
Hjort, Nils Lid and Walker, Stephen G. (2009) Quantile pyramids for Bayesian 
nonparametrics.  Annals of Statistics, 37 (1). pp. 105-131. ISSN 0090-5364. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/12613/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1214/07-AOS553

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/12613/
https://doi.org/10.1214/07-AOS553
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


ar
X

iv
:0

90
2.

44
10

v1
  [

m
at

h.
ST

] 
 2

5 
Fe

b 
20

09

The Annals of Statistics

2009, Vol. 37, No. 1, 105–131
DOI: 10.1214/07-AOS553
c© Institute of Mathematical Statistics, 2009

QUANTILE PYRAMIDS FOR BAYESIAN NONPARAMETRICS

By Nils Lid Hjort and Stephen G. Walker1

University of Oslo and University of Kent

Pólya trees fix partitions and use random probabilities in order
to construct random probability measures. With quantile pyramids
we instead fix probabilities and use random partitions. For nonpara-
metric Bayesian inference we use a prior which supports piecewise
linear quantile functions, based on the need to work with a finite set
of partitions, yet we show that the limiting version of the prior exists.
We also discuss and investigate an alternative model based on the so-
called substitute likelihood. Both approaches factorize in a convenient
way leading to relatively straightforward analysis via MCMC, since
analytic summaries of posterior distributions are too complicated.
We give conditions securing the existence of an absolute continuous
quantile process, and discuss consistency and approximate normality
for the sequence of posterior distributions. Illustrations are included.

1. Introduction and summary. Constructing manageable classes of ran-
dom probability measures is at the heart of nonparametric Bayesian method-
ology. Recent surveys of Bayesian nonparametric methods, including de-
scription of several such classes of random distributions, have been given
in Walker et al. (1999) and Hjort (2003). The aim of the present article is
to introduce and investigate one more such class, namely that of quantile
pyramids.

One attempt to construct a random probability measure on [0,1] is via
so-called Pólya trees. This relies on the idea of a fixed binary tree partition
of [0,1] and a strategy for allocating random mass to these partitions. The
original and clearest exposition is provided by Ferguson (1974). More recent
work on Pólya trees has been done by Lavine (1992, 1994). Inference is
attractively simple since, given an independent and identically distributed
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set of observations, the posterior is also a Pólya tree and the update is
straightforward. A drawback to Pólya trees, and perhaps the main reason
why they have not seen much application within the Bayesian nonparametric
literature, is that an arbitrary partition tree of [0,1] needs to be specified.
There is no obvious selection criterion, though on [0,1] the dyadic intervals
are the natural choice. No partition is “right,” however, and two different
partitions produce two different answers. No satisfactory solution to this
problem can be anticipated.

The fundamental idea of the Pólya tree is a fixed partition and random
mass. We turn this around and instead use the idea of fixed mass and random
partitions. The arbitrariness is now lost as the quantiles form a nonarbitrary
partition of mass. For a distribution with cumulative function F on R, the
quantile function is

Q(y) = F−1(y) = inf{t :F (t)≥ y} for 0 < y < 1.(1)

Our program is to construct random probability distributions F via their
quantile functions Q, using F (x) = sup{y :Q(y) ≤ x}. Specifically, the first
random partition at Q(1

2 ) corresponds to the median and the fixed mass

of 1
2 is allocated in equal measure to [0,Q(1

2 )) and [Q(1
2),1]. The random

partitions at Q(1
4) and Q(3

4 ) on the second level determine the quartiles

and the fixed mass of 1
4 is allocated to the relevant intervals. At stage three

we draw the octiles Q(1
8 ), Q(3

8 ), Q(5
8), Q(7

8 ). In general, at level m, we
draw quantiles Q(j/2m) for j = 1,3, . . . ,2m − 1. Even though more general
probabilistic constructions could be envisaged, we focus on those pyramidal
schemes where Q(j/2m) for j = 1,3, . . . ,2m − 1 are drawn independently,
conditional on the values generated at level m − 1 above, with Q(j/2m) ∈
[Q((j − 1)/2m),Q((j + 1)/2m)).

A mild disadvantage of our quantile trees is that the prior to posterior
computation is not analytically tractable, or at any rate less so than for
Pólya trees. However, with the recent advent of simulation based inference
the need for clear-cut conjugacy and analytically tractable posteriors is no
longer critical. We shall rely on simulation strategies to collect samples from
the posterior distribution. Therefore, we do not see the lack of analytical
tractability as a problem and we have removed the need to specify an arbi-
trary partition. The allocation of the fixed quantile masses to the random
partitions is the obvious choice, since they are instantly recognizable and
interpretable.

While nonparametric priors are typically difficult to manipulate, in the
sense that the incorporation of real qualitative prior information is nontriv-
ial, we believe the contrary is true for quantile pyramids. The significance
of quantiles is well understood and hence assigning a prior to the median,
quartiles, etc. should be relatively straightforward. There are instances in



QUANTILE PYRAMIDS 3

the literature suggesting that more of statistics, from modeling to analysis
and interpretation, should be carried out using quantiles; see, for example,
Parzen (2004, 1979).

The layout of the paper is as follows. In Section 2 we introduce the quantile
pyramid process on [0,1]. In particular we discuss issues of existence and
continuity. That the pyramid schemes have a large nonparametric support
is demonstrated in Section 3. In Section 4 we consider, in particular, the
Beta quantile pyramid.

In Section 5 we proceed with Bayesian inference associated with quantile
pyramids. First we use the quantile pyramids to construct a prior on the
space of piecewise linear quantile functions. We undertake exact posterior
inference for such priors for any finite level of the pyramid. We also con-
sider a multinomial type pseudo-likelihood function for the quantiles, and
investigate the implied pseudo-posterior distribution of the parameters of a
quantile pyramid. The pseudo-likelihood function in question is a natural
generalization of a suggestion of Jeffreys (1967), Section 4.4, concerning the
median parameter, and is sometimes called the substitution likelihood; cf.
Lavine (1995) and Dunson and Taylor (2005).

Then in Section 6 we work out the structure of the posterior quantile pyra-
mids, given a set of independent data points. It is shown that the likelihood
functions factorize in precisely the same way as the quantile pyramid priors,
leading to simplifications of the posteriors. We demonstrate how to obtain
summaries from the posterior quantile pyramid via MCMC algorithms. In
Sections 7 and 8 results about the large-sample behavior of the posterior dis-
tributions are obtained; in particular Bernshtĕın–von Mises type theorems
are proved under natural conditions. Finally, in Section 9 we provide a brief
discussion with concluding remarks.

2. Quantile pyramid processes. This section considers ways of assign-
ing a probability distribution to the full quantile process, and investigates
conditions under which it is absolutely continuous. For simplicity of pre-
sentation we work on the unit interval, and consider therefore processes
{Q(y) : 0 ≤ y ≤ 1} with Q(0) = 0 and Q(1) = 1. Such a Q process is linked
to a cumulative distribution function F via (1). Note that Q is the left-
continuous inverse of the right-continuous F , and that Q(y) ≤ x if and only
if y ≤ F (x). This somewhat nontrivial equivalence is valid also for cases
where F has jumps; see, for example; Shorack and Wellner (1986), Chapter
1.1.

2.1. General pyramid quantile processes. Consider a quantile process
down to level m, involving random quantiles Q(j/2m) for j = 1, . . . ,2m − 1.
We say that Q is a pyramid quantile process down to this level if these 2m−1
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quantiles have been generated by successive conditionally independent mech-
anisms down to level m. More specifically, this corresponds to having the
median Q(1

2) drawn from some density π1,1 on [0,1]; then the two quartiles

Q( j
4 ) for j = 1,3 drawn independently from two densities π2,1, π2,3 concen-

trated on respectively [0,Q(1
2 )] and [Q(1

2),1]; then the four remaining octiles

Q( j
8 ) for j = 1,3,5,7 independent from four level-three distributions π3,j

confined to the appropriate intervals [0,Q(1
4 )], [Q(1

4 ),Q(1
2 )], [Q(1

2 ),Q(3
4)],

[Q(3
4 ),1]; and so on. The simultaneous density of the 2m − 1 quantiles can

therefore be represented as

π1,1

(
Q

(
1

2

))
π2,1

(
Q

(
1

4

) ∣∣∣ Q

(
1

2

))
π2,3

(
Q

(
3

4

) ∣∣∣ Q

(
1

2

))

×
∏

j=1,3,5,7

π3,j

(
Q

(
j

8

)
| parents

)
· · ·(2)

×
∏

j=1,3,5,...,2m−1

πm,j

(
Q

(
j

2m

) ∣∣∣ parents

)

where the parents of Q(j/2m) are Q((j±1)/2m), both of whom were created
in the previous generation.

2.2. Existence and absolute continuity. We now examine the quantile
pyramid building process in some more detail, where variables at level m
are generated after those of level m− 1. At this level,

Qm(j/2m) = Qm−1((j − 1)/2m)(1− Vm,j) + Qm−1((j + 1)/2m)Vm,j(3)

for j = 1,3,5, . . . ,2m − 1, in terms of independent variables Vm,j ’s at work
at level m of the process. Note that variables Vm,j at level m are allowed
to depend on previous generations’ Vm′,j′ for m′ ≤m− 1. We define Qm on
the full unit interval by linear interpolation outside the j/2m points, and
with Qm(0) = 0, Qm(1) = 1. Under various sets of conditions there will be a
well-defined process Q to which Qm converges in distribution, in the space
DL[0,1] of left-continuous functions with right-hand limits on the unit inter-
val, equipped with the Skorohod topology; see Billingsley (1968), Chapter 4,
for definitions. We shall outline two arguments that can be used to establish
existence of and convergence to Q.

The first line of arguments uses martingales. For simplicity of presentation
assume now that the Vm,j ’s of (3) all have mean 1

2 ; more general results follow
with additional efforts. Then, for each y, Qm(y) forms a martingale sequence
with respect to the history up to and including the parents, and EQm(y) = y.
Hence there is a limit Q(y) to which Qm(y) converges with probability 1.
Clearly, the limit Q is nondecreasing, with Q(0) = 0 and Q(1) = 1, that is,
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a random quantile function. We note that Q in some cases might not be
continuous almost surely. Such martingale arguments are pursued further in
Propositions 2.2 and 2.3 below.

The second line of arguments involves tightness and is less immediate, but
provides more information, in particular continuity, when the criterion we
develop now applies. The Vm,j variables of (3) are now allowed to be fully
general, without the mean 1

2 constraint.

Proposition 2.1. Assume that

∆m = max
j≤2m

{Qm(j/2m)−Qm((j − 1)/2m)}→p 0.

Then there is a well-defined random continuous quantile process Q to which Qm

converges, in the space C[0,1] of continuous functions on the unit interval,
equipped with the uniform topology.

Proof. The crux is that the condition given implies tightness of the
{Qm} sequence in the C[0,1] space, as we demonstrate in the next para-
graph. Given the tightness, Prokhorov’s theorem secures the existence of
a subsequence converging in distribution to a limit process Q, which also
must be continuous; see Billingsley (1968), Chapter 2. The values of this
limit process at dyadic points are identical to those of Qm. By denseness of
dyadic points it follows that also other subsequences must have the same
limit, proving that Q is the limit process of Qm.

To prove tightness it suffices by the theory of Billingsley (1968), Chapter
2, to show that for each positive ε and ε′, there is a δ such that

Pr{ω(Qm, δ) ≥ ε} ≤ ε′ for all large m,

where ω(Qm, δ) is the maximum of all δ-increments Qm(y′) − Qm(y) with
y′ − y ≤ δ. Now let δ = (1

2)m. For such y and y′, find dyadic neighbors with
i/2m ≤ y ≤ y′ ≤ j/2m, where j − i is at most 2. Hence, for all m′ ≥ m,

Qm′(y′)−Qm′(y) ≤Qm′(j/2m)−Qm′(i/2m)≤ 2∆m,

using that Q′
m is equal to Qm at all j/2m points. It follows that

Pr{ω(Qm′ , (1
2 )m)≥ ε} ≤ Pr{2∆m ≥ ε} for all m′ ≥ m,

proving tightness under the ∆m →p 0 condition. �

We now show that the condition of Proposition 2.1 is very easily fulfilled.
Assume, for example, that all the Vm,j variables are independent, and that all
EV 2

m,j and E(1−Vm,j)
2 are bounded by some c < 1

2—if, for example, the Vm,j

is Beta with parameters (1
2am, 1

2am), then the condition holds provided only
that the am’s stay away from zero. Note that Qm(j/2m)−Qm((j − 1)/2m)
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Fig. 1. Random Q(y) curves generated from the same quantile pyramid process, using
independent Vm,j ’s drawn from Beta distributions ( 1

2
am, 1

2
am), with am = cm3, for c = 2.5.

This corresponds to the Beta quantile pyramid discussed in Section 4, and produces abso-
lutely continuous Q(y).

may be expressed as a generic product V ε1
1 · · ·V εm

m , with V1 from the first
generation, V2 from the second, etc.; and where εi is 0 or 1, writing on this
occasion V 0 = 1 − V and V 1 = V . See Figure 1. See also (5) below. This
leads to

Pr{∆m ≥ ε} ≤
∑

j≤2m

Pr{Qm(j/2m)−Qm((j − 1)/2m)≥ ε}

≤
∑

j≤2m

(1/ε2)E(V ε1
1 )2 · · · (V εm

m )2 ≤ (1/ε2)(2c)m,

showing that Proposition 2.1 applies. Similarly, if all Vm,j ’s have their means
inside [0.293,0.707] and if their variances go to zero, then the ∆m →p 0
condition holds, implying again a continuous quantile limit process Q(y).
Examples of such random Q(y) curves are presented in Figure 1.

The behavior of the Q process depends crucially on aspects of the Vm,j

variables. Now we focus on conditions securing smoothness of the Q, and
for which we must demand more than Proposition 2.1. Consider therefore
the derivative of Qm at level m, which exists outside the j/2m points;

qm(y) = {Qm(j/2m)−Qm((j − 1)/2m)}/(1
2 )m

(4)
on ((j − 1)/2m, j/2m).
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We wish to establish conditions under which this quantile density function
converges to a random function which may be represented as the derivative
of Q. For illustration, take m = 3, where we may write

q3(y) =





8V1,1V2,1V3,1, for y ∈ (0,1/8),
8V1,1V2,1(1− V3,1), for y ∈ (1/8,2/8),
8V1,1(1− V2,1)V3,3, for y ∈ (2/8,3/8),
8V1,1(1− V2,1)(1− V3,3), for y ∈ (3/8,4/8),
8(1− V1,1)V2,3V3,5, for y ∈ (4/8,5/8),
8(1− V1,1)V2,3(1− V3,5), for y ∈ (5/8,6/8),
8(1− V1,1)(1− V2,3)V3,7, for y ∈ (6/8,7/8),
8(1− V1,1)(1− V2,3)(1− V3,7), for y ∈ (7/8,1).

(5)

We shall see that increased tightness of the Vm,j ’s around 1
2 as m grows is

the key to a well-behaved limit of qm(y). In fact we shall now state and prove
two results securing existence of an absolutely continuous limiting quantile
process Q, the first for the symmetric case where the Vm,j ’s have mean 1

2
and the second for the nonsymmetric case.

Proposition 2.2. Assume that the variables Vm,j of (3) involved at
level m are such that E(Vm,j | Fm−1) = 1

2 and Var(Vm,j | Fm−1) ≤ σ2
m for

each j, with
∑∞

m=1 σ2
m finite, where Fm−1 represents all previous Vm′,j′ with

m′ ≤ m − 1. Then with probability 1 there is a function q(y) which is the
a.e. limit of qm(y), and for which Q(y) =

∫ y
0 q(u)du for 0≤ y ≤ 1.

Proof. As seen above, each increment Qm(j/2m)−Qm((j − 1)/2m) at
level m may be represented as a product V ε1

1 · · ·V εm
m , where εi is 0 or 1,

and V 0 = 1−V , V 1 = V . Hence qm(y) may be presented as Zm = W1 · · ·Wm

with Wj = 2V
εj

j having mean 1. Thus the martingale convergence theorem

applies and leads to the existence of a limit q(y), regardless of the variances.
The finiteness of

∑∞
m=1 σ2

m is, however, needed in order to secure that
Q(y) is the integral of q(y). The variance of Zm above is EW 2

1 · · ·W 2
m − 1,

which via conditional expectations and E(W 2
m | Fm−1)≤ 1 + 4σ2

m is seen to
be bounded by

∏m
r=1(1 + 4σ2

r )− 1, which again is bounded by the constant

exp(4
∑∞

m=1 σ2
m)− 1. In particular,

∫ 1
0 Var qm(y)dy is bounded as m grows.

The required statement follows from the corollary of Kraft (1964). The point
to note is that as far as independence of the Vm,j ’s is concerned, it is their
conditional independence given Fm−1 which actually matters, and with this
the theorem and corollary of Kraft (1964) still hold, since Q behaves as a
distribution function with probability 1. �

The above quantile processes with E(Vm,j | Fm−1) = 1
2 all have EQ(y) =

y for y ∈ (0,1), that is, are centered at the uniform quantile function. In
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Bayesian practice one needs to be able to center priors at given positions,
that is, to adjust the prior to match a given prior guess distribution, say
Qnull(y) = F−1

null(y). This takes nonsymmetric Vm,j ’s. One needs in fact

EVm,j =
Qnull(j/2

m)−Qnull((j − 1)/2m)

Qnull((j + 1)/2m)−Qnull((j − 1)/2m)
(6)

for j = 1,3, . . . ,2m − 1

at level m, as is seen from representation (3), in order to achieve EQm(y) =
Qnull(y). If the distribution with Qnull as quantile function has a density
with two derivatives, an approximation to the mean above is

1
2 − 1

4{Q′′
null(y)/Q′

null(y)}/2m,

at y = j/2m. The following proposition demonstrates that such nonsymmet-
ric setups also give absolutely continuous quantile pyramids, provided the
variances become small enough.

We also point out another option for achieving a similar aim, via a simple
transformation, namely through Q(y) = Qnull(Qunif(y)), where Qunif(y) is
a quantile process centered at the uniform distribution, using symmetric
Vm,j ’s. The median of this random Q(y) is equal to Qnull(y). For example,
Q(y) = µ + σΦ−1(Qunif(y)) defines a quantile process with median value
function equal to the quantile function of a normal (µ,σ2), with Φ denoting
the cumulative distribution function of a standard normal.

Proposition 2.3. Assume that the Vm,j ’s are all independent, and write
EVm,j = 1

2 + δm,j and the unconditional variance VarVm,j = σ2
m,j . Assume

further that |δm,j | ≤ δm and σm,j ≤ σm for all j at level m, where
∑∞

m=1 σ2
m

and
∑∞

m=1 δm are both finite. Then again there is a.s. convergence of qm(y)
to q(y), and Q(y) is the integral of q(y).

Proof. As in the previous proof we may represent qm(y) as Zm =
W1 · · ·Wm, with Wk = 2V εk

k , again writing generically V 1 = V and V 0 =
1 − V . Existence of a limit for Zm is not as automatic as in the pre-
vious symmetric case, since its mean differs from 1 and the martingale
convergence theorem cannot be directly applied. Consider, however, Z∗

m =
W1 · · ·Wm/(ξ1 · · · ξm), where ξ1 · · ·ξm is the mean of Zm. Then the martin-
gale theorem applies to Z∗

m, which therefore has a well-defined limit Z∗.
But the sequence of products of means ξ1 · · ·ξm is seen to converge, basi-
cally since the conditions imposed imply that

∏m′

r=m+1 ξr must converge to
1 when m and m′ > m go to infinity. Next,

EZ2
m ≤

m∏

r=1

{(1 + 2δr)
2 + 4σ2

r} =
m∏

r=1

(1 + 2δr)
2

m∏

r=1

{
1 +

4σ2
r

(1 + 2δr)2

}
.
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Using the 1+x ≤ exp(x) inequality and some further analysis, one sees that
the sequence of variances is also bounded, like the sequence of means. That
Q(y) is the integral of the limiting quantile density function q(y) under the
boundedness of Var qm(y) condition follows as for the previous proposition,
again via techniques from the proof of Kraft’s (1964) theorem. �

3. Large pyramidal support. Assume that sufficient conditions are in
place for Q, and hence also F = Q−1, to be absolutely continuous with
respect to the Lebesgue measure on [0,1]; cf. the proposition above. Assume
the same to be true for Q0, which we shall refer to as the true quantile
function. Then Q0 admits the density f0 on [0,1] with corresponding quantile
function Q0(y) = F−1

0 (y) and quantile density q0(y) = 1/f0(Q0(y)). Now let
Π be the probability measure governing the q = lim qm, and consider the
following conditions:

(A) For all ε > 0, Π{q :
∫

q log(q/q0)du < ε}> 0.
(B) For all δ > 0 there exists an ε > 0 such that

∫
log

q0(τε(u))

q0(u)
du < δ

for any τε(u) for which maxu |τε(u)− u|< ε and τε(u) ∈ [0,1].
(C) The density f0 is bounded by some K <∞.

Proposition 3.1. When conditions (A)–(C) hold, each Kullback–Leibler
neighborhood {f :

∫
f0 log(f0/f)dx < ε} around the fixed f0 has positive

Π-probability.

Proof. We first show that condition (B) implies condition (B0), which
is that for all δ > 0, there exists an ε > 0 such that

∫
{q0(u)/q0(τε(u))}du >

1− δ for any τε(u) for which maxu |τε(u)−u|< ε. For any θ > 0 there exists
an ε > 0 such that

∫
log

q0(u)

q0(τε(u))
du >−θ.

Now for any positive random variable Z, logEZ > E logZ and so

log

∫
q0(u)

q0(τε(u))
du > −θ

and hence
∫

q0(u)

q0(τε(u))
du > exp(−θ).

Clearly, for any δ > 0 there exists a θ > 0 such that exp(−θ) > 1− δ and so
the claim is proven.
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By using the transform x = Q0(u), the Kullback–Leibler distance
∫

f0 log(f0/
f)dx may be expressed as

∫
log

q(τ(u))

q0(u)
du =

∫
log

q(τ(u))

q0(τ(u))
du +

∫
log

q0(τ(u))

q0(u)
du,

where τ(u) = F (Q0(u)). We will now deal with these two terms separately.
For the first term, use the transform x = τ(u) to give

∫
q(x) log{q(x)/q0(x)}f0(Q(x))dx.

The aim is to show that for any δ > 0, the prior puts positive mass on
∫

q(x) log{q(x)/q0(x)}f0(Q(x))dx ≤K

∫
q(x) log{q(x)/q0(x)}dx + δ

and hence, using condition (A), the prior puts positive mass on
∫

q(x) log{q(x)/q0(x)}f0(Q(x))dx < δ

for any δ > 0. Now
∫

q(x) log{q(x)/q0(x)}{K − f0(Q(x))}dx ≥
∫

f0(Q(x))q0(x)dx− 1

and
∫

f0(Q(x))q0(x)dx =

∫
q0(x)

q0(λ(x))
dx,

where λ(x) = F0(Q(x)). Condition (A) is sufficient for the prior to put pos-
itive mass on {Q :maxu |Q(u) − Q0(u)| < θ} for any θ > 0 and so from the
absolute continuity of F0, for any ε > 0 the prior puts positive mass on
{Q :maxu |λ(u)−u| < ε}. Condition (B0) finishes the story for the first term.

For the second term, again, condition (A) is sufficient for the prior to put
positive mass on {Q :maxu |Q(u) − Q0(u)| < θ} for any θ > 0. Thus, from
the absolute continuity of F , for any ε > 0 the prior puts positive mass on
{F :maxu |τ(u) − u| < ε}. Hence, using condition (B), for any δ > 0 there
exists an ε > 0 such that the prior puts positive mass on

∫
log

q0(τε(u))

q0(u)
du < δ.

This completes the proof. �

Here we establish that condition (A) holds in all situations where the
Vm,j ’s have full support on [0,1], expectations fixed at 1

2 , and with variances
decreasing sufficiently fast. It will be clear from the arguments used that
condition (A) continues to be in force also when the expectations deviate
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slightly from 1
2 , within the limits dictated by Proposition 2.3. The sufficiently

fast variances in question are recorded in Barron, Schervish and Wasserman
(1999) and amount to

∞∑

m=1

max
j

(VarVm,j)
1/2 ≤

∞∑

m=1

σm < ∞.

With the conditional expectations of the Vm,j ’s fixed at 1
2 it is noted that

EVar(Vm,j | Fm−1) = VarVm,j

and so conditioning on previous Vm′,j is permitted provided
∞∑

m=1

max
j

{EVar(Vm,j | Fm−1)}1/2 <∞,

which is the sum of the unconditional variances, since E(Vm,j) = 1
2 , in the

sense that the argument of Barron, Schervish and Wasserman (1999) then
continues to go through. Following Lavine (1994), we can write D(Q,Q0) =∫

q log(q/q0)dy as the difference of two sums, the first being

∑

m

∑

ε

∑

j∈{0,1}

Q(Bε,j) log
Q(Bε,j |Bε)

λ(Bε,j | Bε)
,(7)

where λ represents the Lebesgue measure. The λ can also be replaced with
any smooth Qnull, as long as it remains a dominating measure for the Q pro-
cess; cf. the previous section. Here Bε is a dyadic interval and for a particular
m, we have ε = (ε1, . . . , εm) where εk ∈ {0,1} and (ε, j) = (ε1, . . . , εm, j) for
j ∈ {0,1}. So, for example, B0,0 = [0,1/4) and B0,1,1 = [3/8,4/8). Now make
the variances of the Vε decrease sufficiently rapidly, ensuring that

∑

m

max
ε

{
log

Vε

λ(Bε,j | Bε)
∨ log

1− Vε

λ(Bε,j |Bε)

}

converges with positive probability and hence that (7) converges. The second
term is

∫
q log q0 dy which is finite if (7) is, and which can also be expressed

as a sum over m,

∑

m

∑

ε

∑

j∈{0,1}

Q(Bε,j) log
Q0(Bε,j|Bε)

λ(Bε,j|Bε)
.

The proof is then completed using the fact that the V ’s have full support
on [0,1].

We note that the result about condition (A) being satisfied is not surpris-
ing in view of the fact that the Q is similar enough in structure to a Pólya
tree in order for Theorem 2 of Lavine (1994) to apply.

Condition (B) is a property of q0 and is a quite mild smoothness condition.
If q0 is continuous on (0,1), then we only need consider the integral in a
neighborhood of 0 and 1.
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4. The Beta and the median-Dirichlet quantile pyramids. We shall dis-
cuss two attractive options for the class of distributions Vm,j of (3) that
make up the core of a quantile pyramid.

4.1. The Beta quantile pyramid. The first option is to use independent
Betas for the weights appearing in (3). An appealing choice is to let all Vm,j ’s
in (3) be symmetric Beta variables, with parameters, say, (1

2am, 1
2am) for

those at level m. These have variance 1
4/(am +1). As long as

∑∞
m=1 1/(am +

1) is finite, the limiting quantile process Q of the Qm’s has a.s. a quantile den-

sity function q(y). The slightly stronger condition
∑∞

m=1 1/a
1/2
m <∞ secures

condition (A) of Section 3. Note that the Q is constructed as a Pólya tree,
but importantly its accompanying distribution function F = Q−1 is not. In-
terestingly, the very same condition about the Beta distribution parameters,

about
∑∞

m=1 1/a
1/2
m being finite, occurs in Ghosal, Ghosh and Ramamoorthi

(1999b), where it is seen to imply posterior consistency of symmetrized Pólya
trees.

The uncertainty of q(y) around its constant mean 1 is dictated by the
variances of the Vm,j ’s, sometimes in complicated ways. Intriguingly, when
all Vm,j ’s inside the same generation m have the same distribution, sym-
metric around 1

2 , we may actually find and assess the distribution of Bm =
maxy qm(y) and its limit B = max q(y) explicitly. This is due to the symme-
try of the representation 2V ε1

1 · · ·2V εm
m over different intervals, as displayed,

for example, in (5). At each node, either Vm,j or 1 − Vm,j is in (1
2 ,1), the

other in (0, 1
2). The maximum value of qm(y) takes place in that interval for

which each of the m components V
εj

j are in (1
2 ,1). Hence

Bm =d

m∏

j=1

max{2Vj ,2(1− Vj)}=d

m∏

j=1

(2Uj)

in terms of generic V1, V2, . . . from generations 1,2, . . . , where Uj is dis-
tributed like Vj conditional on Vj ≥ 1

2 . This distribution converges, under the
finite sum of variances condition, and is easily simulated for given regimes
for the distributions of Vj ’s. For the Beta quantile pyramid, EUm = ξ(1

2am),

say, where ξ(b) is the mean of V | {V ≥ 1
2} when V is a symmetric Beta(b, b).

Some efforts and integration skills lead to

ξ(b) =

∫ 1

1/2
v
Γ(2b)

Γ(b)2
2vb−1(1− v)b−1 dv =

Γ(2b)

Γ(b)2

(
1

4

)b{1

b
+

Γ(1/2)Γ(b)

Γ(b + 1/2)

}
.

Hence EBm =
∏m

j=1{2ξ(1
2aj)}.

To assess this usefully, we note that 2(2b+1)1/2(V − 1
2) tends to a standard

normal, when V ∼ Beta(b, b) and b goes to infinity. This means that U =
max(V,1 − V ) behaves like 1

2 + 1
2Z/(2b + 1)1/2 for large b, where Z is a
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standard normal conditional on being positive. This leads to 2ξ(b)
.
= 1 +

(2/π)1/2/(2b + 1)1/2 for increasing b. We learn from this that B = max q(y)

has finite mean when
∑∞

m=1 1/a
1/2
m is finite. Also, if, for example, am = cm3,

then the mean of B may be studied as a function of c, which is useful when
attempting to elicit a prior process for one’s quantile function. One may
similarly study the distribution and expected value of minq(y) =d

∏∞
j=1 2(1−

Uj).
As discussed around (6), we would often wish to center quantile processes

at given null distributions, which would need nonsymmetric Beta variables
in the above construction, say, employing Beta(1

2am, 1
2bm) with appropriate

am, bm. Proposition 2.3 dictates that am and bm need to become close to
each other for growing m, in order for a limiting quantile density function
q(y) to exist.

One special case worth mention is that where all the Vm,j ’s are uniform,
corresponding to all am = 2, where the quantile process amounts to a natural
splitting procedure: (i) the median Q(1

2 ) is uniform on [0,1]; (ii) the two

extra quartiles are independent and uniform on [0,Q(1
2 )] and [Q(1

2 ),1]; (iii)
the three extra octiles are independent and uniform on the four intervals
defined by the three quartiles; and so on. This might be seen as a natural
noninformative prior scheme. More generally one might study the case of
am = a constant, with the same Beta(1

2a, 1
2a) at work at all levels for the

Vm,j . Then the Q(y) process is a.s. continuous but singular, not equal to
the integral of its derivative. This follows from results of Ferguson (1974),
page 621; see also Dubins and Freedman (1967), based on the fact that Q
behaves as a distribution function with probability 1.

The Vm,j ’s of the Beta quantile pyramid might employ parameters (1
2am, 1

2bm)
that depend on the previous outcomes of Vm′,j for m′ < m, for example, in
a Markovian fashion. This gives one the opportunity to modify the behavior
of Qm in light of aspects of Qm−1.

4.2. The median-Dirichlet quantile pyramid. Agree to say that a random
variable U has a median-Dirichlet distribution with parameter a, written
U ∼ MD(a), if

Pr{U ≤ x}= Ha(x) = Pr{Beta(ax,a(1− x)) ≥ 1
2}= G( 1

2 ;a(1− x), ax).(8)

Here G(·;a, b) denotes the cumulative Beta distribution with parameters
(a, b). To motivate this definition, suppose that F is a Dirichlet process with
parameter aFuni, where Funi is the uniform distribution on the unit interval.
Then its random median U = Q(1

2 ) = inf{t :F (t) ≥ 1
2} does in fact have this

MD(a) distribution. Note that U is symmetric around its center value 1
2 .

More generally, when Fnull is any probability distribution on the line, say
that U ∼ MD(aFnull) if Pr{U ≤ x} = Ha(Fnull(x)). This is the distribution
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of a random median from a Dir(aFnull) process; see also Hjort and Petrone
(2006). Our emphasis in this connection is on using the MD(a) distribution
as a modeling tool when working with quantile pyramids.

From Proposition 2.2 we know that the degree of continuity of the limit-
ing quantile process is governed by the sizes of the variances of the Vm,j ’s.
For the present case this necessitates studying the variances of the MD(a)
distribution (8). This may be written

τ2(a) =

∫ 1

0
Pra{U2 ≥ x}dx− (1

2)2 =

∫ 1

0
G(1

2 ;ax1/2, a(1− x1/2))dx− 1/4.

Inspection and some analysis reveal that τ2(a) starts with value 1/12 for
a at zero and then goes down at rate O(1/a) when a grows. Intriguingly,
τ2(a) = (1/4)ρ(a)/(a + 1) where ρ(a) goes monotonically from 1/3 up to 1
as a grows, making the MD(a) distribution quite similar to the Beta(1

2a, 1
2a)

for growing a. Hence remarks made earlier for the Beta quantile pyramids
have clear analogues for the median-Dirichlet governed quantile pyramids;
convergence of

∑∞
m=1 1/(am +1) secures absolute continuity, for example. It

may also be attractive to determine the concentration parameter a at level
m by taking into account the results realized at level m−1. One such option
is Vm,j | Fm−1 ∼ MD(am,j) with am,j = bm/∆(m − 1, j), in terms of ∆(m−
1, j) = Qm−1((j+1)/2m)−Qm−1((j−1)/2m). Finiteness of

∑∞
m=1 1/(1+bm)

secures absolute continuity of the resulting quantile pyramid.

5. Exact posterior and pseudo-posterior pyramids. Let X1, . . . ,Xn be
independent observations from a continuous distribution F on [0,1]. We
shall discuss ways of obtaining the posterior distribution of the quantile
process.

One point of view is that Q defines the cumulative distribution function
F , after which aspects of the posterior distribution of F may in principle be
derived via the defining characteristics

Pr{F ∈C,X1 ∈ A1, . . . ,Xn ∈ An}= EI{F ∈ C}F (A1) · · ·F (An),

valid for all Borel subsets C of the space of cumulative distribution functions
and for all intervals A1, . . . ,An. Then aspects of Q given data may be derived
using (1). For example, considering a single Q(y),

Pr{Q(y) ≤ x,Xi ∈ xi ± ε for each i}

= EI{Q(y) ≤ x}
n∏

i=1

{Q−1(xi + ε)−Q−1(xi − ε)},

which in principle should lead to the posterior distribution of Q(y). This
would often be a cumbersome route to follow, however, which is why we
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circumvent the F here, attempting instead to work directly with the Q
process.

First a comment on how we do this is in order. We obtain the exact
posterior for the prior Πm. Such a prior generates random quantile functions
by linear interpolation. We work with Πm in the same way that posterior
Pólya trees are obtained for partitions constructed down to a finite level.
What is important is that the prior is defined and exists for all m and as
m →∞ converges to a well-defined prior Π.

5.1. Exact posterior inference for Πm. The prior, as has been mentioned
generates quantile functions based on linear interpolation between random
points. Then the inverse of Qm, say Fm, is linear on each quantile interval
[qj−1, qj], with a constant derivative there;

fm(x) = F ′
m(x) =

1

k

1

qj − qj−1
for x ∈ (qj−1, qj),(9)

for j = 1, . . . , k = 2m. Here q0 = 0 and qk = 1. This amounts to a “random
histogram” type model, with random cell widths but fixed probabilities over
these cells.

There is also another route to the (9) density, as follows. In general,
for a smooth distribution F with density f and quantile function Q, the
quantile density function is q(y) = Q′(y) = 1/f(Q(y)). Inverting this gives
f(x) = 1/q(F (x)). In the present context this leads naturally to the level m
prior which generates random densities of the type

fm(x) = 1/qm(Fm(x)),

where Fm(x) for given x is the solution y to the equation Qm(y) = x. But
this can be seen to be exactly the same as (9), due to expression (4) for qm

and the linear interpolation character of Qm and Fm.
Under this linear interpolation prior there is a well-defined likelihood

L̄n(q) =
k∏

j=1

(
1

k

1

qj − qj−1

)Nj(q)

,(10)

where Nj(q) = nFn(qj−1, qj] is the number of points falling inside the jth
quantile interval (and with Fn being the empirical distribution of the data).
Its behavior for growing n is dictated by

−n−1 log L̄n(q) =
k∑

j=1

n−1Nj(q) log(qj − qj−1) + log k

→p λ̄(q) =
k∑

j=1

F0(qj−1, qj] log
qj − qj−1

1/k
.
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For fixed prior and growing n, the posterior distribution of q = (q1, . . . , qk−1)
will concentrate on decreasing neighborhoods around q0 = (q0

1 , . . . , q
0
k−1), de-

fined as the minimizer of λ̄(q).

5.2. The multinomial substitute likelihood. In the setting above, assume
that a pyramid-type probability distribution is given for the k− 1 quantiles
q1, . . . , qk−1, where k = 2m, but we avoid any further specification of Q. We
define the pseudo, or substitute, likelihood for the data as the multinomial
probability

Ln(q) =

(
n

N1(q), . . . ,Nk(q)

)(
1

k

)N1(q)

· · ·
(

1

k

)Nk(q)

(11)

=
n!

N1(q)! · · ·Nk(q)!

(
1

k

)n

.

Such a construction can be found in Jeffreys (1967), Chapter 4, for the
particular case of the median, that is, for k = 2, who noted that it would
yield a “valid uncertainty.” This has been further discussed by Kalbfleisch
(1978) and by Monahan and Boos (1992), who pointed out that Ln(q) is not
the conditional distribution of the data given any statistic, and by Lavine
(1995), who showed that in any case using this substitute likelihood produces
asymptotically conservative inference. The following arguments and results
provide more general insight into aspects discussed in the above references,
and specifically lend support to Jeffreys’s claim; further discussion is offered
in Section 8.

We start with Stirling’s formula and find

logΓ(np + 1) = (np + 1
2)(logn + log p)− np

+ log(2π)1/2 + (1/12)(np)−1 + O((np)−2)

for growing np, from which we derive

−n−1 logLn(q) =
k∑

j=1

(
p̃j log p̃j +

log p̃j

2n

)
+ log k +

k − 1

2n
log

n

2π
+ Rn(q),

where p̃j = Nj(q)/n = Fn(qj−1, qj] is the relative proportion of points falling
inside the jth quantile interval and

Rn(q) =
1

12

1

n2

{
k∑

j=1

1

p̃j
− 1

}
+ smaller terms

goes to zero in probability. If the data points are generated from some F0,
so that Fn → F0 uniformly, with probability 1, then

−n−1 logLn(q) →p λ(q) =
k∑

j=1

F0(qj−1, qj] log
F0(qj−1, qj]

1/k
.
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This is the Kullback–Leibler distance from the discrete probability distribu-
tion with point masses F (qj−1, qj] for j = 1, . . . , k to the uniform one with
point masses 1/k. This lends credibility to (11) as being appropriate for the
nonparametric framework, since maximizing Ln(q) for large n amounts to
minimizing λ(q), which happens exactly for F0(qj−1, qj] = 1/k for each j,

that is, F0(qj) = j/k. Also, since
∑k

j=1 uj log(uj/k
−1)

.
= 1

2k
∑k

j=1(uj − 1/k)2

when all the uj ’s are close to 1/k, Ln(q) is approximately proportional to

L∗
n(q) = exp

[
−1

2nk
k∑

j=1

{Fn(qj−1, qj]− 1/k}2

]
(p̃1 · · · p̃k)

1/2.(12)

6. Updating. Consider a pyramid quantile process of the general type
described in Section 2, interpreted as a prior process for an unknown quantile
function Qm(y) in a nonparametric Bayesian setup. This section describes
how we may update Qm after having observed a sample x1, . . . , xn. Following
Section 5 there is the exact likelihood and the pseudo-likelihood; two related
but different ways of handling the updating. We show that for both versions,
the pyramid structure is retained, leading to certain simplifications for the
posterior and pseudo-posterior quantile distributions.

6.1. Updating the linear interpolation prior. Consider a quantile process
described down to level m, involving a Qm defined in terms of the qj =
Q(j/k) quantiles for j = 1, . . . , k − 1, where k = 2m. There is a prior Πm(q)
for q = (q1, . . . , qk−1) of the type (2). With the likelihood (10), the exact
posterior is given by

Πm(q | data)∝ Πm(q)L̄n(q).(13)

We now demonstrate that the likelihood factorizes in pyramidal fashion.
The basic step involves the following quantity. Let Mn(a, b) = nFn(a, b]

count the number of data points having fallen inside (a, b], and study

κ̄n(q;a, b) =

(
1

2

1

(q − a)/(b − a)

)Mn(a,q)(1

2

1

(b− q)/(b − a)

)Mn(q,b)

for q ∈ (a, b),

where Mn(a, b) counts the number of data points falling in (a, b]. To exem-
plify, we find for m = 2 that

L̄n(q1, q2, q3) = κ̄n(q2; 0,1)κ̄n(q1; 0, q2)κ̄n(q3; q2,1).

Similarly, for m = 3,

κ̄n

(
Q

(
4

8

)
; 0,1

) ∏

j=2,6

κ̄n

(
Q

(
j

8

)
;Q

(
j − 2

8

)
,Q

(
j + 2

8

))

×
∏

j=1,3,5,7

κ̄n

(
Q

(
j

8

)
;Q

(
j − 1

8

)
,Q

(
j + 1

8

))
.
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The general formula involving κ̄n(Q(j/2m); parents) follows and becomes

κ̄n

(
Q

(
1

2

)
; 0,1

)
κ̄n

(
Q

(
1

4

)
; 0,Q

(
1

2

))
κ̄n

(
Q

(
3

4

)
;Q

(
1

2

)
,1

)

×
∏

j=1,3,5,7

κ̄n

(
Q

(
j

8

)
;Q

(
j − 1

8

)
Q

(
j + 1

8

))

× · · ·
∏

j=1,3,5,...,2m−1

κ̄n

(
Q

(
j

2m

)
; parents

)
.

Verifying that this is identical to L̄n(q) of (10), with qj = Q(j/2m), is a
matter of algebra and book-keeping. This leads to an expression for the
posterior distribution:

π1,1

(
Q

(
1

2

))
κ̄n

(
Q

(
1

2

)
; 0,1

)

×
∏

j=1,3

π2,1

(
Q

(
j

4

) ∣∣∣ parents

)
κ̄n

(
Q

(
j

4

)
; parents

)
(14)

×
∏

j=1,3,5,7

π3,1

(
Q

(
j

8

) ∣∣∣ parents

)
κ̄n

(
Q

(
j

8

)
; parents

)
· · · .

This part provides details of the Metropolis–Hastings algorithm for the
linear interpolation process. The posterior density for q = (q1, . . . , qk−1) is
given by

Πm(q | data)∝ Πm(q)
k∏

j=1

(
1

qj − qj−1

)Nj(q)

where k = 2m.

A Metropolis–Hastings algorithm proceeds by taking a proposal q′ for q,
which we do by changing one component at a time; that is, we take q′j
uniform on (qj−1, qj+1) and q′l = ql for l 6= j. Consequently, the accept–reject
ratio for the algorithm is

min

{
1,

(qj − qj−1)
Nj(q)(qj+1 − qj)

Nj+1(q)Πm(q′)

(q′j − q′j−1)
Nj(q′)(q′j+1 − q′j)

Nj+1(q′)Πm(q)

}
.

This is in principle a straightforward algorithm to implement.
There is of course a broadly flexible class of priors to use when it comes

to the choice of Πm(q), via (2). For illustration, take all the Vm,j ’s of rep-
resentation (3) to be independent, with the Vm′,j ’s at level m′ coming from
the same density gm′ , as with the Beta quantile pyramids. Then, at level
m = 5, Π5(q1, . . . , q31) may be written

g1(q16)
∏

j∈S2

g2

(
qj − qj−8

qj+8 − qj−8

)
1

qj+8 − qj−8
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×
∏

j∈S3

g3

(
qj − qj−4

qj+4 − qj−4

)
1

qj+4 − qj−4

(15)

×
∏

j∈S4

g4

(
qj − qj−2

qj+2 − qj−2

)
1

qj+2 − qj−2

×
∏

j∈S5

g5

(
qj − qj−1

qj+1 − qj−1

)
1

qj+1 − qj−1

on the set where 0 < q1 < · · ·< q31 < 1, in which S2 = {8,24}, S3 = {4,12,20,
28}, S4 = {2,6,10,14,18,22,26,30}, and S5 = {1,3,5, . . . ,31}.

6.2. Updating with the multinomial substitute likelihood. For this ap-
proach we use Ln(q) instead of L̄n(q) in (13), and consider

κn(q;a, b) =

(
Mn(a, b)

Mn(a, q),Mn(q, b)

)
(1
2)Mn(a,b) for q ∈ (a, b).(16)

This is also the symmetric binomial probability that Mn(a, q) of the points,
among the Mn(a, b), will fall in the (a, q] interval. Note that Mn(a, q) and
Mn(q, b) depend in a somewhat cumbersome form on the q argument. We
shall see, via algebraic manipulations of the multinomial likelihood (11), that
it also factories into various contributions, of the type (16). To exemplify,
for the case m = 2 one finds that Ln(q1, q2, q3) equals

(
n

N1(q),N2(q),N3(q),N4(q)

)
(1
4)n = κn(q2; 0,1)κn(q1; 0, q2)κn(q3; q2,1).

Similarly, for m = 3, we find

Ln(q) = κn(q4; 0,1)κn(q2; 0, q4)κn(q6; q4,1)
∏

j=1,3,5,7

κn(qj ; qj−1, qj+1)

in terms of the octiles vector (q1, . . . , q7), and so on. The general formula
follows as for the previous case and verification is again a matter of alge-
bra and book-keeping. This leads to an expression for the pseudo-posterior
distribution of the same structure as (14).

The best way of sampling from the pseudo-posterior distribution of the
vector (q1, . . . , qk−1) appears to be via a Metropolis–Hastings type algo-
rithm, as follows. A proposal for q is taken to be q′ given by q′j uniform on
(q′j−1, q

′
j+1) with q′l = ql for l 6= j. For an iteration, we sweep through all the

j’s in turn. Consequently, the accept–reject ratio for the algorithm is given
by

min

{
1,

Nj(q)!Nj+1(q)!Πm(q′)

Nj(q′)!Nj+1(q′)!Πm(q)

}
.

For general discussion of aspects of the Metropolis–Hastings type algorithms,
see, for example, Tierney (1994).
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6.3. Illustrations. A number of simulations were undertaken. Firstly, for
a moderate sample size of n = 100 and with m = 32, the true quantile func-
tion, from which the data were simulated, was taken to be Q(y) = y2. The
Gibbs sampler was run for 5000 iterations and all the samples were used in
constructing the Bayes estimate of Q(y). Figure 2 is the Bayes estimate of
Q using the substitute likelihood. The bold line denotes the estimate and
the dotted line the true quantile function. Figure 3 corresponds to the Bayes
estimate based on the linear interpolation process. Again, the bold line is
the estimate and the dotted line is the true quantile function. The prior used
in both cases is the uniform for the quantile interpolators Vm,j ’s, that is, as
in (15) with the uniform for g1, g2, g3, g4, g5. Note that the accompanying
joint density for (q1, . . . , q31), for this “uniform stick-breaking prior,” is not
flat in q-space.

7. Bayesian consistency. In this section we provide results related to
Bayesian consistency and asymptotic proximity of the approaches/models
used in Sections 5 and 6. We go further in Section 8, reaching large-sample
approximation results of the Bernshtĕın–von Mises theorem variety.

Subject to regularity conditions on f0 [see conditions (B) and (C) in
Section 3], the prior can be arranged so that it puts positive mass on all
Kullback–Leibler neighborhoods of f0; see Proposition 3.1. With this it is
well known that the posterior distributions accumulate in weak neighbor-
hoods of f0. That is, Πn(A) = Π(A | Xn) → 1 with f0-probability 1 where
Xn = (X1, . . . ,Xn) and A is any weak neighborhood of f0.

Fig. 2. With n = 100 data points simulated from the distribution with quantile function
Q0(y) = y2, the figure displays the Bayes estimate of Q using the substitute likelihood. The
bold line denotes the estimate and the dotted line the true quantile function.
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Fig. 3. With n = 100 data points simulated from the distribution with quantile function
Q0(y) = y2, the figure displays the Bayes estimate of Q using the linear interpolation
likelihood. The bold line denotes the estimate and the dotted line the true quantile function.

Nevertheless, inference will be based on Πm which will typically be sample
size dependent; the more samples the larger m will be taken. So we will
undertake consistency issues assuming that mn increases as n increases.
This is what an experimenter would do and so we establish consistency for
such a procedure. So, consider now the prior Π∗

n = Πmn which generates
fm(x) defined in (9), with resolution level m = mn, now allowed to increase
slowly with sample size, with consequent k = kn = 2mn cells.

Proposition 7.1. Let independent observations X1,X2, . . . be generated
from a density f0, that is, inside the Kullback–Leibler support of Π, the limit
of quantile pyramids Πm, assuming conditions (A)–(C) of Section 3 hold.
Let furthermore Π∗

n = Πmn be the quantile prior stemming from construction
(9) for fm, with

kn →∞ and kn/n → 0.(17)

Then the sequence of posterior distributions is Hellinger consistent at f0.

Proof. For a finite m the number of Hellinger balls required to fill up
the space of densities generated by Π∗

n is finite. Call this number by Nn.
In order to achieve consistency with this sample size dependent prior, along
with the support condition, as in Section 3, we require that

∞∑

n=1

exp(−nc)Nn <∞ for each positive c.
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This result can be found in Walker (2003) based on previous findings from
Ghosal, Ghosh and Ramamoorthi (1999a). The c is related to the size of the
balls and hence the need for it to be arbitrarily small. Let us fix the size of the
balls to be δ > 0. An observation is that if |qj−q∗j |< ε for all j = 1, . . . , kn−1,
then the Hellinger distance between the corresponding densities f and f∗

will be bounded by δ for small enough ε. Now split the unit interval into
K = [1/ε] equal parts all of size ε. Then clearly

Nn(ε) ≤Kkn with kn = 2mn .

So we require

∞∑

n=1

exp{−n(c− n−1kn logK)}< ∞

for all c > 0 and K which happens precisely under the (17) condition. �

A refinement is possible here by allowing the size of the balls to also
depend on n.

8. Approximations to the pseudo-posterior distribution. Here we exam-
ine various natural approximations to the pseudo-posterior quantile pyra-
mids, and reach so-called Bernshtĕın–von Mises theorems under natural
conditions.

For parametric models a classic large-sample result about the maximum
likelihood estimator θ̂ for the parameter θ is that

√
n(θ̂ − θ0) tends to

N(0, J(θ0)
−1), with J(θ0) the information matrix at the true parameter

value θ0. A Bayesian mirror result to this is that under mild conditions on
the model and the prior used for θ, the posterior distribution of

√
n(θ − θ̂)

will a.s. have the same limit distribution. This also implies that the Bayes
estimator E(θ | data) and the maximum likelihood estimator become

√
n-

equivalent for large n. Such results can be traced back to Bernshtĕın (1917)
and von Mises (1931) and are often collectively referred to as Bernshtĕın–von
Mises theorems. The importance of these results is partly that an easy-to-
use approximation can be used in applied Bayesian statistics, in cases where
the precise prior-to-posterior calculations are complicated, but lies also in
revealing that data appropriately wash out the prior as the data information
level increases; different priors will lead to approximately the same inference,
and this inference will also agree to the first order of magnitude with that
of classic frequentist approaches. In Bayesian nonparametrics such results
are not to be taken for granted [see, e.g., Freedman (1999) and Hjort (2003)
for counterexamples], and are also typically harder to prove if they hold at
all; see, for example, Ghosal (2000), about exponential families with a grow-
ing number of parameters, and Kim and Lee (2004) and De Blasi and Hjort
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(2007), concerned with semiparametric event history models with Beta pro-
cess type priors.

Let again f0 be the true density underlying independent data X1, . . . ,Xn

on [0,1], with cumulative and quantile distribution functions F0 and Q0.
Two results from classic empirical process theory are that

An(t) =
√

n{Fn(t)−F0(t)}→d W 0(F0(t)),

Bn(y) =
√

n{F−1
n (y)−Q0(y)}→d q0(y)W 0(y) = W 0(y)/f0(Q0(y)),

where W 0 is a Brownian bridge, that is, a zero-mean normal process with
covariance function y1(1−y2) for y1 ≤ y2. The first convergence takes place in
the space DR[0,1] of right-continuous functions with left-hand limits on [0,1]
while the second holds in each space DL[ε,1− ε] of left-continuous functions
with right-hand limits on [ε,1 − ε], both equipped with suitable versions
of the Skorokhod topology. For these results see, for example, Shorack and
Wellner (1986), Chapter 3.

We shall first focus on quantiles q = (q1, . . . , qk−1) for a fixed number
k = 2m of cells, with qj = Q(j/k). For this situation the above result for Bn

implies for the frequentist estimator q∗j = F−1
n (j/k) that

√
n(q∗j − q0

j )→d q0(j/k)W 0(j/k) for j = 1, . . . , k − 1,

with q0
j = Q0(j/k) being the real underlying quantile. Our next result pro-

vides a Bernshtĕın–von Mises mirror result to this.

Proposition 8.1. Consider any quantile pyramid prior Πm(q) for the
quantiles q = (q1, . . . , qk−1), with the number of cells k = 2m being fixed, and
let the pseudo-posterior distribution of q be defined in terms of the multino-
mial likelihood Ln(q) of (11). Then with probability 1 the pseudo-posterior
distribution of q is such that the vector with components

Cn,j =
√

n(qj − q∗j ) =
√

n{Q(j/k) −F−1
n (j/k)}

converges to that of Cj = W 0(j/k)/f0(q
0
j ), for j = 1, . . . , k − 1.

Proof. Write qj = q∗j + γj/
√

n for j = 1, . . . , k − 1. Then

Fn(qj) = F0(qj) + An(qj)/
√

n

= F0(q
∗
j ) + {f0(q

∗
j ) + An(q∗j )}/

√
n + op(n

−1/2),

which implies that
√

n{Fn(qj)− j/k} can be written
√

n{F0(q
∗
j )− j/k}+ f0(q

∗
j )γj + An(q∗j ) + op(1) = f0(q

∗
j )γj + op(1).

Consequently, with probability 1,
√

n{Fn(qj−1, qj)− 1/k} = f0(q
0
j )γj − f0(q

0
j−1)γj−1 + op(1)
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since q∗j → q0
j a.s. for j = 1, . . . , k. Here we write γ0 = 0 and γ1 = 0. From the

likelihood approximation (12), the pseudo-posterior density of (γ1, . . . , γk−1)
is proportional to Πm(q∗+γ/

√
n)Ln(q∗+γ/

√
n), where, up to further factors

that vanish in importance,

Ln(q∗ + γ/
√

n)
.
= exp

[
−1

2nk
k∑

j=1

{f0(q
0
j )γj − f0(q

0
j−1)γj−1}2

]

(18)
= exp(−1

2φtΣ−1
k φ),

say; the underlying convergence is uniform over all balls ‖γ‖ ≤ c. Here φ is
the (k − 1)-vector with components φj = f0(q

0
j )γj − f0(q

0
j−1)γj−1, and

Σk =




k−1(1− k−1) · · · −k−2

· · ·
−k−2 · · · k−1(1− k−1)



 with Σ−1
k =




2k · · · k

· · ·
k · · · 2k



 .

This implies the statement of the proposition, in view of the multinomial
structure of the covariances of a Brownian bridge. �

The above implies that the pseudo-posterior quantile process

Cn(y) =
√

n{Q(y)−Q∗(y)} =
√

n{Q(y)− F−1
n (y)}(19)

is such that the pseudo-posterior distribution of Cn(y) tends to C(y) =
q0(y)×W 0(y) for y at positions 1/k,2/k, . . . , (k − 1)/k, as long as the reso-
lution level is fixed with k = 2m cells, for any pyramid prior. It also follows,
by taking expectations, that the Bayes estimator E{Q(y) | data} becomes
equivalent to the frequentist estimator F−1

n (y) for large n, under these con-
ditions, for the y = j/k positions.

Remark. We do anticipate that there is a stronger Bernshtĕın–von
Mises theorem that under conditions somewhat stronger than those of Propo-
sition 7.1 will imply that the full process Cn of (19) will converge to C =
q0(·)W 0(·), inside each of the Skorokhod spaces DL[ε,1 − ε]. In a technical
report version of the present article we have provided details of arguments
that combine to formulate the conjecture that for the Beta quantile pyramid
with Vm,j ’s taken as Beta(1

2am, 1
2am), and if the density f0 is bounded on

[0,1], then conditions

kn →∞, kn/
√

n→ 0, mam/
√

n→ 0

secure Cn →d C in the described sense.

9. Discussion and concluding remarks. We end our article with a list of
concluding comments, pertaining to various aspects of our quantile pyramid
processes.
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9.1. What is the F of a quantile pyramid Q like? It is in general not
possible to understand the distribution function F generated from Q in
terms of, for example, analytic expressions for means or variances. It is best
understood in terms of distributing mass to random partitions and relying
on existence theorems, as discussed in Section 2, in analogy to what is done
if F had been generated by a Pólya tree.

Doss and Gill (1992) provided a machinery for bringing weak convergence
results in the F domain over to the Q = F−1 domain, via compact differ-
entiability of the inverse functional transform. Interestingly, one may now
borrow their techniques to go the other way, starting with Proposition 8.1
and the Cn process of (19). The result is another Bernshtĕın–von Mises the-
orem, stating that the posterior distribution of

√
n(F −Fn), where F is the

random distribution function stemming from a quantile pyramid Q, must
tend to the Brownian bridge W 0(F0(·)), under mild conditions.

9.2. Semiparametric models and quantile regression. In Section 2 we
briefly pointed to quantile processes of the type Q(y) = µ + σΦ−1(Quni(y)),
which for given (µ,σ) describes a prior situated at the N(µ,σ2) quantile
function. By in addition having a prior on (µ,σ) one has a semiparametric
Bayesian construction for handling an uncertain distribution about the nor-
mal. The posterior distribution can be established via a Metropolis–Hastings
algorithm based around the likelihood function at level m given by

L̄n(µ,σ, q) =
1

σn

k∏

j=1

{
1

k

1

Φ−1(quni,j)−Φ−1(quni,j−1)

}Nj(quni)

,

where now quni,j = Quni(j/2
m) and Nj(quni) is the number of observations

in

(µ + σΦ−1(quni,j−1), µ + σΦ−1(quni,j)).

Similarly one may work with quantile regression problems, of the type
Qi(y) = a + bxi + σΦ−1(Quni(y)), with a prior on (a, b, σ) independent of
the Quni pyramid. This would be a semiparametric construction more gen-
eral in spirit than that of Kottas and Gelfand (2001), who work with the
Dirichlet process.

9.3. Dependent quantile pyramids. There are various statistically impor-
tant problems associated with dependent quantile functions, for example, in
finance. This might in the present context call for constructing dependent
quantile pyramids, for which there are several possibilities. A particular ver-
sion is as follows, elaborating on the idea that the Vm,j ’s for two pyramids
can be made dependent:

Vm,j = G−1(Φ(Nm,j);
1
2am, 1

2am), V ′
m,j = G−1(Φ(N ′

m,j);
1
2am, 1

2am),
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where Nm,j and N ′
m,j are standard normals with correlation ρm, say, and

with G being the cumulative distribution function for the Beta distribution.
This leads to two dependent Beta quantile pyramids Q and Q′. More gen-
erally time series of quantile pyramids can be worked with through suitable
time series models for the underlying Vm,j ’s.

9.4. Asymptotics for the linear interpolation model. Proposition 8.1 and
the anticipated process generalization described in the remark following it
relate to the multinomial substitute likelihood Ln of (11). Results of a some-
what different nature can be reached with the linear interpolation model
based likelihood L̄n(q) of (10), and these modified statements need different
proofs. Importantly, for a fixed fine-ness level m, the two quantile likeli-
hoods (10) and (11) are concerned with two different versions of quantiles;
the first is maximized by estimators that tend to the least false quantiles
q0 = (q0

1, . . . , q
0
k) that minimize the distance function λ̄(q) of Section 5.1,

whereas the second is maximized by estimators that tend to real underlying
quantiles, as explained in Section 5.2. The difference between the pseudo-
quantiles and real quantiles goes to zero as the level m increases, however, as
is implicit in Proposition 7.1. There are, however, “cube root asymptotics”
that govern the large-sample behavior of distributions associated with the
linear interpolation likelihood; see Hjort (2007).

9.5. More general quantile processes. Our Πm(q) priors for quantiles Qm

have been constructed in a natural pyramidal fashion, and we saw in Sec-
tions 5 and 6 that the natural updating mechanisms involved likelihoods
that factorized in precisely this way. More general constructions can also be
worked with, however, using techniques and results from our article. One
may work with Q(1/k), . . . ,Q((k − 1)/k) for k different from the pyramid’s
2m, with methods of Section 6 still applying, and other constructions for
building suitable Πm(q1, . . . , qk−1) may be contemplated, as, for example,
setting qj equal to F (j/k) for a random distribution function F on the unit
interval. Our pyramids correspond to special cases of such constructions.

9.6. Further quantilian quantities. In our article we have developed and
discussed nonparametric Bayesian tools for analyzing a quantile distribu-
tion Q. This is a fundamental statistical quantity, and other quantities of
importance depend naturally on Q. Among these are the Lorenz curve

L(y) =

∫ y

0
Q(u)du

/∫ 1

0
Q(u)du for 0 ≤ y ≤ 1

and the Gini index G = 2
∫ 1
0 {1 − L(y)}dy. Since we are able to obtain

posterior samples of the full Q curve, with a quantile pyramid as prior,
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such may be used to carry out inference for, for example, the Gini in-
dex. There are also important procedures for comparing two populations in
terms of their quantile functions, including Doksum’s (1974) shift function
D(x) = F−1

2 (F1(x))−x and Parzen’s (1979) comparison distribution π(y) =
F2(F

−1
1 (y)). Here quantile pyramids may be used as priors for Q1 = F−1

1 and
Q2 = F−1

2 , and Bayes analysis via posterior samples of the D(x) and π(y)
curves may be performed via our methods. Hjort and Petrone (2006) give
a detailed analysis of these matters for the special case of Dirichlet process
priors.
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