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ON RATES OF CONVERGENCE FOR POSTERIOR

DISTRIBUTIONS IN INFINITE-DIMENSIONAL MODELS

By Stephen G. Walker,1 Antonio Lijoi2 and Igor Prünster3

University of Kent, Università degli Studi di Pavia

and Università degli Studi di Torino

This paper introduces a new approach to the study of rates of
convergence for posterior distributions. It is a natural extension of
a recent approach to the study of Bayesian consistency. In particu-
lar, we improve on current rates of convergence for models including
the mixture of Dirichlet process model and the random Bernstein
polynomial model.

1. Introduction. Recently, there have been many contributions to the
theory of Bayesian consistency for infinite-dimensional models. Most of these
adopt the “frequentist” (or “what if”) approach, which consists of generating
independent data from a “true” fixed density f0 and checking whether the
sequence of posterior distributions accumulates in Hellinger neighborhoods
of f0. The determination of sufficient conditions for Hellinger consistency
has been the main goal of a number of recent papers such as, for example,
[1, 2, 5] and [12]. A summary is provided in [8]. Their results rely upon
the use of uniformly consistent tests, combined with the construction of
suitable sieves and computation of metric entropies. An alternative method
for solving the problem can be found in [14], where a sufficient condition in
terms of the summability of prior probabilities is provided.

Here, we consider the allied problem of determining rates of convergence,
that is, the determination of a sequence (εn)n≥1 such that εn ↓ 0 and

Πn({f :d(f, f0) > Mεn}) → 0
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2 S. G. WALKER, A. LIJOI AND I. PRÜNSTER

for any constant M > 0. The above-displayed convergence can be under-
stood either as convergence in F∞

0 -probability or as almost sure-F∞
0 , where

F0 denotes the probability distribution associated with f0 and F∞
0 is the

infinite product distribution. Among recent papers dealing with this topic,
we mention [4, 6, 7] and [13]. The key to these papers is the construction of
a sieve and the use of entropies. The ultimate rate of convergence achieved
depends on two quantities: the concentration rate, which depends on the
prior mass assigned to suitable neighborhoods of f0, and the growth rate of
the Hellinger entropy. A recent contribution, relying upon information the-
ory, is given in [15]. The aim of the present paper is to tackle the problem
based on the approach of Walker [14], which leads to improvements in the
examples we consider.

In Section 2, we first derive a useful bound for the posterior probability on
the sets of interest and then prove a general theorem for the determination
of rates, which relies upon two conditions. In Section 3, the normal mixture
of Dirichlet process and random Bernstein polynomials are considered and
currently known rates are improved.

2. Posterior convergence rates. Consider a sequence of observations
(Xn)n≥1, each taking values in some Polish space X endowed with the Borel
σ-algebra X . If F indicates the space of probability density functions with
respect to some σ-finite measure λ on X, then the Hellinger metric h on F

is defined by

h(f, g) =

{
∫

X

(
√

f(x)−
√

g(x))2 λ(dx)

}1/2

for any f and g in F, and we set F to be the Borel σ-algebra of F. Sup-
pose that Π stands for a prior distribution on (F,F ). Then the posterior
distribution, given the observations (X1, . . . ,Xn), coincides with

Πn(B) =

∫

B

∏n
i=1 f(Xi)Π(df)

∫

F

∏n
i=1 f(Xi)Π(df)

for all B in F . We assume that there exists a “true” density function f0 such
that the Xn’s are i.i.d. from f0. A sequence of posterior distributions Πn is
said to be Hellinger consistent at f0 if the posterior mass on sets of the type
Aε := {f :h(f, f0) > ε} becomes negligible as the sample size n increases.
The approach introduced in [14] relies upon the construction of a suitable
covering of Aε by Hellinger balls of radius φ < ε. The prior mass on these
balls must be such that the sum of their square roots is finite. This entails
consistency. Then, when dealing with rates, it is natural to refine the set Aε

to Aεn = {f :h(f, f0) > εn} and to consider a covering {An,j : j = 1,2, . . .} of
Aεn , where each An,j has radius φn ∈ (0, εn). Consequently, we now define

Kεn =
∑

j≥1

Π(An,j)
1/2,
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a quantity that will be heavily relied on in this paper.
Before stating the preliminary result, let us introduce some notation. Let

L
(n)
0,j =

√

Π(An,j) and for any k ≥ 1, let

L
(n)
k,j :=

√

∫

An,j

Rk(f)Π(df).

Moreover, set Rk(f) =
∏k

i=1 f(Xi)/f0(Xi) for every k = 1,2, . . . . By exploit-
ing the same martingale introduced in the proof of Theorem 4 in [14], one
can show that the following holds.

Proposition 1. Suppose that Kεn < +∞ and that
∑

n≥1

e−nε2
n/8Kεn < +∞,(1)

where (εn)n≥1 is a sequence such that εn → 0 and nε2
n → +∞. Then

F∞
0

(

lim inf
n

{

∑

j≥1

L
(n)
n,j < e−nε2

n/16

})

= 1.(2)

Proof. One can easily check that the identity

L
(n)
k+1,j/L

(n)
k,j =

√

fk,An,j
(Xk+1)/f0(Xk+1)

holds, given that

fk,An,j
(x) =

∫

An,j

f(x)Rk(f)Π(df)
/

∫

An,j

Rk(f)Π(df), k ≥ 1,

represents the predictive distribution restricted to the set An,j , whereas
f0,An,j

is the marginal density of the single observation restricted to An,j .
Let Fk be the σ-algebra generated by the observations X1, . . . ,Xk and note
that

E(L
(n)
k+1,j|Fk) = L

(n)
k,j{1− h2(fk,An,j

, f0)/2}.
Since h(fk,An,j

, fj) ≤ δn, where fj is any density in An,j , from the triangle
inequality one has h(fk,An,j

, f0) ≥ εn − δn = γn > 0. Hence, we fix k = n to
obtain

E(L
(n)
n+1,j)≤

√

Π(An,j)(1− γ2
n/2)n+1.

Choose a sequence (ηn)n≥1 such that ηn → 0 and nηn → +∞. Apply Markov’s
inequality and the monotone convergence theorem to obtain

F∞
0

(

∑

j≥1

L
(n)
n,j > e−nηn

)

≤ enηnE

(

∑

j≥1

L
(n)
n,j

)

≤ enηn
∑

j≥1

E(L
(n)
n,j).
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Then

F∞
0

(

∑

j≥1

L
(n)
n,j > e−nηn

)

≤ exp{−n{− log(1− γ2
n/2)− ηn}}

∑

j≥1

√

Π(An,j)

= exp{−n{− log(1− γ2
n/2)− ηn}}Kεn .

Setting φn = εn/2 and ηn = ε2
n/16, we have

− log(1− γ2
n/2)− ηn ≥ γ2

n/2− ηn = ε2
n/16.

Finally, condition (1) yields, by a straightforward application of the Borel–
Cantelli lemma, the result in (2). �

Here we discuss a suitable lower bound for the denominator of the poste-
rior, that is, In :=

∫

F
Rn(f)Π(df). Regarding this point, previous contribu-

tions provide bounds in probability rather than almost surely. Indeed, Shen
and Wasserman [13] and Ghosal, Ghosh and van der Vaart [6] give results
of the type

In ≥ exp(−cnε2
n) in F∞

0 -probability

for a constant c > 0, provided that Π puts sufficient mass near f0, where
closeness is measured through a combination of the Kullback–Leibler diver-
gence and the L2(F0)-norm of log(f0/f). If K(f, f0) =

∫

log(f0(x)/f(x))f0(x)λ(dx)
and V (f, f0) =

∫

{log(f0(x)/f(x))}2f0(x)λ(dx), then a neighborhood of the
type above is defined as

B(ε, f0) = {f :K(f, f0) ≤ ε2, V (f, f0)≤ ε2}.(3)

One can now prove the following result.

Theorem 1. Suppose that εn, δn → 0 and nε2
n, nδ2

n → +∞, and

(i) e−nδ2
n/16Kδn

→ 0;
(ii) for some C > 0, Π{B(εn, f0)} ≥ exp(−Cnε2

n).

Then Πn(Aεn) → 0 in F∞
0 -probability when δn ≤ φεn for some sufficiently

small φ > 0.

Proof. Now,

Πn(Aεn) ≤
∑

j≥1

Πn(An,j)≤
∑

j≥1

√

Πn(An,j) =
∑

j≥1

L
(n)
n,j/

√

In

and so

Πn(Aεn) ≤ exp[−n{ε2
n/16 + n−1(log In)/2}]
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in F∞
0 -probability. Moreover, by Lemma 8.1 in [6], condition (ii) implies that

In ≥ exp{−n(1 + C)ε2
n} in F∞

0 -probability.

Hence, n(ε2
n/8 + n−1 log In) → +∞ in F∞

0 -probability when δn ≤ φεn and
(1 + C)φ2 < 1/8. The result follows. �

A sequence (εn)n≥1 satisfying (ii) in Theorem 1 is also referred to as prior

concentration rate. As a simple illustration of condition (i), one can consider
the discrete prior which puts mass Πk on the density fk. If

∑

k≥1

√
Πk <

+∞ then Kεn is bounded by this sum and hence condition (i) reduces to

e−nε2
n/16 → 0, which is trivially satisfied for εn = λn/

√
n for any λn →∞.

Before moving on to consider specific priors, we need to modify the above
results, relying on the technique of Lijoi, Prünster and Walker [9], which
was developed for establishing consistency of the mixture of Dirichlet process
model. Let N(δ,S, d) denote the minimum number of balls of radius at most
δ, with respect to the metric d, needed to cover the space S . This is also
known as the δ-covering number of S . Moreover, introduce a collection of
sets {Bn,k :k ≥ 1} which, for any n≥ 1, forms a partition of F. Accordingly,
we denote by {An,k,j : j = 1, . . . ,N(εn,Bn,k, h)} an εn-covering of Bn,k with
respect to the Hellinger distance h. Hence, one can easily check that

√

Π(Bn,k) =

√

√

√

√

√

N(εn,Bn,k,h)
∑

j=1

Π(An,k,j)

(4)

≥ 1

N(εn,Bn,k, h)

N(εn,Bn,k,h)
∑

j=1

√

Π(An,k,j).

Next, it is clear that the family {An,k,j : j = 1, . . . ,N(εn,Bn,k, h), k ≥ 1} is a
partition of F into sets of diameter, with respect to the Hellinger distance,
at most εn. Finally, using (4), one can write

Kεn =
∞
∑

k=1

N(εn,Bn,k,h)
∑

j=1

√

Π(An,k,j)≤
∞
∑

k=1

N(εn,Bn,k, h)
√

Π(Bn,k).

Hence, we are interested in establishing, for some sequence (εn)n≥1 such that
εn → 0 and nε2

n →+∞ as n→∞, the validity of

e−nε2
n

∞
∑

k=1

N(εn,Bn,k, h)
√

Π(Bn,k)→ 0.

3. Illustrations. In the examples that follow, we show that the rate of
convergence is governed by the concentration rate. In particular, we look at
mixtures of Dirichlet processes and the random Bernstein polynomial model.
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3.1. Normal mixture of Dirichlet process. The most widely used prior
distribution for density estimation is undoubtedly the normal mixture of
Dirichlet process (MDP) introduced by Lo [10] and later popularized by
Escobar and West [3]. Such a random density function is given by

f
σ,P

(x) = φσ ∗ P =

∫

φσ(x− θ)P (dθ),(5)

where the kernel φσ is the density function of the normal distribution with
mean zero and variance σ2. Moreover, P is a Dirichlet process with parame-
ter measure α(·), and σ has a prior distribution which we denote by µ. The
issue of strong consistency for the model (5) has been studied in [5] and [9],
whereas rates are determined in [7].

We focus on the case in which the support of µ coincides with the interval
[σ,σ], where 0 < σ < σ < +∞, and we suppose that f0 = φσ0 ∗P0. This is the
same setting considered in [7]: when either P0 has compact support or α has
sub-Gaussian tails, they achieve the best rate of (logn)κ/

√
n for κ ≥ 1. In

particular, for the usual Gaussian tails for α, κ = 3/2. Although these models
allow the desirable prior concentration rate [condition (ii) of Theorem 1] of
(log n)/

√
n, the worse entropy estimate determines their rate.

We, on the other hand, can obtain the target rate (logn)/
√

n in more
general models. To this end, we introduce sets of the type

F
σ
σ,a,δ =

⋃

σ≤σ≤σ

{φσ ∗ P :P ([−a, a]) ≥ 1− δ},

where a > 0. Moreover, recall that the inequality h2(f, g)≤ ‖f − g‖1 yields

N(
√

δ,F ∗, h)≤ N(δ,F ∗,‖ · ‖1)(6)

for any collection of density functions F ∗. Now, from [5] the upper bound
for the L1-metric entropy of set Fσ

σ,a,δ is given by

logN(δ,Fσ
σ,a,δ,‖ · ‖1)≤ aCδ,

where Cδ = Kσ−1δ−1 log(1/δ) for some constant K. Hence, in view of (6),
one finds that

logN(δ,Fσ
σ,a,δ2 , h) ≤−2aK

σ
δ−2 log(δ).(7)

Now, for each n let (an,j)j≥1 be an increasing sequence of positive numbers
such that an,j ↑+∞ as j → +∞, and for j ≥ 2 set

G
σ
σ,an,j ,δ2

n
:=

⋃

σ≤σ≤σ

{φσ ∗ P :P ([−an,j+1, an,j+1])≥ 1− δ2
n,

P ([−an,j, an,j]) < 1− δ2
n},
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while setting

G
σ
σ,an,1,δ2

n
:=

⋃

σ≤σ≤σ

{φσ ∗ P :P ([−an,1, an,1]) > 1− δ2
n}.

Such sets cover the support of the distribution of the mixture of Dirichlet
process defined in (5). It is obvious that for j ≥ 2, G σ

σ,an,j ,δ2
n

is included in

Fσ
σ,an,j ,δ2

n
, so

logN(δn,G σ
σ,an,j ,δ2

n
, h) ≤Cδ2

n
an,j.

This suggests that for each j ≥ 2, G σ
σ,an,j ,δ2

n
has a finite Hellinger δn-covering

{Cn,j,l : l = 1, . . . ,Nn,j}, where Nn,j ≤ [exp(Cδ2
n
an,j)] + 1 and [x] stands for

the integer part of x > 0. Hence, setting

Bn,j = {P :P ([−an,j+1, an,j+1])≥ 1− δ2
n, P ([−an,j, an,j]) < 1− δ2

n}
for j ≥ 2, one has

Kδn
≤ Nn,1 +

∑

j≥2

Nn,j

√

Π(G σ
σ,an,j ,δ2

n
)≤ Nn,1 +

∑

j≥2

Nn,j

√

Dα(Bn,j),

where Dα is the law of the Dirichlet process with parameter α. If Vn,j :=
[−an,j, an,j]

c, then Bn,j ⊂ {P :P (Vn,j) > δ2
n}. By the Markov inequality,

Dα(Bn,j)≤ Dα({P :P (Vn,j) > δ2
n}) ≤ cα(Vn,j)/δ

2
n

for some constant c and, thus, one has

Kδn
≤ Nn,1 +

∑

j≥2

c1/2δ−1
n exp{an,jCδ2

n
− a2

n,j}

when, as we assume, α([−a, a]c) ≤ exp(−2a2). Hence, if we put, for j ≥ 2,
an,j = jCδ2

n
, then the summand in the bound for Kδn

is bounded by

c1/2
∑

j≥2

δ−1/2
n exp{−(j − 1)2C2

δ2
n
},

which goes to zero as n → +∞. Now, Nn,1 is the Hellinger δn-covering num-
ber of the set {P :P ([−an,1, an,1]) > 1− δ2

n}. According to [7], it is the case
that

Nn,1 ≤L1 exp{(log(1/δn))2}
when an,1 ≤L2

√

(log(1/δn)) for constants L1 and L2. So, exp{−nδ2
n}Kδn

→
0 when exp{−nδ2

n+(log(1/δn))2}→ 0, which occurs when nδ2
n−(log(1/δn))2 →

+∞. Clearly, δn = M(log n)/
√

n for some large enough M is sufficient.
Hence, for example, we obtain an overall rate of convergence (logn)/

√
n with

normal α when the true mixing distribution P0 has sub-Gaussian tails. This
improves on Ghosal and van der Vaart [7], who obtain a rate of (logn)3/2/

√
n

in this case.
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3.2. Random Bernstein polynomials. Another important prior for den-
sity estimation is the so-called random Bernstein polynomial introduced in
[11]. Such a random density admits the representation

b(x;k,F ) =
k
∑

j=0

[F (j/k) − F ((j − 1)/k)]β(x; j, k − j + 1),

where β(x;a, b) is the beta density with parameters a, b > 0. In the previous
representation, F is a random distribution function, usually chosen to be a
Dirichlet process, and k has distribution p and is independent of F . Assum-
ing f0 is in the Kullback–Leibler support of the prior, consistency of such
priors has been established in [12] and [14], where it has been shown that
strong consistency holds under a suitable tail condition on p. Rates of con-
vergence have been determined in [4]. In Theorem 2.3 of [4], it is shown that
the prior concentration rate is (log n)1/3/n1/3 and that the entropy rate is
(log n)5/6/n1/3, thus leading to an overall convergence rate of (logn)5/6/n1/3.

Following our bound for Kεn in Section 2, define Bj to be the set of
Bernstein polynomials of order j. Using the upper bound N(εn,Bj, h) ≤
(C/εn)j provided by [4], we have

Kεn ≤
an,1
∑

r=1

(C/εn)r
√

pr +
∞
∑

j=1

an,j+1
∑

r=an,j+1

(C/εn)r
√

pr.

Here we have introduced, for each n, an increasing sequence of reals (an,j)j≥1

which will be determined later on. Using the inequality
∑M

r=1 cr ≤ McM for
c > 1, we have

Kεn ≤ an,1(C/εn)an,1 +
∞
∑

j=1

(C/εn)an,j+1(an,j+1 − an,j)
√

pan,j
.

Here we have assumed that the pk’s are decreasing for all large k and we
will also assume that pk ≤ exp(−4k log k) for all large k. Therefore, putting
an,j = Cj/εn, we have the summand term for the bound of Kεn bounded by

Cε−1
n

∞
∑

j=1

exp{(j + 1)Cε−1
n log(C/εn)− 2jCε−1

n log(jC/εn)},

which is bounded by Cε−1
n

∑∞
j=1 exp{−2jCε−1

n log j}. In turn, this sum is
bounded by D/εn as n →+∞ for some constant D; the term j = 1 ensures
this. Returning to the first term in the bound for Kεn , we are interested in
finding εn for which ε−1

n exp{−nε2
n}→ 0 and exp{−nε2

n+Cε−1
n log(C/εn)}→

0, when nε2
n −Cε−1

n log(C/εn)→ +∞. This clearly happens when

εn = M(logn)1/3/n1/3
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for sufficiently large M . Consequently, under the conditions of Theorem
2.3 in [4], we obtain a rate of convergence of (logn)1/3/n1/3, which is the
rate of convergence for the sieve MLE, whereas Ghosal [4] obtains a rate of
(log n)5/6/n1/3. Note that with lighter tails for p, namely pk < exp(−2k2),
we can obtain a rate of (logn)/

√
n for εn, but the overall rate will remain

at (log n)1/3/n1/3.

Acknowledgments. We wish to thank Catia Scricciolo for helpful re-
marks. We are grateful to two referees for comments that led to improve-
ments and, in particular, to one referee who pointed out an inaccuracy in
an earlier version of the paper.
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