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Remark on Algorithm 539: A Modern Fortran Reference
Implementation for Carefully Computing the Euclidean Norm

RICHARD J. HANSON, Retired
TIM HOPKINS, University of Kent, UK

We propose a set of new Fortran reference implementations, based on an algorithm proposed by Kahan,
for the Level 1 BLAS routines *NRM2 that compute the Euclidean norm of a real or complex input vector.
The principal advantage of these routines over the current offerings is that, rather than losing accuracy
as the length of the vector increases, they generate results that are accurate to almost machine precision
for vectors of length N < Nmax where Nmax depends upon the precision of the floating point arithmetic
being used. In addition we make use of intrinsic modules, introduced in the latest Fortran standards, to
detect occurrences of non-finite numbers in the input data and return suitable values as well as setting
IEEE floating point status flags as appropriate. A set of C interface routines is also provided to allow simple,
portable access to the new routines.

To improve execution speed, we advocate a hybrid algorithm; a simple loop is used first and, only if IEEE
floating point exception flags signal, do we fall back on Kahan’s algorithm. Since most input vectors are
‘easy’, i.e., they do not require the sophistication of Kahan’s algorithm, the simple loop improves performance
while the use of compensated summation ensures high accuracy.

We also report on a comprehensive suite of test problems that has been developed to test both our new
implementation and existing codes for both accuracy and the appropriate settings of the IEEE arithmetic
status flags.
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1. INTRODUCTION
The Level 1 BLAS [Lawson et al. 1979b] is an ensemble algorithm designed to perform
a number of low-level computations on rank-1 assumed size arrays. The package was
published prior to the availability of the IEEE 754 floating point standard [P754 1985]
and the language standards known as Fortran 90, 95, 2003 and 2008 [ISO/IEC 1991;
1997; 2004; 2011]. A Fortran reference version was made available as part of Algorithm
539 [Lawson et al. 1979a].

The software associated with Algorithm 539 was written in Fortran 66 [ANSI 1966].
The introduction into Fortran 2003 of the intrinsic modules IEEE ARITHMETIC and
IEEE EXCEPTIONS gives the programmer standard conforming access to much of the

Author’s addresses: T. Hopkins, Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF,
UK; email: t.r.hopkins@kent.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 201y ACM. 0098-3500/201y/01-ARTaa $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. vv, No. nn, Article aa, Publication date: January 201y.



aa:2 R.J. Hanson and T.R. Hopkins

functionality of IEEE floating point arithmetic. This provides the opportunity to im-
prove the Level 1 BLAS functions, *NRM2, that compute the l2 norm of a vector.
(SNRM2 and SCNRM2 are the specific names for single-precision real and complex in-
put vectors respectively; the corresponding names for double precision are DNRM2 and
DZNRM2.)

The calculation of the Euclidean norm is a common numerical computation that
is required as a component of many numerical algorithms. A sign of its importance
is its inclusion as an elementary generic function, norm2, in the Fortran 2008 stan-
dard [ISO/IEC 2011]. As we show in Sections 8.2 and 8.3, both the original reference
implementation of the Level 1 BLAS routines *NRM2 and their replacements that ac-
company the latest release of LAPACK (version 3.7.0, December 2016) lose accuracy
as the length of the input vector, n, increases. Users expect that the arithmetic opera-
tions and basic mathematical functions provided by, say, a compiler or an accompany-
ing math library will deliver results that are close to machine precision. Many would
expect the same from low level components like those found in the Level 1 BLAS.
With the ability to solve larger problems it is therefore important that the *NRM2
routines should preserve accuracy in the result returned as the length of the vector,
n, increases. We propose a new Fortran reference implementation using compensated
summation [Higham 2002] that provides almost full machine precision for all n-vectors
with n < Nmax where Nmax depends on the floating point precision of the arithmetic
used to compute the norm.

We have produced two versions of the replacement functions in standalone form and
packaged as a module. The standalone code is suitable for replacing the *NRM2 rou-
tines in widely available BLAS libraries either at source level or at the linking stage
of a compilation. It also allows us to produce a standard conforming interface to these
routines from a compliant C compiler via the newly introduced ISO C BINDING intrin-
sic module. The module form provides an easy way of providing a generic name, NRM2,
to the four functions as well as removing the need to type the particular names explic-
itly in any calling subprograms. For details of all of the intrinsic modules mentioned
above see [Metcalf et al. 2011, Chapters 11 and 12].

In Section 2 we look at how differences in floating point hardware and new emerg-
ing standards have influenced the design of software. We discuss the requirements of
Fortran reference implementations in general along with our design goal for the pro-
posed new *NRM2 routines in Section 3. In Section 4 we provide a detailed overview of
the reference codes for computing the l2 norm of a vector that have appeared over the
years and introduce Kahan’s algorithm which uses compensated summation to provide
improved accuracy in the computed result. We also report on a new implementation of
an accurate method for Euclidean norm computation which uses a similar mechanism
but is not written as a reference implementation.

Error bounds on the sum of squares with and without compensated summation are
discussed in Section 5 along with a comparison of the computational cost of the various
methods in terms of floating point operations. New testing and benchmarking suites
for Euclidean norm software are introduced in Section 6 and the performance of ex-
isting reference implementations is reported in Section 7. We describe our proposed
reference implementation in detail and provide performance results in Section 8. Sec-
tion 9 looks at how existing implementations may be improved by using compensated
summation. Differences in the Level 1 BLAS interface and the new Fortran intrinsic
function are discussed in Section 10 along with the results we obtained by applying
our tests to a current compiler implementation. Finally, Section 11 presents our con-
clusions.
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2. HISTORICAL PERSPECTIVES
Prior to the introduction of hardware that implemented the IEEE arithmetic standard,
the results obtained from software using floating point arithmetic were very much de-
pendent upon the platform on which it was being executed. For some floating point im-
plementations single precision arithmetic was so inaccurate that it could not be used
for any practical applications and the software needed to be written in double preci-
sion. On other platforms the single precision arithmetic was accurate while the double
precision implementation was extremely slow and had to be avoided for efficiency rea-
sons; hence the reason for both single and double precision versions of many popular
packages (for example, BLAS [Lawson et al. 1979a; Dongarra et al. 1988; Dongarra
et al. 1990], LINPACK [Dongarra et al. 1979] and LAPACK [Anderson et al. 1999]).

Portability was also a serious problem. Floating point implementations provided a
plethora of different representations and arithmetic parameters (for example, base,
mantissa length, exponent range, etc.) as well as different rounding rules. In addition,
conditions like underflow and overflow not only occurred at different numerical values
but their treatment was not defined by the language standard and was, therefore, left
to the whim of hardware designers and compiler writers. Thus underflows were likely
to be abruptly set to zero without any feedback to the user while the outcome of a
division by zero or an overflow could result in either termination of the executable or
a continuation of the computation with, possibly, undefined consequences.

Programmers went to great pains to avoid situations that might result in a com-
putation either terminating due to a system signal or suffering a catastrophic loss of
accuracy. In the case of the l2 norm of a vector, this gave rise to a number of complicated
algorithms designed to avoid harmful underflows and unnecessary overflows (see, for
example, [Blue 1978] and [Lawson et al. 1979a]).

The arrival of the IEEE floating point standard and its widespread implementation
in hardware has alleviated many of these problems. However, the quest for computa-
tional speed has had the side effect of sacrificing accuracy. We claim that this loss of
accuracy is unnecessary.

3. REFERENCE IMPLEMENTATIONS AND DESIGN GOAL
A reference code may be thought of as a basic level implementation which is designed
to allow a software package to be installed easily and for the resulting executable code
to solve practical computational problems without an excessive overhead. For prob-
lems where optimal efficiency is an absolute requirement it may be necessary to use
equivalent platform dependent, hand-crafted, assembler; or, if lower accuracy is ac-
ceptable, to use a more efficient but less accurate implementation. However reference
codes should always aim to deliver a robust version that will return as accurate a re-
sult as possible while taking due regard of efficiency and conformance to the Fortran
standard.

Fortran reference implementations may be expected to evolve as the Fortran stan-
dard evolves. Indeed we have already seen examples of this happening with the origi-
nal Level 1 BLAS library where, because of the inclusion of the incx argument it was
not possible, within the Fortran 66 standard, to dimension some array arguments ex-
plicitly. For example, with *NRM2, the array argument, x, should have been declared
to be of length (1+(n-1)*incx) but integer expressions were not allowed by the prevailing
standard. The decision taken was to dimension all arrays to be of length one, a device
that was acceptable to most compilers at the time provided array bound checking was
disabled. With the arrival of the Fortran 77 standard and the introduction of assumed
size arrays it became possible to update the reference library routines to be standard
conforming and to allow array bound checking.

ACM Transactions on Mathematical Software, Vol. vv, No. nn, Article aa, Publication date: January 201y.
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The use of standard Fortran as the implementation language also provides a high
degree of futureproofing since new standards only very rarely remove features from
previous standards and, even when this happens, compilers tend to continue to support
them.

Some specific requirements of a Fortran reference implementation in the context of
an existing basic library routine are

(1) it can easily replace an existing routine within the library; i.e., it must have exactly
the same external interface,

(2) it is portable to any platform that need only support a standard conforming Fortran
compiler,

(3) its code should be as efficient as possible and the resultant computation should
be as accurate as possible without compromising the overall performance of the
package using the routine,

(4) its code should make use of features introduced in newer standards to increase
both the robustness and the readability of the routine.

Our goal for the proposed replacement Fortran reference routines is

to provide standard conforming and portable Fortran routines, *NRM2, for
the accurate evaluation of the l2 norm of a given n−vector x. Any non-finite
or not-a-number values in the input vector should be detected and the func-
tion should return a mathematically correct result (see Section 4.5 for more
details of return values for non-finite input).

This goal is an extension of the original designs as the Level 1 [Lawson et al. 1979a],
Level 2 [Dongarra et al. 1988] and Level 3 [Dongarra et al. 1990] BLAS packages are
all silent about the handling of floating point exceptions. We advocate using the new
IEEE Fortran intrinsic modules to add new features to the *NRM2 routines so as to
compute a correct result within the context of IEEE floating point arithmetic and to
set IEEE exception flags where appropriate.

4. EXISTING ALGORITHMS AND IMPLEMENTATIONS
In this section we look in some detail at a number of algorithms and reference imple-
mentations that are available for computing the Euclidean norm of a vector. We will
also report on how these reference codes performed on both a comprehensive test suite
and a simple benchmark (for details, see [Hanson and Hopkins 2015]). We concen-
trate our efforts on Fortran reference codes as we wish to be able to advise on the best
algorithm for computing the l2 norm from both an accuracy and robustness point of
view. While we also comment on the performance of the new standard Fortran intrin-
sic function, norm2, available in a number of compilers, these implementations, like
vendor supplied versions of the BLAS, must be treated as black-box code, i.e., with-
out access to the source code we have no way of knowing for sure what algorithm has
been used or how robust the implementation may be; we can only go on the results
of testing. We use execution times for the reference codes to compare the relative ef-
ficiency of the various implementations. All timings were obtained from executables
generated using the highest level of code optimization available for the compiler we
used. While this should produce efficient executable code it should be borne in mind
that intimate knowledge of an algorithm can often allow even larger efficiency gains to
be made with handcrafted assembler. Thus, whilst timings for the reference codes may
provides some insight into the relative efficiency of the underlying algorithms, they
should not be taken as an absolute comparison.

To prevent underflows and overflows interfering with the return of a valid, finite
result, it is necessary to incorporate some form of scaling when either very small or
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very large elements appear in the input vector. Thus rather than directly forming

||x||2 =

(
n∑

i=1

x2i

) 1
2

we compute

S =

n∑
i=1

( xi
scale

)2
and form the final result ||x||2 = scale×

√
S when all the elements have been processed.

The circumstances under which scaling is applied and the value of the scale factor
employed differ among implementations and are usually dependent on the floating
point arithmetic being used. We consider the following methods most of which are
implemented by existing or modified reference codes:

4.1. The Original Algorithm 539 *NRM2 Routines
The original Level 1 BLAS Fortran *NRM2 routines formed part of the software com-
ponent of Algorithm 539 [Lawson et al. 1979a]. It was hoped that the publication of
these codes would lead to more efficient implementations being produced for a wide
variety of floating point processors. Indeed assembler versions for the Univac 1108,
IBM 360/370 and CDC 6600 were included with the reference code for Algorithm 539
and a version for the 8087 processor was published as Algorithm 653 [Hanson and
Krogh 1987].

A more readable version of the Algorithm 539 *NRM2 reference implementation ap-
pears in [Hopkins 1996]. This algorithm is one pass and uses a single accumulator
to collect the sum of squares of the elements. Scaling only takes place if the current
element could potentially cause a catastrophic underflow or overflow in the partial
sum. To this end the positive floating point number range is split into three subranges,
[minreal, low], (low, high) and [high,maxreal], where definitions and numerical values
for low and high are given in Table I for single and double precision IEEE floating
point arithmetic. In the original software, values of low and high were used that satis-
fied a range of floating point number formats in use at the time. In the code used for
the testing and benchmarking results given here we replaced the originally published
parameter values with ones derived directly from the IEEE standard floating point
format definitions.

Table I. Values of the high and low used in the Kahan, Blue and original
BLAS routines for IEEE single and double precision formats. In the follow-
ing ε = EPSILON(kind), τ2 = TINY(kind), ω2 = 2r where r = MAXEXPO-
NENT(kind) +1.

high low

sp dp γ sp dp

Kahan ω 264 2512 ω/
√
n τ/ε 2−40 2−459

Blue ω/
√
ε 252 2486 ω/

√
ε τ 2−63 2−511

Alg 539 ω 264 2512 ω/n τ/
√
ε 2−51.5 2−485

Scaling occurs if the element of maximum magnitude being processed at any stage
of the calculation is greater than zero and either less than low or greater than γ =
high/n. It would appear that the division by n is far too conservative just to prevent an
overflow, in a similar situation Kahan [Kahan 1997] uses γ = high/

√
n and, with this

ACM Transactions on Mathematical Software, Vol. vv, No. nn, Article aa, Publication date: January 201y.
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Table II. Values of the scaling factors used in the Kahan, Blue and orig-
inal BLAS routines for IEEE single and double precision formats. In the
following ε = EPSILON(kind), τ2 = TINY(kind), ω2 = 2r where r = MAX-
EXPONENR(kind) +1.

scalehigh scalelow

sp dp sp dp

Kahan
√
ε/ω 2−76 2−538 1/(τε) 286 2563

Blue
√
ε/ω 2−76 2−538 1/τ 263 2511

Alg 539 max1≤i≤j |xi| — — — — —

change, the original software performs just as well with our test and benchmark codes.
No scaling takes place if all the elements of the input vector have their magnitudes in
the middle range; this means that for many practical applications this algorithm is
equivalent computationally to the simple loop given in Algorithm 1. These originally
published routines use the “Assigned GOTO” statement that was withdrawn as of the
Fortran 95 standard although we would expect most compilers to continue to allow
this construct for the foreseeable future.

ALGORITHM 1: Simple loop: no checks
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
sum = 0;
for i = 1, (n− 1) ∗ incx+ 1, incx do

sum += x2i ;
end
return (

√
sum);

We present pseudocode for this method as Algorithm 2. This, hopefully, provides a
more understandable version of the algorithm than both the original software and the
restructured source code presented in [Hopkins 1996].

4.2. LAPACK Reference Implementation
This method is credited to Hammarling [Higham 2002, p.500] and is included in the
reference version of the Level 1 BLAS available from netlib [Dongarra and Grosse
1987]; it is also provided in the BLAS directory that has formed part of multiple re-
leases of the LAPACK library [Anderson et al. 1999], including the current release
(version 3.7.0, December 2016). The method used may be regarded as a simplified
and more portable version of the Algorithm 539 methods described in Section 4.1. Im-
proved portability is obtained by always setting the scale factor to be max {|xj |}ij=1

when processing element i of the input vector, thus removing the need to predefine
any subranges based on the underlying machine arithmetic or the type of the input
vector.

Pseudocode for this algorithm is given in Algorithm 3. As with the Algorithm 539
method this is a one pass method that uses a single accumulator. We note that the
scaling factor is changed whenever the current element is larger in magnitude than
all its preceding elements. This means that, in the extreme case, when the input vector
consists entirely of elements whose absolute values are increasing, the partial sum will
be rescaled as each element is processed.

ACM Transactions on Mathematical Software, Vol. vv, No. nn, Article aa, Publication date: January 201y.
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ALGORITHM 2: Readable version of the original BLAS Level-1 routine from Algorithm 539
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
!
! The definitions and values for low and γ are given in Table I
!
i = 1; sum = 0; nn = 1 + (n− 1) ∗ incx;
! Ignore leading zero elements
while xi == 0 do

i += incx; if i > nn then return (0)
end
! sc is the current value of the scaling factor. It is updated in ScaledUpdate
sc = 0;
! Lower range: scale while |xi| ≤ low
while |xi| ≤ low do

ScaledUpdate; i += incx;
if i > nn then return (sc ∗

√
sum)

end
! Mid range: scale current sum; no scaling performed while
! elements remain in this range
sum = (sum ∗ sc) ∗ sc;
while |xi| < γ do

sum += x2i ; i += incx;
if i > nn then return (

√
sum)

end
! High range: scale current sum; scale all remaining elements
sc = |xi|; sum = 1 + (sum/sc)/sc; i += incx;
while i ≤ nn do

ScaledUpdate; i += incx;
end
return (sc ∗

√
sum);

procedure ScaledUpdate;
Input: Current element, xi, scale factor, sc, and partial sum, sum.
Output: Updated partial sum and, possibly, updated scale factor, sc.
if (|xi| > sc) then

sum = 1 + sum ∗ (sc/xi)2; sc = |xi|;
else

sum += (|xi|/sc)2;
end

Higham [Higham 2002, p.571] shows that the computation of the return value,
(sc ∗

√
sum), can only overflow if ||x||2 exceeds the largest storable floating point

number available in the precision being used.

4.3. Blue’s Algorithm
Like the Algorithm 539 method, Blue’s Algorithm [Blue 1978] splits the positive float-
ing point range into three subranges and uses scaling for elements in the lower and
upper intervals. Its main difference is its use of three accumulators to gather a sep-
arate partial sum for the subset of elements falling within each subrange. The other
major difference with the two preceding algorithms is that the scaling factors used are
dependent on the parameters of the floating point arithmetic and do not vary accord-
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aa:8 R.J. Hanson and T.R. Hopkins

ALGORITHM 3: Lapack version
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
sum = sc = c = 0;
for i = 1, (n− 1) ∗ incx+ 1, incx do

if (|xi| == 0) then cycle;
ScaledUpdate; ! see Algorithm 2 for details

end
return (sc ∗

√
sum);

ing to the contents of the input vector. The values used for low and high along with
the respective scaling factors are given in Tables I and II. A pseudocode version of the
original algorithm may be found in [Blue 1978, page 16].

The original algorithm collects all three accumulators over all the data elements.
However, if element values in the high range are present then the low range accumu-
lator does not contribute to the final computed result. The only circumstances under
which the low range accumulator can contribute is if there are no values in the high
range. Thus only one scaled accumulator (for either the low or high range) is required;
the pseudocode in Algorithm 4 illustrates how this variant may be implemented. For
certain data vectors this approach saves performing arithmetic operations that do not
contribute to the final result.

Since we could find no freely available Fortran implementation of Blue’s algorithm,
we have implemented Fortran reference module containing all four *NRM2 routines
for both variants to allow for accuracy and timing comparisons.

4.4. The FaithfulNorm Routine
Recently a new algorithm, FaithfulNorm, was proposed [Graillat et al. 2015] for com-
puting the l2 norm of a vector with guaranteed accuracy to within a single bit of the
floating point type being used (double precision in their implementation). This algo-
rithm treats the data in a very similar way to the Blue and Kahan methods; three
ranges are defined and elements whose absolute values fall outside the middle range
are scaled prior to the accumulation of their squares. They use a two accumulator
method similar to the one employed in Algorithm 4.

High accuracy is obtained in the accumulation process by using a pair of floating
point variables for each of the accumulators thereby effectively doubling the preci-
sion available to compute the sums of squares. The implementation of this part of the
algorithm uses a variation of the double-double arithmetic used in [Hida et al. 2007]
that reduces the number of basic floating point operations required to compute the Eu-
clidean norm to 11(n− 1). The error bound for their method is 3nε2/(1− 3nε2) which is
comparable to Kahan’s method using compensated summation (see Section 5 for more
details).

The software package provided by the authors [Graillat et al. 2015] contains a ref-
erence implementation of the double precision function (a single precision version is
discussed in the article but no implementation is provided) which is written in C and
requires the GNU MPFR Library [MPFR 2016] to be installed. Additionally two SIMD
versions are provided for Intel and AMD processors using the x86 instruction set with
and without Advanced Vector Extension (AVX) support.

While the new C interoperability features available from Fortran 2003 would allow
a Fortran wrapper routine to be constructed and it would be straightforward to create
the four required *NRM2 functions, neither of these versions of FaithfulNorm fits the

ACM Transactions on Mathematical Software, Vol. vv, No. nn, Article aa, Publication date: January 201y.
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ALGORITHM 4: Blue’s Algorithm using Only Two Accumulators
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
!
! The definitions and values for low and γ are given in Table I.
! R is the largest representable floating point value.
!
i = 1; sum = amed = aother = 0; nn = 1 + (n− 1) ∗ incx;
overF lowLimit = R ∗ scalehigh;
! bigElt is used to flag the presence of elements in the high range
bigElt = false;
! Loop through elements. Set bigElt to true when first high range element found
while i <= nn do

if |xi| > γ then
if bigElt then ! High range values already seen

aother += (xi ∗ scalehigh)2;
else

! First large element; reinitialise scaling accumulator

bigElt = true; aother = (xi ∗ scalehigh)2;
end

else if |xi| < low then ! Low range values

if ¬bigElt then aother += (xi ∗ scalelow)2;
! Low range values can’t contribute

else ! Middle range element

amed += x2i
end
i += incx

end
if aother == 0 then return (

√
amed); ! Only middle range values

! Scaling required -- get scale factor
if bigElt then

sc = scalehigh
else

sc = scalelow
end
if √aother > overF lowLimit then return (∞); ! Result not representable
! We must now have a representable result
if amed == 0 then return (

√
aother/sc); ! Only scaled accumulator is non-zero

! amed may contribute
ymin = min(

√
amed,

√
aother/sc);

res = max(
√
amed,

√
aother/sc);

if ymin >=
√
ε ∗ res then

return (res ∗
√

1 + (ymin/res)2);
else

return (res);
end

requirements of a Fortran reference implementation (discussed in Section 3) suitable
for replacing existing *NRM2 routines within the Level 1 BLAS Library because

(1) a compatible C compiler is required to compile the available assembler implemen-
tation,

(2) an additional library, MPFR, is required if no appropriate assembler version is
available. This in turn would require the availability of a compatible C compiler,
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(3) use of assembler to gain execution speed means that the resultant implementation
is neither portable nor futureproof.

because we are interested only in Fortran reference routines in this article, we do not
consider this implementation any further.

4.5. Kahan’s Algorithm
This method has been suggested by Kahan [Kahan 2012] and was originally written as
a Matlab code. A pseudocode version of this method is presented in Algorithm 5. Unlike
the other methods described in this section it is designed to deal with non-finite values
in the input vector. This leads to the input vector being scanned twice if all the input
elements are finite floating point numbers and scaling is required to form the sum of
squares safely. As with methods discussed in Sections 4.1 and 4.3 the floating point
range is divided into three subranges with the values used for low and high given in
Table I for single and double precision IEEE floating point. The scaling factors used
are given in Table II.

By increasing the number of logical tests required to process each element of the
vector we can avoid a second pass through the data. The pseudocode for this version is
given in Algorithm 6.

The major difference over all the methods described above is the use of compensated
summation (see [Higham 2002] for details) to accumulate the sum of squares; this has
the important quality of ensuring that the computed sum is obtained very accurately
without the explicit need for extended precision arithmetic (see Section 5 for more
details).

We also need to consider what result should be returned if the input vector con-
tains non-finite values; the IEEE 754 standard defines formats for IEEE floating point
representations of infinite values of either sign and NaN s—floating point values not
specified as the result of an operation. Kahan comments [Kahan 1997] that NaN has
historical precursors in Konrad Zuse’s “Undefined”, and Seymour Cray’s “Indefinite”.
These were intended to allow both the programmer and the hardware to defer judg-
ment about an exception when only some of a vector’s values would be used following
a vectorized computation.

What follows is based on personal emails with W. Kahan. If the input vector contains

(1) one or more ±Inf values but no NaN s, then the result is +Inf ,
(2) one or more NaN values (signalling or quiet) but no Inf values, then the result is

qNaN ,
(3) one or more ±Inf values and one or more NaN values, then the result is +Inf .

This is based on the following argument. If an element of an array is infinite, then
its l2 norm is also infinite, regardless of whether one or more elements are NaN s.
This must be so because, if the NaN were replaced by any non-NaN value, the norm
would be infinite. In other words, if a function f(s, t) takes a value f(Inf , t) that is
independent of t, finite or not, then f(Inf ,NaN ) must be that value too. We apply this
to the sum of squares of the components of a vector x. Partition the elements of x
into two sets: S1 containing all the non-NaN values including both finite and infinity
values, and S2 containing all the NaN values present.

Let s and t be the sum of squares of the elements of S1 and S2 respectively. If S1

contains at least one infinity value then s = Inf . If S2 is non-empty then t = NaN and
the comments above imply that the l2 norm is also infinite; otherwise S2 is empty, t = 0
and s+ t is infinity. In both cases, the result is infinity.
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ALGORITHM 5: Kahan’s Original IEEE Algorithm
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
!
! The definitions and values for the floating point parameters low, γ, scalelow
! and scalehigh used here are given in Tables I and II
!
sum = ahat = s = 0; nanInInput = FALSE;
for i = 1, (n− 1) ∗ incx+ 1, incx do

if (xi does not test as finite) then
if (xi is a NaN ) then

nanInInput = TRUE; s = NaN ; cycle ; ! on i loop
else

! Know result is Infinity -- set result and exit immediately
return (+∞);

end
end
if (nanInInput) then cycle; ! Only looking for Inf values
! NaN will propagate here providing it is not a signalling NaN
ahat = max{ahat, |xi|};
if ahat ≥ γ then cycle; ! on i loop
! Perform compensated summation

s += x2i ; t = sum;
sum = t+ s; s = (t− sum) + s;

end
if (nanInInput) then return (NaN );
if ahat ≥ γ then

sc = scalehigh;
else if ahat ≤ low then

sc = scalelow;
else

! Normal case - no scaling

return (
√
sum);

end
sum = s = 0;
! Scaling required, rescan the input vector
for i = 1, (n− 1) ∗ incx+ 1, incx do

s += (xi ∗ sc)2; t = sum;
sum = t+ s; s = (t− sum) + s;

end
! The following statement might overflow

return (
√
sum/sc);

The Fortran 2008 standard [ISO/IEC 2011, Section 13.7.1] states that when the
IEEE ARITHMETIC intrinsic module is available for use with standard intrinsic pro-
cedures

If an infinite result is returned, the IEEE OVERFLOW or
IEEE DIVIDE BY ZERO shall signal; if a NaN result is returned, the
flag IEEE INVALID shall signal. Otherwise, these flags shall have the same
status as when the intrinsic procedure was invoked.

Table III shows the various possible input vector contents along with the results
returned and changes made to the IEEE floating point status flags by the proposed new
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ALGORITHM 6: One Pass Version of Kahan’s IEEE Algorithm
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
! The definitions and values for the floating point parameters low, γ, scalelow
! and scalehigh used here are given in Tables I and II
sum = s = 0; nanInInput = FALSE; range = lowR; sc = scalelow;
! Set meaningful names for possible ranges.
lowR = 0; mediumR = 1; highR = 2;
for i = 1, (n− 1) ∗ incx+ 1, incx do

if (xi does not test as finite) then
if (xi is a NaN ) then

nanInInput = TRUE; s = NaN ; cycle ; ! on i loop
else

! Know result is Infinity -- set result and exit immediately
return (+∞);

end
else

! Process finite values
if (nanInInput) then cycle; ! Only looking for Inf values
! Summing finite values
if (range == lowR) then

if (|xi| ≤ low) then ! All values so far in low range

s = s+ (xi ∗ sc)2;
else if (|xi| ≥ big) then ! Move to high range processing

! Any low range values collected so far may be discarded

sc = scalehigh; sum = 0; s = (xi ∗ sc)2; range = highR;
else ! Move to medium range processing

s = s/sc2 + x2i ; sum = sum/sc2; sc = 1; range = mediumR;
end

else if (range == mediumR) then
if (|xi| < γ) then ! Stay in medium range

s = s+ x2i ;
else ! Move to high range processing

sc = scalehigh; s = s ∗ sc2 + (xi ∗ sc)2;
sum = sum ∗ sc2; range = highR;

end
else ! Processing high range

s = s+ (xi ∗ sc)2;
end
! Perform compensated summation
t = sum; sum = t+ s; s = (t− sum) + s;

end
end
if (nanInInput) then return (NaN );
! The following statement might overflow

return (
√
sum/sc);

reference procedure. We note here that IEEE OVERFLOW is only set if the resultant l2
norm exceeds the maximum representable value; in this case the inexact flag also
signals. If the input vector contains any ±Inf values then the result is taken to be
exactly +Inf and no overflow flag is set. We believe that this behaviour reflects the
mathematical qualities of the underlying function.
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Table III. Return values and IEEE floating point status flag settings for various input vector data to
the proposed new reference procedures

Input Vector Contains Result Status Flags Set

one or more NaN ; no Inf values qNaN invalid
one or more NaN ; one or more Inf values +Inf none
no NaN ; one or more Inf values +Inf none

All finite floating point numbers

a) Result > HUGE(·) +Inf inexact, overflow
b) Result ≤ HUGE(·) finite fp value inexact may be set

5. ERROR BOUNDS AND OPERATION COUNTS
In the worst case scenario use of any of the algorithms described in Sections 4.1 to 4.3
may lead to the last log2(n) bits of the binary result (or the last log10(n) digits of its
decimal equivalent) being corrupted [Graillat et al. 2015]. This means that all of these
algorithms gradually lose accuracy as n, the number of elements in the input vector,
increases.

Higham [Higham 2002, p.85] gives the forward error bound for computing Sn =∑n
i=1 yi using compensated summation as

En = |Sn − Ŝn| ≤ (2u+ (nu2))

n∑
i=1

|yi|

where Ŝn is obtained using floating point arithmetic and u is the unit round-off error
defined to be ε/2 where ε, used in Tables I and II, is the machine epsilon (the distance
between one and the next largest representable floating point number).

For the Euclidean norm computation for real vectors we have Sn =
∑n

i=1 x
2
i so∑n

i=1|x2i | = |
∑n

i=1 x
2
i | = Sn which guarantees to yield a small relative error bound

since
En

Sn
≤ 2u+O(nu2)

and ([Higham 2002, p.85]) provided nu < 1 the bound is independent of n. For IEEE
arithmetic this requires n < 1.7 × 107 (single precision) and n < 9 × 1015 (double
precision). For complex vectors of length n, we can apply the same analysis to the real
vector of length 2n where x2i−1 is the real part and x2i is the imaginary part of the ith
complex element.

Table IV provides a summary of the operation counts required for each of the Fortran
reference implementations described in Section 4. To allow a fair comparison with the
Kahan and Hybrid methods we have assumed that only finite floating point values
appear in the input vector and we have ignored any operations required to detect non-
finite values. The ‘best’ case generally occurs when all the element values lie in a range
that requires no scaling; the exception is the LAPACK algorithm which requires the
element of largest magnitude as the first element. The worst case occurs when all
the elements require scaling to take place; this causes extra multiplies and, in the
original BLAS and LAPACK methods, extra divides. For Blue’s algorithm a slightly
more expensive case occurs where n− 1 element values all lie either in the low or high
ranges and the remaining value is in the middle range and is large enough to force
both accumulators to contribute to the final computed result.

A worst case example for Kahan’s original definition (Algorithm 5) occurs when all
the elements are in the low and medium ranges apart from the last which is in the
high range. The algorithm then effectively collects the sum of squares with compen-
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Table IV. Operation Counts for Fortran Reference Routines

Best Case Worst Case
Algorithm + or − × /

√ SCALE + or − × /
√ SCALE

Simple Loop n n − 1 − n n − 1 −
Original BLAS n n − 1 − n 2n+ 1 n 1 −

LAPACK n n+ 1 n 1 − n 2n+ 1 n 1 −
Blue’s Algorithm n n − 1 − n+ 1 n+ 2 1 3 n+ 1
Kahan Original 4n n − 1 − 8n− 4 2n− 1 − 1 n
Kahan One Pass 4n n − 1 − 5n n − 1 n+ 3

Hybrid + One Pass Kahan 4n n − 1 − 9n 2n − 1 n+ 3

sated summation twice; summing the first n − 1 elements during the first pass and
then having to make a complete second pass to perform a scaled summation. With the
one pass variation we use the partial sum of the first n− 1 elements and rescale to ac-
commodate the final value. We, therefore, recommend the use of the one pass version
for the hybrid method.

Also, because the scaling factors are chosen to be integral powers of two, floating
point divides may be replaced in both the Blue and Kahan algorithm by calls to the
new Fortran intrinsic function, SCALE, which just adjusts the exponent and should be
more efficient than a full divide operation.

We see from Table IV that the use of compensated summation by the Kahan and hy-
brid methods increases the number of floating point add/subtract operations required
from n to 4n when applied to simple data requiring no scaling. If scaling is required
by the hybrid method, then the number of floating point adds/subtracts and multi-
plies rises to 9n and 2n respectively although we are able to trade calls to the SCALE
intrinsic against n divisions when comparing to the Original BLAS and LAPACK im-
plementations.

6. TESTING
We generated a comprehensive test suite of around fifty examples which were designed
to test implementations of the *NRM2 routines as exhaustively as possible. We believe
that passing all these tests should instil a good level of confidence in the code under
test. Full details of all the tests that comprise the test suite may be found in [Hanson
and Hopkins 2015].

To check the accuracy of the computed results we use an oracle routine to compute
the norm via a simple square and add loop using a higher precision than that used
to store the input data. For single precision input we implement the oracle routine
in double precision where, for IEEE arithmetic, the increased mantissa length and
exponent range ensure that the final result can always be computed accurately and
without destructive underflow or overflow occurring. For double precision data the
‘obvious’ way of implementing the oracle would be to use quadruple precision. However,
this has the drawback that quadruple precision is not part of the Fortran standard so
either it may not be available at all or it will be implemented in a compiler dependent
way. This means that, for example, we have no guarantee that the compiler dependent
exponent range will have been increased enough to prevent overflows using a simple
square and add loop; the NAG Fortran compiler (v6.1, build 6106) is a case in point, the
mantissa length is increased to 106 bits but the exponent range, (−968, 1023), is less
than for double precision. We thus use the multiple precision package [Bailey 1995]
where the exponent range is (−maxint,maxint) and we set the precision to be twice
that of IEEE double precision.
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7. PERFORMANCE OF EXISTING IMPLEMENTATIONS
One of the problems with using a single accumulator for the sum of squares is that,
without some means of extending the precision of the calculations, some forms of input
data will always cause problems. For example, consider the following input vector (Test
36 in our test suite [Hanson and Hopkins 2015])

{x}ni=1 = {1, p, p, · · · , p}
where the value of p is chosen so that, for the floating point arithmetic being used,
1+ p2 returns one. The vector is then made large enough so that 1+ (n− 1)p2 would be
representable.

Using the original Level 1 BLAS and LAPACK reference implementations the re-
sult is returned as one whereas Blue’s algorithm returns a more accurate result since
the

∑
p2 is collected in a separate accumulator. Kahan’s method also returns the cor-

rect result due to the use of compensated summation.
We note that both the original and LAPACK methods do generate an accurate result

if x1 and xn are swapped; i.e.,
∑
p2 is collected before the one is added (Test 37 in the

test suite).
Only Blue and Kahan’s algorithms attempt to detect a true overflow condition, i.e.,

a test for overflow of the result forms part of the algorithm. Our implementation of
Blue’s Algorithm takes advantage of this by explicitly setting the returned result to
+Inf and the inexact and overflow flags to signal. In all other circumstances all the
methods discussed in Sections 4.1 to 4.3 are allowed to return the result and status
flag settings without any explicit tests or extra code being added. The vast majority of
the problems detected by our test package are caused by status flags not signalling as
expected (for example, the invalid flag does not signal when a NaN is returned and the
value returned for an input vector containing at least one Inf and one NaN value is
NaN rather than +Inf ).

One reason for the benchmark test is to ascertain how accurate the computed results
are for vectors of increasing length. We first consider ‘easy’ problems where the input
vectors of length 10n for n = 1, 2, . . . , 5 are used with all the elements assigned random
values in the range (0, 1). The maximum and average relative errors, presented in
Table V, are given in ulps (multiples of the unit round off error) ε/2, to emphasize the
loss of accuracy. We are interested in how rounding errors may affect the computed
results as the number of elements in the input vector increases.

The original Level 1 BLAS, the LAPACK and Blue’s algorithms all produced aver-
age and maximum relative errors that increased by a factor of approximately three for
each increase in n by a factor of 10. As expected the results from the original Level 1
BLAS and Blue’s algorithms are very similar since, for these input vectors, they are
computing the results via a simple square and add loop.

For the lengths of vectors used in the benchmarking runs using both single and dou-
ble precision arithmetic Kahan’s method returned results with a maximum relative
error of one ulp when compared to the oracle values. This clearly illustrates the effi-
cacy of using some form of extended precision computation when collecting the sum of
squares.

In Section 9 we consider how the accuracy of existing implementations may be im-
proved by the use of compensated summation.

8. THE NEW HYBRID ROUTINES
We use the new features available via Fortran’s new IEEE arithmetic modules to detect
and report both the presence of NaN and Inf values in the input vector as well as
genuine overflow conditions where the input vector contains valid, finite values but
the resultant value of the l2 norm is greater than the maximum storable value.
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Table V. Average and maximum relative error given as multiples of the unit round off error for simple random
input vectors with all elements in the range (0, 1) using the three versions of the *NRM2 routines provided by
the original BLAS [Lawson et al. 1979a], Blue’s method [Blue 1978] and the reference BLAS supplied with
LAPACK [Project 2015]

Original Blas Blue’s Algorithm LAPACK
log10 n Single Double Single Double Single Double

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

Real

1 0.1 2 0.1 3 0.1 3 0.1 3 0.2 3 0.2 3
2 0.6 6 0.6 5 0.6 6 0.6 5 0.6 6 0.6 7
3 2.8 17 2.8 16 2.8 17 2.8 16 2.8 18 2.8 16
4 9.5 48 9.2 40 9.5 48 9.2 40 9.5 52 9.2 46
5 82.3 172 27.9 109 82.3 172 27.9 109 82.9 176 27.2 151

Complex

1 0.2 3 0.2 3 0.2 3 0.2 3 0.3 4 0.3 4
2 0.9 9 0.9 8 0.9 9 0.9 8 1.0 9 1.0 8
3 4.1 24 4.1 27 4.1 24 4.1 27 4.2 30 4.2 27
4 14.8 70 13.2 64 14.8 70 13.2 64 14.8 69 13.4 66
5 238.6 368 38.4 188 238.6 368 38.4 188 238.8 380 40.3 215

Kahan’s algorithm provides an excellent basis for achieving the goal specified in Sec-
tion 3. The use of compensated summation ensures a very accurate result when com-
pared to the other methods described in Section 4. Its only downside is its execution
time efficiency in the case where all the elements of the input vector lie in the middle
range defined by the original Level 1 BLAS and Blue’s algorithm. We assert that this
is the most commonly occurring input in practice and results in all the methods in
Section 4, with the exception of the LAPACK reference implementation, performing
no scaling at all on the input vector elements.

We, therefore, propose a hybrid approach to the computation (a general strategy of
the type proposed is mentioned in [Metcalf et al. 2011, Chapter 11, p. 237-238]). For
the most commonly occurring case we use a simple loop with compensated summation
to ensure high accuracy at low cost (for pseudocode, see Algorithm 7). We then check
for either a NaN or Inf result; or for the IEEE underflow exception flag signalling.
If none of these conditions have occurred we are done; otherwise we recompute using
Kahan’s method which requires at least a second pass through the data. We choose
to implement the one pass version of Kahan’s method (Algorithm 6) to reduce the
number of additional floating point operations required if the input data needs scaling.
A pseudocode version of the proposed hybrid method is given as Algorithm 8.

ALGORITHM 7: Simple loop using compensated summation to preserve accuracy
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
sum = s = 0;
for i = 1, (n− 1) ∗ incx+ 1, incx do

s += x2i ; t = sum;
sum = t+ s; s += (t− sum);

end
return (

√
sum);

This approach may avoid scaling which would have occurred with all the methods
described in Section 4. Scaling only occurs in the hybrid algorithm if the result of
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ALGORITHM 8: IEEE hybrid method
Input: Vector x, size n, storage increment incx.
Output: The l2 norm of x, ||x|| = dnrm2, returned via the function name.
Clear UNDERFLOW flag;
Compute nrm2 using Algorithm 7;
if the UNDERFLOW status flag is signaling OR the result is either NaN or Inf then

Clear flags;
Use Kahan’s l2 algorithm to compute nrm2;

end

the simple loop (Algorithm 7) actually causes an overflow or underflow exception. For
example, if an input vector has just one element equal to γ then the two versions of
Kahan’s method (see Algorithms 5 and 6) will scale whereas the simple loop of the
hybrid algorithm will not. We also note that for double precision and a vector of length
108 at least one element would need to be > 10150 or < 10−138 in magnitude to trigger
scaling using Kahan’s method. For the simple loop with compensated summation used
in the proposed hybrid method these values would need to be even more extreme to
cause Kahan’s method to be called.

Finally, for random data vectors where all the elements are in the range (0, 1) in
magnitude, the hybrid method provides the same accuracy on the benchmark tests (see
Section 7 above) as Kahan’s algorithm since for the input data used Kahan’s algorithm
reduces to Algorithm 7.

8.1. Reference Software
We preserve the naming convention used in the Level 1 BLAS and detailed in Sec-
tion 1. These four routines are provided both as separate functions, suitable for re-
placing an existing reference implementation within a pre-compiled library, and as a
Fortran 2008 module, nrm2HybridMod, with the functions as module procedures. If the
module is used to override or supersede the use of a pre-compiled library then it is
necessary to remove all type declarations to SNRM2, DNRM2, SCNRM2 and DZNRM2 from the
application code.

Include files have been used to reduce the repetition of source code that is common to
more than one routine. This feature is now part of Fortran 2008 and may be used to im-
prove maintainability; but there is a balance to be struck between reducing duplicated
code to an absolute minimum and having source code that is easily human readable.
Thus we have limited the number of include files used within a single function to two
and the depth of include files to one (i.e., include files do not contain include files).
Typically include files allow us to share code between the single and double precision
versions although different files are required for real and complex input data.

We also took advantage of the C interoperability features in the new Fortran stan-
dard to provide a set of interface routines that would allow C software to call the
Fortran *NRM2 routines. These are general purpose in that they could be linked to any
Fortran implementation of the *NRM2 routines using the specific Fortran names.

The proposed hybrid method produced results which agreed with the expected val-
ues of the l2 norm for all the tests in the test suite. Additionally, during the extensive
runs of the benchmark tests the results generated by this implementation were always
correct to within one ulp when compared to the oracle values. These results make the
case for the use of compensated summation to improve the accuracy of the computed
result.

The IEEE status flags returned during the running of the test suite were as pre-
dicted except for two of the tests. Tests 5 and 6 (n = 1 with x = [HUGE(·)] and
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x = [−HUGE(·)] respectively) reported that the IEEE INEXACT was signalling. This
occurs because vectors of length one are not treated as special cases and HUGE(.) is
not a power of two. The squaring of the scaled value (all the mantissa bits are one)
causes the inexact flag to signal even though the subsequent square root produces a
result which is correct to the last bit. For more discussion of the case n = 1 see the user
manual [Hanson and Hopkins 2015].

It is vital that compiler optimization honors the parentheses in the compensated
summation algorithm and does not alter the intended computation by making an alge-
braic substitution of s = 0 at the end of the loop in Algorithm 7. Such an optimization
is not standard conforming [ISO/IEC 2011, Note 7.31]. The Intel compiler XE 14.0.2
needed the option fp:precise to avoid this non-standard substitution.

8.2. Benchmark Summary of dnrm2
Table VI provides a timing comparison for easy data for various versions of the com-
peting implementations. The data given is the limiting value of the ratio of the time
taken for the competing implementation to the time taken for the proposed hybrid
method, as the length of the vector, n, increases. Values greater than one indicate that
the hybrid method is more efficient. We also give the maximum relative error (MRE)
in ulps in the computed solution. The data used is all in the range (0, 1) as described
in Section 7.

These results clearly show the gains in accuracy obtained through using compen-
sated summation (CS); all the basic implementations described in Sections 4.1–4.3
return results that are within one or two ulps when CS is incorporated. The very small
errors seen in the LAPACK reference implementation are removed by using a scaling
factor that is a power of two, which causes no rounding errors, rather than one of the
input data values (see Section 4.2 for details).

For the data sets used, the hybrid method is essentially a square and add loop with
compensated summation. The cost of the accuracy improvement through the use of CS
is a factor of between 3.5 and 2 for the original Level 1 BLAS and Blue’s implementa-
tion respectively. As expected, adding CS to these methods results in almost the same
calculations taking place and, therefore, almost the same overall timings.

8.3. Effect on Accuracy of Increasing Vector Length
To quantify the effect on accuracy of increasing n we ran the single precision, real rou-
tine, SNRM2, using both the proposed hybrid method (Algorithm 8) with compensated
summation and the LAPACK reference implementation (Algorithm 3) on random data
in the range (0, 1) for n = 10r for r = 1 . . . 9. The oracle result was computed with a
simple square and add loop using the quadruple precision available under the NAG
compiler (106 bit mantissa, exponent range (−968, 1023)). For all the vectors generated
the use of compensated summation returned a result that agreed with the oracle to
within one ulp even when the vector length exceeded Nmax for IEEE single precision
(see Section 5). Table VII shows how the maximum recorded number of bits lost in
the computed value using the current LAPACK reference implementation increased
steadily with n; for n > Nmax (IEEE single precision) no significant decimal digits are
returned.

9. UPGRADING EXISTING IMPLEMENTATIONS
The accuracy of all the methods described in Sections 4.1 to 4.3 can be improved by
utilizing the compensated summation procedure for collecting the sums of squares.
This is straightforward to implement; for the original Level 1 BLAS and LAPACK
implementations we have only to rescale the compensation term whenever the partial
sum of squares is rescaled. For Blue’s algorithm we need to use separate compensation
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Table VI. Timing and accuracy results for a variety of *NRM2 imple-
mentations on random data in the range (0, 1). Accuracy is recorded
as the maximum error in ulps recorded. All timings are normalized by
dividing by the time taken by the proposed hybrid method on the same
data. The values given are for n = 105.
In the Table +CS signifies that compensated summation has been
added to the basic Algorithms given in Section 4.

Real Complex MRE

sp dp sp dp ulps

Section 4.1

Original Alg 539 0.29 0.29 0.46 0.46 404
Restructured 0.30 0.30 0.26 0.26 404
Restructured + CS 0.99 1.00 1.00 0.99 1

Section 4.2

Original Lapack/netlib 0.58 1.16 0.60 1.17 392
+ CS 1.00 1.16 1.00 1.19 3
+ CS + power of 2 scaling 1.00 1.00 1.00 1.00 1

Section 4.3

Original Blue 0.75 0.75 0.75 0.75 404
+ CS 1.50 1.50 1.50 1.50 1

Section 4.5

Kahan (one pass) 1.74 1.76 1.99 1.98 1

Fortran intrinsic

norm2 (Nag) 0.50 1.08 0.93 1.68 1

Table VII. Growth of the relative error in the computed Euclidean
norm using the LAPACK reference implementation on random real
data in the range (0, 1) for n = 10r . Em is the maximum rela-
tive error detected in the computed value for a given value of n,
dlog2(Em)e is the number of bits of accuracy lost for this value
of Em and dlog2(10r)e is an upper bound for this value (see Sec-
tion 5). For practical purposes this cannot exceed 24 for IEEE single
precision arithmetic.

r 1 2 3 4 5 6 7 8 9
dlog2(Em)e 1 2 4 5 7 11 16 22 23
dlog2(10r)e 4 7 10 14 17 20 24 24 24

terms; one for each accumulator. When this is done the accuracy of all the implementa-
tions for random input data in the range (0, 1) is improved to the same level as Kahan’s
algorithm. Both the LAPACK and, when the input data triggers scaling, the Level 1
BLAS reference implementations may still generate slightly larger errors; this may
be removed by using a scaling factor that is a power of two rather than the absolute
value of the largest element. Versions of all these upgraded routines are included in
the accompanying software package.

9.1. Specific detail for changes to Algorithm 539
We have produced a replacement module for the routines that appeared in the original
Algorithm 539 [Lawson et al. 1979a]. This implementation is the same computational
algorithm but differs from the original in the following ways:

(1) the code has been carefully restructured to make it more readable than both the
original and the proposed improvements made in [Hopkins 1996].
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(2) all squares of variables are computed using multiplication rather than exponentia-
tion; with some compilers this can give a small improvement in accuracy for larger
input vectors.

(3) the original cutlo and cuthi values have been replaced by values computed specifi-
cally for IEEE floating point arithmetic rather than using a ‘worst case’ setting.

(4) the value of the local variable hitest, originally set to cuthi/n has been replaced
by cuthi/SQRT(n) which increases the length of the middle subrange (low, high) in
which no scaling is employed without increasing the risk of an avoidable overflow
occurring.

10. NEW FORTRAN STANDARD INTRINSIC FUNCTION, NORM2
The 2008 standard introduced a new generic, intrinsic function, norm2, to compute the
l2 norm of real arrays. This function takes a single, one-dimensional real array argu-
ment and returns a result of the same kind as the vector. The standard states [ISO/IEC
2011, Section 13.7.123] that the result delivered will be a processor-dependent approx-
imation to the value of the l2 norm; it further recommends that the processor compute
the result without undue overflow or underflow. It is also expected that the setting of
the IEEE arithmetic status flags would be implemented as described under Section 4.5.

Thus the statements
snrm2 = norm2 (sx(1 : 1+(n-1)*incx : incx))

and
dnrm2 = norm2 (dx(1 : 1+(n-1)*incx : incx))

would be equivalent to a call to the Level 1 BLAS routines SNRM2 and DNRM2 respec-
tively when sx is a single and dx a double precision real array.

The equivalent computation for a complex input vector could be achieved using, for
example,

scnrm2 = norm2([REAL(cx(1:1+(n-1)*incx:incx)), AIMAG(cx(1:1+(n-1)*incx:incx))])
or

scnrm2 = norm2(TRANSFER(cx(1:1+(n-1)*incx:incx)),res, SIZE=2*n)
where res is the result of the function and provides the type of the resulting vector.

For the NAG compiler the use of the TRANSFER function resulted in a slower overall
execution of 50% for single and 20% for double precision input vectors.

To provide all the functionality of the *NRM2 routines we would need to deal with
the special cases, n < 1 and incx < 1, by using wrapper routines. Our tests on this
function are effectively restricted to black box testing since we have no access to the
sources of the implemented functions.

We tested the norm2 intrinsic function using the NAG compiler and our test suite.
The following observations were noted:

(1) differences in the results obtained for single and double precision arguments may
indicate that single precision arguments are cast to double precision, the computa-
tion is then performed in double precision and a correctly rounded single precision
result is returned:
(a) for Tests 5 and 6, x = {x1} where x1 = HUGE(·) and −HUGE(·) respectively,

the result returned is exact in both precisions but the inexact flag only signals
for double precision arguments

(b) for Test 23, x = {HUGE(·), p} where p is chosen to be the largest power of two
such that the returned value is HUGE(·) in the precision being tested. In this
case we would also expect the inexact flag to signal. This is what happens in
the double precision case but for single precision the function returns +Inf and
both the overflow and inexact flags signal. One explanation for this behaviour
would be that the computation of the, possibly scaled, sum of squares is per-
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formed in double precision and the (double) result is compared to the single
precision overflow limit before rounding rather than after. Arguments could be
made to support both approaches.

(2) contrary to the current Fortran standard [ISO/IEC 2011, 13.7.1], if the result re-
turned is a NaN then the invalid flag does not signal for either precision.

(3) the implementation chooses to differentiate between the two situations discussed
in Section 4.5 in which the returned value is +Inf .

11. CONCLUSIONS
We have reported on a new Fortran reference implementation of the Level 1 BLAS that
compute the l2 norm of real and complex vectors in both single and double precision.
These new codes trade gains in the accuracy in the computed result against execution
speed by using compensated summation to collect the sum of squared elements.

The floating point error analysis of the commonly available reference implementa-
tions predict a worse case loss of accuracy of log2 n bits in the final result where n
denotes the number of elements in the input vector. The analysis using compensated
summation shows that for n < Nmax, where Nmax depends on the precision of the float-
ing point arithmetic being used, we should expect close to full precision accuracy in the
returned value. In practice, at least for random data in the range (0, 1), we find that
we can often exceed Nmax without loss of full precision accuracy.

For processors that implement the IEEE floating point standard we use intrinsic
modules introduced in the Fortran 2003 standard [ISO/IEC 2004] to provide access to
the IEEE arithmetic status flags and non-model values. This allows us both to detect
and report floating point exceptions that might occur during the computation.

Combining these features with our proposed computational algorithm allows us to
provide a reference implementation of *NRM2 that

(1) returns a result that is close to machine accuracy for vector lengths of up to 1.7×107
(IEEE single precision) and 9× 1015 (IEEE double precision),

(2) detects when the result is not storable in the floating point precision being used,
sets the return value to Inf , and signals a floating point overflow condition,

(3) detects the presence of non-floating point data (Inf and NaN ), returns a suitable
result and sets the relevant IEEE status flag,

(4) attempts to balance efficiency with accuracy by employing a hybrid algorithm that
uses a fast square and add method without scaling to compute the results and only
reverts to a more expensive scaling method if the fast approach causes certain of
the IEEE status flags to signal.

The ability to signal exceptions and to return non-finite values means that the rou-
tines also provide the user with the opportunity to recover gracefully from a failed
computation rather than having the program forcibly terminated by the run-time sys-
tem.

The new reference implementations are written entirely in standard Fortran 2008
and, thus, in the absence of processor dependent versions of *NRM2, provide a portable
implementation and unambiguous definition of an algorithm that can be

(1) used to replace older versions of the *NRM2 routines to improve accuracy especially
for large vectors,

(2) called directly from a supported C compiler using standard conforming C interop-
erability features available since Fortran 2003 [ISO/IEC 2004],

(3) translated/accessed into/by other languages that require access to a Euclidean
norm function.
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