1

Rni (x ; αj1 ,βk1)

∣∣∣∣∣ = Hn1 + Hn2. (A.38)
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We first show that for any ε > 0

Tn P
{

Hn2 ≥ εdn

2

}
≤ Tn J 2

1 P

{∣∣∣∣ n

∑
i=1

Rni
(
x ; αj1 ,βk1

)∣∣∣∣≥ εdn

3

}
= O

(
n−a), (A.39)

for some a > 1. Using the facts that |Rni (x ; αj1 ,βk1)| ≤ Canϑ and Var{Rni (x ; αj1 ,βk1)} =
O[nha2

nϑ{anϑ + δn}], which follows from the Cauchy-Schwarz inequality, we have by
Bernstein’s inequality,

Tn J 2
1 P

{∣∣∣∣ n

∑
i=1

Rni
(
x ; αj1 ,βk1

)∣∣∣∣ ≥ εdn

3

}
= Tn J 2

1 exp
[
− ε2nhanϑ

{
1+anϑδ−1

n
)}]

= O
(
n−a),

for some a > 1. Therefore, (A.39) holds.
We next consider Hn1. For each j1 = 1, . . . , J1 and i = 1,2, partition each rectangle

D(i)
j1

further into a sequence of subrectangles D(i)
j1,1

, . . . , D(i)
j1,J2

. Repeat this process recur-

sively as follows. Suppose after the lth round, we get a sequence of rectangles D(i)
j1, j2,··· , jl

with 1 ≤ jk ≤ Jk , 1 ≤ k ≤ l, then in the (l + 1)th round, each rectangle D(i)
j1, j2,··· , jl

is

partitioned into a sequence of subrectangles {D(i)
j1, j2,··· , jl , jl+1

,1 ≤ jl ≤ Jl } such that for all

1 ≤ jl+1 ≤ Jl+1 and for all a,a′ ∈ D(i)
j1, j2,··· , jl , jl+1

, we have |a − a′| ≤ Mϑ
n1/Ml+1; and

for all β = [b1,b2θ�0 ]�,β ′ = [b′
1,b′

2θ�0 ]� ∈ D(2)
j1, j2,··· , jl , jl+1

, |b1 −b′
1| ≤ Mϑ

n2/Ml+1, |b2 −
b′

2| ≤ Mϑ
n3/Ml+1, where Jl+1 ≤ Md+1. Repeat this process after the (Ln + 2)th round,

with Ln being the largest integer such that

n(2/M)Ln > dn/Mϑ
n2. (A.40)

Let D(i)
l , i = 1,2, denote the set of all subrectangles of D(i)

0 after the lth round of partition

and a typical element D(i)
j1, j2,··· , jl

of D(i)
l is denoted as D(i)

( jl )
. Choose a point α( jl ) ∈ D(1)

( jl )

and β( jl ) ∈ D(2)
( jl )

. Define

Vl = ∑
( jl+1)
(kl+1)

P

{∣∣∣∣ n

∑
i=1

{
Rni

(
x ; α( jl ),β(kl )

)− Rni
(
x ; α( jl+1),β(kl+1)

)}∣∣∣∣≥ εdn

2l+1

}
,

1 ≤ l ≤ Ln +1,

Ql = ∑
( jl )
(kl )

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

α ∈ D(1)
( jl )

,

β ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rni

(
x ; α( jl ),β(kl )

)− Rni (x ; α,β)
}∣∣∣∣≥ εdn

2l

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

1 ≤ l ≤ Ln +2.

Then Ql ≤ Vl + Ql+1, 1 ≤ l ≤ Ln + 1. On the other hand, it is easy to see that for any

α ∈ D(1)
( jLn+2)

and β ∈ D(2)
(kLn+2)

,
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n|Rni
(
x ; α( jLn+2),β(kLn+2)

)− Rni (x ; α,β)
∣∣ ≤ nMϑ

n2
/

M Ln+2 ≤ εdn
/

2Ln+2

due to the choice of Ln specified in (A.40). Therefore, QLn+2 = 0 and it remains to show
that

Tn P
{

Hn1 ≥ εdn

2

}
≤ Tn J 2

1 Q1 ≤ Tn J 2
1

Ln+1

∑
l=1

Vl = O(n−a), for some a > 1. (A.41)

To find the upper bound for Vl , 1 ≤ l ≤ Ln +1, we again apply Bernstein’s inequality. As

|Rni
(
x ; α( jl ),β(kl )

)− Rni
(
x ; α( jl+1),β(kl+1)

)∣∣ ≤ C
{∣∣α( jl ) −α( jl+1)

∣∣+ ∣∣β(kl ) −β(kl+1)

∣∣
×(δϑ +h)

}
≡ Mϑ

n2
/

Ml

and

E|Rni
(
x ; α( jl ),β(kl )

)− Rni
(
x ; α( jl+1),β(kl+1)

)∣∣2 ≤ h
(

Mϑ
n2
)3

/Ml ,

we have

Vl ≤
(

l+1

∏
j=1

J 2
j

)
exp

[
− ε2nh

{
1+anϑδ−1

n
}]

,

and (A.41) thus holds. This together with (A.39) completes the proof. n

LEMMA 4.12. Let Zi j = hK ϑ
i j [ϕ(Yi − aj − bj θ

�
0 Xi j )−ϕ(Yi − âi

j − b̂i
j θ

�
0 Xi j )]b̂

i
j Xi j .

Then under conditions in Theorem 4.1, we have

∑
i, j

Zi j −EZi j = o
(
n2hanϑ

)
.

Proof. As âi
j −aj = O(anϑ ), (b̂i

j −bj ) = O{anϑ + δ−1
n /h} and for any ε > 0,

P

{∣∣∣∑
i, j

Zi j −EZi j

∣∣∣≥ εn2hanϑ

}
≤ n P

{∣∣∣∑
i

Zi j −EZi j

∣∣∣ ≥ εnhanϑ

}
,

then Lemma 4.12 follows if we can show that for any x ,

P

⎧⎪⎪⎪⎨⎪⎪⎪⎩ sup
α ∈ B(1)

n

β ∈ B(2)
n

∣∣∣∑
i

Rix (a,b)
∣∣∣ ≥ εnhanϑ

⎫⎪⎪⎪⎬⎪⎪⎪⎭= O
(
n−a) for some a > 2, (A.42)

where B(1)
n = {a ∈ R : |a − ax | ≤ canϑ }, B(2)

n = {b ∈ R : |b − bx | ≤ c{anϑ + δ−1
n /h}},

ax = m(θ�0 x), bx = m′(θ�0 x), Rix (a,b) = Zix (a,b) − EZix (a,b), Kix = K (X�
i xϑ/h),

and Zix (a,b) = Kix Xix [ϕ(Yi −ax −bxθ�0 Xix )−ϕ(Yi −a −bθ�0 Xix )]. To this end, par-

tition B(i)
n , i = 1,2, into a sequence of subrectangles D(i)

1 , . . . , D(i)
J1

, i = 1,2 such that

|D(i)
j1

| = sup
{
|a −a′| : a,a′ ∈ D(i)

j1

}
≤ M(i)

n /M, 1 ≤ j1 ≤ J1,
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where M(1)
n = canϑ , M(2)

n = c{anϑ + δ−1
n /h}, M ≡ ε−1, and J1 ≤ M . Choose a point

aj1 ∈ D(1)
j1

and bk1 ∈ D(2)
k1

. Then

sup
a ∈ B(1)

n

b ∈ B(2)
n

∣∣∣∣∑
i

Rix (a,b)

∣∣∣∣ ≤ max
1≤ j1,k1≤J1

sup
a ∈ D(1)

j1
,

b ∈ D(2)
k1

∣∣∣∣ n

∑
i=1

{
Rix

(
aj1 ,bk1

)− Rix (a,b)
}∣∣∣∣

+ max
1≤ j1,k1≤J1

∣∣∣∣ n

∑
i=1

Rix
(
aj1 ,bk1

)∣∣∣∣ ≡ Hn1 + Hn2. (A.43)

We first consider Hn2. Note that

P
{

Hn2 ≥ εnhanϑ

2

}
≤ J 2

1 P

{∣∣∣∣ n

∑
i=1

Rix (aj1 ,bk1)

∣∣∣∣ ≥ εnhanϑ

2

}
.

As Rix (aj1 ,bk1) is bounded and Var{Rix (aj1 ,bk1)} = O{h(anϑ +δn}, then by Bernstein’s
inequality we have

J 2
1 P

{∣∣∣∣ n

∑
i=1

Rix
(
aj1 ,bk1

)∣∣∣∣≥ εnhanϑ

2

}
≤ C J 2

1 exp
{

− ε2n1/2h3/2
}

= O
(
n−a),

for some a > 2.
Next we consider Hn1. For each j1 = 1, . . . , J1 and i = 1,2, partition each rectangle D(i)

j1

further into a sequence of subrectangles D(i)
j1,1

, . . . , D(i)
j1,J2

. Repeat this process recursively

as follows. Suppose after the lth round, we get a sequence of rectangles D(i)
j1, j2,··· , jl

with

1 ≤ jk ≤ Jk , 1 ≤ k ≤ l, then in the (l +1)th round, each rectangle D(i)
j1, j2,··· , jl

is partitioned

into a sequence of subrectangles {D(i)
j1, j2,··· , jl , jl+1

,1 ≤ jl ≤ Jl } such that∣∣∣D(i)
j1, j2,··· , jl , jl+1

∣∣∣= sup
{
|a −a′| : a,a′ ∈ D(i)

j1, j2,··· , jl , jl+1

}
≤ M(i)

n /Ml+1,

×1 ≤ jl+1 ≤ Jl+1,

where Jl+1 ≤ M . Stop this process after the (Ln +2)th round, with Ln being the smallest
integer such that

(2/M)Ln > anϑ/M(2)
nϑ

[
which means 2Ln ≤

{
M(2)

nϑ /anϑ

}log(M/2)/ log2]
. (A.44)

Let D(i)
l , i = 1,2, denote the set of all subrectangles of D(i)

0 after the lth round of partition

and a typical element D(i)
j1, j2,··· , jl

of D(i)
l is denoted as D(i)

( jl )
. Choose a point a( jl ) ∈ D(1)

( jl )

and b( jl ) ∈ D(2)
( jl )

and define

Vl = ∑
( jl )
(kl )

P

{∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix
(
ajl+1 ,bkl+1

)}∣∣∣∣≥ εnhanϑ

2l+1

}
, 1 ≤ l ≤ Ln +1,

Ql = ∑
( jl )
(kl )

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix (a,b)
}∣∣∣∣ ≥ εnhanϑ

2l

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, 1 ≤ l ≤ Ln +2.
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Then Ql ≤ Vl + Ql+1, 1 ≤ l ≤ Ln + 1. We first give a bound for Vl , 1 ≤ l ≤ Ln + 1. As
Rix (ajl ,bkl )− Rix (ajl+1 ,bkl+1) is bounded and

E
∣∣∣Rix

(
ajl ,bkl

)− Rix
(
ajl+1 ,bkl+1

)∣∣∣2 ≤ h{anϑ + δn}/Ml+1,

applying Bernstein’s inequality and using (A.44), we have

Vl ≤
(

l+1

∏
j=1

J 2
j

)
exp

[
− ε2nh min

{
anϑ ,a2

nϑδ−1
n

}]≤
(

l+1

∏
j=1

J 2
j

)
exp

(− ε2n1/2h3/2).
(A.45)

We now focus on QLn+2. Recall the definition of Zix (a,b),

Zix (a,b) = Kix

[
ϕ
(

Yi −ax −bxθ�0 Xix

)
−ϕ

(
Yi −a −bθ�0 Xix

)]
Xix .

For any a ∈ D(1)
( jl )

and b ∈ D(2)
(kl )

, let I a,b
i = 1 if there is a discontinuity point of ϕ(.) between

Yi −ajl −bkl θ
�
0 Xix and Yi −a −bθ�0 Xix ; and let I a,b

i = 0 otherwise. Write

Rix
(
ajl ,bkl

)− Rix (a,b) =
{

Rix
(
ajl ,bkl

)− Rix (a,b)
}

I a,b
i

+
{

Rix (ajl ,bkl )− Rix (a,b)
}(

1− I a,b
i

)
.

Then we have |{Rix (ajl ,bkl )− Rix (a,b)}(1 − I a,b
i )| ≤ C{anϑ + δn}/Ml and specifically

for l = Ln +2

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix (a,b)
}(

1− I a,b
i

)∣∣∣∣ ≥ εnhanϑ

2Ln+3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≤ P

{ n

∑
i=1

Ui ≥ 1

8
Mnh

}
≤ P

{ n

∑
i=1

Ui −EUi ≥ Mnh

16

}
,

where Ui = I{|X�
i xϑ | ≤ h} and the first inequality is due to (A.44). By Bernstein’s inequal-

ity, this in turn implies that for l = Ln +2

(
l+1

∏
j=1

J 2
j

)
P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix (a,b)
}(

1− I a,b
i

)∣∣∣∣≥ εnhanϑ

2Ln+3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= O

(
n−a),
(A.46)

for some a > 2. Now we need to show similar result for

(
l+1

∏
j=1

J 2
j

)
P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix (a,b)
}

I a,b
i

∣∣∣∣ ≥ εnhanϑ

2Ln+3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, l = Ln +2.
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Note that for any a ∈ D(1)
( jl )

and b ∈ D(2)
(kl )

, I a,b
i ≤ I{Yi ∈ Si }, where

Si =
[
ajl +bkl θ

�
0 Xix −C M(2)

n
/

Ml ,ajl +bkl θ
�
0 Xix +C M(2)

n
/

Ml
]
,

which does not depend on a,b. Let Ui = I{|X�
i xϑ | ≤ h}I{Yi ∈ Si }. As Rix (ajl ,bkl ) −

Rix (a,b) is bounded, we have for l = Ln +2,

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix (ajl ,bkl )− Rix (a,b)

}
I a,b
i

∣∣∣∣ ≥ εnhanϑ

2Ln+3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≤ P

{ n

∑
i=1

Ui ≥ εnhanϑ

C2Ln+2

}
≤ P

{ n

∑
i=1

Ui −EUi ≥ εnhanϑ

C2Ln+4

}
, (A.47)

where the second inequality is due to (A.44). Applying Bernstein’s inequality to the right-
hand side of (A.47) and by (A.44), we have

(
l+1

∏
j=1

J 2
j

)
P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sup

a ∈ D(1)
( jl )

,

b ∈ D(2)
(kl )

∣∣∣∣ n

∑
i=1

{
Rix

(
ajl ,bkl

)− Rix (a,b)
}

I a,b
i

∣∣∣∣≥ εnhanϑ

2Ln+3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= O

(
n−a), for l = Ln +2

for some a > 2. This together with (A.46) implies that QLn+2 = O(n−a) for some a > 2.
Therefore, based on (A.51), we have

P
{

Hn2 ≥ εnhanϑ

2

}
≤ Q1 ≤

Ln+1

∑
l=1

Vl + QLn+2 = O
(
n−a)

for some a > 2. n

LEMMA 4.13. Under conditions in Theorem 4.1, there exists a large M > 0, such that
Q2 ≤ Mdn a.s., where with ln defined in the proof of Theorem 4.1, and

dn = nha2
nϑ ln/h

{
1+a−1

nϑ δn
}= o

(
nha2

nϑ

)
.

Proof. Let Xik = Xi − xk , μik = (1, X�
ik)�, Kik = K (X�

ikϑ/h), and write
�ni (xk ; α,β)−�ni (x ; α,β) = ξi1 + ξi2 + ξi3, where

ξi1 =
(

Kikμik − Kixμi x

)�
α

∫ 1

0

{
ϕni

(
xk ; μ�

ik(β +αt)
)−ϕni (xk ; 0)

}
dt,

ξi2 = Kixμ�
i xα

∫ 1

0

{
ϕni

(
xk ; μ�

ik(β +αt)
)−ϕni

(
x ; μ�

i x (β +αt)
)}

dt,

ξi3 = Kixμ�
i xα

{
ϕni (x ; 0)−ϕni (xk ; 0)

}
.



SINGLE-INDEX QUANTILE REGRESSION 767

It follows that P(Q2 > M3/2dn/3) ≤ Tn(Pn1 + Pn2 + Pn3), where

Pnj ≡ max
1≤k≤Tn

P

⎛⎜⎜⎜⎝ sup
x∈Dk

sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣ n

∑
i=1

ξi j

∣∣∣∣ ≥ M3/2dn/9

⎞⎟⎟⎟⎠ , j = 1,2,3.

Based on Borel-Cantelli lemma, Q2 ≤ M3/2dn almost surely, if ∑n Tn Pnj < ∞, j =
1,2,3, which again can be accomplished through similar approach in Lemma 5.1 in Kong
et al. (2010). We only deal with Pnj to illustrate.

First note that if ξi1 �= 0, then either Kik �= 0 or Kix �= 0. Without loss of general-
ity, suppose Kik �= 0, i.e., |X�

i xϑ | ≤ h, whence |X�
i xθ0| ≤ h + |δϑ | and |μ�

ik(β + αt)| ≤
C{M(1)

nϑ + M(2)
nϑ }. For any fixed α ∈ B(1)

n and β ∈ B(2)
n , let Iα,β

ik = 1. If there exists some

t ∈ [0,1] such that there are discontinuity points of ϕ(Yi − a) between μ�
ik(β(xk)+β +

αt)) and μ�
ikβp(xk); and Iα,β

ik = 0, otherwise. Write ξi1 = ξi1 Iα,β
ik + ξi1(1 − Iα,β

ik ). As

|(Kikμik − Kixμi x )�α| ≤ C M(1)
nϑ ln/h and |μ�

ik(β +αt)| ≤ C M(2)
nϑ , we have∣∣∣∣ξi1

(
1− Iα,β

ik

)∣∣∣∣≤ C M1
nϑ M2

nϑ ln/h = o
(
a2

nϑ

)
uniformly in i,α, β, and x ∈ Dk , if nh3/ logn3 → ∞. Let Uik = I{|X�

ikϑ | ≤ 2h}. As
ξi1 = ξi1Uik (because ln = o(h)), we have

P

⎛⎜⎜⎜⎝ sup
α ∈ B(1)

n ,

β ∈ B(2)
n

sup
x∈Dk

∣∣∣∣ n

∑
i=1

ξi1(1− Iα,β
ik )

∣∣∣∣> Mdn

18

⎞⎟⎟⎟⎠≤ P

(
n

∑
i=1

Uik >
Mnh

18C

)

≤ P

(∣∣∣∣ n

∑
i=1

Uik −EUik

∣∣∣∣ >
Mnh

36C

)
, (A.48)

where the second inequality follows from the fact that EUik = O(h). We can then apply to
(A.48) Bernstein’s inequality for independent data or Lemma 5.4 in Kong et al. (2010) for
dependent case, to obtain the below result

Tn P

⎛⎜⎜⎜⎝ sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣ n

∑
i=1

ξi1

(
1− Iα,β

ik

)∣∣∣∣ > Mdn/18

⎞⎟⎟⎟⎠ is summable over n, (A.49)

whence ∑n Tn Pn1 < ∞, which is equivalent to

Tn P

⎛⎜⎜⎜⎝ sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣ n

∑
i=1

ξi1 Iα,β
ik

∣∣∣∣ > Mdn/18

⎞⎟⎟⎟⎠ is summable over n. (A.50)
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To this end, first note that Iα,β
ik ≤ I{εi ∈ Sα,β

i ;k }, where

Sα,β
i ;k =

m⋃
j=1

⋃
t∈[0,1]

[
aj − A(Xi , xk)+μ�

ik(β +αt),aj − A(Xi , xk)
]

⊆
m⋃

j=1

[
aj −C M(2)

nϑ ,aj +C M(2)
nϑ

]
≡ Dn, for some C > 0,

A(x1, x2) = m
(

x�1 θ0

)
−m

(
x�2 θ0

)
−m′(x�1 θ0

)
(x1 − x2)�θ0,

where in the derivation of Sα,β
i ;k ⊆ Dn , the fact that |Xik | ≤ 2h, μ�

ik(β +αt) = O(M(2)
n )

and A(Xi , xk) = O(h2 +|δϑ |2) = o(M(2)
n ) uniformly in i is used. As Iα,β

ik ≤ I{εi ∈ Dn},
we have |ξi1|Iα,β

ik ≤ |ξi1|Uni , where Uni ≡ I (|Xik | ≤ 2h)I{εi ∈ Dn}, which does not
depend on the choice of α and β. Therefore,

P

⎛⎜⎜⎜⎝ sup
α ∈ B(1)

n ,

β ∈ B(2)
n

∣∣∣∣ n

∑
i=1

ξi1 Iα,β
ik

∣∣∣∣> Mdn/18

⎞⎟⎟⎟⎠ ≤ P

(
n

∑
i=1

Uni > MnhM(2)
n

/
(18C)

)

≤ P

(
n

∑
i=1

(Uni −EUni ) >
MnhM(2)

n

36C

)
, (A.51)

where the first inequality is because |ξi1| ≤ C Manϑ ln/h and the second one because

EUni = O(hM(4)
n ). Similar to (A.48), we could apply either Bernstein’s inequality for

independent data or in dependent case Lemma 5.4 in Kong et al. (2010) to see that (A.50)
indeed holds. n


