University of

"1l Kent Academic Repository

Chitil, Olaf and Luo, Yong (2006) Proving the Correctness of Algorithmic
Debugging for Functional Programs. In: Pre-Proceedings of the Seventh
Symposium on Trends in Functional Programming, TFP 2006. .

Downloaded from
https://kar.kent.ac.uk/14485/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14485/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Proving the Correctness of Algorithmic Debugging for
Functional Programs

Olaf Chitil and Yong Luo

Computing Laboratory, University of Kent, Canterbury, Kent, UK
Email: {O.Chitil, Y.Luo}@kent.ac.uk

Abstract

This paper formally presents a model of tracing for functional programs based on a
small-step operational semantics. The model records the computation of a functional
program in a graph which can be utilised for various purposes such as algorithmic
debugging. The main contribution of this paper is to prove the correctness of algorith-
mic debugging for functional programs based on the model. Although algorithmic
debugging for functional programs is implemented in several tracers such as Hat, the
correctness has not been formally proved before. The difficulty of the proof is to find
a suitable induction principle and a more general induction hypothesis.

1 INTRODUCTION

Usually, a computation is treated as a black box that performs input and output
actions. However, we have to look into the black box when we want to see how the
different parts of the program cause the computation to perform the input/output
actions. The most common need for doing this is debugging: When there is a
disparity between the actual and the intended semantics of a program, we need to
locate the part of the program that causes the disparity. Tracing is the process of
obtaining additional information about the internal workings of a computation.

Traditional debugging techniques are not well suited for declarative program-
ming languages such as Haskell, because it is difficult to determine the evaluation
order. In fact, functional programmers want to ignore low-level operational details,
in particular the evaluation order, but take advantage of properties such as explicit
data flow and absence of side effects. Algorithmic debugging (also called declar-
ative debugging) is proposed and adapted in logic and functional programming
languages [14, 9, 13].

Several tracing systems for lazy functional languages are available, all for
Haskell [15, 9, 5, 17, 18, 13]. All systems take a two-phase approach to tracing:

1. During the computation information about the computation is recorded in a
data structure, the trace.

2. After termination of the computation the trace is used to view the computa-
tion. Usually an interactive tool displays fragments of the computation on
demand. The programmer uses their knowledge of the intended behaviour
of the program to locate faults.

Each tracing method gives a different view of a computation; in practice, the views
are complementary and can productively be used together [4]. Hence the Haskell
tracer Hat integrates several methods [17]. During a computation a single unified
trace is generated, the augmented redex trail (ART). Separate tools provide different
views of the ART, for example algorithmic debugging [14, 9, 13], following redex
trails [16] and observing functions [5].

Although several tracing systems and methods have been implemented for
functional programs, there is a lack of theoretical foundation for tracing. In this
paper, our aim is to give a direct and simple definition of trace that will enable us
to formally relate a view to the semantics of a program. The evaluation dependency
tree (EDT) for algorithmic debugging will also be generated from a computation
graph. We can correctly locate program faults, and the correctness will be formally
proved. It has not been proved for logic or functional programs. This is a non-
trivial proof and the difficulty is to find a suitable induction principle and a more
general induction hypothesis.

In the next section we give an brief overview of the ART and EDT. Related
work are also discussed. In Section 3, some basic definitions and the ART are for-
mally presented. In Section 4, we show how to generate an EDT for algorithmic
debugging from an ART. In Section 5, we prove the properties of an EDT, in partic-
ular, the correctness of algorithmic debugging. Some future work will be discussed
in the last section.

2 OVERVIEW OF ART AND EDT

Term graph rewriting [12] provides an operational semantics for functional pro-
grams that is abstract and closely related to standard term rewriting semantics.
In contrast to terms/expressions, graphs allow the sharing of common subexpres-
sions as it happens in real implementations of functional languages, such as the
G-machine [6] or the more efficient STG-machine [11]. Term graph rewriting can
correctly model the asymptotic time and space complexity of real implementations
[1]. For us sharing is the key for a space efficient trace structure and closeness to
the implementation also promises easy creation of a trace.

The augmented redex trail (ART) is a compact but detailed representation of
the computation; in particular, it directly relates each redex with its reduct. The
ART does not overwrite a redex with its reduct, but adds the reduct into the graph.
Although there may be some sharing nodes but the existing graph will never be
modified. A detailed example can be found in [3]. In this paper the ART has no
information about the order of computation because this information is irrelevant.
We formulate and prove properties without reference to any reduction strategy.
This observation agrees with our idea that functional programmers abstract from
time.

We concentrate on the ART because it was already distilled as a unified trace
from several other traces. This focus on the ART does not preclude revisions of

its definition in the light of new insights. We are aware of several shortcomings
(lack of information) that we intend to remove. Although the ART is only used for
Haskell, it is suitable for both strict and non-strict pure functional languages.

An evaluation dependency tree (EDT), as described in [10, 7], is for users to
determine if a node is erroneous. And algorithmic debugging can be thought of as
searching an EDT for a fault in a program. The user answers whether the equations
in an EDT are correct. If a node in an EDT is erroneous but has no erroneous
children, then this node is called a faulty node [7]. We shall concentrate on faulty
nodes in the paper.

The idea of EDT for algorithmic debugging has been implemented for several
logic or functional languages. Some theoretical foundations for algorithmic de-
bugging have been studied [2]. However, one of the key properties of EDT, the
correctness of algorithmic debugging, has not been formally proved.

Related Work

In [16], the idea of redex trail is developed and the computation builds its own trial
as reduction proceeds. In [17], Hat, a tracer for Haskell 98, is introduced. The trace
in Hat is recorded in a file rather than in memory. Hat integrates several viewing
methods such as Functional Observations, Reduction Trails and Algorithmic de-
bugging.

In [7], Naish presents a very abstract and general scheme for algorithmic de-
bugging. The scheme represents a computation as a tree and relies on a way of
determining the correctness of a subcomputation represented by a subtree. In Nils-
son’s thesis [8], a basis for algorithmic debugging of lazy functional programs is
developed in the form of EDT which hides operational details. The EDT is con-
structed efficiently in the context of implementation based on graph reduction. In
[2], Callaero et al formalise both the declarative and the operation semantics of
programs in a simple language which combines the expressivity of pure Prolog
and a significant subset of Haskell, and provide firm theoretical foundations for the
algorithmic debugging of wrong answers in lazy functional logic programming.

3 FORMALISING AN ART

In this section we give some basic definitions which will be used throughout the
paper, and we describe how to build an ART.

Definition 1. (Termsand Patterns)
e A variable or constructor is a term.
e MN isatermif M and N are terms.

e A variable is a pattern.

e Cp1...pn is a pattern if ¢ is a constructor and ps,..., pn are patterns, and the
arity of ciis n.

Definition 2. (Rewriting rule) A rewriting rule is of the form
f p1...pn=t

where pi,..., pn (n > 0) are patterns and t is a term.

Example 3. id x = x and not True = False are rewriting rules.

We only allow disjoint patterns if there are more than one rewriting rules for a
function. We also require that the number of the arguments of a function in the left
hand side must be the same. For example, if there is a computation rule f ¢; =g,
then f ¢c2 c3 = ¢4 is not allowed. The purpose of disjointness is to prevent us from
giving different values to the same argument when we define a function. It is one
of the ways to guarantee the property of Church-Rosser. In many programming
languages such as Haskell the requirement of disjointness is not needed, because
the patterns for a function have orders. If a closed term matches the first pattern,
the algorithm will not try to match other patterns. In this paper, we only consider
disjoint patterns.

Definition 4. (Node, Node expression and Computation graph)
e Anodeis a sequence of letterst, l and r, i.e. {t,I,r}*

e A node expression is either a variable, or a constructor, or a node, or an
application of two nodes, which is of the form mon.

e A computation graph is a set of pairs which are of the form (n,e), where n
is a node and e is a node expression.

Example 5. The following is a computation graph for the term id (not True).

{(t,tlotr), (tl,id), (tr,trlotrr), (trl,not), (trr, True),
(tt,tr), (trt,False)}

And it represents the following graph.

The letters | and r mean the left and right hand side of an application respectively.
The letter t means a small step of computation. The computation steps are omitted
in a graph because if a node mt in a graph then there is a computation from the
node m to mt. For example, (t,tt) and (tr,trt) are not included in the above graph.

Notation: dom(G) denotes the set of nodes in a computation graph G.

Pattern matching in a graph

The pattern matching algorithm for a graph has two different results, either a set of
substitutions or “doesn’t match”. First, we give some notational definitions.

e The final node in a sequence of reduction starting at node m, last(G,m).

last(G,mt) if mt € dom(G)
m otherwise

last(G,m) = {

The purpose of this function is to find out the most evaluated point for m.
For example, if G is the graph in Example 5, then we have last(G,t) = tt
and last(G,tr) =trt.

e The head of the term at node m, head (G, m), where G is a graph and m is a
node in G.
head (G, last(G,i)) if (m,icj)eG

head(G,m) = {f if (m,f) €G

For example, if G is the graph in Example 5, then we have head(G,t) = id
and head(G,tr) = not.
e The arguments of the function at node m, args(G, m).

(args(G, last(G,i)),j) if(mjio])eG

args(G,m) = {(> otherwise

Note that the arguments of a function are a sequence of nodes. For exam-
ple, if G is the graph in Example 5, then we have args(G,t) = (tr) and
args(G,tr) = (trr).

Now, we define two functions matchy and match, mutually. The arguments of
matchy are a node and a pattern. The arguments of match, are a sequence of nodes
and a sequence of patterns.

e matchy(G,m,x) = [m/X]

e Formatchi(G,m,cqs...qx), letm’ = last(G, m) and arguments = args(G,m’),
if head(G,m’) = c then

match1 (G, m,cq1...qk) = matchy(G,arguments, (g1, ..., k))

otherwise m does not match cqs...Qk.

matchz (G, (M1, ...,Mn), (P1, ..., Pn))
= match1(G,m1, p1)U...Umatch1(G, mp, pn)

However, if any m; does not match pj, (my, ..., mp) does not match (p1, ..., Pn).

e We say that G at node m matches fps...pn = N with [m1/xq,...,mg/xy] if
head(G,m) = f and

matchz(G,args(G,m), [p1, ..., Pn]) = [M1/X1, ..., Mk/Xk]

In the substitution form [m/x], m is not a term but a node. In Example 5, the
graph at node t matches id x = x with [tr/x]. The definition of pattern matching
and its result substitution sequence will become important for making computation
order irrelevant when we generate graphs. In Example 5, no matter which node is
reduced first, t or tr, the final graph will be the same.

Building an ART

Graph for substituted expressions. When a term is substituted by a sequence of
shared nodes, it becomes substituted expression. The function graph defined in
the following has two arguments: a node and a substituted expressions. The result
of graph is a computation graph.

graph(n,x) = {(n,x)} where xis a variable
graph(n,c) {(n,c)} where cis a constructor
graph(n,k) = {(n,k)} wherekisanode

.k

{(n,MoN)} if M and N are nodes
{(n,Monr)}Ugraph(nr,N) ifonly M is anode
{(
{(

graph(n,MN) = n,nl oN)}uUgraph(nl,M) if only N is a node

n,nlonr)}ugraph(nl,M) otherwise
ugraph(nr,N)

e For astart term M, the start ART is graph(t,M). Note that the start term has
no nodes inside.

e (ART rule) If an ART G at m matches fps...pn = N with [m1 /X1, ..., Mg /X],
then we can build a new ART

Gugraph(mt,N[my/xa, ..., Mi/X])
An ART is generated from a start ART and by applying the ART rule repeatedly.
Example 6. If the start term is id (not True), then the start graph is

{(t,tlotr), (tl,id), (tr,trlotrr), (trl,not), (trr, True)}

The new parts built from t and tr are

graph(tt,x[tr/x]) = graph(tt,tr) = {(tt,tr)}
graph(trt,False) = {(trt,False)}

Note that the order of computation is irrelevant.

One may also notice that there is no parent’s edges in an ART. They need not
be given explicitly because the way that the nodes are labelled give us the parents
of all nodes implicitly, and a function of parent will be defined in the next section.

The following simple properties of an ART will be used later.

Lemma7. Let G be an ART.
If m € dom(G), then there is at least one letter t in m. And if mt € dom(G) then
m=¢gorme dom(G).

4 GENERATING AN EVALUATION DEPENDENCY TREE

In this section we generate the Evaluation Dependency Tree (EDT) for algorithmic
debugging from a give ART.

Definition 8. (Evaluation dependency tree for algorithmic debugging) Let G be
an ART. The evaluation dependency tree of G for algorithmic debugging is tree(g),
where € is the empty sequence, and tree and some notations are defined as follows.

e parent
parent(nl) = parent(n)
parent(nr) = parent(n)
parent(nt) = n
e children
children(m) = {n | parent(n) = mand nt € dom(G) }
e tree

tree(m) = {(m,n1),...,(m,nx) } Utree(ny) U... Utree(ny)

where {ni,...,ng} = children(m)

Example 9. If G is the graph in Example 5, then the EDT for algorithmic debug-
ging istree(g) = {(g,t), (g,tr)}.

Definition 10. (Most evaluated form) Let G be an ART. The most evaluated form
of node m is a term and is defined as follows.

mef (m) = mef (mt) if mt € dom(G)
~ | meft(e) otherwise and (m,e) € G

7

where

meft(x) = X where X is a variable
meft(c) = cC where c is a contructor
meft(n) = mef(n) where n is a node

meft(ioj) = mef(i) mef(j)
Example 11. If G is the graph in Example 5, then
mef (¢) = mef (t) = mef (tt) = meft(tr) = mef (tr) = False

Definition 12. (Equations for an evaluation dependency tree) Let G be an ART,
and m a node in its EDT . There is a corresponding equation redex(m) = mef (m),
where redex is defined as follows.

e redex(€) = main
e redex(m) =mef (i) mef(j) if (m,ioj) € G

Ifmisanodeof an EDT ,thenm=¢€or (m,io j) isin the graph for someiand j. So,
we only consider these two cases for the definition of redex. redex(m) = mef(m)
represents an evaluation at node m from the left hand side to the right hand side. A
pair (m,n) in an EDT represents that the evaluation redex(m) = mef (m) depends
on the evaluation redex(n) = mef (n).

Example 13. The EDT for the graph in Example 5 is the following.

main = False

/\

t| idFalse=Fdse not True=False | ftr

5 PROPERTIES OF AN EDT

In this section, we briefly present the properties and the correctness of algorithmic
debugging. Because of the limitation of space, some proof details are omitted.

The following theorems suggest that the EDT of an ART covers all the com-
putation in the graph. If there is any reduction that is unexpected in the ART, then
this reduction will affect the evaluation equation in the EDT, and one must be able
to find the bugs in the program. Although two evaluations may depend on the same
evaluation in an ART, every evaluation for algorithmic debugging only needs to be
examined once.

Lemma 14. Let G be an ART, and T its EDT for algorithmic debugging. If there
is a sequence of nodes m1, my, ..., my such that

m € children(my),m1 € children(my), ...,
mk—1 € children(my), mg € children(g)

then m € dom(T).

Proof. By the definition of tree(g).

Lemma 15. Let G be an ART. If mt € dom(G), then m = € or there is a sequence
of index numbers my, m, ..., my such that

m € children(my),ms € children(my), ...,
mk_1 € children(my), m € children(g)

Proof. By induction on the size of m, and by Lemma 7.
Since mt € dom(G), by Lemma 7, we only need to consider the following two
cases.

e If m = ¢, the statement is obviously true.

e If medom(G), by Lemma 7, there is at least one letter t in m. We consider
the following two sub-cases.

- m =tn, where there is no t in n, in other words, t is the first and the
last t in m. Since mt € dom(G) and parent(tn) = &, we have tn
children(e).

- m = matn, where there is no t in n, in other words, t is the last t in m.
Since mt € dom(G) and parent(m) = m1, we have m € children(mj).
Now, because m; is a sub-sequence of m, by induction hypothesis, there
is a sequence of index numbers mo, ..., my such that

my € children(my), ...,mg_1 € children(my), my € children(g)
So, there is a sequence of index numbers mq, my, ..., m such that

m € children(my),m; € children(my), ..., my € children(g)
Notation: dom(T) denotes the set of nodes in an evaluation dependency tree T.

Theorem 16. Let G be an ART, and T its EDT for algorithmic debugging. If mt €
dom(G), then m € dom(T). In other word, T covers all the computations in G.

Proof. By Lemma 15 and 14.

Lemma 17. LetG bean ART, and T its EDT for algorithmic debugging. If (m,n) €
T, then n € children(m) and parent(n) = m.

Proof. By the definition of tree.

Theorem 18. Let G be an ART, and T its EDT for algorithmic debugging. If
(m,n) € T and m #ZKk, then (k,n) & T.

Proof. By Lemma 17.

Basic rule:

M —pN
M ~p N
General semantical equality rules:

M~pN M~pN M ~N M=~pN N~pR
MEPM NEPM MMIZPNN/ MEPR

M2|N M2|N M/2|N, M2|N N2|R
M2|M N2|M MM/2|NN/ M2|R

Figurel. Semantical equality rules

CORRECTNESS OF ALGORITHMIC DEBUGGING

Definition 19. If the following statement is true we say the algorithmic debugging
is correct.

e If the equation of a faulty node is fai...ay = R, then the definition of the
function f in the program is faulty.

As mentioned in Section 2, if a node in an EDT is erroneous but has no erroneous
children, then this node is called a faulty node.
In order to prove the correctness, we need some definitions first.

Definition 20. Suppose the equation fpj...pn = N is in a program. If there ex-
ists a substitution o such that (fp;...pn)o = faj...an and No = R, then we say
fal...an —pR.

Notations: M ~p N means M is equal to N with respect to the semantics of the
program. M ~; N means M is equal to N with respect to the semantics of the
programmer’s intention. If the evaluation M = N of a node in an EDT is in
the programmer’s intended semantics, then M ~; N. Otherwise, M 2£ N i.e.
the node is erroneous.

Semantical equality rules are given in Figure 1.

If fai...an —p R but fas...an % R, then the definition of the function f in the
program has a bug, because from faj...an to R is a single step computation and
there is no computation in ag, ...,an. If the equation of a node m is faj...ap = M,
then redex(m) = faj...a, and mef (m) = M by the definition of equations for EDT.

10

So, for a faulty node m, we shall find a term R and prove redex(m) —p R ~
mef (m). In order to define R, we need other definitions.

Definition 21. Let G be an ART, m a node in G. reduct(m)is defined as follows.

(mef(e) if (m,e) € G and e is a node or
constructor or variable

reduct(ml) reduct(mr) if (m,mlomr) € G

reduct(ml) mef(j) if (mymloj)eGand j#mr

mef (i) reduct(mr) if (miomr) e Gandi# ml

mef (i) mef (j) if (m,ioj)eGandiz#mland j#mr

reduct(m) =

reduct represents the result of a single-step computation. And we shall prove
redex(m) —p reduct(mt) ~; mef(m) for a faulty node m. Note that mef (m) =
mef (mt) and so we want to prove reduct(mt) ~; mef (mt). In order to prove this,
we prove a more general result reduct(m) ~; mef (m) for all m € dom(G).

We define childrer and the reduction principle depth in order to prove the
more general result.

Definition 22. (Branch and children’) We say that n is a branch of m, denoted as
branch(n,m), if one of the following holds.

branch(m,m);

branch(nl,m) if branch(n,m);

branch(nr,m) if branch(n,m).

children’(m) = {n | nt € dom(G) and branch(n,m)}

Lemma 23. Let G be an ART.
e If n € children’(ml) or n € children’(mr) then n € children’(m).
e If mt € dom(G) then children(m) = children’(mt).

Proof. By the definitions of children and children.

Definition 24. (depth) Let m be a node in an ART G.

1+ max{depth(ml), if (m,mlomr) € G
depth(mr)}
_J 1+depth(ml) if (m,mloj)eGand j#mr
depth(m) =41 | gepth(mr) if (m,iomr) € G and i #ml
1 if (myioj)eGandi#mland j#mr
0 otherwise

\

Lemma 25. Let G be an ART and m a node in G, i.e. m € dom(G). If redex(n) ~
mef (n) for all n € children’(m), then reduct(m) ~ mef(m).

11

Proof. By induction on depth(m). When depth(m) = 0, by definition we have
reduct(m) ~; mef (m). For the step cases, we proceed as follows.

e If m € children’(m), then we have mt € dom(G) and redex(m) ~; mef (m).
And we need to prove redex(m) =~ reduct(m).
Let us consider only one case here. The other cases are similar. Suppose
(m,mlo j) € Gand j # mr, then by the definitions we have

redex(m) = mef(ml) mef(j)
reduct(m) = reduct(ml) mef(j)

Since for any n € children’(ml), by Lemma 23, we have n € children’(m)
and hence redex(n) ~ mef(n). By the definition of depth, we also have
depth(ml) < depth(m). Now, by induction hypothesis, we have reduct(ml) ~
mef (ml). And hence we have redex(m) ~; reduct(m).

e If m ¢ children’(m), then mt ¢ dom(G).
Let us also consider only one case. The other cases are similar. Suppose
(m,mlo j) € Gand j # mr, then by the definitions we have

mef (m) = mef(ml) mef(j)
reduct(m) = reduct(ml) mef(j)

The same arguments as above suffice.

Corollary 26. LetG beanART and mt anodein Gi.e. mt € dom(G). If redex(n) ~
mef (n) for all n € children(m), then reduct(mt) ~ mef (m).

Proof. By Lemma 23 and 25.

Lemma 27. Let G be an ART and mt a node in G i.e. mt € dom(G). Then,
redex(m) —p reduct(mt).

Proof. We need to prove the existence of a substitution o.

In fact, if G at node m matches the rewriting rule f p1...pn=N with [m1 /X1, ..., Mg /Xy],
then o = [mef (m1) /X1, ..., mef (M) /xx].

Now, we need to prove that redex(m) = (fps...pn)o and reduct(mt) = No.
For the first, we proceed by the definition of redex and pattern matching. For the
second, we proceed by the definition of reduct and graph.

Theorem 28. Let G be an ART, T its EDT and m a faulty node in T. If G at m
matches a rewriting rule fps...pn = N in the program, then this rewriting rule is
faulty.

Proof. By Lemma 27 and Corollary 26.

12

6 FUTURE WORK

In this paper, we have formally presented the ART and EDT, and proved the cor-
rectness of algorithmic debugging. However, there is still more work that needs to
be done.

Currently we are studying four extensions of the ART model, and the resulting
EDT for algorithmic debugging.

1. Replace the unevaluated parts in an ART by underscore symbols (i.e.).
An unevaluated part in an ART intuitively means the value of this part is
irrelevant to any reduction in the graph.

2. Consider different reduction strategies and add error messages to an ART
when there is a pattern matching failure.

3. Add local rewriting rules to the program.

4. Add rewriting rules for constants to the program, for example,
ones =1:ones.
The ART in the paper has no cycles, but some tracer such as Hat has cy-
cles for constant rewriting. We intend to represent constant rewriting not by
cycles but by creating a new node of the constant for every reduction.

How these four extensions will affect the EDT and algorithmic debugging needs
further study.

ACKNOWLEDGEMENTS

The work reported in this paper was supported by the Engineering and Physical
Sciences Research Council of the United Kingdom under grant EP/C516605/1.

References

[1] Adam Bakewell. Using term-graph rewriting models to analyse relative space effi-
ciency. In TERMGRAPH 2002 International Workshop on Term Graph Rewriting,
volume 72 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2002.

[2] Rafael Caballero, Francisco J. Lopez-Fraguas, and Mario Rodriguez-Artalejo. The-
oretical foundations for the declarative debugging of lazy functional logic programs.
In Herbert Kuchen and Kazunori Ueda, editors, Functional and Logic Programming,
5th International Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Pro-
ceedings, LNCS 2024, pages 170-184. Springer, 2001.

[3] Olaf Chitil and Yong Luo. Towards a theory of tracing for functional programs based
on graph rewriting. In lan Mackie, editor, Draft Proceedings of the 3rd International
Workshop on Term Graph Rewriting, Termgraph 2006, page 10, April 2006.

13

(4]

(5]

(6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood — A
comparative evaluation of three systems for tracing and debugging lazy functional
programs. In Markus Mohnen and Pieter Koopman, editors, |mplementation of Func-
tional Languages, 12th International Workshop, IFL 2000, LNCS 2011, pages 176-
193. Springer, 2001.

Andy Gill. Debugging Haskell by observing intermediate data structures. Electronic
Notes in Theoretical Computer Science, 41(1), 2001. 2000 ACM SIGPLAN Haskell
Workshop.

Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of
the SSGPLAN ’84 Symposium on Compiler Construction, pages 58—-69. ACM Press,
1984.

Lee Naish. A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming, 1997(3), 1997.

Henrik Nilsson. A declarative approach to debugging for lazy functional lan-
guages. Licentiate Thesis No. 450, Department of Computer and Information Sci-
ence, Linkdping University, S-581 83, Linkdping, Sweden, September 1994.

Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linkdping, Sweden, May 1998.

Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy
functional debugging. Automated Software Engineering: An International Journal,
4(2):121-150, April 1997.

Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
The spineless tagless G-machine. Journal of Functional Programming, 2(2):127-
202, April 1992.

Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, chapter 1, pages 3—-61. World Scientific, 1999. Volume 2: Applica-
tions, Languages and Tools.

B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-98.
In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, pages 230-240, 2003.

E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Jan Sparud and Colin Runciman. Complete and partial redex trails of functional
computations. In C. Clack, K. Hammond, and T. Davie, editors, Selected papers
from 9th Intl. Workshop on the Implementation of Functional Languages (IFL’97),
pages 160-177. Springer LNCS Vol. 1467, September 1997.

Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl. Symposium on
Programming Languages, |mplementations, Logics and Programs (PLILP’ 97), pages
291-308. Springer LNCS Vol. 1292, September 1997.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view
tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM SG-
PLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final pro-
ceedings to appear in ENTCS 59(2).

Malcolm Wallace, Olaf Chitil, and Colin Runciman. Hat: transforming lazy func-
tional programs for multiple-view tracing. In preparation, 2004.

14

