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Symmetry structure of integrable non-evolutionary equations ∗

V.S. Novikov and Jing Ping Wang

Institute of Mathematics and Statistics, University of Kent, UK

November 10, 2006

Abstract

We study a class of evolutionary partial differential systems with two components related to second order (in
time) non-evolutionary equations of odd order in spatial variable. We develop the formal diagonalisation method
in symbolic representation, which enables us to derive an explicit set of necessary conditions of existence of higher
symmetries. Using these conditions we globally classify all such homogeneous integrable systems, i.e. systems which
possess a hierarchy of infinitely many higher symmetries.

Key words: Integrable PDEs, Symmetry approach, symbolic representation, formal diagonalisation.

1 Introduction.

Classification of integrable equations of a given family of nonlinear equations is an important topic in the field of
soliton theory. There are many approaches to this problem, among which the symmetry approach has proved to
be very efficient and powerful method. The symmetry approach has been used to classify large classes of integrable
nonlinear partial differential equations and difference-differential equations such as scalar evolutionary equations,
Volterra and Toda type equations, hyperbolic equations etc. We refer the reader to the recent review paper [1] and
the references therein for details.

This paper is devoted to a problem of classification of systems of integrable evolutionary equations with two compo-
nents. The first work in this direction had been carried out by Mikhailov, Shabat and Yamilov [2, 3, 4]. They classified
integrable second order systems of the form

ut = A(u)uxx + F (u,ux), det(A(u)) 6= 0, u = (u, v)T ,

where the 2 × 2 matrix A(u) can be reduced to

A(u) = diag(a, b), a = −1, b = 1,

if the system possesses higher order conservation laws. Later, Svinolupov [5] studied the Burgers type equations, i.e.
the case a = b = 1 (see also the review paper [6]). After these two special cases, attention was turned to the more
general case: a 6= ±b and ab 6= 0 [7] and to the systems of higher order. In principle, the symmetry approach can be
applied to classification of higher order systems. Although the method is algorithmic, the computation involved grows
very rapidly with the order of the system, so further achievement in this direction had to wait for the development of
the appropriate computer algebra.

Recently, several research groups have developed the computer programmes to carry out the task of classification of
polynomial integrable evolutionary systems with two components. Foursov and Olver considered the symmetrically-
coupled evolutionary equations of lower order [8]. After linear transformation, the leading linear part of the systems
can always be diagonalised. Tsuchida and Wolf studied polynomial homogeneous integrable evolutionary systems of
mixed scalar and vector dependent variables [9] of order 2 and 3, where the authors compared their comprehensive
results with the existing ones. The linear parts of systems they considered are diagonal including zero eigenvalues.
Their classification methods have led to interesting new integrable equations, but they could not claim that their lists
are complete in the sense that there are no other integrable systems of the fixed order in certain classes since the
methods they used were based on searching symmetries of specific orders and forms. The symbolic representation
combined with applications of number theory [10] is the solution to this problem at least for subclass of homogeneous
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polynomial evolutionary systems. It enables us to translate the question of integrability into the problem of divisibility
of certain symmetric polynomials, which can be solved by using number theoretical methods. A series papers have
been published on it including the complete classification of second order two components evolutionary systems [11]
and Bakirov-type systems [12, 13].

The ultimate goal of classification of integrable equations is to obtain the classification result for integrable equations
of any order, i.e. the global classification result. So far the only global result has been obtained for scalar homogeneous
evolutionary equations [14, 15]. In this paper, based on the symbolic representation in [16], we develop the formal
diagonalisation method so that we can globally classify homogeneous two-component evolutionary systems whose
leading linear terms are not explicitly diagonal. We demonstrate our method classifying integrable systems of the
form

{

ut = ∂r
xv,

vt = ∂2n+1−r
x u + F (u, ux, uxx, ..., ∂2n−r

x u, v, vx, vxx, ..., ∂2n−r
x v), n = 1, 2, 3, . . . , r ∈ {0, 1, . . . , n},

(1)

of arbitrary order (i.e. for any integer n > 0). Here F is a homogeneous differential polynomial in u, v and their
x-derivatives. If function F does not depend on v, vx, . . . , ∂r−1

x v then we can exclude v from system (1) and obtain
non-evolutionary equations of odd order

utt = ∂2n+1
x u + K(u, ux, uxx, ..., ∂2n

x u, ut, ut x, ut xx, ..., ∂2n
x ut), K = Dr

x(F ), n = 1, 2, 3, . . . (2)

The even-order non-evolutionary equations of form (2) have been studied using the perturbative symmetry approach
in symbolic representation in [16]. The famous Boussinesq equation [17]

utt = uxxxx + (u2)xx

belongs to this class. As a result, integrable equations of orders 4 and 6 were classified as well as three new integrable
equations of order 10 were found. The approach developed in [16] is also suitable for odd order equations. However,
there is a difficulty to formulate the explicit necessary conditions for this case. Besides, it can not be used for global
classification. The special subclass of non-evolutionary equations was also considered in [20], where a family of partially
integrable equations with only one higher symmetry was constructed.

In this paper in the framework of the perturbative symmetry approach in the symbolic representation we derive an
explicit set of necessary conditions of existence of a hierarchy of higher symmetries for systems (1). These conditions
are obtained after diagonalisation of the linear part of system (1) via a non-local linear transformation of dependent
variables u, v. We prove the ultimate classification result: If a homogeneous system (1) with positive weight of u
possesses a hierarchy of infinitely many higher symmetries, then up to re-scaling it one of the following two equations:

{

ut = vx,
vt = uxx + 3uvx + vux − 3u2ux,

{

ut = vx,
vt = (∂x + u)2n(u) − v2, n = 1, 2, 3, . . . .

These systems can be rewritten in the form of non-evolutionary equations if we introduce a new variable u = wx:

wtt = wxxx + 3wxwt,x + wxxwt − 3w2
xwxx.

wtt = (∂x + wx)2n(wx) − w2
t

The first equation is known to be integrable [18]. The second equation can be brought into linear ftt = ∂2n+1
x f by the

Cole-Hopf transformation w = log(f).

The paper is organized as follows: in section 2 we remind basic definitions and notations of the symbolic representation
[16]; in section 3 we develop the formal diagonalisation formalism for systems (1); using the formal diagonalisation
method we obtain explicit formulae for the (approximate) symmetries of system (1) and derive necessary conditions for
the existence of an infinite hierarchy of higher symmetries; in section 4 we apply these conditions to classify integrable
homogeneous systems (1) for all orders n = 1, 2, 3, . . . and for all possible representations r = 0, 1, . . . , n.

2 Symbolic representation over the ring of differential polynomials.

In this section we remind basic definitions and notations of the ring of differential polynomials and symbolic represen-
tation (for more details see e.g. [11, 16, 19]).
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Throughout the whole paper we assume that all functions, such as F and K in equation (1) and (2), are dif-
ferential polynomials in variables u, v, ux, vx, uxx, . . . . We introduce an infinite sequence of dynamical variables
{u0, v0, u1, v1, u2, v2, · · · } by the identification

u0 = u, v0 = v, un = ∂n
x u, vn = ∂n

x v. (3)

We often omit the zero index and write u and v instead of u0 and v0.

We denote R the ring of polynomials over C of infinite number of dynamical variables. We also assume that 1 6∈ R.
Elements of the ring R are finite sums of monomials with complex coefficients and therefore each element depends on
a finite number of the dynamical variables. The degree of a monomial is defined as a total power, i.e. the sum of all
powers of dynamical variables that contribute to the monomial. Let Rn denote the set of polynomials in R of degree
n. The ring R has a natural gradation

R =
⊕

n∈Z+

Rn , Rn · Rm ⊂ Rn+m .

Elements of R1 are linear functions of the dynamical variables, R2 quadratic, etc. We suppose that 1 /∈ R. It is
convenient to define a “little-oh” order symbol o(Rn). We say that f = o(Rn) if f ∈

⊕

k>n Rk, i.e. the degree of
every monomial of f is bigger than n.

Let µ, ν be two positive rational numbers1, which we call the weights of u and v respectively and denote W (u) =
µ, W (v) = ν. We define the weights of dynamical variables (3) as W (ui) = µ + i and W (vj) = ν + j. The weight of a
monomial is the sum of the weights of dynamical variables that contribute to the monomial. We say that a polynomial
f ∈ R is a homogeneous polynomial of weight λ (and write W (f) = λ) if every its monomial is of weight λ. The
weighted gradation of R is defined as

R =
⊕

m,n,s∈Z≥0

Rmµ+nν+s , Rp · Rq ⊂ Rp+q ,

where Rp is the set of polynomials in R of weight p. In fact, we can define a degree-weighted gradation of the ring R

R =
⊕

n,m,s∈Z≥0, r∈Z+

Rr
mµ+nν+s , Rn

p · Rm
q ⊂ Rn+m

p+q ,

where Rr
p is the set of polynomials in R of degree r and weight p. Note that the condition µ, ν > 0 makes each such

subspace to be finitely generated. For example, if µ = 1, ν = 2 then

R2
4 = span{uu2, u

2
1, u1v, uv1, v

2}

The ring R is a differential ring with a derivation defined as

Dx =
∑

k≥0

(

uk+1
∂

∂uk

+ vk+1
∂

∂vk

)

. (4)

Since 1 6∈ R, the kernel of the linear map Dx : R 7→ Im Dx ⊂ R is empty and therefore D−1
x is defined uniquely on

Im Dx. It is easy to verify that
Dx : Rn

p 7−→ Rn
p+1 .

To any element g ∈ R we associate differential operators g∗,u and g∗,v called Fréchet derivatives with respect to u and
v and defined as

g∗,u =
∑

k≥0

∂g

∂uk

Dk
x, g∗,v =

∑

k≥0

∂g

∂vk

Dk
x.

Now we define the symbolic representation R̂ of the ring R. A symbolic representation of a monomial

un0

0 un1

1 · · ·unp

p vm0

0 vm1

1 · · · vmq

q , n0 + n1 + · · · + np = n, m0 + m1 + · · · + mq = m

is defined as:

un0

0 un1

1 · · ·unp

p vm0

0 vm1

1 · · · vmq

q →

→ unvm〈ξ0
1ξ0

2 · · · ξ
0
n0

ξ1
n0+1 · · · ξ

1
n0+n1

· · · ξp
n〉ξ〈ζ

0
1 ζ0

2 · · · ζ
0
m0

ζ1
m0+1 · · · ζ

1
m0+m1

· · · ζq
m〉ζ , (5)

1In principle, the weights could be any rational numbers including zero, but in this paper we consider only positive weights.
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where triangular brackets 〈〉ξ and 〈〉ζ denote the averaging over group Σn of permutations of n elements ξ1, . . . , ξn, ,
i.e.

〈c(ξ1, . . . , ξn, ζ1, . . . , ζm)〉ξ =
1

n!

∑

σ∈Σn

c(σ(ξ1), . . . , σ(ξn), ζ1, . . . , ζm)

and group Σm of m elements ζ1, . . . , ζm respectively. Later we refer to this as symmetrisation operation. For example,
linear monomials un, vm are represented by

un → uξn
1 , vm → vζm

1 (6)

and quadratic monomials unum, unvm, vnvm have the following symbols

unum →
u2

2
(ξn

1 ξm
2 + ξm

1 ξn
2 ), unvm → uv(ξn

1 ζm
1 ), vnvm →

v2

2
(ζn

1 ζm
2 + ζm

1 ζn
2 ) . (7)

To the sum of two elements of the ring corresponds the sum of their symbols. To the product of two elements f, g ∈ R
with symbols f → unvma(ξ1, . . . , ξn, ζ1, . . . , ζm) and g → upvqb(ξ1, . . . , ξp, ζ1, . . . , ζq) corresponds:

fg → un+pvm+q〈〈a(ξ1, . . . , ξn, ζ1, . . . , ζm)b(ξn+1, . . . , ξn+p, ζm+1, . . . , ζm+q)〉ξ〉ζ , (8)

where the symmetrisation operation is taken with respect to permutations of all arguments ξ and ζ. It is easy to see
that the symbolic representations of quadratic (7) and general (5) monomials immediately follows from (6) and (8).

If f ∈ R has a symbol f → unvma(ξ1, . . . , ξn, ζ1, . . . , ζm), then the symbolic representation for its N -th derivative
DN

x (f) is:
DN

x (f) → unvm(ξ1 + ξ2 + · · · + ξn + ζ1 + ζ2 + · · · ζm)Na(ξ1, . . . , ξn, ζ1, . . . , ζm).

We will assign a symbol η to the operator Dx in the symbolic representation with obvious action rule

ηN (unvma(ξ1, . . . , ξn, ζ1, . . . , ζm)) = unvm(ξ1 + ξ2 + · · · + ξn + ζ1 + ζ2 + · · · ζm)Na(ξ1, . . . , ξn, ζ1, . . . , ζm)

Note that N in the above formula can be not only positive integer but in principal any rational number (or even a
complex number) as long as such calculation has any sense apart from formal . In the next section we will need N to
be half-integer numbers which correspond to fractional derivation in x-space.

If g ∈ R and g → unvman,m(ξ1, . . . , ξn, ζ1, . . . , ζm) then for the symbol of its Fréchet derivatives g∗,u and g∗,v we have

g∗,u → nun−1vman,m(ξ1, . . . , ξn−1, η, ζ1, . . . , ζm), g∗,v → munvm−1an,m(ξ1, . . . , ξn, ζ1, . . . , ζm−1, η).

Thus we obtained the symbolic representation R̂ of the differential ring R.

3 Structure of symmetries and approximate symmetries.

Consider a family of homogeneous polynomial systems (1), i.e.
{

ut = ∂r
xv,

vt = ∂2n+1−r
x u + F (u, u1, . . . , u2n−r, v, v1, . . . , v2n−r), n = 1, 2, 3, . . . , r ∈ {0, 1, . . . , n}.

(9)

Definition 1. A pair of differential polynomials G and M is called a symmetry of an evolution system ut = f, vt = g,
where f, g, G and M are all in ring R, if system uτ = G, vτ = M is compatible with the given system.

This definition is equivalent to the Lie bracket between a = (f, g)tr and b = (G, M)tr vanishing, where the bracket is
defined as

[a,b] =

(

f∗,u(G) + f∗,v(M) − G∗,u(f) − G∗,v(g)
g∗,u(G) + g∗,v(M) − M∗,u(f) − M∗,v(g)

)

. (10)

The compatibility condition for system (9) can be written as

Dt(G) = Dr
xvτ = Dr

xM, Dt(M) = Dτ (u2n+1−r + F ), (11)

where evolutionary derivations Dt and Dτ are

Dt =
∑

j≥0

(

vj+r

∂

∂uj

+ Dj
x(u2n+1−r + F )

∂

∂vj

)

, Dτ =
∑

j≥0

(

Dj
x(G)

∂

∂uj

+ Dj−r
x Dt(G)

∂

∂vj

)

.

Eliminating M from these equations, we obtain

D−r
x D2

t (G) = Dτ (u2n+1−r + F ),

Thus the symmetry of system (9) is completely determined by its first component G ∈ R.
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Definition 2. We say that a differential polynomial G ∈ R generates an approximate symmetry of degree p of system
(9) if G satisfies the equation:

D−r
x D2

t (G) − Dτ (u2n+1−r + F ) = o(Rp).

Notice that any system (9) has an infinite hierarchy of approximate symmetries of degree 1. These are simply the
symmetries of its linear part ut = vr, vt = u2n+1−r. The requirement of the existence of approximate symmetries of
degree 2 is very restrictive. Integrable equations by definition possess infinite hierarchies of approximate symmetries
of any degree. We will prove later in this paper that the existence of infinite hierarchy of approximate symmetries of
degree 2 and the existence of at least one exact symmetry for systems (9) implies integrability just as in the case of
scalar evolutionary equations [11].

We now derive the necessary and sufficient conditions of the existence of approximate symmetries of degree 2. It is
convenient to do this in the symbolic representation.

System (9) in the symbolic representation takes the form

{

ut = vζr
1 ,

vt = uξ2n+1−r
1 +

∑

k≥2

∑k

i=0 uivk−iai,k−i(ξ1, . . . , ξi, ζ1, . . . , ζk−i).
(12)

Let us assume that the weight of variable u, denoted by w, is positive, i.e. W (u) = w > 0. Since the system is
homogeneous, we have

{

w + W (Dt) = W (v) + r
W (v) + W (Dt) = 2n + 1 − r + w,

which leads to W (Dt) = n + 1
2 and W (v) = w + n + 1

2 − r.

Homogeneous polynomials ai,j(ξ1, . . . , ξi, ζ1, . . . , ζj) are symmetric with respect to variables ξ1, . . . , ξi and ζ1, . . . , ζj .
The degrees of ai,j are given by

deg(ai,j) = 2n + 1 − r + w − iW (u) − jW (v) = (2 − j)n − (i + j − 1)w + (j − 1)r +
2 − j

2
. (13)

The degree of ai,j determined above must be a non-negative integer, otherwise, we put ai,j = 0. The sum in (12)
terminates due to the assumption W (u) = w > 0.

The symmetry of system (9) always starts with linear terms. A homogeneous symmetry of (9) in the symbolic
representation starts either with uξm

1 or with vζm+r
1 . Without loss of generality we have

uτ = G = uξm
1 +

∑

s≥2

s
∑

j=0

ujvs−jAj,s−j(ξ1, . . . , ξj , ζ1, . . . , ζs−j), m > 1 (14)

or

uτ = G = vζm+r
1 +

∑

s≥2

s
∑

j=0

ujvs−jAj,s−j(ξ1, . . . , ξj , ζ1, . . . , ζs−j), m > 0 (15)

We call the symmetries of the form (14) as type I symmetries and those of the form (15) – type II symmetries.
Without causing confusion, we call integer m in (14) or (15) the order of the corresponding symmetry. Functions
Ai,j(ξ1, . . . , ξi, ζ1, . . . , ζj) in (14) and (15) are homogeneous polynomials in their variables, symmetric with respect to
arguments ξ1, . . . , ξi and ζ1, . . . , ζj . These functions can be explicitly determined in the terms of system (12) from the
compatibility conditions.

3.1 Formal diagonalisation.

Let us first concentrate on how to compute the Lie bracket defined as (10) between the linear part of system (12)
denoted by K1, i.e.

K1 =

(

vζr
1

uξ2n+1−r
1

)

= L

(

u
v

)

, L =

(

0 ηr

η2n+1−r 0

)

(16)

and any pair of differential polynomials. We know its symbolic representation takes simple and elegant form if matrix
L is diagonal [11]. Inspired by this, we shall formally diagonalise matrix L, produce the required formula in new
variables and then transform back to the original variables.
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Notice that matrix L has two eigenvalues ±ηn+ 1
2 . Therefore, there exists a linear transformation

T =

(

1 1

ηn+ 1
2
−r −ηn+ 1

2
−r

)

such that
T−1LT = diag(ηn+ 1

2 ,−ηn+ 1
2 ).

Let us introduce new variables û and v̂

(

u
v

)

= T

(

û
v̂

)

=

(

û + v̂

ûξ
n+ 1

2
−r

1 − v̂ζ
n+ 1

2
−r

1

)

.

Equally, we have
(

û
v̂

)

= T−1

(

u
v

)

=
1

2

(

u + η−n− 1
2
+r(v)

u − η−n− 1
2
+r(v)

)

.

The new variables û and v̂ have the same weights, i.e. W (û) = W (v̂) = W (u). Without causing confusion we assign
the same symbols ξ and ζ for the symbolic representation of the ring generated by û, v̂ and their derivatives. The
exponents of symbols can be half-integer, which corresponds to half-differentiation in x-space.

Before we work out the exact form of system (12) in variables û and v̂, we prove two useful propositions.

Proposition 1. Under the transformation T , an arbitrary polynomial uivjbi,j(ξ1, . . . , ξi, ζ1, . . . , ζj) takes the form

uivjbi,j(ξ1, . . . , ξi, ζ1, . . . , ζj) =

i
∑

p=0

j
∑

q=0

ûp+q v̂i+j−p−qCp
i Cq

j (−1)j−q (17)

〈〈bi,j(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξp+q, ζi−p+1, . . . , ζi+j−p−q)(ξp+1 · · · ξp+qζi−p+1 · · · ζi+j−p−q)
n+ 1

2
−r〉ξ〉ζ ,

where Cj
i are binomial coefficients defined by Cj

i = i!
j!(i−j)! .

Proof. We prove the statement by induction on both i and j. It is easy to see that linear terms uξi
1, vζj

1 transform as

uξi
1 = ηi(û + v̂) = ûξi

1 + v̂ζi
1, vζj

1 = ηj(ûξ
n+ 1

2
−r

1 − v̂ζ
n+ 1

2
−r

1 ) = ûξ
n+ 1

2
−r+j

1 − v̂ζ
n+ 1

2
−r+j

1 .

The procedure is: we first substitute ξ1 and ζ1 by η, the symbol of the total x-derivative Dx, u and v by û + v̂ and

ûξ
n+ 1

2
−r

1 − v̂ζ
n+ 1

2
−r

1 ; and then we compute the action of η on û + v̂ and ûξ
n+ 1

2
−r

1 − v̂ζ
n+ 1

2
−r

1 . For the higher degree
terms, we apply this procedure for every element in the arguments. Assume formula (17) without symmetrisation is
true for arbitrary i and j. We have

ui+1vjbi+1,j(ξ1, . . . , ξi, ξi+1, ζ1, . . . , ζj)

=

i
∑

p=0

j
∑

q=0

ûp+qv̂i+j−p−qCp
i Cq

j (−1)j−q(ξp+1 · · · ξp+qζi−p+1 · · · ζi+j−p−q)
n+ 1

2
−r

bi+1,j(ξ1, . . . , ξp, ζ1, . . . , ζi−p, η, ξp+1, . . . , ξp+q, ζi−p+1, . . . , ζi+j−p−q)(û + v̂)

=
i
∑

p=0

j
∑

q=0

ûp+q+1v̂i+j−p−qCp
i Cq

j (−1)j−q(ξp+2 · · · ξp+q+1ζi−p+1 · · · ζi+j−p−q)
n+ 1

2
−r

bi+1,j(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξp+q+1, ζi−p+1, . . . , ζi+j−p−q)

+

i
∑

p=0

j
∑

q=0

ûp+qv̂i+j−p−q+1Cp
i Cq

j (−1)j−q(ξp+1 · · · ξp+qζi−p+2 · · · ζi+j−p−q+1)
n+ 1

2
−r

bi+1,j(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ζi+1−p, ξp+1, . . . , ξp+q, ζi−p+2, . . . , ζi+j−p−q+1)

=
i+1
∑

p=0

j
∑

q=0

ûp+qv̂i+1+j−p−qCp
i+1C

q
j (−1)j−q(ξp+1 · · · ξp+qζi−p+2 · · · ζi+1+j−p−q)

n+ 1
2
−r

bi+1,j(ξ1, . . . , ξp, ζ1, . . . , ζi+1−p, ξp+1, . . . , ξp+q, ζi−p+2, . . . , ζi+1+j−p−q)

and similarly we can prove the formula is valid for j + 1. Finally, we need to symmetrise the expression with respect
to permutations of arguments ξ and ζ. ⋄

In the same manner, we can work out how a polynomial in û, v̂ and their derivatives changes under the transformation
T−1. Here we only give the formula.
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Proposition 2. Under the transformation T−1, an arbitrary polynomial ûiv̂j b̂i,j(ξ1, . . . , ξi, ζ1, . . . , ζj) takes the form

ûiv̂j b̂i,j(ξ1, . . . , ξi, ζ1, . . . , ζj) =
1

2i+j

i
∑

p=0

j
∑

q=0

up+qvi+j−p−qCp
i Cq

j (−1)j−q (18)

〈〈b̂i,j(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξp+q, ζi−p+1, . . . , ζi+j−p−q)(ζ1 · · · ζi+j−p−q)
−n− 1

2
+r〉ξ〉ζ ,

where Cj
i are binomial coefficients.

These two propositions immediately lead to the following result.

Proposition 3. For any integer s ≥ 1, if

s
∑

i=0

uivs−ibi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i) =

s
∑

l=0

ûlv̂s−lb̂l,s−l(ξ1, . . . , ξl, ζ1, . . . , ζs−l),

then

b̂l,s−l(ξ1, . . . , ξl, ζ1, . . . , ζs−l) =
s
∑

i=0

min{i,l}
∑

p=max{0,l−s+i}

Cp
i Cl−p

s−i (−1)s−i−l+p (19)

〈〈bi,s−i(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξl, ζi−p+1, . . . , ζs−l)(ξp+1 · · · ξjζi−p+1 · · · ζs−l)
n+ 1

2
−r〉ξ〉ζ

and

bj,s−j(ξ1, . . . , ξj , ζ1, . . . , ζs−j) =
1

2s

s
∑

i=0

min{i,j}
∑

p=max{0,j−s+i}

Cp
i Cj−p

s−i (−1)s−i−j+p (20)

〈〈b̂i,s−i(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξj , ζi−p+1, . . . , ζs−j)(ζ1 · · · ζs−j)
−n− 1

2
+r〉ξ〉ζ ,

where Cj
i are binomial coefficients defined in Proposition 1.

Proof. Applying formulae (17) in Proposition 1 to every term in the sum and collecting the coefficients at every
monomial ûiv̂j , we obtain

s
∑

i=0

uivs−ibi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i) =

s
∑

i=0

i
∑

p=0

s−i
∑

q=0

ûp+q v̂s−p−qCp
i Cq

s−i(−1)s−i−q

〈〈bi,s−i(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξp+q, ζi−p+1, . . . , ζs−p−q)(ξp+1 · · · ξp+qζi−p+1 · · · ζs−p−q)
n+ 1

2
−r〉ξ〉ζ

=

s
∑

i=0

s
∑

l=0

min{i, l}
∑

p=max{0,l−s+i}

ûlv̂s−lCp
i Cl−p

s−i (−1)s−i−l+p

〈〈bi,s−i(ξ1, . . . , ξp, ζ1, . . . , ζi−p, ξp+1, . . . , ξl, ζi−p+1, . . . , ζs−l)(ξp+1 · · · ξlζi−p+1 · · · ζs−l)
n+ 1

2
−r〉ξ〉ζ ,

which leads to formula (19). Similarly, using formulae (18) in Proposition 2, we can prove formula (20). ⋄

Formula (19) in Proposition 3 tells us how a polynomial of degree s changes under transformation T . The following
result is an immediate corollary.

Corollary 1. In variables û and v̂, system (12) takes the form










ût = ûξ
n+ 1

2

1 + 1
2

∑

s≥2

∑s
i=0 ûiv̂s−i âi,s−i(ξ1,...,ξi,ζ1,...,ζs−i)

(ξ1+···+ξi+ζ1+···+ζs−i)
n+1

2
−r

v̂t = −v̂ζ
n+ 1

2

1 − 1
2

∑

s≥2

∑s

i=0 ûiv̂s−i âi,s−i(ξ1,...,ξi,ζ1,...,ζs−i)

(ξ1+···+ξi+ζ1+···+ζs−i)
n+1

2
−r

, (21)

where âi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i) are defined in terms of aj,s−j(ξ1, . . . , ξj , ζ1, . . . , ζs−j), j = 0, . . . , s as in formula
(19) in Proposition 3.

Proof. We perform transformation T to system (12): the linear part becomes diagonal and we simply write the
system as







ût = ûξ
n+ 1

2

1 + 1

2η
n+1

2
−r

(

∑

s≥2

∑s

i=0 uivs−iai,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i)
)

v̂t = −v̂ζ
n+ 1

2

1 − 1

2η
n+ 1

2
−r

(

∑

s≥2

∑s

i=0 uivs−iai,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i)
) . (22)
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Applying Proposition 3, we obtain system (21) as stated. ⋄

For the future references we explicitly write down the relation between the quadratic terms of (12) and of (21):

â2,0(ξ1, ξ2) = a2,0(ξ1, ξ2) + a0,2(ξ1, ξ2)(ξ1ξ2)
n+ 1

2
−r +

1

2
a1,1(ξ1, ξ2)ξ

n+ 1
2
−r

2 +
1

2
a1,1(ξ2, ξ1)ξ

n+ 1
2
−r

1 , (23)

â1,1(ξ1, ξ2) = 2a2,0(ξ1, ξ2) − 2a0,2(ξ1, ξ2)(ξ1ξ2)
n+ 1

2
−r + a1,1(ξ2, ξ1)ξ

n+ 1
2
−r

1 − a1,1(ξ1, ξ2)ξ
n+ 1

2
−r

2 , (24)

â0,2(ξ1, ξ2) = a2,0(ξ1, ξ2) + a0,2(ξ1, ξ2)(ξ1ξ2)
n+ 1

2
−r −

1

2
a1,1(ξ1, ξ2)ξ

n+ 1
2
−r

2 −
1

2
a1,1(ξ2, ξ1)ξ

n+ 1
2
−r

1 (25)

We now express the symmetries (14) and (15) of system (12) in variables û, v̂.

Let us start with type I symmetries (14):

uτ = uξm
1 + g, with g =

∑

s≥2

s
∑

i=0

uivs−iAi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i).

Due to the compatibility condition (11), its second component is of the form

vτ = vζm
1 +

1

ηr
(Dt(g)) ,

where the action of the operator Dt is defined in the symbolic representation as

Dt(g) = g∗,u(vζr
1 ) + g∗,v



uξ2n+1−r
1 +

∑

s≥2

s
∑

i=0

uivs−iai,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i)



 .

In variables û and v̂, a type I symmetry takes the form






ûτ = ûξm
1 + 1

2η
n+1

2

[

ηn+ 1
2 + D̂t

]

(ĝ)

v̂τ = v̂ζm
1 + 1

2η
n+ 1

2

[

ηn+ 1
2 − D̂t

]

(ĝ)
. (26)

Here ĝ stands for the transformed g under transformation T , whose exact expression can be obtained by applying
Proposition 3. Notation D̂t denotes the operator of total derivation with respect to t due to diagonal system (21).
Hence

D̂t(ĝ) = ĝ∗,û(ût) + ĝ∗,v̂(v̂t).

For type II symmetries (15):

uτ = vζm+r
1 + g, with g =

∑

s≥2

s
∑

i=0

uivs−iAi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i),

its second component is of the form

vτ = uξ2n+m+1−r
1 + ηm





∑

s≥2

s
∑

i=0

uivs−iai,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i)



+ η−rDt(g).

Using the same notations as described for type I symmetries, in variables û and v̂ a type II symmetry takes the form






ûτ = ûξ
n+m+ 1

2

1 + 1

2η
n+1

2

[

ηn+ 1
2 + D̂t

]

ĝ + 1
2ηm+r−n− 1

2

(

∑

s≥2

∑s

i=0 ûiv̂s−iâi,s−i(ξ1, · · · , ξi, ζ1, · · · , ζs−i)
)

v̂τ = −v̂ζ
n+m+ 1

2

1 + 1

2η
n+ 1

2

[

ηn+ 1
2 − D̂t

]

ĝ − 1
2ηm+r−n− 1

2

(

∑

s≥2

∑s
i=0 ûiv̂s−iâi,s−i(ξ1, · · · , ξi, ζ1, · · · , ζs−i)

) . (27)

3.2 Approximate symmetries and integrability conditions.

We derive the compatibility conditions of (14) or (15) and (12) via the compatibility conditions of their transformed
forms (26) or (27) and (21). For simplicity, we rewrite them in the following compact forms correspondingly:

{

uτ = uΩ(ξ1) + e1 ej =
∑

s≥2

∑s

i=0 uivs−iej
i,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i), j = 1, 2

vτ = vΩ(ζ1) + e2 (28)

{

uτ = uΩ(ξ1) + e1

vτ = −vΩ(ζ1) + e2 (29)

{

ut = uω(ξ1) + p p =
∑

s≥2

∑s
i=0 uivs−ipi,s−i(ξ1, . . . , ξi, ζ1, . . . , ζs−i).

vt = −vω(ζ1) − p
(30)
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Now we introduce a useful notation

Gω
i,s−i(c1, c2; ξ1, · · · , ξi, ζ1, · · · , ζs−i) = c1ω(

i
∑

l=1

ξl +
s−i
∑

k=1

ζk) − c1

i
∑

l=1

ω(ξl) − c2

s−i
∑

k=1

ω(ζk). (31)

Proposition 4. System (28) or system (29) is compatible with (30) of degree 2 if and only if the quadratic terms in
(28) or system (29) are related to the quadratic terms in (30) as follows:

e1
2,0(ξ1, ξ2) =

GΩ
2,0(1, c; ξ1, ξ2)

Gω
2,0(1,−1; ξ1, ξ2)

p2,0(ξ1, ξ2), e2
2,0(ξ1, ξ2) = −

GΩ
0,2(c, 1; ξ1, ξ2)

Gω
0,2(−1, 1; ξ1, ξ2)

p2,0(ξ1, ξ2),

e1
1,1(ξ1, ζ1) =

GΩ
1,1(1, c; ξ1, ζ1)

Gω
1,1(1,−1; ξ1, ζ1)

p1,1(ξ1, ζ1), e2
1,1(ξ1, ζ1) = −

GΩ
1,1(c, 1; ζ1, ξ1)

Gω
1,1(−1, 1; ζ1, ξ1)

p1,1(ξ1, ζ1),

e1
0,2(ζ1, ζ2) =

GΩ
0,2(1, c; ζ1, ζ2)

Gω
0,2(1,−1; ζ1, ζ2)

p0,2(ζ1, ζ2), e2
0,2(ζ1, ζ2) = −

GΩ
2,0(c, 1; ζ1, ζ2)

Gω
2,0(−1, 1; ζ1, ζ2)

p0,2(ζ1, ζ2),

where c = 1 for the terms in (28) and c = −1 for the terms in (29).

Proof. Recall that for any polynomial pair

P = uivs−iai,s−i(ξ1, ·, ξi, ζ1, · · · , ζs−i) and Q = ujvr−jbj,r−j(ξ1, ·, ξj , ζ1, · · · , ζr−j),

where s ≥ 2, r ≥ 2, 0 ≤ i ≤ s and 0 ≤ j ≤ r are integers, we have [11]

[

(

c1uω(ξ1)
c2vω(ζ1)

)

,

(

P
Q

)

] =

(

Gω
i,s−i(c1, c2; ξ1, · · · , ξi, ζ1, · · · , ζs−i)P

Gω
r−j,j(c2, c1; ζ1, · · · , ζr−j, ξ1, · · · , ξj)Q

)

. (32)

The compatibility conditions of (28) and (30) up to degree 2 read as

[

(

uω(ξ1)
−vω(ζ1)

)

,

(

∑2
i=0 uiv2−ie1

i,2−i(ξ1, · · · , ξi, ζ1, · · · , ζ2−i)
∑2

i=0 uiv2−ie2
i,2−i(ξ1, · · · , ξi, ζ1, · · · , ζ2−i)

)

]

= [

(

uΩ(ξ1)
vΩ(ζ1)

)

,

(
∑2

i=0 uiv2−ipi,2−i(ξ1, · · · , ξi, ζ1, · · · , ζ2−i)

−
∑2

i=0 uiv2−ipi,2−i(ξ1, · · · , ξi, ζ1, · · · , ζ2−i)

)

]

Using formula (32) and collecting the terms at every monomial uiv2−i for i ∈ {0, 1, 2}, we obtain the formula for the
quadratic terms in (28) with c = 1. Similarly, we can derive the quadratic terms in (29) as in the statement. ⋄

In fact, the results of Proposition 4 can be generated to the terms of higher degree i + j > 2, namely, one can derive
that

e1
i,j(ξ1, . . . , ξi, ζ1, · · · , ζj) =

GΩ
i,j(1, c; ξ1, · · · , ξi, ζ1, · · · , ζj)

Gω
i,j(1,−1; ξ1, · · · , ξi, ζ1, · · · , ζj)

pi,j(ξ1, . . . , ξi, ζ1, · · · , ζj) + L1
i,j (33)

e2
i,j(ξ1, . . . , ξi, ζ1, · · · , ζj) = −

GΩ
j,i(c, 1; ζ1, · · · , ζj , ξ1, · · · , ξi)

Gω
j,i(−1, 1; ζ1, · · · , ζj , ξ1, · · · , ξi)

pi,j(ξ1, . . . , ξi, ζ1, · · · , ζj) + L2
i,j , (34)

where c = 1 for the terms in (28) and c = −1 for the terms in (29). Expressions L1
i,j and L2

i,j depend only on the
terms of degree lower than i + j in system (30). We will not write out them explicitly.

Now we are ready to derive the compatibility conditions of (14) or (15) and (12). Let us introduce the following
notations:

N (m)
s (ξ1, . . . , ξs) = (

s
∑

l=1

ξl)
m −

s
∑

l=1

ξm
l (35)

S
(n)
s,i (ξ1, . . . , ξs) = (ξ1 + · · · + ξs)

2n+1 −

(

i
∑

l=1

ξ
n+ 1

2

l −

s
∑

l=i+1

ξ
n+ 1

2

l

)2

, (36)

M
(m)
s,i (ξ1, . . . , ξs) = (ξ1 + . . . + ξs)

m

(

i
∑

l=1

ξ
n+ 1

2

l −

s
∑

l=i+1

ξ
n+ 1

2

l

)

−

i
∑

l=1

ξ
n+m+ 1

2

l +

s
∑

l=i+1

ξ
n+m+ 1

2

l . (37)
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Theorem 1. Expression (14) and expression (15) are approximate symmetries of degree 2 of system (12) if and only
if functions A2,0, A1,1, A0,2 given by formulae

A2,0(ξ1, ξ2) =
1

8

[

2Â2,0(ξ1, ξ2) + 2Â0,2(ξ1, ξ2) + Â1,1(ξ1, ξ2) + Â1,1(ξ2, ξ1)
]

, (38)

A1,1(ξ1, ξ2) =
1

4ξ
n+ 1

2
−r

2

[

2Â2,0(ξ1, ξ2) − 2Â0,2(ξ1, ξ2) − Â1,1(ξ1, ξ2) + Â1,1(ξ2, ξ1)
]

, (39)

A0,2(ξ1, ξ2) =
1

8(ξ1ξ2)n+ 1
2
−r

[

2Â2,0(ξ1, ξ2) + 2Â0,2(ξ1, ξ2) − Â1,1(ξ1, ξ2) − Â1,1(ξ2, ξ1)
]

. (40)

are polynomials in ξ1, ξ2, where Â2,0, Â1,1, Â0,2 are determined as follows:

1. For the quadratic terms in (14),

Â2,0(ξ1, ξ2) =
(ξ1 + ξ2)

rN
(m)
2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â2,0(ξ1, ξ2), Â1,1(ξ1, ξ2) =
(ξ1 + ξ2)

rN
(m)
2 (ξ1, ξ2)

S
(n)
2,1 (ξ1, ξ2)

â1,1(ξ1, ξ2),

Â0,2(ξ1, ξ2) =
(ξ1 + ξ2)

rN
(m)
2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â0,2(ξ1, ξ2). (41)

2. For the quadratic terms in (15),

Â2,0(ξ1, ξ2) =
(ξ1 + ξ2)

rM
(m)
2,2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â2,0(ξ1, ξ2), Â1,1(ξ1, ξ2) =
(ξ1 + ξ2)

rM
(m)
2,1 (ξ1, ξ2)

S
(n)
2,1 (ξ1, ξ2)

â1,1(ξ1, ξ2),

Â0,2(ξ1, ξ2) = −
(ξ1 + ξ2)

rM
(m)
2,2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â0,2(ξ1, ξ2). (42)

Here â2,0, â1,1, â0,2 are given in terms of a2,0, a1,1, a0,2 by (23), (24) and (25).

Proof. Expression (14) and (15) are approximate symmetries of degree 2 of (12) if and only if they are compatible
with (12) up to degree 2. Therefore the diagonal forms of these symmetries (26) and (27) must be compatible with

the diagonal form of our system (21). The latter is of the form of (30) with ω(x) = xn+ 1
2 , while (26) and (27) are of

the form (28) with Ω(x) = xm and (29) with Ω(x) = xn+m+ 1
2 respectively. From Proposition 3, we know the relation

of A2,0, A1,1, A0,2 and Â2,0, Â1,1, Â0,2 as well as the relation of â2,0, â1,1, â0,2 and a2,0, a1,1, a0,2. Now we need to show

that Â2,0, Â1,1, Â0,2 are determined as stated.

Consider first the case of type I symmetries (14). Applying Proposition 4 in the case of system (30) and (28) with

ω(x) = xn+ 1
2 and Ω(x) = xm, we obtain (for the coefficient at u2v0):

e1
2,0(ξ1, ξ2) =

N
(m)
2 (ξ1, ξ2)

(ξ1 + ξ2)n+ 1
2 − ξ

n+ 1
2

1 − ξ
n+ 1

2

2

p2,0(ξ1, ξ2).

Comparing system (28) to system (26) and system (30) to system (21), we have

e1
2,0(ξ1, ξ2) =

(ξ1 + ξ2)
n+ 1

2 + ξ
n+ 1

2

1 + ξ
n+ 1

2

2

2(ξ1 + ξ2)n+ 1
2

Â2,0(ξ1, ξ2) and p2,0(ξ1, ξ2) =
â2,0(ξ1, ξ2)

2(ξ1 + ξ2)n+ 1
2
−r

.

Substituting these into the previous formula, we get

Â2,0(ξ1, ξ2) =
(ξ1 + ξ2)

rN
(m)
2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â2,0(ξ1, ξ2),

the first formula of (41). The other two relations can be obtained in the same way.

Consider now the case of type II symmetries (15). Using Proposition 4 in the case of systems (30) and (29) with

ω(x) = xn+ 1
2 and Ω(x) = xn+m+ 1

2 we find (for the coefficient at u2v0):

e1
2,0(ξ1, ξ2) =

(ξ1 + ξ2)
m+n+ 1

2 − ξ
m+n+ 1

2

1 − ξ
m+n+ 1

2

2

(ξ1 + ξ2)n+ 1
2 − ξ

n+ 1
2

1 − ξ
n+ 1

2

2

p2,0(ξ1, ξ2).
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Comparing system (29) to system (27) , we know

e1
2,0(ξ1, ξ2) =

(ξ1 + ξ2)
n+ 1

2 + ξ
n+ 1

2

1 + ξ
n+ 1

2

2

2(ξ1 + ξ2)n+ 1
2

Â2,0(ξ1, ξ2) +
(ξ1 + ξ2)

m+r

2(ξ1 + ξ2)n+ 1
2

â2,0(ξ1, ξ2).

This leads to

Â2,0(ξ1, ξ2) =
(ξ1 + ξ2)

rM
(m)
2,2 (ξ1, ξ2)

S
(n)
2,2 (ξ1, ξ2)

â2,0(ξ1, ξ2),

the first formula of (42). The other two formula can be obtained similarly. ⋄

The study of symmetries of (12) is the study of the divisibility of certain special functions. If we introduce variables
x1, x2 instead of ξ1, ξ2 by relations

x1 = ξ
1
2

1 , x2 = ξ
1
2

2

then functions â2,0(x
2
1, x

2
2), â1,1(x

2
1, x

2
2), â0,2(x

2
1, x

2
2), S

(n)
2,i (x2

1, x
2
2) and M

(m)
2,i (x2

1, x
2
2) become polynomials in x1, x2 (see

formulae (23), (24), (25), (36) and (37) ).

Corollary 2. If (14) and (15) are approximate symmetries of (12) of degree 2 then functions Â2,0(x
2
1, x

2
2), Â1,1(x

2
1, x

2
2),

and Â0,2(x
2
1, x

2
2) defined by (41) and (42) are polynomials in x1, x2.

Proof. From Theorem 1, if (14) and (15) are approximate symmetries of (12) of degree 2 then
A2,0(x

2
1, x

2
2), A1,1(x

2
1, x

2
2), and A0,2(x

2
1, x

2
2) are polynomials in x1, x2 (in fact these functions are polynomials in x2

1, x
2
2).

We know Â2,0(x
2
1, x

2
2), Â1,1(x

2
1, x

2
2), Â0,2(x

2
1, x

2
2) can be expressed as polynomials in A2,0, A1,1, A0,2 with coefficients be-

ing polynomials in x1, x2 according to Proposition 3. Therefore Â2,0, Â1,1, and Â0,2 are polynomials in x1, x2. ⋄

We are able to obtain explicit recursive relations for determining the higher degree terms in (14) and (15). Similar
as formula (33) and (34), we present the strictures of these expressions without the full details. From the proof of
Theorem 1, we only need to show how functions Âi,s−i are related to functions âi,r−i, where r ≤ s and these can be
obtained by using formula (33) and (34) and comparing the notations in (28), (29) and (30) with the ones in (26),
(27) and (21).

Suppose that (14) or (15) is an approximate symmetry of (12) of degree p ≥ 3. Then for any 3 ≤ s ≤ p and any
i = 0, . . . , s we have

Type I : Âi,s−i(ξ1, . . . , ξs) =
(
∑s

k=1 ξk)rN
(m)
s (ξ1, . . . , ξs)

S
(n)
s,i (ξ1, . . . , ξs)

âi,s−i(ξ1, . . . , ξs) + L
(s)
i , (43)

Type II : Âi,s−i(ξ1, . . . , ξs) =
(
∑s

k=1 ξk)rM
(m)
s,i (ξ1, . . . , ξs)

S
(n)
s,i (ξ1, . . . , ξs)

âi,s−i(ξ1, . . . , ξs) + L̃
(s)
i , (44)

where functions Âi,s−i and âi,s−i are given in terms of Ai,s−i and ai,s−i according to Proposition 3; L
(s)
i and L̃

(s)
i

depend only on lower degree terms ai,j , i + j < s, and N
(m)
s , S

(n)
s,i and M

(m)
s,i are defined as (35), (36) and (37).

Again if we introduce variables

x1 = ξ
1
2

1 , . . . , xs = ξ
1
2
s ,

functions âi,s−i(x
2
1, . . . , x

2
s), Âi,s−i(x

2
1, . . . , x

2
s), S

(n)
s,i (x2

1, . . . , x
2
s), and M

(m)
s,i (x2

1, . . . , x
2
s) all become polynomials in vari-

ables x1, . . . , xs.

4 Global classification result.

In this section, we state and prove the global classification result of system (9) in the sense that we list out all the
integrable equations of arbitrary order. We begin with an crucial theorem leading to global classification. In order to
prove the theorem, we prove the irreducibility of a family of special polynomials.

Proposition 5. For any i = 0, . . . , s, polynomials

S
(n)
s,i (x2

1, . . . , x
2
s) = (x2

1 + · · · + x2
s)

2n+1 −
(

x2n+1
1 + · · · + x2n+1

i − x2n+1
i+1 − · · · − x2n+1

s

)2

are irreducible polynomials in x1, . . . , xs over C when s ≥ 3 and n ≥ 1.
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Proof. It suffices to prove that the polynomial S
(n)
s,s (x2

1, . . . , x
2
s), cf. (36), is irreducible over C since all the rest can

be obtained from it by taking negation of s − i arguments xi+1, . . . xs.

Let us first suppose that s ≥ 4. If S
(n)
s,s is reducible then the projective hyperspace given by S

(n)
s,s = 0 consists of two

components. These components intersect in infinite number of points, which should be singularities of the hyperspace.

These singular points can be computed by setting the derivatives of S
(n)
s,s with respect to xj , j = 1, . . . , s equal to zero.

We obtain:

∂S
(n)
s,s

∂xj

= 2(2n + 1)xj

[

x2n−1
j (x2n+1

1 + · · · + x2n+1
s ) − (x2

1 + · · · + x2
s)

2n
]

= 0, j = 1, . . . , s.

So the singular points are either the solutions

x2
1 + · · · + x2

s = 0, x2n+1
1 + · · · + x2n+1

s = 0 (45)

or the solutions of

x2n−1
1 = x2n−1

2 = · · · = x2n−1
s = x, (x2

1 + · · · + x2
s)

2n−1 = x2. (46)

The singular points from (45) are kink points, which do not contribute to factorization. From (46), it follows that

(x2
1)

2n−1 = (x2
2)

2n−1 = · · · = (x2
s)

2n−1 = (x2
1 + · · · + x2

s)
2n−1. (47)

Hence the coordinates differ by (4n − 2)-th root of unity. Thus we get finitely many singular points. Thus the

assumption that S
(n)
s,s is reducible is false.

When s = 3, system (47) writes as

(x2
1)

2n−1 = (x2
2)

2n−1 = (x2
3)

2n−1 = (x2
1 + x2

2 + x2
3)

2n−1.

By taking x3 = 1, we have that x2
1, x2

2 and w are 2n − 1-st roots of unity such that w = x2
1 + x2

2 + 1. Note that four
complex numbers of the same absolute value can only add up to zero if they form the sides of a parallelogram with
equal sides. Therefore either w = 1 or x2

i = −1, i = 1, 2. If w = 1, then x2
1 = −x2

2 leading to (x2
1)

2n−1 = −(x2
2)

2n−1,
contradicting to (x2

1)
2n−1 = (x2

2)
2n−1. If x2

i = −1, we have (x2
i )

2n−1 = −1, contradicting to (x2
2)

2n−1 = (x2
3)

2n−1 = 1.

Hence, S
(n)
3,3 is irreducible. ⋄

The irreducibility of this family of polynomials leads to the following useful result in testing integrability.

Corollary 3. If there are no quadratic terms in homogeneous system (12) with W (u) > 0, i.e.

a2,0(ξ1, ξ2) = a1,1(ξ1, ζ1) = a0,2(ζ1, ζ2) = 0,

and ai,j 6= 0 for some i, j, i + j > 2, then system (12) does not possess higher symmetries of any order.

Proof. Without loss of generality, we assume that some of the terms in (12) of degree s ≥ 3 are not equal zero and
all terms of degree less then s are equal zero. Suppose that such system possesses a type I symmetry (14) of order
m > 1. Then it is easy to see from formulae (41) and (43) that Ai,j(ξ1, . . . , ξi, ζ1, . . . , ζj) = 0, i + j < s and

Âi,s−i(x
2
1, . . . , x

2
s) =

(x2
1 + · · · + x2

s)
rN

(m)
s (x2

1, . . . , x
2
s)

S
(n)
s,i (x2

1, . . . , x
2
s)

âi,s−i(x
2
1, . . . , x

2
s), i = 0, . . . , s.

The left hand side of the above formula must be polynomial in x1, . . . , xs. From Proposition 5 we know that polynomials

S
(n)
s,i (x2

1, . . . , x
2
s), i = 0, . . . , s are irreducible polynomials over C and these polynomials do not divide

(x2
1 + · · · + x2

s)
rN (m)

s (x2
1, . . . , x

2
s)

for any m > 1 and r ≥ 0. Therefore S
(n)
s,i must divide âi,s−i(x

2
1, . . . , x

2
s), what is impossible since

deg(âi,s−i(x
2
1, . . . , x

2
s)) = 4n + 2 − 2(s − 1)W (u) < deg(S

(n)
s,i (x2

1, . . . , x
2
s)) = 4n + 2, i = 0, . . . , s.

Thus system (12) does not possess any type I symmetry. The consideration in the case of type II symmetries is similar.
⋄

We are now ready to prove the following important theorem in classification of integrable homogeneous systems of the
form (12).
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Theorem 2. Consider homogeneous system (12) with W (u) > 0. Assume that it possesses an m-th order type I or
type II symmetry of the form (14) or (15). Suppose there is another system of the same weight and of the same form

{

ut = vζr
1 ,

vt = uξ2n+1−r
1 +

∑

k≥2

∑k

i=0 uivk−ibi,k−i(ξ1, . . . , ξk, ζ1, . . . , ζk−i),
(48)

whose quadratic terms equal to those of (12), that is, bi,2−i(x, y) = ai,2−i(x, y), i = 0, 1, 2. Then if system (48)
possesses an m-th order type I or type II symmetry, then equation (48) and (12) are equal and sharing the same type
I or type II symmetry of order m.

Proof. We will prove the statement by induction. Consider the case of symmetries of type I. Let us suppose that
equation (48) possesses a type I symmetry of the form

uτ = uξm
1 +

∑

s≥2

s
∑

j=0

ujvs−jBj,s−j(ξ1, . . . , ξj , ζ1, . . . , ζs−j) (49)

The quadratic terms of this symmetry coincide with those of (14) Bi,2−i(x, y) = Ai,2−i(x, y), i = 0, 1, 2 because the
quadratic terms of (48) and (12) coincide. Let us prove that the terms of degree 3 in (12) and (48) coincide. According
to formula (43) we have

Âi,3−i(x
2
1, x

2
2, x

2
3) =

(x2
1 + x2

2 + x2
3)

rN
(m)
3 (x2

1, x
2
2, x

2
3)

S
(n)
3,i (x2

1, x
2
2, x

2
3)

âi,3−i(x
2
1, x

2
2, x

2
3) + L

(3)
i , i = 0, 1, 2, 3

for the coefficients of the symmetry (14) of (12) and

B̂i,3−i(x
2
1, x

2
2, x

2
3) =

(x2
1 + x2

2 + x2
3)

rN
(m)
3 (x2

1, x
2
2, x

2
3)

S
(n)
3,i (x2

1, x
2
2, x

2
3)

b̂i,3−i(x
2
1, x

2
2, x

2
3) + L̃

(3)
i , i = 0, 1, 2, 3

for the coefficients of the symmetry (49) of (48).

Notice that L
(3)
i = L̃

(3)
i , i = 0, 1, 2, 3 since they only depend on the linear and quadratic terms of equations (12), (48)

and their symmetries (14) and (49), which are equal by the assumption. Therefore

B̂i,3−i(x
2
1, x

2
2, x

2
3) − Âi,3−i(x

2
1, x

2
2, x

2
3) =

=
(x2

1 + x2
2 + x2

3)
rN

(m)
3 (x2

1, x
2
2, x

2
3)

S
(n)
3,i (x2

1, x
2
2, x

2
3)

(

b̂i,3−i(x
2
1, x

2
2, x

2
3) − âi,3−i(x

2
1, x

2
2, x

2
3)
)

.

Its left hand side must be a polynomial in x1, x2, x3. In proposition 5 we proved that polynomials S
(n)
3,i (x2

1, x
2
2, x

2
3)

are irreducible polynomials over C. It is easy to see that it does not divide (x2
1 + x2

2 + x2
3)

rN
(m)
3 (x2

1, x
2
2, x

2
3) for any

n ≥ 1, m > 1 and i = 0, 1, 2, 3. Therefore S
(n)
3,i (x2

1, x
2
2, x

2
3) must divide b̂i,3−i(x

2
1, x

2
2, x

2
3)− âi,3−i(x

2
1, x

2
2, x

2
3). But this is

impossible since, for i ∈ {0, 1, 2, 3},

deg(b̂i,3−i(x
2
1, x

2
2, x

2
3) − âi,3−i(x

2
1, x

2
2, x

2
3)) = 2(2n + 1 − 2W (u) − r) < deg(S

(n)
3,i (x2

1, x
2
2, x

2
3)) = 4n + 2

due to the assumption W (u) > 0 and r ≥ 0. Hence

b̂i,3−i(x
2
1, x

2
2, x

2
3) − âi,3−i(x

2
1, x

2
2, x

2
3) = 0, B̂i,3−i(x

2
1, x

2
2, x

2
3) − Âi,3−i(x

2
1, x

2
2, x

2
3) = 0,

that is, bi,3−i(ξ1, ξ2, ξ3) = ai,3−i(ξ1, ξ2, ξ3), Bi,3−i(ξ1, ξ2, ξ3) = Ai,3−i(ξ1, ξ2, ξ3).

Suppose we have proved that the terms of degree s− 1 coincide. For terms of degree s, we have, according to formula
(43),

Âi,s−i(x
2
1, . . . , x

2
s) =

(x2
1 + · · · + x2

s)
rN

(m)
s (ξ1, . . . , ξs)

S
(n)
s,i (ξ1, . . . , ξs)

âi,s−i(x
2
1, . . . , x

2
s) + L

(s)
i , i = 0, . . . , s

for the coefficients of the symmetry (14) of (12) and

B̂i,s−i(x
2
1, . . . , x

2
s) =

(x2
1 + · · · + x2

s)
rN

(m)
s (ξ1, . . . , ξs)

S
(n)
s,i (ξ1, . . . , ξs)

b̂i,s−i(x
2
1, . . . , x

2
s) + L̃

(s)
i , i = 0, . . . , s
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for the coefficients of the symmetry (49) of (48). Terms L
(s)
i and L̃

(s)
i depend only on coefficients of degree less than

s and therefore they are equal L
(s)
i = L̃

(s)
i , i = 0, . . . , s. Hence

B̂i,s−i(x
2
1, . . . , x

2
s) − Âi,s−i(x

2
1, . . . , x

2
s) =

(x2
1 + · · · + x2

s)
rN

(m)
s (ξ1, . . . , ξs)

S
(n)
s,i (ξ1, . . . , ξs)

(

b̂i,s−i(x
2
1, . . . , x

2
s) − âi,s−i(x

2
1, . . . , x

2
s)
)

.

Again the left hand side of the last formula must be a polynomial in x1, . . . , xs and therefore S
(n)
s,i (x2

1, . . . , x
2
s) must

divide b̂i,s−i(x
2
1, . . . , x

2
s) − âi,s−i(x

2
1, . . . , x

2
s). This is impossible since

deg(b̂i,s−i(x
2
1, . . . , x

2
s) − âi,s−i(x

2
1, . . . , x

2
s)) = 4n + 2 − 2(s − 1)W (u) < deg(S

(n)
s,i (x2

1, . . . , x
2
s)) = 4n + 2, i = 0, . . . , s

using the assumption W (u) > 0. Hence bi,s−i = ai,s−i and Bi,s−i = Ai,s−i for i = 0, . . . , s. Thus we proved the
statement for type I symmetries. The proof in the case of symmetries of type II is analogous. ⋄

Finally, we state and prove the global classification result of homogeneous system (9).

Theorem 3. If a homogeneous system (9) with W (u) = w > 0 possesses a hierarchy of infinitely many higher
symmetries, then it is one of the systems in the following list up to re-scaling u → αu, v → βv, t → γt, x → δx, where
α, β, γ, δ are constant:

{

ut = v1,
vt = u2 + 3uv1 + vu1 − 3u2u1,

(50)

{

ut = v1,
vt = (Dx + u)2n(u) − v2, n = 1, 2, 3, . . . .

(51)

Proof. We prove the theorem in symbolic representation. We know that system (9) in symbolic representation takes
the form of (12). In Corollary 3 we have proved that if (9) possesses higher symmetries then the differential polynomial
F in (9) must contain quadratic terms and therefore w = W (u) > 0 is either integer or half-integer. Indeed,

R2
2n+1−r+w = span{uiuj |i + j = 2n + 1 − r − w, i, j ∈ N0}

⊕

span{uivj |i + j = n +
1

2
− w, i, j ∈ N0}

⊕

span{vivj |i + j = r − w, i, j ∈ N0},

where N0 = N
⋃

{0}. Therefore if differential polynomial F in (9) contains quadratic terms then the weight of variable
u is either integer or half-integer, i.e. either w ∈ N or w = s − 1

2 , s ∈ N. Furthermore, from the Theorem 2 it follows
that it suffice to classify integrable systems (9) up to quadratic terms. If system (9) or rather say (12) possesses a
hierarchy of infinitely many higher symmetries, it possesses infinitely many approximate symmetries of degree 2 of
type I or type II. We first assume that these are of type I of the form

uτj
= uξ

mj

1 + u2A
(j)
2,0(ξ1, ξ2) + uvA

(j)
1,1(ξ1, ζ1) + v2A

(j)
0,2(ζ1, ζ2) + o(R2), j = 1, 2, 3, . . .

where 1 < m1 < m2 < · · · < mj < mj+1 < · · · . From Theorem 1 and Corollary 2, it follows that

Â
(j)
2,0(x

2
1, x

2
2) = (x2

1 + x2
2)

r N
(mj)
2 (x2

1, x
2
2)

S
(n)
2,2 (x2

1, x
2
2)

â2,0(x
2
1, x

2
2), Â

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)

r N
(mj)
2 (x2

1, x
2
2)

S
(n)
2,1 (x2

1, x
2
2)

â1,1(x
2
1, x

2
2)

Â
(j)
0,2(x

2
1, x

2
2) = (x2

1 + x2
2)

r N
(mj)
2 (x2

1, x
2
2)

S
(n)
2,2 (x2

1, x
2
2)

â0,2(x
2
1, x

2
2)

must be polynomials in x1, x2 for any mj, j = 1, 2, . . .. Notice that polynomials S
(n)
2,i (x2

1, x
2
2) and N

(mj)
2 (x2

1, x
2
2) can

be factorized as
S

(n)
2,i (x2

1, x
2
2) = x2

1x
2
2Ŝ

(n)
2,i (x2

1, x
2
2), N

(mj)
2 (x2

1, x
2
2) = x2

1x
2
2N̂

(mj)
2 (x2

1, x
2
2),

which leads to

Â
(j)
2,0(x

2
1, x

2
2) = (x2

1 + x2
2)

r N̂
(mj)
2 (x2

1, x
2
2)

Ŝ
(n)
2,2 (x2

1, x
2
2)

â2,0(x
2
1, x

2
2), Â

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)

r N̂
(mj)
2 (x2

1, x
2
2)

Ŝ
(n)
2,1 (x2

1, x
2
2)

â1,1(x
2
1, x

2
2)

Â
(j)
0,2(x

2
1, x

2
2) = (x2

1 + x2
2)

r N̂
(mj)
2 (x2

1, x
2
2)

Ŝ
(n)
2,2 (x2

1, x
2
2)

â0,2(x
2
1, x

2
2).
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We can easily check gcd((x2
1 + x2

2)
r, S

(n)
2,i (x2

1, x
2
2)) = gcd((x2

1 + x2
2)

r, Ŝ
(n)
2,i (x2

1, x
2
2)) = 1. Moreover, from Lemma 1

in Appendix A it follows that if there exist infinitely many mj such that Âi,2−i, i = 0, 1, 2 are polynomial, then
mj = 2, 3, 4, . . . and

Ŝ
(n)
2,2 (x2

1, x
2
2)|â2,0(x

2
1, x

2
2), Ŝ

(n)
2,1 (x2

1, x
2
2)|â1,1(x

2
1, x

2
2), Ŝ

(n)
2,2 (x2

1, x
2
2)|â0,2(x

2
1, x

2
2). (52)

Counting the degrees of these polynomials we obtain that the division is possible only if

deg(âi,2−i) = 4n + 2 − 2r − 2w ≥ deg(Ŝ
(n)
2,i (x2

1, x
2
2)) = 4n − 2, i = 0, 1, 2

implying r + w ≤ 2. Since w > 0 is either integer or half-integer, there are only four possible cases as follows:

1. w = 2, r = 0;

2. w = 3
2 , r = 0;

3. w = 1, r = 0, 1;

4. w = 1
2 , r = 0, 1.

Let us compute the degrees of quadratic terms in the system we are considering. Applying formula (13), we have
deg(a1,1(ξ1, ξ2)) = n − w + 1

2 , deg(a0,2(ξ1, ξ2)) = r − w, deg(a2,0(ξ1, ξ2)) = 2n + 1 − w − r. We know that all these
numbers should be positive integers, which enable us to determine the possible quadratic terms.

Case 1. The only possible quadratic term in equation (12) is a2,0. This leads to

â2,0(x
2
1, x

2
2) = â0,2(x

2
1, x

2
2) = a2,0(x

2
1, x

2
2), â1,1(x

2
1, x

2
2) = 2a2,0(x

2
1, x

2
2).

From formula (52) we see that both Ŝ
(n)
2,i (x2

1, x
2
2) must divide a2,0(x

2
1, x

2
2). It is easy to check that

gcd(Ŝ
(n)
2,2 (x2

1, x
2
2), Ŝ

(n)
2,1 (x2

1, x
2
2)) = 1.

So we have Ŝ
(n)
2,2 (x2

1, x
2
2)Ŝ

(n)
2,1 (x2

1, x
2
2)|a2,0(x

2
1, x

2
2). But this is impossible since

deg(a2,0(x
2
1, x

2
2)) = 4n − 2 < deg(Ŝ

(n)
2,2 (x2

1, x
2
2)Ŝ

(n)
2,1 (x2

1, x
2
2)) = 8n − 4, for all n > 0.

Case 2. The only possible quadratic term in equation (12) is a1,1. Notice that polynomial Ŝ
(n)
2,i (x2

1, x
2
2), â2,0(x

2
1, x

2
2)

and â0,2(x
2
1, x

2
2) are symmetric and polynomial â1,1(x

2
1, x

2
2) is antisymmetric with respect to x1, x2. Due to (52), we

have

â2,0(x
2
1, x

2
2) = −â0,2(x

2
1, x

2
2) = c1(x1 + x2)Ŝ

(n)
2,2 (x2

1, x
2
2), â1,1 = c2(x1 − x2)Ŝ

(n)
2,1 (x2

1, x
2
2), (53)

where c1, c2 are arbitrary constants. Inverting formulae (23), (24) and (25) or using directly (20) for a1,1, we find that

a1,1(x
2
1, x

2
2) =

1

4x2n+1
2

(

2â2,0(x
2
1, x

2
2) − 2â0,2(x

2
1, x

2
2) + â1,1(x

2
2, x

2
1) − â1,1(x

2
1, x

2
2)
)

, (54)

which must be a polynomial in x1, x2. Substituting (53) into (54), we see that this can only happen when c1 = c2 = 0
implying a1,1 = 0. Hence our equation does not contain quadratic terms and therefore does not possess higher
symmetries.

Case 3. If r = 0, the only possible quadratic term in equation (12) is a2,0. This leads to

â2,0(x
2
1, x

2
2) = â0,2(x

2
1, x

2
2) = a2,0(x

2
1, x

2
2), â1,1(x

2
1, x

2
2) = 2a2,0(x

2
1, x

2
2).

Similar to Case 1, we obtain that Ŝ
(n)
2,2 (x2

1, x
2
2)Ŝ

(n)
2,1 (x2

1, x
2
2) must divide a2,0(x

2
1, x

2
2), which can only happen if

deg(a2,0(x
2
1, x

2
2)) = 4n ≥ deg(Ŝ

(n)
2,2 (x2

1, x
2
2)Ŝ

(n)
2,1 (x2

1, x
2
2)) = 8n− 4,

that is, 4n ≤ 4 implying n = 1. Therefore, there exists a constant c such that

a2,0(x
2
1, x

2
2) = cŜ

(n)
2,2 (x2

1, x
2
2)Ŝ

(n)
2,1 (x2

1, x
2
2) = c

(

9x4
1 + 9x4

2 + 14x2
1x

2
2

)

.
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This leads to

Â
(j)
2,0(x

2
1, x

2
2) = Â0,2(x

2
1, x

2
2) = c(3x2

1 + 3x2
2 + 2x1x2)N̂

(mj)
2 , Â

(j)
1,1(x

2
1, x

2
2) = c(3x2

1 + 3x2
2 − 2x1x2)N̂

(mj)
2 .

From formulae (38), (39) and (40) we find that

A
(j)
2,0(x

2
1, x

2
2) = 3c(x2

1 + x2
2)N̂

(mj)
2 (x2

1, x
2
2), A

(j)
1,1(x

2
1, x

2
2) = 0 A

(j)
0,2(x

2
1, x

2
2) = 2c

N̂
(mj)
2 (x2

1, x
2
2)

x2
1x

2
2

.

It is easy to see that x2
1x

2
2 does not divide N̂

(mj)
2 (x2

1, x
2
2) for any integer mj > 1, so A0,2(x

2
1, x

2
2) is not a polynomial

unless c = 0 what implies a2,0 = 0. So system (12) has no quadratic terms and therefore is not integrable.

If r = 1, then we have a1,1 = 0 and therefore

â2,0(x
2
1, x

2
2) = â0,2(x

2
1, x

2
2) = a2,0(x

2
1, x

2
2) + a0,2(x

2
1, x

2
2)(x1x2)

2n+1

â1,1(x
2
1, x

2
2) = 2a2,0(x

2
1, x

2
2) − 2a0,2(x

2
1, x

2
2)(x1x2)

2n+1

It is easy to see that deg(âi,2−i(x
2
1, x

2
2)) = deg(Ŝ

(n)
2,i (x2

1, x
2
2)) = 4n − 2, i = 0, 1, 2. It follows from (52) that

â2,0(x
2
1, x

2
2) = â0,2(x

2
1, x

2
2) = c1Ŝ

(n)
2,2 (x2

1, x
2
2), â1,1(x

2
1, x

2
2) = c2Ŝ

(n)
2,1 (x2

1, x
2
2), (55)

where c1, c2 are constant. Inverting formulae (23), (24) and (25) or using directly formula (20) for the quadratic terms,
we find

a2,0(x
2
1, x

2
2) =

1

8

(

4â2,0(x
2
1, x

2
2) + â1,1(x

2
1, x

2
2) + â1,1(x

2
2, x

2
1)
)

,

a0,2(x
2
1, x

2
2) =

1

8x2n−1
1 x2n−1

2

(

4â2,0(x
2
1, x

2
2) − â1,1(x

2
1, x

2
2) − â1,1(x

2
2, x

2
1)
)

Substituting (55) into the above formulae we find that a0,2(x
2
1, x

2
2) is a polynomial in x2

1, x
2
2 if and only if c2 = 2c1.

Hence a0,2(x
2
1, x

2
2) = −2c1. Without loss of generality we can put c1 = 1

2 , so

a0,2(x
2
1, x

2
2) = −1, a2,0(x

2
1, x

2
2) =

1

4

2n
∑

j=1

Cj
2n+1(x

2
1)

j−1(x2
2)

2n−j . (56)

Therefore

Â
(j)
2,0(x

2
1, x

2
2) = Â

(j)
0,2(x

2
1, x

2
2) =

1

2
(x2

1 + x2
2)N̂

(mj)
2 (x2

1, x
2
2), Â

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)N̂

(mj)
2 (x2

1, x
2
2)

and leads to

A
(j)
2,0(x

2
1, x

2
2) =

1

2
(x2

1 + x2
2)N̂

(mj)
2 (x2

1, x
2
2), A

(j)
1,1(x

2
1, x

2
2) = A

(j)
0,2(x

2
1, x

2
2) = 0.

Thus system (12) with quadratic terms (56) and r = 1 possesses infinitely many type I approximate symmetries of
degree 2 of any order mj > 1.

Case 4. The only possible quadratic term in equation (12) is a1,1. If r = 0, then deg(âi,2−i(x
2
1, x

2
2)) = 4n + 1, i =

0, 1, 2. Notice that polynomials Ŝ
(n)
2,i (x2

1, x
2
2), â2,0(x

2
1, x

2
2) and â0,2(x

2
1, x

2
2) are symmetric while polynomial â1,1(x

2
1, x

2
2)

is antisymmetric with respect to x1, x2. Due to (52), we have

â2,0(x
2
1, x

2
2) = −â0,2(x

2
1, x

2
2) =

(

c1(x
3
1 + x3

2) + c2x1x2(x1 + x2)
)

Ŝ
(n)
2,2 (x2

1, x
2
2), (57)

â1,1(x
2
1, x

2
2) =

(

d1(x
3
1 − x3

2) + d2x1x2(x1 − x2)
)

Ŝ
(n)
2,1 (x2

1, x
2
2), (58)

where c1, c2, d1, d2 are arbitrary constants. Substituting these expressions into (54) as in Case 2, we find that
a1,1(x

2
1, x

2
2) is a non-vanishing polynomial in even powers of x1, x2 only when n = 1 and d1 = 2c1, d2 = − 4

3c1, c2 = 2
3c1.

Without loss of generality we can choose c1 = 3
2 . It follows that

a1,1(x
2
1, x2) = 11x2

1 + 9x2
2

Therefore for Âi,2−i we obtain

Â
(j)
2,0(x

2
1, x

2
2) = −Â

(j)
0,2(x

2
1, x

2
2) =

(

3

2
(x3

1 + x3
2) + x1x2(x1 + x2)

)

N̂
(mj)
2 (x2

1, x
2
2)

Â
(j)
1,1(x

2
1, x

2
2) =

(

3(x3
1 − x3

2) − 2x1x2(x1 − x2)
)

N̂
(mj)
2 (x2

1, x
2
2)
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and hence

A
(j)
1,1(x

2
1, x

2
2) =

N̂
(mj)
2 (x2

1, x
2
2)

x2
2

(

3x2
2 + 2x2

1

)

, A
(j)
2,0(x

2
1, x

2
2) = A

(j)
0,2(x

2
1, x

2
2) = 0.

It is clear that A
(j)
1,1(x

2
1, x

2
2) is not polynomial since x2

2 does not divide N̂
(mj)
2 (x2

1, x
2
2) for any mj > 1. Thus equation

(12) does not possess an infinite many type I approximate symmetries of degree 2.

If r = 1, then deg(âi,2−i(x
2
1, x

2
2)) = 4n − 1, i = 0, 1, 2. Similar as Case 2, we obtain the formula (53). Inverting (23),

(24) and (25) we find that

a1,1(x
2
1, x

2
2) =

1

4x2n−1
2

(

2â2,0(x
2
1, x

2
2) − 2â0,2(x

2
1, x

2
2) + â1,1(x

2
2, x

2
1) − â1,1(x

2
1, x

2
2)
)

, (59)

Substituting (53) into (59), we find that a1,1(x
2
1, x

2
2) is a non-zero polynomial in even powers of x1, x2 if and only

c2 = 2c1 and n = 1. Without loss of generality we choose c1 = 1
2 , c2 = 1 and hence

a1,1(x
2
1, x

2
2) = x2

1 + 3x2
2. (60)

For Â
(j)
i,2−i(x

2
1, x

2
2) we therefore obtain

Â
(j)
2,0(x

2
1, x

2
2) = −Â

(j)
0,2(x

2
1, x

2
2) =

1

2
(x1 + x2)(x

2
1 + x2

2)N̂
(mj)
2 (x2

1, x
2
2),

Â
(j)
1,1(x

2
1, x

2
2) = (x1 − x2)(x

2
1 + x2

2)N̂
(mj)
2 (x2

1, x
2
2)

and hence
A

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)N̂

(mj)
2 (x2

1, x
2
2), A2,0(x

2
1, x

2
2) = A0,2(x

2
1, x

2
2) = 0.

Thus we proved that system (12) with the quadratic terms (60) and n = 1, r = 1 possesses infinitely many type I
approximate symmetries of degree 2 of any order mj > 1.

Summarizing the results in the above four cases, we proved that if system (9) possesses infinitely many type I ap-
proximate symmetries of degree 2 of any order mj > 1, then it is up re-scaling one of the systems in the following
list:

{

ut = v1

vt = u2 + u1v + 3uv1 + h, h = o(R2)
(61)

{

ut = v1

vt = u2n − v2 + 1
2

∑2n
j=1 Cj

2n+1uj−1u2n−j + h, h = o(R2)
(62)

Let us now assume that system (12) possesses infinitely many approximate symmetries of degree 2 of type II of the
form

uτj
= vζ

r+mj

1 + u2A
(j)
2,0(ξ1, ξ2) + uvA

(j)
1,1(ξ1, ζ1) + v2A0,2(ζ1, ζ2) + o(R2), j = 1, 2, 3, . . .

and 1 < m1 < m2 < · · · < mj < mj+1 < · · · . From Theorem 1 and Corollary 2, it follows that

Â
(j)
2,0(x

2
1, x

2
2) = (x2

1 + x2
2)

r
M

(mj)
2,2 (x2

1, x
2
2)

S
(n)
2,2 (x2

1, x
2
2)

â2,0(x
2
1, x

2
2), Â

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)

r
M

(mj)
2,1 (x2

1, x
2
2)

S
(n)
2,1 (x2

1, x
2
2)

â1,1(x
2
1, x

2
2)

Â
(j)
0,2(x

2
1, x

2
2) = −(x2

1 + x2
2)

r
M

(mj)
2,2 (x2

1, x
2
2)

S
(n)
2,2 (x2

1, x
2
2)

â0,2(x
2
1, x

2
2)

must be polynomials in x1, x2 for every mj . Notice that polynomials M
(mj)
2,i (x2

1, x
2
2) can be factorized as

M
(mj)
2,i (x2

1, x
2
2) = x2

1x
2
2M̂

(mj)
2,i (x2

1, x
2
2),

which leads to

Â
(j)
2,0(x

2
1, x

2
2) = (x2

1 + x2
2)

r
M̂

(mj)
2,2 (x2

1, x
2
2)

Ŝ
(n)
2,2 (x2

1, x
2
2)

â2,0(x
2
1, x

2
2), Â

(j)
1,1(x

2
1, x

2
2) = (x2

1 + x2
2)

r
M̂

(mj)
2,1 (x2

1, x
2
2)

Ŝ
(n)
2,1 (x2

1, x
2
2)

â1,1(x
2
1, x

2
2)

Â
(j)
0,2(x

2
1, x

2
2) = −(x2

1 + x2
2)

r
M̂

(mj)
2,2 (x2

1, x
2
2)

Ŝ
(n)
2,2 (x2

1, x
2
2)

â0,2(x
2
1, x

2
2)
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from Lemma 2 in Appendix A, if there exist infinitely many mj such that the above expressions are polynomials in
x1, x2, then mj = 1, 2, 3, 4, . . . and

Ŝ
(n)
2,2 (x2

1, x
2
2)|â2,0(x

2
1, x

2
2), Ŝ

(n)
2,2 (x2

1, x
2
2)|â0,2(x

2
1, x

2
2) Ŝ

(n)
2,1 (x2

1, x
2
2)|â1,1(x

2
1, x

2
2). (63)

We then repeat what we did for the case of type I symmetries and we obtain the similar conclusion: If system (12)
possesses infinitely many type II approximate symmetries of degree 2 of any order mj > 1, then it is up re-scaling
either (61) or (62).

By now we have classified all systems (12) possessing infinite many approximate symmetries of degree 2. We know
that system (50) possesses infinitely many higher symmetries of any order of form (14) and (15). Notice that the
quadratic terms of (50) and of the system (61) coincide. By Theorem 2, if system (61) possesses an exact symmetry of
some order m for some h in its right hand side , it must coincide with the system (50), that is, h = −3u2u1. Similarly,
quadratic terms of (51) and of the system (62) coincide and system (51) possesses higher symmetries of any order.
Therefore, if system (62) possesses an exact symmetry of some order for some h then it coincides with (51). ⋄

System (51) is equivalent to a linear equation wtt = ∂2n+1
x w under the Cole-Hopf transformation u = (log w)x. This

system possesses infinitely many type I symmetries

uτm
= Dx(Dx + u)m−1u, m = 2, 3, . . .

and type II symmetries
uτm

= Dx(v + Dt)(Dx + u)m−1u.

These symmetries correspond to the symmetries wτm
= wm and wτm

= wt m of wtt = w2n+1.

5 Conclusion and Discussion

This is the first paper dealing with the global classification of the systems with two components. The success of global
classification relies on so-called implicit function theorem in [11]. The theorem implies that the existence of infinitely
many approximate symmetries of low degree together with one symmetry leads to integrability. The proof of the
theorem is straightforward and purely algebraic. However, to check the conditions of the theorem requires to prove
the irreducibility of a family of polynomials. In this paper, Theorem 2 can be viewed as another version of it. The

required irreducibility of polynomials S
(n)
s,i (x2

1, . . . , x
2
s) defined by (36) is proved by algebraic geometrical arguments in

Proposition 5.

The formal diagonalisation approach proposed in this paper can be applied to large classes of systems with the
diagonalisable linear part. This type of equations is generic and it has not been treated by other classification
methods. Our approach enables us to explicitly write down the necessary conditions for integrability. We are able to
prove that these conditions are indeed sufficient. Resolution of these conditions leads us to the ultimate classification
result.

We have not applied this approach to the systems with nilpotent linear part yet. However, we do not expect any
difficulties in this case. The final goal will be to combine these two classes and to obtain the global classification
of homogeneous polynomial evolutionary systems of two components as it has been done for the scalar evolutionary
equations [11].

Appendix A

Here we prove the lemmas required in the proof of Theorem 3. which is based on the theorem of Lech-Mahler and its
straightforward corollary.

Theorem 4 (Lech, Mahler). Let A1, A2, . . . , An ∈ C and a1, a2, . . . , an be non-zero complex numbers. Suppose that
none of the ratios Ai/Aj with i 6= j is a root of unity. Then the equation

a1A
m
1 + a2A

m
2 + · · · + anAm

n = 0

in the unknown integer m has finitely many solutions.

Corollary 4. Let A, B, C ∈ C and a, b, c be non-zero complex numbers. Suppose that the equation

aAm + bBm + cCm = 0

has infinitely many integers m as solution. Then A/B and A/C are both roots of unity.
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We simplify our notations by writing S+ = S
(n)
2,2 , S− = S

(n)
2,1 , M+

mj
= M

(mj)
2,2 and M−

mj
= M

(mj)
2,1 .

Lemma 1. Consider an infinite sequence of polynomials

N
(mj)
2 (x2

1, x
2
2) = (x2

1 + x2
2)

mj − x
2mj

1 − x
2mj

2 , 1 < m1 < m2 < · · · < mj < mj+1 < · · · (64)

If there exist infinite many mj such that each N
(mj)
2 (x2

1, x
2
2) has nontrivial common divisor with the polynomial

S±(x2
1, x

2
2) defined by (36), Then mj = 2, 3, 4, . . . and gcd{S±(x2

1, x
2
2), N

(2)
2 (x2

1, x
2
2), N

(3)
2 (x2

1, x
2
2), . . .} = x2

1x
2
2.

Proof. Since the polynomials S±(x2
1, x

2
2) and N

(mj)
2 (x2

1, x
2
2) are homogeneous polynomials in x1, x2 it is convenient to

consider them in affine coordinate x1

x2
. If they have nontrivial common divisor, these exist q as a common root, that

is,

S±(q) = (1 + q2)2n+1 − (1 ± q2n+1)2 = 0

N
(mj)
2 (q) = (1 + q2)mj − 1 − q2mj = 0,

which is required to be satisfied for infinitely many integers mj > 1. Applying the Lech-Mahler theorem to it we find
that this is possible if one of the listed cases holds:

• q = 0 (double root), mj = 2, 3, 4, . . .,

• q = ±i, mj = 1 mod 2,

• q = e
πi
3 , e

2πi
3 , e

4πi
3 , e

5πi
3 , mj = 5 mod 6,

• q = e
πi
3 , e

2πi
3 , e

4πi
3 , e

5πi
3 (double roots), mj = 1 mod 6.

The last three sets of roots do not satisfy the equation S±(q) = 0 for any n > 0, while q = 0 is a double roots of
S±(q). Lemma is proved. ⋄

Lemma 2. Consider an infinite sequence of polynomials

M±
mj

(x2
1, x

2
2) = (x2

1 + x2
2)(x

2n+1
1 ± x2n+1

2 ) − x2n+2m+1
1 − (±x2n+2m+1

2 ), (65)

0 < m1 < m2 < · · · < mj < mj+1 < · · ·

If there exist infinite many mj such that each M+
mj

(x2
1, x

2
2) (or M−

mj
(x2

1, x
2
2)) has nontrivial common divisor with the

polynomial S+(x2
1, x

2
2) (or S−(x2

1, x
2
2) ) defined by (36), Then mj = 1, 2, 3, 4, . . . and

gcd{S+(x2
1, x

2
2), M

+
1 (x2

1, x
2
2), M

+
2 (x2

1, x
2
2), . . .} = x2

1x
2
2;

gcd{S−(x2
1, x

2
2), M

−
1 (x2

1, x
2
2), M

−
2 (x2

1, x
2
2), . . .} = x2

1x
2
2.

Proof. Similar as in the proof of Lemma 1, we consider polynomials S±(x2
1, x

2
2) and M±

mj
(x2

1, x
2
2) in affine coordinate

x1

x2
. If S+(x2

1, x
2
2) and M+

mj
(x2

1, x
2
2) have nontrivial common divisor, these exist q as a common root, that is,

S+(q) = (1 + q2)2n+1 − 1 − q4n+2 − 2q2n+1 = 0

M+
mj

(q) = (1 + q2)mj (1 + q2n+1) − (q2)mj q2n+1 − 1 = 0,

which is required to hold for infinitely many positive integers mj . We apply the Lech-Mahler theorem to it and obtain:

• q = 0 (double root), mj ∈ Z+,

• q2n+1 = −1, q2mj = 1,

• q = e
πi
3 , e

5πi
3 and n = 1 mod 3, mj = 0 mod 3 or n = 2 mod 3, mj = 0 mod 6, 1 mod 6 or n = 0

mod 3, mj = 0 mod 6, 5 mod 6,

• q = e
2πi
3 , e

4πi
3 and n = 1 mod 3, mj = 0 mod 6 or n = 2 mod 3, mj = 0 mod 6, 4 mod 6 or n = 0

mod 3, mj = 0 mod 6, 2 mod 6.

It is easy to check that the roots from the last three cases are not the roots of S+(q) for any integer n ≥ 1, while q = 0 is
a double root of S+(q). Therefore, we have mj = 1, 2, 3, . . . and gcd{S+(x2

1, x
2
2), M

+
1 (x2

1, x
2
2), M

+
2 (x2

1, x
2
2), . . .} = x2

1x
2
2.

Similarly, we can prove the second half of the lemma. ⋄
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