
Patrascoiu, Octavian (2004) YATL:Yet Another Transformation Language.
 In: Thechnical Report- University of Kent at Canterbury Computing Labratory.
issue. pp. 83-90.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14215/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14215/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

YATL: Yet Another Transformation Language
Octavian Patrascoiu

Computing Laboratory, University of Kent, United Kingdom

O.Patrascoiu@kent.ac.uk

Abstract

With the increased use of modelling techniques has come the desire to use model transformations. Model
transformations systems are graph transformations systems that perform translations between languages
defined by a corresponding metamodel. The current paper proposes a transformation language called
YATL (Yet Another Transformation Language). This transformation language has been defined to
perform transformations within the OMG’s MDA framework. After having presented YATL, we present
several experiments to show how YATL can be used to map from a source model to a target model. YATL
is still evolving since it is supposed to match the forthcoming QVT standard.

1. Introduction
The Model-Driven Architecture (MDA) [14][6] is an initiative of the Object Management Group (OMG)
to define an approach to software development based on modelling and automated mapping of models to
implementations. The basic MDA pattern allows the same platform-independent model (PIM), which
specifies business system or application functionally and behaviour, to be mapped automatically to one or
more platform-specific models (PSMs).

The MDA approach promises a number of benefits [14][4]:

• Improved portability due to separating the application knowledge from the mapping to a specific
implementation technology.

• Increased productivity due to automating the mapping.

• Improved quality due to reuse of well-proven patterns and best practices in the mapping.

• Improved maintainability due to better separation of concerns.

• Enables different applications to be integrated by explicitly relating their models: this facilitates
integration and interoperability and supports system evolution as platform technologies change.

While the current OMG standards such as Unified Modeling Language (UML) [18] and Meta Object
Facility (MOF) [15] provide a well-established foundation for defining PIMs and PSMs, no such well-
established foundation exists for transforming PIMs to PSMs [7]. In 2002, in its effort to define the
transformations, OMG initiated a standardization process by issuing a Request for Proposal (RFP) on
Query / Views / Transformations (QVT) [9]. This process will lead to an OMG standard for defining
model transformations, which will be of interests not only for PIM-to-PSM transformations, but also for
defining views on models and synchronization between models. Driven by practical needs and the
OMG’s request, a large number of approaches to model transformation have been recently proposed [4].

In this paper, we describe YATL, a transformation language developed within the Kent Modelling
Framework (KMF) [9]. The compiler and interpreter for YATL are implemented in Java and are designed
to maximise the portability to different modelling environments/tools. Both language processors contain
a core of elements (classes, methods etc.), which are independent of the modelling environment/tool. The
features that are environment-dependant are implemented using delegation. This approach allows a fast
implementation under different modelling framework, for example Eclipse Modelling Framework (EMF).

Parts of the above language processors were built using MDA techniques:

• The lexical analyser, the parser and translators were generated automatically using Syntax-
Driven Translation Scheme (SDTS), lexical analysers, and parsers generators.

• The Java code associated to the YATL’s abstract syntax was generated using KMF Studio, a tool
provided by KMF, using the MOF model of the abstract syntax as input.

These parts can be easily regenerated for other environments if appropriate generation tools are provided.
For instance, if the target language is C#, the above parts of the language processors can be easily
generated as C# parser generators are available and KMF can be configured to generate C# code.

2. Design features
The Yet Another Transformation Language is a hybrid language (a mix of declarative and imperative
constructions) designed to express model transformations as required by the MDA [14][6] approach and
to answer the Query/Views/Transformations Request For Proposals [10] issued by OMG. It is described
by an abstract syntax (a MOF metamodel) and a textual concrete syntax. It does not provide yet a
graphical concrete syntax as QVT RFP suggested. A transformation model in YATL is expressed as a set
of transformation rules. The recommended style of programming is declarative. Transformations from
Platform Independent Models (PIMs) to Platform Specific Models (PSMs) can be written in YATL to
implement the MDA.

This paper presents the current version of YATL, which is evolving in order to support all the features
provided by [9] and the future QVT standard.

We designed YATL to support beside the ongoing QVT requirements, the following additional
requirements:

• Transformation engine must be capable to perform efficient transformation for large-scale
systems.

• The process of applying the transformation rules must be deterministic.

• Syntax and semantics of YATL must be well-defined.

• YATL should be a hybrid language containing both declarative and imperative features.

• Queries, views, and transformations are organized in namespaces to provide reusability and
avoid name collision.

• YATL must provide all the required computational power, regardless of the host platform or
language.

3. Namespaces and Translation Units
A YATL program consists of one or more translation units, each contained in a separate source file.
When a YATL program is processed, all of the translation units are processed together. Thus, translation
units can depend on each other, possibly in a circular fashion. A translation unit consists of zero or more
import directives followed by zero or more declarations of namespace members: queries, views, or
transformations.

The concept of namespace was introduced to allow YATL programs to solve the problem of names
collision that is a vital issue for large-scale transformation systems. Namespaces are used both as an
“internal” organization system for a program, and as an “external” organization system—a way of
presenting program elements that are exposed to other programs. A YATL program can reuse a
transformation by importing the corresponding namespaces and invoking the appropriate rules.

A YATL query is an OCL expression, which is evaluated into a given context (package, classifier,
property, operation etc.). The returned value can be a primitive type, model elements, collections or
tuples. Queries are used to navigate across model elements and to interrogate the population stored in a
given repository. YATL uses the OCL implementation that was initially developed under KMF and then
under Eclipse as an open source project [1][2].

A YATL transformation is a construct that maps a source model instance to a target model instance by
matching a pattern in a source model instance and creating a collection of objects with given properties in
the target model instance. The matching part is performed using the declarative features of OCL, while
the creation of target instances is done using the imperative features provided by YATL. YATL provides
also the possibility of interacting with the underlying machine using native statements. Although we do
not encourage the use of such features, they were provided to support the modeller when some operations

are not available at the metamodel level (e.g. the standard library of OCL 2.0 does not provide a function
to convert lowercase letters to uppercase letters).

4. Views
According to [10] a transformation model language shall enable the creation of a view of a metamodel.
Views are not supported by YATL yet. This is an area of ongoing research.

5. Transformations
To support the mandatory requirements from [10], a YATL transformation describes a mapping between
a source MOF metamodel S, and a target MOF metamodel T. The transformation engine uses the
mapping to generate a target model instance conforming to T from a source model instance conforming to
S. The source and the target metamodels may be the same metamodel. Navigation over models is
specified using OCL.

Each transformation contains one or more transformation rules. A transformation rule consists of two
parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS of a YATL transformation is
specified using a filtering expression written either in OCL or native code (Java, C#, scripts etc). This
approach allows filter expressions to include both modelling information (e.g. navigational expressions,
properties values, collections, etc.) and platform dependent properties (e.g. special conversion functions),
which makes them extremely powerful. A compound statement specifies the effect of the RHS. The LHS
and RHS for the YATL transformation are described in the same syntactical construction, called
transformation rule. A rule is invoked explicitly using its name and with parameters.

The abstract syntax of YATL namespaces, translation units, queries, views, transformations, and
transformations rules is described in Figure 1.

Figure 1 Abstract Syntax

6. Declarative features
YATL is a hybrid language containing both declarative and imperative constructions. The declarative
features come mainly from OCL expressions and the description of the LHS of transformation rules.
YATL acts similar to a database system that uses SQL to interrogate the database and the imperative host
language to process the results of the query. We choose OCL to describe the matching part of YATL rules
because it is a well-defined language for querying the UML models, it provides a standard library with an
acceptable computational expressiveness, it is a declarative language, and it is a part of the OMG’s
standards.

7. Imperative features
YATL supports several kinds of imperative features that are presented thereafter. This features were
selected such that YATL provides lifecycle operations like creation and deletion, operation to change the
value of properties, declaration, decision, and iteration statements, native statements to interact to the host
machine, for reasons that were previously explained, and build statements to ease the construction of
target model instance. Compound statements contain a sequence of instructions, which are to be executed
in the given order. These syntactic constructions make use of OCL expressions to specify basic operations
such as adding two integer values. YATL uses the same type system as OCL 2.0 [16]. The abstract syntax
of the YATL statements is described in Figure 2.

Figure 2 Statements

7.1. Variable declarations
A YATL variable declaration follows the OCL syntax:

let varName : oclType = oclExpression;

YATL variables are typed and must be defined before first use, so YATL is a strongly typed language.

7.2. Assignment statements
All the imperative languages alter the internal state of the associated virtual machine by changing the
values attached to variables. The RHS of a transformation rules changes the state of the transformation
engine by building parts of the target model instance. The building process requires side-effects, which
are not supported by OCL. Hence, a transformation should provide explicit or implicit side-effects. YATL
supports assignment statements, which are used to create new instances and bound properties to a given
value:

oclExpression1 := oclExpression2

It assigns the value of the right operand to the variable or property given by the left operand.

7.3. Lifecycle instructions
YATL supports explicit creation or destruction of objects in an imperative manner. Instance creation uses
the classic new operator:

varName : = new pathname;

Deletion is supported by a statement such as:

delete oclExpression;

7.4. Building pattern
In most of the cases, the RHS of a transformation acts like a building pattern. To support such a feature,
YATL has a construction called build statement. This construction creates a complex object from
independent parts that make up the object. For example, if the modeller wants to create an instance of a
class Book that has two properties, name and pages, the following construction

build Book { name = ‘test’, pages = 5 }

is more convenient then creating the instance, using a new statement, and then setting the values of the
properties with assignment statements. If the values of some properties are not specified, the values are
set to the undefined value from OCL.

7.5. Conditional statements
OCL provides a conditional construction similar to the conditional operator from Java, C#, C/C++.
However, a conditional construction at the level of statements is required. The if statement in YATL has
the following concrete syntax:

if condition then statement else statement endif

The semantics of if statement in YATL is similar with the semantics of if statements of imperative
languages like Java, C#, and C/C++.

7.6. Loop statements
Loop statements with pre and post condition are supported in YATL:

while condition do statement

and

do statement until condition

A loop statement iterating over the elements of a collection is also supported:

foreach variableDeclaration in oclExpression do statement

where the type of oclExpression must be an OCL collection type.

7.7. Native statements
The computational support provided by YATL comes mainly from the OCL standard library. However, in
the case of large-scale systems additional computational power is required (eg. converting letters from
uppercase to lowercase or vice versa). This problem can be solved either by improving the OCL standard
library or by providing a mechanism to communicate with the host platform/language. Such additional
support can be used from YATL using native statements:

native {

code for the host platform (C#, Java etc)

}

The implementation of this statement is platform dependent. To communicate with the host
language/framework, the names of imported/exported variables from/to native block must be prefixed
with a distinct symbol (e.g. hash sign). The syntax and semantics errors will be reported by the
interpreter/compiler of the host language/framework.

7.8. Expressions
Expressions in YATL are written in OCL and can be used as statements as in Java and C#. The abstract
syntax of the expression supported by YATL is described in [2]. Beside the OCL expressions, YATL
contains two new kinds of expressions: new and track expressions; new expressions are used to create an

instance of a given type while track expressions are used to store and retrieve the mappings at run-time.
Track expressions are useful in large scale systems to optimise the runtime and to solve some problems
which involve circular processing.

8. Properties of YATL
A YATL transformation is unidirectional. We believe that a model transformation language should be
unidirectional, otherwise it cannot be used for large scale models. This happens mainly because a
bidirectional transformation language acts like a reasoning machine, using the unification operation to fill
in the gaps. However, when a transformation model contains only declarative rules, it should be possible
to derive a part of the reverse transformation.

On a real model-to-model transformation, traceability is absolutely necessary to make the approach
workable. To trace the mapping between source and target model instances, YATL comprises an operator
called track. Track expressions are, from the concrete syntax point of view, similar to DSTC’s track
constructions [11]. The main difference is that YATL’s tracks are defined using concepts like relation
name, domain, and imagine, and not Prolog-like concepts (e.g. unification). This approach makes the
traceability system of YATL suitable for large-scale systems.

During the transformation process the source, target, and transformation model should be navigable. This
feature is not supported by the current version of YATL. This is an area of ongoing research.

Current version of YATL does not allow incremental changes in a source model to be transformed into
changes in a target model immediately. This is an area of ongoing research.

9. Transforming UML classes to Java classes
We experimented YATL on substantial and representative examples for clarification and validation
purposes (UML class diagrams to Java classes, spider diagrams [8] to OCL, and EDOC to BPEL, WSDL,
and XSD). Due to lack of space we present here only the classic mapping from UML class diagrams to
Java classes. The goal of this experiment is to prove the feasibility of model transformations with YATL.
The experiment was performed both under KMF and EMF to illustrate the portability of the YATL
implementation. Figure 3 contains a brief description of the transformation.

start kmf::uml2java::main;

namespace kmf(uml, javaModel) {

 transformation uml2java {

 -- 1-1 Mappings

 -- Map a UML class to a Java class

 rule umlClass2JavaClass match uml::Foundation::Core::Class () {

 -- Create Java class

 let jClass: javaModel::JavaClass;

 jClass := new javaModel::JavaClass;

 -- Set name

 jClass.name := self.name.body_;

 -- Store mapping

 track(self, class2class, jClass);

 }

 -- Map a UML attribute to a Java field

 rule umlAttribute2JavaField match uml::Foundation::Core::Attribute () {

 . . .

 }

 -- Map a UML association end to a Java field

 rule umlAssociation2JavaField match uml::Foundation::Core::AssociationEnd(){

 . . .

 }

 -- Map a UML method to a Java operation

 rule umlOperation2JavaMethod match uml::Foundation::Core::Operation () {

 . . .

 }

 -- Link all the fields to the corresponding class

 rule linkAttribute2Class match uml::Foundation::Core::Attribute () {

 -- Get the Java Class that owns the corresponding field

 let umlOwner: uml::Foundation::Core::Classifier, jClass :
javaModel::JavaClass;

 umlOwner := self.owner;

 jClass := track(umlOwner, class2class, null);

 -- Get the Java Field

 let jField: javaModel::JavaField;

 jField := track(self, attribute2field, null);

 -- Link field and class

 jClass.fields := jClass.fields->including(jField);

 jField.class_ := jClass;

 }

 rule linkAssociationEnd2Class match uml::Foundation::Core::AssociationEnd() {

 . . .

 }

 -- Link all the operations to the corresponding class

 rule linkOperation2Class match uml::Foundation::Core::Operation () {

 . . .

 }

 -- main rule

 rule main () {

 -- Map individual elements

 apply umlClass2JavaClass();

 apply umlAttribute2JavaField();

 apply umlAssociationEnd2JavaField();

 apply umlOperation2JavaMethod();

 -- Add fields to Java classes

 apply linkAttribute2Class();

 apply linkAssociationEnd2Class();

 -- Add operations to Java classes

 apply linkOperation2Class();

 }

}

}

Figure 3 Transformation Rules
YATL was also used to map spider diagrams [8] to OCL expressions. These experiments proved that
YATL is powerful enough to support complex transformation, but the YATL developing environment
should be improved to support debugging at runtime.

10. Conclusions and related work
We have learned a lot during this work. The experiments forced us to add new features to YATL and
improve the implementation, especially the mapping from spider diagrams to OCL because is not a
conventional mapping from a visual language to a textual language.

YATL is still evolving because one of our main goals is to make it complaint to the QVT standard. But
we also hope to add many original features to the YATL development environment and to integrate it
with KMF and EMF.

Since OMG launched its QVT RFP [10] in 2002, several submissions were made. DSTC’s submission
[11] contains a declarative definition of QVT and uses high-level concepts that are similar with those
from Prolog. Unfortunately it cannot cope with large-scale transformations because its concepts make the
implementation very slow. QVT Partners submission [12] considers that transformations are special cases
of relations and describes them using a graphical syntax. This approach is in way similar with the one
presented in [3]. This submission provides a mechanism for relations’ refinement. In the near future
YATL will provide a similar support, although it will be described in a textual way. The French
submission [13] is very similar with the approach that we took. But, there are a lot of differences such as
the concrete syntax, the semantics of the rules, the tracking mechanism, the support for interaction with
the host machine and creation of target model instance etc.

Acknowledgement. This work has been funded by the UK EPSRC (Engineering and Physical
Sciences Research Council) under grants GR/R63509/01 and GR/R 63516/01.

11. References
[1] Akehurst D., P. Linington, and O. Patrascoiu. OCL 2.0 – Implementing the Standard for Multiple

Metamodels. In OCL2.0-"Industry standard or scientific playground?" - Proceedings of the
UML'03 workshop, page 19. Electronic Notes in Theoretical Computer Science, November 2003.

[2] Akehurst D., P. Linington, and O. Patrascoiu. Technical report, Computer Laboratory, University
of Kent, November 2003.

[3] Akehurst D., S. Kent, O. Patrascoiu. A relational approach to defining and implementing
transformations between metamodels, SoSym, volume 2, number 4, December 2003, 215-239.

[4] Czarnecki K., S. Helsen. Classification of Model Transformation Approaches, OOPSLA 2003
Workshop: Generative techniques in the context of MDA.

[5] Eclipse Modeling Framework http://www.eclipse.org/emf.

[6] Frankel D. S. Model Driven Architrecture: Applying MDA to Enterprise Computing. John Wiley
& Sons, 2003.

[7] Gerber A., M. Lawley, K. Raymond, J. Steel, A. Wood. Transformation: The Missing Link of
MDA, in A. Corradini, H. Ehring, H. J. Kreowsky, G. Rozenberg (Eds): Graph Transformation:
First International Conference (ICGT 2002)

[8] Gil J., J. Howse, and S. Kent. Formalising Spider Diagrams, Proc. IEEE Symp on Visual
Languages (VL99), IEEE Press, 130-137. 1999.

[9] Kent Modelling Framework http://www.cs.kent.ac.uk/projects/kmf

[10] QVT Query/Views/Transformations RFP, OMG Document ad/02-04-10, revised on April 24, 202.
http://www.omg.org/cgi-bin/doc?ad/2002-4-10

[11] MOF Query/Views/Transformation, Initial submission, DSTC and IBM.

[12] MOF Query/Views/Transformation, Initial submission, QVT Partners.

[13] MOF Query/Views/Transformation, Initial submission, Alcatel, SoftTeam, Thales, TNI-Valiosys.

[14] MDA Model Driven Architecture http://www.omg.org/mda.

http://www.eclipse.org/emf
http://www.cs.kent.ac.uk/projects/kmf
http://www.omg.org/cgi-bin/doc?ad/2002-4-10
http://www.omg.org/mda

[15] MOF Meta Object Facility http://www.omg.org/mof

[16] OCL Object Constraint Language Specification Revised Submission, Version 1.6, January 6,
2003, OMG document ad/2003-01-07.

[17] OCL http://www.cs.kent.ac.uk/projects/ocl.

[18] UML Unified Modeling Language http://www.omg.org/uml.

http://www.omg.org/mof
http://www.cs.kent.ac.uk/projects/ocl
http://www.omg.org/uml

	Introduction
	Design features
	Namespaces and Translation Units
	Views
	Transformations
	Declarative features
	Imperative features
	Variable declarations
	Assignment statements
	Lifecycle instructions
	Building pattern
	Conditional statements
	Loop statements
	Native statements
	Expressions

	Properties of YATL
	Transforming UML classes to Java classes
	Conclusions and related work
	References

