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Abstract

We introduce the notion of a ghost characteristic for nonlocal differential equations.
Ghosts are essential for maintaining the validity of the Jacobi identity for the charac-
teristics of nonlocal vector fields.

The local theory of symmetries of differential equations has been well-established since the
days of Sophus Lie. Generalized, or higher order symmetries can be traced back to the
original paper of Noether, [24], and received added importance after the discovery that
they play a critical role in integrable (soliton) partial differential equations, cf. [25]. While
the local theory is very well developed, the theory of nonlocal symmetries of nonlocal
differential equations remains incomplete. Several groups, including Chen et. al., [5, 6,
7], Ibragimov et. al., [1], [16, Chapter 7], Fushchich et. al., [11], Guthrie and Hickman,
[13, 14, 15], Kaptsov, [17], Bluman et. al., [2, 3, 4], and others, [8, 10, 12, 21, 27], have
proposed a foundation for such a theory. Perhaps the most promising is the Krasilshchik-
Vinogradov theory of coverings, [18, 19, 20, 28, 29], but this has the disadvantage that
their construction relies on the a priori specification of the underlying differential equation,
and so, unlike local jet space, does not form a universally valid foundation for the theory.

Recently, the second and third author made a surprising discovery that the Jacobi
identity for nonlocal vector fields appears to fail for the usual characteristic computations!
This observation arose during an attempt to systematically investigate the symmetry
properties of the Kadomtsev–Petviashvili (KP) equation, previously studied in [6, 7, 9,
22, 23]. The observed violation of the näıve version of the Jacobi identity applies to all of
the preceding nonlocal symmetry calculi, and, consequently, many statements about the
“Lie algebra” of nonlocal symmetries of differential equations are, by in large, not valid
as stated. This indicates the need for a comprehensive re-evaluation of all earlier results
on nonlocal symmetry algebras.

In this announcement, we show how to resolve the Jacobi paradox through the in-
troduction of what we name “ghost characteristics”. Ghost characteristics are genuinely
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nonlocal objects that have no counterpart in the local theory, but serve to provide miss-
ing terms that resolve apparent contradictions that have, albeit unnoticed, plagued the
nonlocal theory. Details of the construction and proofs will appear in a forthcoming paper.

We shall assume that the reader is familiar with the basic theory of generalized sym-
metries in the local jet bundle framework. We adopt the notation and terminology of
[25] without further comment. We specify p independent variables x = (x1, . . . , xp) and q
dependent variables u = (u1, . . . , uq), with uα

J = DJ(uα) denoting the induced jet space
coordinates. Here DJ = Dj1

1 · · ·Djp
p denotes the corresponding total derivative operator.

In the local version, multi-indices J = (j1, . . . , jp) are assumed to be non-negative, J ≥ 0,
meaning jν ≥ 0 for ν = 1, . . . , p.

We begin with the usual local generalized vector fields in evolutionary form

v = vQ =
q∑

α=1

∑
J≥0

DJQα ∂

∂uα
J

, (1)

where Q = (Q1, . . . , Qq) is the characteristic, and serves to uniquely specify v. Therefore,
the space of evolutionary vector fields can be identified with the space of q-tuples of
differential functions. We note the basic formula

vQ(P ) = DP (Q) (2)

where DP denotes the Fréchet derivative of the differential function P . The Lie bracket
[ vP , vQ ] = v[P,Q ] where

[ P, Q ] = vP (Q)− vQ(P ) = DQ(P )−DP (Q), (3)

satisfies the Jacobi identity, and hence endows the space of evolutionary vector fields with
the structure of a Lie algebra.

Attempting to generalize the algebra of evolutionary vector fields to nonlocal vari-
ables runs into some immediate, unexpected difficulties. Intuitively, the nonlocal variables
should be given by iterating the inverse total derivatives D−1

i , applied to either the jet
coordinates, or, more generally, to differential functions. In particular, we allow nonlocal
variables uα

J = DJuα in which J ∈ Zp is an arbitrary multi-index. The rigorous details of
the construction will be deferred to a more complete exposition.

The following fairly simple computation appears to indicate that the Jacobi identity
does not hold for characteristics of nonlocal vector fields.

Example 1. Let p = q = 1, with independent variable x and dependent variable u.
Consider the vector fields v,w, and z with respective characteristics 1, ux and D−1

x u. The
first two are local vector fields, and, in fact, correspond to the infinitesimal generators of
the translation group

(x, u) �−→ (x+ δ, u+ ε).

The Jacobi identity for these three vector fields has the form

[ 1, [ ux, D−1
x u ] ] + [ ux, [ D−1

x u, 1 ] ] + [ D−1
x u, [ 1, ux ] ] = 0, (4)

where we work on the level of the characteristics, using the induced commutator bracket
(3). Since

[ 1, ux ] = Dux(1)−D1(ux) = Dx(1) = 0, (5)
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reflecting the fact that the group of translations is abelian, we only need to compute the
first two terms in (4). First, using the definition of the Fréchet derivative, we compute

[ ux, D−1
x u ] = DD−1

x u(ux)−Dux(D
−1
x u) = D−1

x ux − Dx(D−1
x u) = u+ c − u = c,

where c is an arbitrary constant representing the ambiguity in the antiderivative D−1
x .

Thus,
[ 1, [ ux, D−1

x u ] ] = [ 1, c ] = 0,

irrespective of the integration constant c. On the other hand,

[ D−1
x u, 1 ] = −D−1

x (1) = −x+ d,

where d is another arbitrary constant, and so

[ ux, [ D−1
x u, 1 ] ] = [ ux, −x+ d ] = −Dx(−x+ d) = 1.

Therefore, no matter how we choose the integration “constants” c, d, the left hand side of
(4) equals 1, not zero, and so the Jacobi identity appears to be invalid!

As we shall see, if we generalize the definition of vector fields as to include terms with
nonpositive J in (1), there will be no problem in verifying the Jacobi identity. Thus, the
problem lies in the characteristic calculus.

This example is one of the simplest of a wide variety of apparent nonlocal counterex-
amples to the Jacobi identity. The main goal of this paper is to resolve these apparent
paradoxes in the establishment of a proper theory and calculus for characteristics of non-
local symmetries.

Let us begin by stating a general, abstract definition of an evolutionary vector field.

Definition 2. A evolutionary vector field v is a derivation that annihilates all the
independent variables and commutes with all total derivatives. Therefore,

v(P +Q) = v(P ) + v(Q),
v(P · Q) = v(P ) · Q+ P · v(Q),

v(xi) = 0,
[ v, Di ] = 0.

(6)

The commutator bracket

[ v, w ](P ) = v(w(P ))−w(v(P ))

between two evolutionary vector fields satisfies the usual skew symmetry and Jacobi iden-
tities, that is [ v, w ] + [ w, v ] = 0 and [ z, [ v, w ] ] + [ w, [ z, v ] ] + [ v, [ w, z ] ] = 0.
So, why are we obtaining a paradox in our examples?

Each evolutionary vector field is uniquely specified by its action v(uα
J ) on the co-

ordinate variables. Given an evolutionary vector field v, we define its characteristic
Q = (Q1, . . . , Qq) to have components v(uα) = Qα. Note that

v(uα
J ) = v(DJuα) = DJv(uα) = DJQα

for all positive multi-indices J ≥ 0. Thus, in the local situation, an evolutionary vector
field is uniquely determined by its characteristic. This basic fact is not true in nonlocal
differential algebras — there are nonzero evolutionary vector fields with zero characteristic!
This crucial observation motivates the following key definition.
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Definition 3. An evolutionary vector field γ is called a a K-ghost for some K ∈ Zp if
γ(uα

L) = 0 for all L ≥ K and α = 1, . . . , q.

There are no negative ghost vector fields in a local differential algebra because each
evolutionary vector field is uniquely determined by its characteristic Q. There are, how-
ever, positive ghost vector fields; for example the vector field with characteristic Q = 1 is
a K-ghost for any positive multi-index K > 0.

Definition 4. Given a multi-index K ∈ Zp, define

πK = DK(1) =




x−K

(−K)!
, K ≤ 0,

0 otherwise.
(7)

Example 5. Let us see how the existence of ghost vector fields serves to resolve the
Jacobi identity paradox in (4). Surprisingly, the problem is not with the nonlocal vector
field z with characteristic D−1

x u, but rather the local commutator [ v, w ] corresponding
to the vector fields with characteristics 1 and ux, respectively. While [ v, w ] = 0 on a
local differential algebra, it is, in fact, a ghost vector field when extended to nonlocal
differential algebras!

First, the action of the vector fields on the local variables does not uniquely specify
their action on the nonlocal variables, due to the presence of possible integration constants.
However, as we have seen, the integration constants do not play a significant role in the
resolution of the Jacobi identity paradox. We shall fix all the integration constants to be
zero by default. Therefore, we set

v(uk) = Dk
x(1) = πk (8)

where uk = Dk
xu for any k ∈ Z. Since v(uk) only depends on x, we have w(v(uk)) = 0,

and so [ v, w ](uk) = v(uk+1) = πk+1. Therefore, [ v, w ] = γ1 is a ghost vector field that
satisfies γ1(uk) = πk+1. This ghost provides the missing term in the Jacobi identity (4).
Indeed,

[ z, γ1 ](u) = − γ1(z(u)) = − γ1(D
−1
x u) = −1.

Thus, the fact that the local commutator is a nonlocal ghost resolves the preceding Jacobi
paradox.

This and subsequent computations can simplified by introducing a “ghost calculus”
for general nonlocal evolutionary vector fields. The first remark is that only evolutionary
vector fields that depend purely on the independent variables can be ghosts.

Definition 6. Define the basis ghost vector field γα
J for J ∈ Zp to satisfy

γα
J (u

β
K) = δαβπJ+K , γα

J (x
I) = 0, I ≥ 0. (9)

Note that γα
J is a K-ghost for any K + J 	≤ 0.

Theorem 7. Every polynomial ghost vector field is a linear combination of the basis
ghosts,

γ =
∑
α,J

cα
Jγα

J , (10)

where the cα
J ∈ R are constants.



168 P J Olver, J A Sanders and J P Wang

Remark : The summation in (10) can be infinite. However, only certain “configurations”
of the nonzero coefficients cα

J are allowed in order that γ map (nonlocal) differential poly-
nomials to differential polynomials.

Remark : We restrict ourselves to polynomial vector fields here, not because they are easier
to handle, but because the ghost problem only exists when we have polynomial terms in
the dependent variables.

Corollary 8. Any polynomial evolutionary vector field can be written a linear combina-
tion of basis ghosts and a u-dependent vector field:

v = vQ + γ, whereby v(uβ
K) = DKQβ +

∑
J

cβ
J πK+J . (11)

To implement a calculus of evolutionary vector fields, we identify a vector field with
its “characteristic”. The characteristic of the evolutionary vector field vQ is, as usual,
Q = (Q1, . . . , Qq). We define the characteristic of the ghost vector field γα

J to be, formally,

χα
J = χJeα = (0, . . . , 0, χJ , 0, . . . , 0),

where eα ∈ Rq is the α-th standard basis vector. In this manner, every nonlocal vector
field (11) has a unique characteristic

S = Q+
∑
α,J

cα
JχJeα, with components Sα = Qα +

∑
J

cα
JχJ . (12)

Note that in the one dependent variable case q = 1, we can drop the irrelevant basis vector
e1 to further simplify the notation.

When we evaluate the ghost vector field on a differential polynomial, the formal char-
acteristic χJ will be replaced by the function πJ in formula (7), and hence will vanish if
J 	≥ 0. However, in the calculus of ghost vector fields, we cannot make this replacement
in advance since this would lead back to the original Jacobi identity contradiction.

For computational purposes, it helps to use a uniform notation. In the u–independent
terms, we can unambiguously replace all polynomials

xK �−→ K!χ−K

appearing in the characteristic of our vector field by their equivalent ghost characteristics.
In particular, we can write the local vector field xK ∂

∂uα with polynomial characteristic
xKeα as K!χ−Keα. For the u–dependent terms, it is convenient to change

xK �−→ K!π−K .

We retain a different notation to remind ourselves that the u-dependent terms are never
ghosts, and so πK = 0 for K 	≤ 0. For instance, with p = q = 1, one translates x2+xu+u1

into 2χ−2 + π−1u0 + u1. In this calculus, the product rule xJ xK = xJ+K becomes the
ghost product rule

πK χJ =
(−K − J

−K

)
χK+J . (13)
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The product makes sense, provided we adopt the Pochhammer definition

(
L

I

)
=

1
I!

p∏
ν=1

iν−1∏
k=0

( lν − k ), I ≥ 0, (14)

for the multinomial symbol. And, indeed, only such products will appear when we evaluate
commutators and apply vector fields to nonlocal differential polynomials.

We now describe the precise ghost calculus rules for computing the commutators of
ghost characteristics. The commutators of ordinary characteristics [ Q, R ] follow the
same rules (3) as in the local case, where we replace the multiplication of monomials by
the ghost multiplication rule (13). Secondly, since ghosts do not involve the dependent
variables, they mutually commute:

[ χJeα, χKeβ ] = 0. (15)

Here and in the sequel we write the brackets as brackets between characteristics. These
are, by definition, equal to the brackets between the evolutionary vector fields. No attempt
should be made to substitute for instance χ1 �→ π1 = 0 (using equation (8)) inside the
bracket (this would create exactly the paradox we try to resolve here!). The only way to do
any valid computations with ghost characteristics is to replace them by the corresponding
basis ghost fields and then apply the rules for the ghost fields. On the other hand, since
only u-independent vector fields are true ghosts, whenever a ghost characteristic χK with
K 	≤ 0 multiplies any terms involving a uα

J , it can be replaced by 0 without affecting the
final outcome of the computation.

Finally, let Q be a characteristic and H a function multiplying it. The ghost charac-
teristics χα

J acts on this product as follows:

[ χJeα, H Q ] = H [ χJeα, Q ] + γα
J (H)Q. (16)

Thus, we only need to know how to commute ghosts and derivative coordinates,

[ χJeα, uβ
Ke

µ ] = δαβχJ+Keµ, (17)

in order to compute in the ghost characteristic space.

Example 9. Let us revisit Example 5. The three ghost characteristics are

1 = χ0, ux = u1, D−1
x u = u−1.

Then the three terms are

[ χ0, [ u1, u−1 ] ] = 0,
[ u1, [ u−1, χ0 ] ] = −[ u1, χ−1 ] = χ0,

[ u−1, [ χ0, u1 ] ] = [ u−1, χ1 ] = −χ0.

The sum of these three terms is 0, and so the Jacobi paradox is resolved.
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Example 10. The first Jacobi identity paradox that was found while working on the
symmetry algebra of the KP equation, and was more complicated than (4). Here p = 2,
with independent variables x, y, and q = 1, with dependent variable u. Consider the vector
fields with characteristics y, yux and uxD−1

x uy. A similar computation as in Example 1
shows that without the introduction of ghost terms, the Jacobi sum

[ uxD−1
x uy, [ yux, y ] ] + [ y, [ uxD−1

x uy, yux ] ] + [ yux, [ y, uxD−1
x uy ] ] (18)

equals −2yux instead of zero. In this case, the three ghost characteristics are

y = χ0,−1, yux = π0,−1 u1,0, uxD−1
x uy = u1,0 u−1,1,

where ui,j = Di
xDj

yu. Then, using (13), (17), the three terms are

[ χ0,−1, π0,−1 u1,0 ] = π0,−1 χ1,−1 = 2χ1,−2,

[ u1,0 u−1,1, 2χ1,−2 ] = −2π0,−1 u1,0 = −2yux,

and

[ π0,−1 u1,0, u1,0 u−1,1 ] = Du1,0 u−1,1(π0,−1 u1,0)− π0,−1 Dx(u1,0 u−1,1) = u0,0u1,0,

[ χ0,−1, u0,0u1,0 ] = π0,−1 u1,0 = yux,

and, finally,
[ u1,0 u−1,1, χ0,−1 ] = −π−1,0 u1,0,

[ π0,−1 u1,0, −π−1,0 u1,0 ] = π0,−1 u1,0 = yux.

The sum of these three terms is 0, and so the Jacobi identity is valid at the level of
characteristics in the ghost framework.

In conclusion, we have seen that the Jacobi identity for the characteristics of nonlocal
vector fields remains valid provided one pays proper attention to the ghost terms in the
commutators. The appearance of such ghost terms is surprising at first, but, in hind-
sight, quite natural. These results indicate that a complete re-evaluation of earlier work
on nonlocal symmetries (using characteristics) of local and non-local partial differential
equations is required. A complete understanding of the hitherto undetected ghost terms
needs to be properly incorporated into earlier results, including the study of recursion
operators and master symmetries, all of which typically involve nonlocal operations, cf.
[26]. Implementation of the ghost calculus in standard computer algebra packages would
help a lot in these investigations.
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