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Abstract

In this paper we study standard 3-fold conic bundles X/P2 and stable
cubic del Pezzo fibrations X/P1. These are the key examples of 3-fold
Mori fibre spaces (Mfs). We begin systematically to chart the geography

of these varieties, namely the classification of their deformation families
and discrete invariants. Given a 3-fold Mfs X/S, we aim to understand
the set of all Mfs Y/T with X birational to Y . For example, we say that
X/S is birationally rigid if this is a 1-element set. We state conjectures
on the rigidity of Mfs, with the goal of approaching optimal criteria. Our
main results are summarised in Tables 1 and 2 and Figure 1. We want
this to become your standard guidebook to Mori fibre spaces and their
birational geometry.
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1 Introduction

1.1 Mori fibre spaces

A 3-fold Mori fibre space—we often use the acronym Mfs—is a 3-fold X together
with an extremal contraction f : X → S of fibering type. This means that X has
Q-factorial terminal singularities, −KX is ample on fibres, the relative Picard
rank ρ = rk N1(X)− rkN1(S) equals 1, and dimS < dimX . This structure is
the higher-dimensional generalisation of minimally ruled surfaces and P2.

This paper is devoted to strict 3-fold Mori fibre spaces, that is, we always
assume dim S ≥ 1. There are two cases: conic bundles when dim S = 2 and del
Pezzo fibrations—we write dPk fibrations when fibres are del Pezzo surfaces of
degree k—when dim S = 1. We also always assume that the base variety S is
rational.

Definition 1. Let f : X → S, g : Y → T be Mori fibre spaces. A birational
map

ϕ : X 99K Y

is square if it maps a general fibre of f isomorphically to a general fibre of g. We
say that X → S and Y → T are square birational, or square equivalent, when
there is a square birational map between them.

1.2 Geography

Our first goal in this paper is to begin a systematic study of the geography of
strict Mori fibre spaces. We focus on the case of standard conic bundles X → P2

and stable dP3 fibrations X → P1.
Recall that a conic bundle X → S is standard if X is nonsingular; this in

turn implies that S is also nonsingular, and the discriminant locus ∆ ⊂ S is a
nodal curve. Every conic bundle is square birational to a standard conic bundle
(it may be necessary to blow up S). With qualifications, the assumption is
not really restrictive. In Section 3 of this paper we begin a systematic study
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of standard conic bundles X → P2. Necessarily, X embeds in a projectivised
rank 3 vector bundle on P2, and we learn how to write down the bundle and
equations of X explicitly. As an illustration, we construct standard conic bun-
dles for all ramification data with a discriminant curve of degree 7. (There are
4 deformation families.) Our methods apply to higher degrees and to surfaces
other than P2; what we do here is a starting point for future work.

The definition of stable del Pezzo fibration is technical; in this paper we
almost always work with the slightly stronger condition that X be nonsingular.
Again, a dP fibration is always square equivalent to a stable one. In Section 4 of
this paper we begin a systematic study of the geography of stable dP3 fibrations
X → P1. Necessarily, X is a member of a linear system |3M +nL| on a rational
scroll F(0, a, b, c). We determine the invariants n, a, b, c such that a general
element of the linear system is a stable dP3 fibration. We study the degree 3
case because it is the most interesting, but our methods apply to degree 1 and 2.
Grinenko has studied del Pezzo fibrations of degree 1 and 2 in a series of recent
papers [Gri01a, Gri01b, Gri00b, Gri00a, Gria], but he always works under the
assumption that the total space X is Gorenstein. In the case of dP fibrations
of degree 1 and 2, this assumption is too restrictive.

1.3 Sarkisov links

Both in the case of conic bundles and del Pezzo fibrations X/S, we study in
detail nonsquare Sarkisov links originating from X/S. Recall that Sarkisov
links are the “elementary” building blocks of the birational geometry of Mfs:
any birational map between Mfs can be factored as a chain of Sarkisov links. We
usually, but not always, assume that X is nonsingular and sufficiently general
in moduli. To understand Sarkisov links, we are led to compute explicitly the
Mori cone of X and the cone of mobile divisors on X . In our examples X has
rank 2, so these cones are 2-dimensional, and we just need to determine the
two edges in terms of explicit loci on X . The mobile cone of X is partitioned
into chambers (in our case these are just wedges) corresponding to moves of the
2-ray game [Cor00] starting with X . We study these moves explicitly to see if
the 2-ray game leads to a Sarkisov link from X → S to a new Mori fibre space.
When X is embedded in a scroll F over S the moves are often, but not always,
induced by moves of F.

1.4 Rigid Mori fibre spaces and known criteria

Definition 2. [CR00, Foreword] The pliability of a Mori fibre space X → S is
the set

P(X/S) = {Mfs Y/T | Y is birational to X}/ ∼

where ∼ denotes square birational equivalence. We say that X → S is bira-
tionally rigid when P(X/S) consists of one element.

A few general criteria for birational rigidity have been known for quite some
time, see [IP96], [Cor00]. These criteria and their proofs are based on exploiting
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properties of the 1-cycle K2
X . The importance of the following condition was

first recognised in a series of brilliant papers by A. Pukhlikov. His point of view
is explained for example in [Puk00].

Definition 3. [Puk98a, Puk98b, Puk97] We say that a variety X satisfies the
K2 condition if K2

X is not in the interior of the Mori cone NE X of effective
1-dimensional cycles on X .

Theorem 4. [Sar82, Sar80, Sar79], [Puk98a, Puk98b, Puk97] Let X be a non-
singular 3-fold and X → S a conic bundle or a dP3 fibration (satisfying an
additional “genericity” condition on the singularities—see Theorem 22 below).
If X satisfies the K2 condition, then X → S is birationally rigid.

More recent results explore examples that lie on the boundary between rigid
and nonrigid [CM, Mel], [Grib], [Sob02]. These papers study Mfs X/S which
are either bi-rigid in the sense that they have exactly two models as Mori fibre
spaces (more precisely, P(X/S) is a set with two elements), or that are rigid
in a subtle way, that is, there exist Mfs Y/T and nonsquare maps X 99K Y ,
but Y/T is always square birational to X/T . In this paper we construct many
examples of varieties that are likely to behave similarly.

1.5 Conjectures

The known general criteria for rigidity of Mori fibre spaces are not optimal. Our
second goal in this paper is to state some conjectures, based on the intuition built
on looking at the examples we construct. Some of these conjectures we expect
to be able to prove in the near future, others, we feel, are definitely harder, and
some are probably wrong. The K2 condition is not natural. Our conjectures are
stated in term of a geometrically more natural condition, whose importance was
also recognised in work by Grinenko [Gric, Conjecture 1.5] [Gri00a, Conjecture
1.6] [Gria, Conjecture 2.5].

Definition 5. A variety X satisfies condition (∗) if the anticanonical class −K
is not in the interior of the cone of mobile divisors of X .

Note that condition (∗) is stronger than the K2 condition. Indeed, if −K is in
the interior of the mobile cone, we can write for some n > 0

−nK = M1 + M2 = H1 + H2

where M1 ∼ H1 have no component in common, and, similarly, M2 ∼ H2 have
no component in common. Then writing

n2K2 =
∑

MiHj

shows that K2 is in the interior of the Mori cone.
In Sections 3.5 and 4.2 we state some conjectures on the rigidity of standard

conic bundles and stable dP3 fibrations in terms of condition (∗). For many of
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the examples that we construct which seem to lie on the boundary between rigid
and nonrigid, it would be natural to conjecture that they are bi-rigid, or that
they are still rigid, though they do not satisfy condition (∗). We have resisted
the temptation to make such conjectures, but we invite our readers to make
their own and possibly prove some theorems.

It is by now well understood how to use Pukhlikov’s K2 condition to prove
rigidity of Mfs, but it seems difficult to go further. On the other hand, we have
as yet no experience or success using condition (∗) to prove rigidity of Mfs. We
hope that this paper will help to introduce a new point of view on the birational
geometry of Mori fibre spaces, where the geometric properties of −K play more
prominent a role through condition (∗).

1.6 Tables and Figures

Tables 1 and 2, and Figure 1 summarise and collect key information which is
obtained in many calculations throughout the paper. Table 1 shows the list
of standard conic bundles over P2 with discriminant of degree 7 and contains
information about their nonsquare Sarkisov links to alternative models as Mori
fibre spaces. Figure 1 depicts the geography of dP3 fibrations and contains in-
formation about the general member of each family, showing whether it satisfies
condition (∗) and whether we know an alternative model as a Mori fibre space.
This information is supplemented in Table 2, which lists all families of dP3 fi-
bration for which we know an element that has a nonsquare Sarkisov link to
some Mfs Y/T and contains detailed information about the link.

1.7 The Appendix

The Appendix sets out our notation for rational scrolls and information about
their birational maps. A scroll F is a quotient of affine space by an action
of the group G = C× × C×. Though one is not normally aware of this, the
quotient depends on the choice of a G-linearisation. Different G-linearisations
produce different quotients. In this manner we can understand the 2-ray game
originating from the scroll. In the Appendix, we introduce notation for this
which is used throughout the paper when constructing Sarkisov links of Mfs
X ⊂ F; indeed, it is often the case that moves of F induce moves of X .

1.8 Various cones

Let X be a projective variety. We denote N1(X) = N1(X, R) the vector space
of Cartier divisors on X with real coefficients, modulo numerical equivalence,
and N1(X) = N1(X, R) the dual space of 1-dimensional cycles on X with real
coefficients, modulo numerical equivalence. Throughout this paper, it is crucial
to be aware of various cones associated to X :

The Mori cone NE1(X), or simply NE(X), is the closure of the cone in N1(X)
generated by the effective 1-cycles.
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The ample cone NA
1
(X) is the cone in N1(X) generated by ample divisors;

Kleiman’s criterion states that it is the dual cone to the Mori cone.

The mobile cone NM
1
(X) is the cone in N1(X) generated by mobile divisors.

We say that a divisor D on X is mobile if a positive multiple nD moves
in a linear system with no fixed divisor.

The quasieffective cone NE
1
(X) is the closure of the cone in N1(X) gener-

ated by effective divisors. Divisor in this cone are called quasieffective.

1.9 Disclaimer

This paper was prepared against a tight (for us) deadline. We did not test some
of the conjectures as much as we would have liked, and it is likely that some of
the definitions, calculations, etc. contain mistakes. The responsibility for these
is of course ours, but we still want to apologise for the inconvenience we may
be causing our readers.

2 The Sarkisov category

The Sarkisov category is the category of Mori fibre spaces and birational maps
between them. We begin with a simple result stating that Mfs that have a
model as a Fano 3-fold belong to finitely many deformation families.

Proposition 6. There is a finite collection of algebraic families of Mori fibre
spaces with the following property: if X → S is birational to a Fano 3-fold
Y , then X/S is square birational to a member of one of the families in the
collection.

Proof. We briefly explain the idea of the proof. By the Sarkisov program
[Cor95], nonrigid Mfs are parametrised by nonsquare links of the Sarkisov pro-
gram. These are in turn parametrised by weak terminal Fano 3-folds of rank 2,
and these are bounded by [KMMT00].

We hope that we will soon be able to prove the following.

Conjecture 7. If X → S is a Mori fibre space, the pliability P(X/S) is in a
natural way an algebraic variety.

The key difficulty is this. Let X → T be a family of Fano 3-folds with a birational
selfmap σ : X 99K X that maps fibres birationally into fibres and hence induces
a birational selfmap of the base T . If this induced birational selfmap of T has
infinite order and t1 ∈ T is a general point, then the fibre Xt1 is birational to
Xt2 , and then to Xt3 and so on. It seems possible that all the values ti ∈ T ,
but not the whole of T , may contribute to the pliability.

Recent experience [CPR00] [CM, Mel] suggests the following rather opti-
mistic conjectures.
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Conjecture 8. For the total space X of a 3-fold Mfs X → S to be rational is
a topological property. In other words, if X/S and Y/T are 3-fold Mori fibre
spaces, X is rational and Y is diffeomorphic to X, then Y is also rational.

Conjecture 9. For a 3-fold Mori fibre space to be rigid is a topological property.

In particular, being rigid or rational is constant along algebraic families where
all fibres are diffeomorphic.

Conjecture 10. The pliability P(X/S) of a 3-fold Mori fibre space is in a
natural way a topological invariant.

3 Conic bundles

We do not remind you of the known sufficient conditions for rigidity of conic
bundles or Iskovskikh’s conjectural characterisation of conic bundles with ratio-
nal total space [Isk96, Isk91a, Isk91b, Isk87] [Cor00]. We do illustrate a method
to write down equations of a conic bundle with assigned discriminant. This
method is based on Catanese’s work on the Babbage conjecture [Cat81] and
is explicitly computable, unlike the traditional abstract approach via Brauer
groups. We focus on conic bundles over P2 with discriminant a nodal plane
curve of degree 7. Motivated by these examples, we state some conjectures on
the rigidity of conic bundles.

3.1 Conic bundles and Brauer groups

For details on this section see [AM72], [Sar82]. Let X → S be a standard
conic bundle over a rational surface S. By definition, this means that X is
nonsingular and the relative Picard rank is 1, a consequence of which is that S
is itself nonsingular and the discriminant curve ∆ ⊂ S is nodal. Over ∆, the
fibre is generically the sum of two lines, which specifies a 2-to-1 admissible cover
N → ∆. (When C is nonsingular, admissible just means étale; in general, an
admissible 2-to-1 cover is required to ramify over both branches of each node of
C.) Together, we refer to the double cover N → ∆ and the embedding ∆ ⊂ S
as the ramification data of the conic bundle.

It is well known that there is a standard conic bundle X → S with any
preassigned ramification data ∆ ⊂ S and 2-to-1 admissible cover N → ∆. The
total space X is not unique, but any two choices are square birational over the
base.

The traditional proof uses the exact sequence [AM72] (in which S is a ratio-
nal surface with field of rational functions K)

0→ Br S → Br K →
⊕

curves C⊂S

H1(K(C), Q/Z)→
⊕

points P∈S

µ−1 → µ−1 → 0

and the fact, due to Platonov and reproduced in [Sar82], that every element of
order 2 in the Brauer group BrK can be represented by a quaternion algebra.
See the references for details and explanations.
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In the following subsections, we illustrate an effective proof of this statement
in two steps: first we learn how to specify effectively a 2-to-1 cover N → ∆,
then we write down explicit equations for a conic bundle X .

3.2 Catanese’s theory

Let C be a nonsingular curve of degree d in P2. (With a bit of care, the theory
works unchanged for nodal curves.) We fix coordinates u0, u1, u2 on P2 and
denote S = k[u0, u1, u2] the homogeneous coordinate ring. We are interested
in admissible 2-to-1 covers of C. We summarise the part of Catanese’s paper
[Cat81] which is relevant to us; see also [Dix02]. The theory works identically
for covers which in addition ramify over a specified hyperplane section of C, and
we treat these as well.

An admissible 2-to-1 cover corresponds to a line bundle L on C with a choice
of isomorphism: either L2 = OC , or L2 = OC(−1). Denote by i : C →֒ P2 the
inclusion. By [Cat81], Theorems 2.16 and 2.19, i∗L is a Cohen-Macaulay OP2-
module, so it has a 2-step symmetric locally free resolution:

0→ ⊕OP2(−li)
A
→ ⊕OP2(−ri)→ i∗L → 0.

In other words, A is a symmetric n× n matrix whose entries are homogeneous
forms on P2.

Note that detA is a homogeneous equation of C. On the other hand, writing
C as a symmetric determinantal specifies the line bundle L and the double cover.

Denote by di the degree of the i-th diagonal entry aii of A; d =
∑

di is a
partition of d. The degree of aij is (di + dj)/2, so that all the dis have the same
parity. We have the following numerology:

ri = (d + e− di)/2

lj = (d + e + dj)/2
where e =

{

0 if L2 = OC

1 if L2 = OC(1).

Let
M =

⊕

n≥0

Mn where Mn = H0
(

P2, i∗L(n)
)

be the Serre module of the sheaf i∗L. The direct summand OP2(−ri) in the
presentation corresponds to a generator mi of degree ri of M . The matrix A
encodes the structure of M as a graded module over the homogeneous coordinate
ring S = k[u0, u1, u2] of P2, as well as the identity mimj = bij ∈ S in which
(bij) = B = adA is the adjugate matrix of A.

We work out the well-known example of theta characteristics of plane quar-
tics in detail; this corresponds to the case d = 4, e = 1 of the theory. Here
L is a line bundle with L2 = O(−1), and L(1) is a theta characteristic since
KC = O(1). A plane quartic has genus g = 3 and degL = −2, so Riemann–
Roch gives

h0(C,L(1)) − h1(C,L(1)) = 0.
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We have two cases: h0(L(1)) = 0 (even theta characteristic), and h0(L(1)) = 1
(odd theta characteristic). We work out the odd case.

By assumption, we have exactly one generator m ∈ M1 = H0(C,L(1)) of
degree 1. Next, L(2) has degree 6 and Riemann–Roch calculates

h0(C,L(2)) = 6 + 1− 3 = 4,

so M2 is based by 4 elements: they are u0m, u1m, u2m and a new generator
n. Noting h0(C,L(3)) = 8, we see that there must be a relation in degree 2
between the 9 elements uiujm, ukn; this relation must take the form nf1 = mf2

where f1 is a linear form in u0, u1, u2 and f2 a quadratic form. The matrix A
has the form

A =

(

f1 f2

f2 f3

)

.

The whole structure is specified by writing the curve C = (f1f3 − f2
2 = 0)

as a symmetric determinantal. This presentation reveals a preferred bitangent
f1 = 0, which “is” the odd section m.

In the even case, you will find 4 generators m1, . . . , m4 of degree 2, and 4
linear relations among the 12 elements uimj : A is a 4× 4 symmetric matrix of
linear forms.

3.3 Plane curves of degree 7

We study the case d = 7, e = 0, that is, line bundles L with L2 = OC on plane
curves C of degree deg C = 7. Here KC = O(4), so L(2) is a theta characteristic.
A plane curve of degree 7 has genus g = 15 and canonical degree deg KC = 28.
Riemann–Roch and Serre duality give at once

h0
(

C,L(n)
)

− h1
(

C,L(n)
)

= 7(n− 2)

h1
(

C,L(n)
)

= h0
(

C, KC ⊗ L(n)∗
)

= h0
(

C,L(4 − n)
)

.

We use these equations without comment throughout. It is clear that p1 =
h0(C,L(1)) and p2 = h0(C,L(2)) determine all the pn = h0(C,L(n)): indeed,
the Hilbert series of i∗L as an S-module is

P (t) =
∑

n≥0

h0(C,L(n))tn =

p1t + p2t
2 + (7 + p1)t

3 + 14t4 + · · ·+ 7iti−2 + · · · .

There are four cases, corresponding to the four possible values of p2 =
h0(C,L(2)). We show later that the first two cases occur on a generic curve,
while the last two cases can only occur on curves with special moduli. In the
four cases, the degrees of the diagonal entries of the matrix A are the summands
of the four different partitions of the number d = 7 into odd summands.
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1. h0(C,L(2)) = 0 (generic even theta),

2. h0(C,L(2)) = 1 (generic odd theta),

3. h0(C,L(2)) = 2 (special even theta),

4. h0(C,L(2)) = 3 (special odd theta).

3.3.1 h0(C,L(2)) = 0

We have h0(C,L(3)) = 7 generators of degree 3. Multiplying these by u0, u1,
u2, we get 21 elements in the 14-dimensional space M4, so there are 7 equations
between them. In this case A is a 7 by 7 symmetric matrix of linear forms.

3.3.2 h0(C,L(2)) = 1

Again h0(C,L(3)) = 7, but here we assume a generator m of degree 2, giving
uim in M3, so we need 4 more generators n1, . . . , n4 in M3. In this case A is a
5× 5 symmetric matrix of homogeneous forms of degrees













3 2 2 2 2
1 1 1 1

1 1 1
1 1

1













in which the degrees of the diagonal elements express d = 7 = 3 + 1 + 1 + 1 + 1
as a partition into odd summands.

3.3.3 h0(C,L(2)) = 2

This case corresponds to the partition 7 = 3 + 3 + 1. The assumption is that
there are two generators m1, m2 in M2, so, as usual, h2(C,L(3)) = 7 then shows
that we need one more generator n in degree 3. We conclude that A is a 3× 3
symmetric matrix of homogeneous forms of degrees





3 3 2
3 2

1



 . (1)

We show below that not all plane septics have a theta-characteristic of this type.
More precisely, the locus of those who do is of codimension 1 in moduli.

Example 11 (Counting moduli). Let C = (det A = 0) ⊂ P2 for A a sym-
metric 3× 3 matrix of forms of degrees given by matrix format (1) above. The
matrix A depends on 3 × 10 + 2 × 6 + 3 = 45 parameters, and A is uniquely
determined by the choice of the generators of the Serre module. In this case,
that choice amounts to the choice of m1, m2 in M2 (which has the 4 degrees of
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freedom of the basis of a 2-dimensional vector space) and the choice of the addi-
tional generator n in M3 (7 degrees of freedom) for a total of 4+7 = 11 degrees
of freedom. The space of septics of the given form has dimension 45− 11 = 34,
whereas the space of all septics has dimension 35.

3.3.4 h0(C,L(2)) = 3

This case corresponds to the partition 7 = 5 + 1 + 1. Here p1 = 1 and the
element m in M1 generates a basis uim of M2. This time h0(C,L(3)) = 8, so
we need two additional generators n1, n2 in degree 3. The matrix A is a 3 × 3
matrix of homogeneous forms of degrees





5 3 3
1 1

1



 .

Once again, the locus of septics who own a theta characteristic of this type is
of codimension 1 in moduli.

3.4 Conic bundles over P2 with discriminant of degree 7

We construct standard conic bundles over P2 with ramification data a 2-to-1
admissible cover N → ∆ ⊂ P2 of a plane curve of degree 7. We make four de-
formation families of such 3-folds, following the analysis in the previous section.
We show that general members X of the first three families have an alterna-
tive model as a Mori fibre space. (This may be true for all their members, but
we didn’t check that). Conjecture 17 below implies that a general member of
the fourth family is birationally rigid. This is a striking prediction, because this
example is far from the numerical range where the known rigidity criteria apply.

3.4.1 h0(∆,L(2)) = 0

Let N → ∆ be as in 3.3.1. A conic bundle with this ramification data was
known classically, and it is birational to the Fano 3-fold Y = Y2,2,2 ⊂ P6, the
codimension 3 complete intersection of three quadrics in P6. Starting from Y ,
the link Y 99K X begins with the projection from a line ℓ ⊂ Y . The details of
this construction are well known, but see also the following example.

3.4.2 h0(C,L(2)) = 1

Let N → ∆ be as in 3.3.2. We want explicit equations for a conic bundle with
ramification data N → ∆. Consider the variety

Z = {txAx = 0} ⊂ F = F(1, 0, 0, 0, 0).

This is a bundle of 3-dimensional quadrics immersed in a scroll over P2 with
ramification data N → ∆. Indeed, a singular 3-dimensional quadric is, generi-
cally, a cone over P1×P1, and the two rulings give back the cover N → ∆. It is
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natural to try to construct our conic bundle from Z by a kind of “dimensional
reduction”.

Claim 1 We can choose coordinates in the scroll F such that the matrix A
has the form

A =

(

B b
tb 0

)

where b is a 1 × 4 column vector of linear forms. To see that this is possible,
we look for a coordinate change of the form:

(

x0

ξ

)

7→

(

1 0
β M

) (

x0

ξ

)

where tξ = (x1, x2, x3, x4), M = (mij) ∈ GL(4, C), and β is a 4×1 column vector
of linear forms in u0, u1, u2. The coordinate change brings A in the wanted form
if and only if the column vector with entries (0, m14, m24, m34, m44) is a nonzero
null-vector of A. It is easy to see that such a vector exists; indeed the 4 × 4
symmetric submatrix (aij) of A is a matrix of linear forms and corresponds to
a net of 3-dimensional quadrics. A base point of the net of quadrics gives the
null-vector we want.

Equations of X Define

X = {txBx = b · x = 0} ⊂ F(1, 0, 0, 0)

where F(1, 0, 0, 0) is the subscroll {x4 = 0} ⊂ F(1, 0, 0, 0, 0). One can easily
check that X is a conic bundle with the required ramification data N → ∆.
Notice that, in terms of projectivised vector bundles on P2, the linear form
expresses X as a conic in a projectivised nonsplit rank 3 vector bundle on P2.

Claim 2 If b is sufficiently general, we may further change coordinates so that

b =









0
u0

u1

u2









.

Model as a Fano 3-fold We construct a Sarkisov link from X to a codimen-
sion 3 Fano 3-fold Y = Y2,3,3,3,3 ⊂ P(16, 2). The ideal of Y is generated by the
4×4 Pfaffians of a 5×5 antisymmetric matrix of homogeneous forms of degrees









2 2 2 2
1 1 1

1 1
1








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on P(16, 2). Assuming that X is generic, we exhibit a birational map, in fact a
link of the Sarkisov program, from X to a Fano 3-fold of the type just described.
This alternative model of X as a Mori fibre space demonstrates, in particular,
that X is not birationally rigid.

If we choose coordinates as in Claim 3.4.2, then X ⊂ F(1, 0, 0, 0) is given by
equations

{

txBx = 0

u0x1 + u1x2 + u2x3 = 0

where B is a 4× 4 symmetric matrix of forms of degrees









3 2 2 2
1 1 1

1 1
1









in the coordinates u0, u1, u2.
The morphism p : F→ P5 = PH0(F, M)∗ given by

(x1, x2, x3, x4, x5, x6) = (x1, x2, x3, u0x0, u1x0, u2x0)

identifies F with the blow up of P5 along the 2-plane Π = {x4 = x5 = x6 = 0}.
Under this morphism X maps to p(X) = Y 2,3, a generic complete intersection
of a quadric and a cubic in P5 containing the plane Π. To find the equations of
Y , note that we can find unique homogeneous quadrics q0, q1, q2 in six variables,
such that

txBx =

2
∑

i=0

uiqi(x1, x2, x3, u0x0, u1x0, u2x0).

(If B is generic, the quadrics q0, q1, q2 are also generic.) It is easy to see that Y
is given by the following equations:

(

x1 x2 x3

q0 q1 q2

)





x4

x5

x6



 = 0.

Starting from Y 2,3, we construct Y as an unprojection, that is, the contraction
of the Weil divisor Π ⊂ Y ; see [Rei], [ABR02] for details.

3.4.3 h0(∆,L(2)) = 2

Let N → ∆ be as in 3.3.3. In this case, we can immediately write down equations
for a conic bundle with this ramification data. Indeed, A is a 3 × 3 symmetric
matrix of homogeneous forms of degrees





3 3 2
3 2

1



 .
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We can take
X = {txAx = 0} ∈ |2M + L| ⊂ F(1, 1, 0).

We now exhibit an alternative model of X as a dP3 fibration. We begin with
a preliminary discussion of the geometry of the scroll F = F(1, 1, 0), which we
think of as a geometric quotient

F = A//G

of A = C6, with coordinates u0, u1, u2, x0, x1, x2, by the group G = C× × C×,
with coordinates λ, µ, acting in the usual way (see the Appendix). Indeed, a
G-linearisation of the trivial line bundle on A is the same as a character χ : G→
C×. The group G acts on global sections f : A → C by gf(x) = χ(g)f(g−1x).
We say that a linearisation is useful if the (open) subset

Ass

χ = {x ∈ A | ∃ f ∈ Oχ
A
, f(x) 6= 0}

of semistable points is nonempty, where

Oχ
A

= {f : A→ C | f(gx) = χ(g)f(x)}

is the set of G-invariant sections. We have that

Ass

χ = (C3 \ {0})× (C3 \ {0}) ⇐⇒ χ ∈ R+[L] + R+[M ].

There are other useful linearisations. In fact, the cone of useful linearisations is
the cone R+[L]+R+[M−L]. This cone is naturally partitioned in two chambers,
and

Ass

χ = (C4 \ {0})× (C2 \ {0}) ⇐⇒ χ ∈ R+[M ] + R+[M − L].

gives the second chamber. When choosing a linearisation in the second chamber,
the geometric quotient is a different scroll over P1:

A//G = F′ = F(0, 1, 1, 1).

Crossing the wall separating the two chambers corresponds to a birational map
F 99K F′. The equation of X , viewed as the equation of a hypersurface Y ⊂ F′,
is a section of the line bundle OF′(3M − L). The most convincing way to see
this is to make the substitutions

u0, u1, u2, x0 7→ y1, y2, y3, y0

x1, x2 7→ t0, t1

and to think of t0, t1, y0, y1, y2, y3 as natural coordinates on the scroll F′; the
action of λ, µ on these coordinates is

λ : (t0, t1, y0, y1, y2, y3) 7→(λ−1t0, λ
−1t1, y0, λy1, λy2, λy3)

µ : (t0, t1, y0, . . . , y3) 7→(µt0, µt1, µy0, y1, y2, y3).

14



To recover the standard presentation of the scroll F′ = F(0, 1, 1, 1), we change
coordinates in G: the 1-parameter subgroups λ′ → (λ′−1, 1) and µ′ → (µ′, µ′)
act as

λ′ : (t0, t1, y0, y1, y2, y3) 7→(λ′t0, λ
′t1, y0, λ

′−1y1, λ
′−1y2, λ

′−1y3)

µ′ : (t0, t1, y0, y1, y2, y3) 7→(t0, t1, µ
′y0, µ

′y1, µ
′y2, µ

′y3).

These calculations show that, with the stated substitutions, H0
(

F′, 3M − L
)

is
canonically identified with

H0
(

F, 3M − (−L + M)
)

= H0(F, 2M + L
)

.

It is easy to see that the map X 99K Y is a flop which, by what we just said, is
a Sarkisov link (of type IV according to [Cor95]) from the conic bundle X/P2

to a dP3 fibration Y/P1.

3.4.4 h0(∆,L(2)) = 3

Let N → ∆ be as in 3.3.4. In this case, A is a 3 × 3 symmetric matrix of
homogeneous forms of degrees





5 3 3
1 1

1





and we can take

X = {txAx = 0} ∈ |2M + L| ⊂ F(2, 0, 0).

The divisor E = {x2 = 0} ∩X is the exceptional divisor of a (2,1)-contraction
g : X → Y with K = 0, that is, E contracts to a curve of strictly canonical
singularities on Y . This is a bad link and no alternative model as a Mfs is
produced. We suspect that X is birationally rigid. Observe that this follows
from Conjecture 17.

Table 1 summarises the examples discussed so far.

3.5 Conjectures on rigid conic bundles

We briefly sketch a few more examples of conic bundles, mainly nonstandard or
over surfaces other than P2, then state some conjectures.

Example 12. We show that a general codimension 3 Fano 3-fold Y3,3,4,4,4 ⊂
P(15, 2, 3) is linked to a nonstandard conic bundle X . The equations of Y are
the Pfaffians of a 5 × 5 antisymmetric matrix of homogeneous forms which, in
suitable coordinates, can be written as follows:









z a1 a2 a3

b1 b2 b3

x5 x4

x3









.
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h0
(

∆,L(2)
)

model over P2 link other model

0 X2M+L,M+L,M+L flop and Y2,2,2 ⊂ P6

⊂ P2 × P4 (2,1)-contraction
1 X2M+L,M+L flop and Y2,3,3,3,3 ⊂ P(16, 2)

⊂ F(1, 03) (2,0)-contraction
2 X2M+L ⊂ F(1, 1, 0) flop Y3M−L ⊂ F(13, 0)

3 X2M+L ⊂ F(2, 0, 0) bad K trivial X rigid ?
(2,1)-contraction

Table 1: Conic bundles over P2 with discriminant ∆ of degree 7

(Here as usual z is a coordinate of weight 3, y is a coordinate of degree 2,
and x1, . . . , x5 are coordinates of weight 1. The as and the bs are homogeneous
forms of degree 2 in the xs and y.) Projecting Y to P(15, 2) we obtain a complete
intersection Y 3,3 given by equations:

(

a1 a2 a3

b1 b2 b3

)





x3

x4

x5



 = 0,

containing the weighted plane Π = {x3 = x4 = x5 = 0}. We now construct a
model as a conic bundle. First we construct a suitable ambient space. Consider
the quotient

F =
(

(C3 \ {0})× (C4 \ {0})
)

/(C× × C×)

by the action

λ : (u0, u1, u2, x0, x1, x2, y) 7→ (λu0, λu1, λu2, λ
−1x0, x1, x2, y)

µ : (u0, u1, u2, x0, x1, x2, y) 7→ (u0, u1, u2, µx0, µx1, µx2, µ
2y).

We can think of F as a scroll over P2 with fibre the weighted projective space
P(13, 2). We define a morphism f : F→ P(15, 2) by setting:

(u0, u1, u2, x0, x1, x2, y) 7→ (x1, x2, u0x0, u1x0, u2x0, y).

The proper preimage X = f−1Y is a general complete intersection of the form
X = X2M+L,2M+L ⊂ F. The ramification data N → ∆ is a 2-to-1 covering of
a special plane octic with a triple point P ∈ ∆, so X is not a standard conic
bundle. It is easy to see that X has an index 2 orbifold point over P . Because of
the singular point, the threshold invariant τ(X/P2) [Cor00, §4.1] is 5/2, and not
the expected 8/2. Blowing up the point P ∈ P2 expresses X as a conic bundle
over F1 with discriminant of relative degree 5, and this in turn has a model as
a dP4 fibration over P1.

Example 13. A general codimension 3 Fano 3-fold Y4,4,4,4,4 ⊂ P(13, 24) is
linked to a nonstandard conic bundle X/P2. The discriminant ∆ is a plane
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curve of degree 9 with four ordinary triple points, so X is not a standard conic
bundle. It is easy to see that X has index 2 orbifold singularities over the
singular points of ∆. Please do your own calculations.

Example 14. Takagi and Reid [Tak02], [Rei] construct a codimension 4 Fano
3-fold Y ⊂ P(16, 22) with h0(−K) = g + 2 = 6 and −K3 = 7 with 2 index
2 orbifold points. There are two deformation families with these invariants,
corresponding to the “Tom” and “Jerry” formats of unprojection. If Y is a
general Fano in the Tom family, then Y is linked to a general conic bundle
X → P2 with discriminant curve of degree 6. The cover N → ∆ corresponds
to the partition 6 = 2 + 2 + 2, but we did not yet carry out all the necessary
calculations to understand the model X explicitly.

Example 15. There is no reason why we should only work with conic bundles
over P2, since Catanese’s theory works essentially unchanged for curves on a
weighted projective plane. For example, there are two Fano 3-folds in codimen-
sion 4 and 5, Y ⊂ P(15, 23) and Y ⊂ P(15, 24), with −K3 = 11/2 and 6, see
[Tak02], which can be linked to conic bundles over P(1, 1, 2) with discriminants
in O(8) and O(6).

We have written down explicit equations of several families of conic bundles
with discriminant of low degree. We believe that the explicit geometry of these
varieties will play an increasingly more prominent role in the study of their
birational geometry. We state the following rather optimistic conjecture.

Definition 16. We say that a standard conic bundle π : X → S satisfies con-

dition (∗) if −KX 6∈ IntNM
1
X .

Conjecture 17. A standard conic bundle over P2 is birationally rigid if it
satisfies condition (∗).

We feel like making the following conjecture for which we have little evidence.

Conjecture 18. A standard conic bundle over P2 is birationally rigid if the
discriminant has degree ≥ 9.

4 dP3 fibrations

Convention 19. In this section a dP3 fibration is a 3-fold X together with a
morphism f : X → P1 satisfying the following conditions:

1. The nonsingular fibres of f are cubic surfaces.

2. X has Gorenstein terminal singularities (these are precisely the isolated
hypersurface singularities with a DuVal section). In particular X ⊂ F =
P(E) is naturally embedded in a rational scroll over P1 (a natural choice
is E = f∗O(−KX)).

3. X has Picard rank ρ = 2, that is, the morphism f : X → P1 is extremal.
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4. The local rings of X are unique factorisation domains, that is, Weil divisors
on X are Cartier.

In addition, we often assume that X is nonsingular, or at least that f : X → P1

is semistable in the sense of [Kol97].

Remark 20. Corti and Kollár [Cor96] [Kol97] show that if f : X → P1 is a
Mori fibre space dP3 fibration, then X/P1 is square birational to a semistable
g : Y → P1; in particular Y is Gorenstein and the conditions above are satisfied.
It is therefore not restrictive to limit our attention to semistable fibrations.

In this section, we aim to do two things. First, we want to determine the
geography of dP3 fibrations, that is, determine all integers n, a, b, c such that a
general member X ∈ |3M + nL| on F(0, a, b, c) is a dP3 fibration in our sense.
Second, we want to state some conjectures on the birational geometry of dP3

fibrations. M. Grinenko has been studying del Pezzo fibrations systematically
in a series of recent papers [Gri01a, Gri01b, Gri00b]. Because he is primarily
concerned with fibres of degree 1 and 2, there is little overlap between his work
and what we do here.

4.1 The K
2 condition

Definition 21. We say that X satisfies the K2 condition if

K2
X 6∈ IntNE X.

Theorem 22. [Puk97] Let f : X → P1 be a dP3 fibration satisfying the following
technical conditions:

• the total space X is nonsingular, and f has Lefschetz singularities, that
is, it has only ordinary critical points, with distinct critical values.

• If Xb is a singular fibre, then there are exactly six lines of Xb passing
through the unique singular point.

If in addition X satisfies the K2 condition, then X is birationally rigid.

Remark 23. It follows from the above theorem that, under its assumptions,
Iskovskikh’s conjecture [Isk95] holds.

If a dP3 fibration X → S, with X nonsingular, is nonrigid, then X → S
belongs to one of finitely many algebraic families. (This can be proved using
Proposition 6.) On the other hand, as we see in Section 4.3, infinitely many
families do not satisfy the K2 condition. This shows that Pukhlikov’s theorem
is not optimal.

4.2 Conjectures

Definition 24. We say that X satisfies the condition (∗) if −K 6∈ IntNM
1
X .
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Remark 25. In Section 4.4 we study (among other things) condition (∗) for the
general members of families of dP3. Though we don’t prove it completely, we
believe that condition (∗) is satisfied by a general member of all but a handful
of families of dP3 fibrations listed in Table 2.

Grinenko has recently made the following striking conjecture.

Conjecture 26. [Gric, Conjecture 1.5] [Gri00a, Conjecture 1.6] [Gria, Con-
jecture 2.5] A dP3 fibration with nonsingular total space is birationally rigid if
it satisfies condition (∗).

In the remaining part of this subsection we make a few comments on the
meaning of the conjecture.

Conjecture 27. Same as 26, only assuming that X/P1 is semistable in the
sense of [Kol97].

Conjecture 28. Let X → P1 be a dP3 fibration, with X nonsingular. Let
X ′ → P1 be a 3-fold Mori fibre space, square birational to X/P1. If X/P1

satisfies condition (∗), then so does X ′/P1.

Conjecture 29. Same as 28, only assuming that X/P1 is semistable.

More experimentation is needed before we can have any confidence in these
conjectures. Here we only briefly touch on these matters in the Example in
Section 4.4.4.

Proposition 30. Conjecture 26 follows from Conjecture 28, and Conjecture 27
from Conjecture 29.

This indicates that further progress is likely to come from a systematic study
of square birational maps involving a semistable dP3 fibration and a Mori fibre
space.

Proof. We sketch the proof. If X → P1 is not rigid, there is a Mfs Y → T
and a nonsquare birational map X 99K Y . Applying the Sarkisov program as
in [Cor95] gives a Mfs f ′ : X ′ → P1 square birational to X → P1, and a linear
system

H′ ⊂ | − nKX′ + f ′∗A|

where A is a divisor on P1 of strictly negative degree. It follows that X ′ does
not satisfy condition (∗).

4.3 Geography for dP3 fibrations

4.3.1 Notation and basic numerology

Notation A dP3 fibration X → P1, as defined formally in Convention 19,
always admits model as a hypersurface in a 4-fold scroll F that is a P3 bundle
over P1. We fix the notation in use throughout this section.
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1. X ∈ |3M + nL| ⊂ F = F(0, a, b, c), where a, b, c, n are integers with 0 ≤
a ≤ b ≤ c. We write d = a + b + c.

2. We write u, v, x, y, z, t for the homogeneous coordinates of F, where u, v
are the homogeneous coordinates on the base P1 and x, y, z, t are the fibre
coordinates.

3. We denote L and M the natural basis of Pic(F). These line bundles have
sections u ∈ H0(F, L) and x ∈ H0(F, M), and we sometimes identify L,
M with the actual divisors u = 0, x = 0.

4. We write Γ = {y = z = t = 0} and B = {z = t = 0}. Note that Γ
generates an extremal ray of NE(F).

5. We denote by F ∈ OF(3M + nL) the equation of X . The polynomial F
is a sum

∑

αm of terms αm where the sum ranges over the fibre mono-
mials m that are cubics in x, y, z, t with coefficients α = α(u, v) to fix up
homogeneity. We write both αm ∈ F and m ∈ F to mean that the term
(with implicit coefficient α if not mentioned) appears in F with nonzero
coefficient.

Basic numerology

1. M3L = 1, M4 = d.

2. −KX = −K|X , where −K = M + (2− d− n)L is a divisor on F.

3. X · Γ = n. Apart from the trivial case X ∈ |3M | on P1 × P3 (a constant
family of cubic surfaces) there are two cases:

{

n ≥ 0 and 3M + nL is nef and big,

n < 0.

When 3M + nL is nef and big, it is base point free and a general X ∈
|3M + nL| is nonsingular. It then follows from the Lefschetz hyperplane
theorem that ρ(X) = 2 and X is a dP3 fibration in our sense. Almost
everything we say below refers to the much more interesting case when
n < 0.

4.3.2 What the picture says

We plot the families of dP3 fibrations on a graph of n against d as in Figure 1
and we refer to this picture as geography. We regard the figure as a pictorial
statement of a theorem that we now spell out.

The figure summarises information obtained in calculations carried out in
the remaining part of the paper; in particular the figure displays the following.

1. Pairs (n, d) for which there is a family of dP3 fibrations X ∈ |3M + nL|
in F(0, a, b, c) with d = a + b + c.
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(235)
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(255)
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The Pukhlikov line 3d + 5n = 12

Symbols:

· possible dP3 coordinate

◦ for X with a K = 0 bad link

• for known nonrigid X

Labels:

abc when every X ⊂ F(a, b, c) admits the link

[abc] when only special X admit the link

(abc) when every X has K = 0 bad link

Figure 1: Geography of |3M + nL| ⊂ F(a, b, c) with d = a + b + c
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2. Triples (a, b, c) such that a general or a special member of the correspond-
ing family is known to be nonrigid.

3. Triples (a, b, c) such that a general member of the corresponding family
does not satisfy condition (∗). We do not prove it completely, but we
believe that the figure displays all such triples.

We plan to use the picture as a primary testing ground for Grinenko’s Con-
jecture and as a starting point possibly to prove it. Here we explain what the
picture and its various elements mean. Precise details are worked out in the
following subsections.

Families of dP3 fibrations We mark points (n, d) of Figure 1 by a dot · if
and only if there are values 0 ≤ a ≤ b ≤ c with d = a+ b+ c, such that a general
X ∈ |3M + dL| in F(0, a, b, c) is a dP3 fibration in our sense. A dot can be a
bullet • or a circle ◦; we explain what these mean below. The geography consists
of the first quadrant minus the origin, and the region to the right of a curve
with a periodic behaviour which we define by the picture itself. A point of the
picture may house several deformation families: for example, (n, d) is (−2, 5)
for a family of dP3 fibrations in F(1, 1, 3) and also for a different family that lies
in F(1, 2, 2). We explain how this region is drawn in Section 4.3.3 below.

Nonrigid families A bullet • marks a point (n, d) corresponding to some
family of dP3 fibrations for which we know that a member X is nonrigid. When
X is general in its family, we specify the family by writing abc under the bullet,
indicating the invariants of F(0, a, b, c). In some cases, we only know that a
special X in the family is nonrigid. We indicate this by writing [abc] instead.
In all cases when we know that X is nonrigid, the 2-ray game from X/P1 is
a nonsquare link of the Sarkisov program: we refer to this as the link and we
say that X admits the link. We describe the link explicitly in Section 4.4 and
summarise our calculations in Table 2.

Condition (∗) We do not prove it completely, but we believe that condi-
tion (∗) does not hold for a general member X ∈ |3M + nL| in F(a, b, c) if and
only if (n, d) has • with abc. After the argument of Section 1.5, we only study
points to the left of the line 3d+5n−12 = 0; the arguments of Section 4.4.2 show
immediately that about two thirds of those with n < 3 satisfy condition (∗),
and we believe the remaining cases to be only slightly more difficult. Grinenko’s
conjecture is then equivalent to the statement that Table 2 is a complete list of
families of dP3 fibrations with nonrigid general element.

K trivial contractions Unless there is already a bullet at this point, we
mark (n, d) with a circle ◦ when we know that there is a corresponding family
of dP3 fibrations such that the 2-ray game starting with a general member X
terminates with a K-trivial contraction and a variety with strictly canonical
singularities. We specify the family by writing (abc) above the circle. Note
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that, in each example of [abc], a general X in the family has a K-trivial bad
link and we do not repeat (abc) there. These examples are not our main interest
here, but they are cases where the question of rigidity is particularly intriguing.

The Pukhlikov line The figure also shows the line 3d + 5n = 12. As we
show in Lemma 36 below, the general member of a family satisfies the K2 con-
dition if the point (n, d) lies to the right of this line. (For n negative, this is
if and only if, which leaves out a couple of cases with n > 0 where we are not
completely sure.) The graph shows that the line leaves out a thin strip of the
geography, containing infinitely many families.

4.3.3 How the geography is obtained

In this subsection we make the statements from which the geography of dP3

fibrations is derived.

Proposition 31. Figure 1 marks all pairs (n, d) for which there are integers
0 ≤ a ≤ b ≤ c such that:

1. The relative surface B = {z = t = 0} is not contained in the base locus
of the linear system |3M + nL|. (When a = b, we require that a general
member of the linear system does not contain a surface of the form {s =
t = 0} where s is some section of OF(M − bL).)

2. The curve Γ = {y = z = t = 0} is contained in the base locus of |3M +nL|
with multiplicity at most one, that is, when n < 0, a general member X
in the linear system is nonsingular generically along Γ.

The conditions imply that a general member X ∈ |3M + nL| is nonsingular
outside Γ and possibly has isolated singularities along Γ. In fact, X is a dP3

fibration.

Proposition 32. Let (n, d) and X ∈ |3M + nL| in F(0, a, b, c) be as in Propo-
sition 31 above. Then:

1. For any X, Pic(X) = H2(X) = Z2, that is, X has Picard rank 2.

2. If all fibres of f : X → P1 are reduced and irreducible, we have an exact
sequence

0→ Z[L]→ A2(X)→ Pic(Xη)→ 0

where A2(X) is the group of 2-dimensional cycles, that is, Weil divisors
on X modulo rational equivalence, and Xη is the generic fibre.

3. If X is general, then Pic(Xη) = Z[−K].

4. If X is general, then X has isolated singularities of cA type.

Corollary 33. With the same assumptions, if X is general, then X/P1 is a
dP3 fibration.
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Proof of Proposition 31 The proposition is a direct consequence of the
following more precise lemma. Indeed, it is elementary to check that the in-
equalities in the lemma specify the region marked in Figure 1.

Lemma 34. Consider the linear system |3M + nL| on F(0, a, b, c) as above.

1. B 6⊂ Bs |3M + nL| if and only if n ≥ −3a.

2. If n < 0 and a = b, then all X contain a surface t = ℓ(z, y) = 0, where ℓ
is a linear form if and only if n = −3a.

3. If n < 0, so that Γ ⊂ Bs |3M +nL|, then a general member X ∈ |3M +nL|
is nonsingular generically along Γ if and only if n ≥ c. In this case also
n + d ≥ 2a.

Proof. If the first inequality fails, then every monomial in F is divisible by z or
t so X contains B.

If −n = 3a > 0 and a = b, we can refine this analysis slightly. We can
write F = f3(y, z) + tf2(x, y, z, t), where f2, f3 are homogeneous forms of the
indicated degrees. If ℓ(y, z) is a linear factor of f3, then X necessarily contains
the surface t = ℓ(z, y) = 0.

Suppose that n < 0, so that a > −(1/3)n > 0 by the first inequality. The
fibre monomial x3 cannot now occur in any term of F , so the inclusion Γ ⊂ X
is clear.

The total space X is nonsingular generically along Γ if and only if, for general
values of u, v, the polynomial F contains at least one of the terms x2y, x2z, x2t.
If x2t ∈ F , then n ≥ −c, and that is the weakest inequality of the three. Finally

d + n = (a + b) + (c + n) ≥ 2a

with equality only if n = −c and a = b.

Remark 35. Some of our statements in Section 4.3.2 follow from Lemma 34.
Let σ be the closed subcone of NM

1
(X) generated by the mobile rays L, Dz =

(z = 0) ∩X . Then writing −KX = (2− a− c− n)L + Dz shows that

(a) 2− a− c− n > 0 if and only if −KX ∈ Intσ,

(b) 2− a− c− n ≥ 0 if and only if −KX ∈ σ.

(c) If condition (∗) holds for (n; a, b, c), then 2− a < c + n.

It is easy to solve these inequalities for a, c, n with the results of Lemma 34. In
case (a), the solutions are exactly those 4-tuples (n; a, b, c) for which (n, d) is
marked by •abc. In case (b), the solutions are exactly those (n; a, b, c) for which
(n, d) is marked by ◦(abc). Condition (∗) holds for each of the solutions that
have a = 2; it fails only at the special member of some solutions when a = 1,
which are the [abc] cases. Part (c), which is virtually no condition at all when
n ≥ 0.
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Proof of Proposition 32 We briefly sketch the proof, which is standard.
We take on the first assertion first. If n ≥ 0, then X is nef and big. Denote
U = F \ X the open complement. The Lefschetz hyperplane theorem implies
that H8−i

c (U) = Hi(U) = (0) for i > 4 hence H2
c (U) = H3

c (U) = (0) and from
the standard exact sequence

H2
c (U)→ H2(F)→ H2(X)→ H3

c (U)

we deduce that H2(X) = H2(F) = Z2. Since H1(X,OX) = (0), it follows that
Pic(X) = Z2, based by L and M . When n < 0 X is not nef and we can proceed
in various ways. For example, we can observe that the proper transform X ′ ⊂ F′

is nef and big on the variety F′ obtained from F by flipping the curve Γ (see
the Appendix for information on F′). By Lefschetz then H2(X ′) = Z2. The
birational map X ′

99K X is either an isomorphism in codimension 1, or else X ′

contains the whole of the flipped set P(a, b, c). In either case, we conclude that
H2(X) = Z2 and the statement follows.

The exact sequence in 2. is standard.
Consider now the generic fibre S of X → P1 which is a nonsingular cubic

surface embedded in P3 over the function field C(s) of P1 with coordinates
x, y, z, t. See [KSC03] for a tutorial in the elementary methods of such cubics.
We claim that S has Picard rank 1. An example of such S is the surface

S0 = py3 + qz3 + rt3 + x2t

where p, q, r ∈ C(s) are chosen generally. It is easy to calculate the 27 lines
on such a cubic surface, and then to figure out the action of the Galois group
Gal(K/C(s)) for any extension K/C(s) in which the lines are geometric: for
general p, q, r, the Galois group is Z/3 × Z/3 × Z/2 and the 27 lines split into
orbits of size 3,6,9,9. One checks by explicit computation that the smaller orbits
are made of unions of entire hyperplane sections over K so there are no Galois
orbits of disjoint lines. Segre’s theorem, [KSC03] Theorem 2.16, then implies
that the Picard rank of S0 is 1. Since a special surface S0 in the family has
rank 1, so does the general surface S. This shows statement 3.

The final claim follows from an elementary monomial argument. Indeed
x2t ∈ F with coefficient a homogeneous polynomial ϕ(u, v). The singularities
of X along Γ are at the zeros of ϕ and if X is general we may assume that these
all have multiplicity 1. If u|ϕ, for example, the singularity at u = 0 is of the
form ut+ · · · = 0. This implies that the general surface section has a singularity
of type Ak there.

4.3.4 The K2
X condition and Pukhlikov’s Theorem

Lemma 36. If X → P1 is a dP3 fibration, then

K2
X ∈ IntNE(X) implies that 3d + 5n < 12.

If in addition n < 0, then
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(a) the 1-cycles M2L and Γ ⊂ X bound the Mori cone NE(X)

(b) K2
X ∈ IntNE(X) if and only if 3d + 5n < 12.

Proof. Suppose first that n < 0. The general fibre of X → P1 is a cubic surface,
so M2L, a line in the fibre, lies on one extreme ray of NE(X). Since a > 0,
there is a projective morphism from the scroll F that contracts Γ, so the curve
Γ ⊂ X generates the other ray of NE(X), proving (a).

Part (b) follows from (a) by calculating the 1-cycle K2
X in the basis Γ, M2L.

Denoting i : X →֒ F for the inclusion and noting that

Γ = (M − aL)(M − bL)(M − cL) = M3 − dM2L,

we calculate i∗K
2
X = (−K)2X on F as

(

M + (2 − d− n)L
)2

(3M + nL) = 3M3 +
(

6(2− d− n) + n
)

M2L
= 3Γ + (12− 3d− 5n)M2L.

Now let n be any integer. Suppose that K2
X ∈ IntNE(X). We calculate in

N1(F) omitting i∗. Let σ be the closed subcone of effective divisors spanned
by K2

X and M2L. If Γ /∈ σ, then K2
X is a strictly convex combination of Γ

and M2L so the inequality holds. If Γ ∈ σ, then some multiple Σ = kΓ of the
class of Γ (on F) contains an effective curve that lies on X . But Γ ⊂ F can be
contracted, so Σ must be supported on Γ. Therefore Γ ⊂ X and Γ generates an
extremal ray of NE(X). The inequality follows as before.

4.4 Nonrigid dP3 fibrations

We summarise all the examples of nonrigid dP3 fibrations that we know in
Table 2. We do not dwell on the well-known cases:

• (n, d) = (0, 1) links to the cubic 3-fold Y = Y3 ⊂ P4, the dP3 fibration
being the pencil of P3s through a plane intersecting Y in a cubic curve

• (n, d) = (1, 0) links to Y = P3, the dP3 fibration being the pencil of any
pair of transverse cubic surfaces in Y

• (n, d) = (1, 1) links to Y3,3 ⊂ P(15, 2), the dP3 fibration being a pencil of
divisors having maximal vanishing at the singular point; see [CM], [BZ].

We discuss the table below and then make three detailed studies of examples.

4.4.1 Overview of Table 2

Each entry of Table 2 represents a family of dP3 fibrations

X ∈ |3M + nL| ⊂ F(0, a, b, c)

for which the 2-ray game on some member X results in a Sarkisov link to another
model of X as a Mfs. The general member X of families 1–7 is nonsingular. In
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No. n a, b, c µ Link of −µKX − L other model

1 1 0, 0, 1 3 9-flop then (2, 0) to Y ′
3,3 ⊂ P5(15, 2)

1
2 (1, 1, 1) singularity general in its family

2 0 0, 1, 1 1 3-flop dP3 fibration, same
numerology as X

3 −1 1, 1, 1 1 flop conic bundle over P2

with deg ∆ = 7
4 −2 1, 1, 2 1 flop then (2, 1) to Y ′

4 ⊂ P4(14, 2)
linear P1 ∼= ℓ ⊂ Y ′

5 −2 1, 2, 2 1 Francia antiflip dP2 fibration with
then flop 1

2 (1, 1, 1) on 1 fibre
6 −3 1, 2, 3 1 Francia antiflip then Y ′

6 ⊂ P4(13, 2, 3)
(2, 0) to P ∈ Y ′ P a cD4 singularity

7 −3 1, 3, 3 1 toric antiflip dP1 fibration with
(1, 1,−1,−3) 1

3 (1, 1, 2) on 1 fibre

8a −1 1, 1, 2 5 (1, 1,−1,−1,−3), Y ′ ⊂ P(14, 2, 3, 4)
7-flop, (2, 0) general, P = 1

4 (1, 1, 3)
8b −1 1, 1, 2 3 (1, 1,−1,−1,−4), Y ′ ⊂ P5(14, 22) ?

3-flop, (2, 0)
9 −2 1, 1, 3 3 (1, 1,−1,−1,−4), Y ′ ⊂ P5(12, 22, 3, 5) ?

3-flop, (2, 0)
10 −2 1, 2, 3 3 (1, 1,−1,−2,−7), Y ′ ⊂ P5(12, 23, 3) ?

(2, 0)

Table 2: Nonrigid dP3 fibrations X ∈ |3M + nL| ⊂ F(0, a, b, c)

families 3–7, every X (not just the general member) admits the link as described.
Families 8–10 necessarily have a singularity on Γ, which is described (in new
coordinates) for general X as follows.

No. 8a 8b 9 10
Equation xy = zt xy = z3 + t3 xy = z3 + t3 xy = z3 + t6

In families 8–10, only special members X admit the link as described.
Our method for calculating the other model is to calculate the graded ring

of −µKX − L. In these four cases, though, this does not present the other
model well, since, we believe, the contraction is to a non-Gorenstein singularity
P ∈ Y ′. We have not yet made the required calculations, but it seems likely
that the other model in families 8b, 9, 10 is better presented as a complete inter-
section in weighted projective spaces P5(14, 22), P5(12, 22, 3, 5) and P5(12, 23, 3)
respectively, the index of P ∈ Y ′ being 2, 5, 2 respectively.

We draw attention to family 2. This links pair of dP3 fibrations X 99K X ′

that lie in the same family. We guess that, in general, they are not isomorphic
and that they form a bi-rigid pair. Indeed, if they were isomorphic, this link
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would be an ‘untwisting’ link (in the sense of [CPR00]), and we would be inclined
to guess that X is rigid. We know little about this case.

The numbering of cases in the first column is arbitrary. Apart from this, the
information for each entry is separated into three columns, and we describe the
contents of each of these in turn:

1. This lists the integers n and a, b, c that determine the family in question,
as well as the µ > 0 for which −µKX−L determines an edge of the mobile

cone NM
1
(X). Note that, as Conjecture 26 predicts, condition (∗) is not

satisfied by these examples

2. This describes the link. We express the antiflips as C× quotients by listing
the characters of a C× action; we comment further below. The word ‘flop’
means the flop of a single rational curve. We say ‘n-flop’ when, for general
X , an analytic neighbourhood of the flopping curve consists of the disjoint
union of n rational curve neighbourhoods. The notation (2, p) indicates a
divisorial contraction to a point (when p = 0) or a line (when p = 1).

3. This final column gives a sketch of the other model.

We say more about the antiflips. The Francia antiflip replaces a P1 in the
nonsingular locus having normal bundleO(−1)⊕O(−2) by a P1 passing through
an index 2 terminal quotient singularity. This is worked out in Section 4.4.2.
The notation (1, 1,−1,−3) denotes a toric 3-fold antiflip similar to the Francia
flip, but with an index 3 singularity. An example of the hypersurface antiflips
(1, 1,−1,−1,−m) is described in Section 4.4.3: typically, these replace a single
rational curve passing through a terminal Gorenstein point with a bouquet of
m − 1 rational curves meeting in an index m singular point. See [Bro99] for
details and lists of these flips.

Other models as strict Mfs Four cases link to another strict Mfs. Family 2
is discussed above, and family 3 is linked to the conic bundle of Section 3.4.2.

The other two, families 5 and 7, share two novelties. First, the use of
weighted scrolls for describing dP1 and dP2 fibrations contrasts with Grinenko’s
use of finite morphisms to nonsingular scrolls. As calculated in Section 4.4.2,
the other model of family 5 is the general element

X ′ ∈ |4M − L| in the weighted scroll

(

0 0 1 2 1 1
1 1 0 −1 −1 −1

)

.

Similarly, one sees the other model of family 7 as the general element

X ′ ∈ |6M − 3L| in the weighted scroll

(

0 0 2 3 1 1
1 1 −1 −2 −1 −1

)

.

Second, these examples present nonrigid dP1 and dP2 fibrations. Grinenko
[Gria] has complete classifications of such nonrigid dPk in the Gorenstein case,
and the nonrigid examples are rare. The specimens here have singularities of
index 2 and 3, so they are not subject to Grinenko’s classifications, but they do
invite one to extend Grinenko’s results to the higher index case.
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4.4.2 Family 5: general members are nonrigid

We work out the link arising from the 2-ray game for family 5 using the wall-
crossing methods of Section 3.4.3 and the Appendix. The calculations are similar
for families 2–7. Consider any dP3 fibration

X : (F = 0) ∈ |3M − 2L| ⊂ F = F(0, 1, 2, 2).

The polynomial F is a combination of the monomials of the Newton polygon

degu,v fibre monomial

0 xy2, x2z, x2t
1 y3, xyz, xyt
2 y2z, y2t, xz2, xzt, xt2

3 yz2, yzt, yt2

4 z3, z2t, zt2, t3

where degu,v denotes the degree in u, v of the coefficient. We know that F must
involve both xy2 + ϕ1(u, v)y3 and x2z + x2t nontrivially. We continue to use
the notation Γ: (y = z = t = 0) ⊂ X .

The chamber defining F is R+[L] + R+[M ]. Crossing the wall into the next
chamber R+[M ] + R+[M − L] corresponds to a birational map F 99K F1 that
factors through the contraction of Γ ⊂ F and the extraction of a surface E1 : (u =
v = 0) ⊂ F1. In fact, E1

∼= P(1, 2, 2) with coordinates y, z, t.
The birational image X1 ⊂ F1 of X is still F = 0 so X1 ∩ E1 is a P(1, 2):

when u = v = 0 we can set x = 1, as usual in projective geometry, so the
intersection is y2 + z + t = 0 in P(1, 2, 2). We see that −KΓ = (M −L)Γ = −1,
so the map X 99K X1 is an antiflip of Γ and the link proceeds with X1 if and
only if X1 has terminal singularities. We check this condition in coordinates.

We calculate one patch of X1 in detail, and leave the others to the reader.
The unstable locus of the quotient defining F1 is

(u = v = x = 0) ∪ (y = z = t = 0)

so the open set xz 6= 0 is a well-defined affine patch U on F1. There is a residual
Z/2 action (the stabiliser of z-axis by the µ-action) defining the chart A4 → U
that acts on coordinates u, v, y, t of A4 by the character (1, 1, 1, 0). The equation
of X1 in U includes the monomial t, and the equation of the antiflipped curve
Γ1 ⊂ X1 is u = v = t = 0. An analytic neighbourhood of X1 near the origin in
U is isomorphic to t = 0 in the quotient A4/(Z/2)(1, 1, 1, 0), and this is terminal.
The flip X1 → X is the Francia flip.

We cross to the next chamber giving F1 99K F′ which factors as the con-
traction of P2 ⊂ F1 (with coordinates u, v, x) and the extraction of a P1 ⊂ F′

(with coordinates z, t). The birational image of X is X ′ ⊂ F′. Since F involves
xy2 + uy3, the intersection of X with the exceptional P2 is a line Σ1. Clearly
−KΣ1 = 0 so the map X1 99K X ′ is a flop and, in particular, X ′ has terminal
singularities.
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The variety F′ has a morphism F′ → P1 given by the ratio z, t; fibres are
P(1, 1, 2, 1) with coordinates u, v, x, y. To see this, make row operations on the
character matrix (basis changes in C× × C× that do not alter the quotients):

(

0 0 1 1 1 1
1 1 0 −1 −2 −2

)

∼

(

−1 −1 −1 0 1 1
1 1 2 1 0 0

)

.

The right-hand matrix is better adapted to the unstable locus (u = v = x =
y = 0) ∪ (z = t = 0) for F′. The appropriate basis of Pic(F′) is M ′, L′, the
line bundles corresponding to the characters

(

0
1

)

and
(

1
0

)

in the basis of the
right-hand matrix.

The induced map X ′ → P1 describes X ′ as a dP2 fibration: since x2t ∈ F ,
it is clear that

X ′ ⊂ |4M ′ − L′| ⊂ F′.

One can check that X ′ is a general in its family if X was to start with.

In this example, every step of the 2-ray game on X was inherited (by com-
puting birational images) from the steps of the 2-ray game on F, itself an easy
toric calculation. Most examples we know have this feature.

Definition 37. Let X ⊂ F be a dP3 fibration in a scroll F → P1 (of any
dimension). We say that the link follows the scroll if the birational images of
X in the 2-ray game of F, together with the birational maps induced between
them, make up the 2-ray game of X .

This property is one of the characteristics of Mori dream spaces, as intro-
duced by Keel–Hu [HK00]. Our less precise definition is a convenient shorthand
for the purposes of this paper only.

4.4.3 Family 8: special members are nonrigid

Consider dP3 fibrations in the family

X : (F = 0) ∈ |3M − L| ⊂ F = F(0, 1, 1, 2).

The polynomial F is a combination of the monomials of the Newton polygon

degu,v fibre monomial

0 x2y, x2z
1 xy2, xyz, xz2, x2t
2 y3, y2z, yz2, z3, xyt, xzt
3 y2t, yzt, z2t, xt2

4 yt2, zt2

5 t3

.

We define

val(F ) = min{degu,v m | m ∈ F a monomial with nonzero coefficient}

to separate cases of F according to their leading term in u, v.

30



Case 1: val(F ) = 0. This is the general case: the coefficient of x2y or x2z
in F is not zero and so the birational link of such X follows the scroll. Since
−KX = M − L, one calculates that the final divisorial contraction is trivial
against −KX , so this is a bad link on X .

Case 2: val(F ) = 1. Every term of F is divisible by u or v so we write

F = uf − vg with f, g ∈ |3M − 2L|.

Since u and v do not vanish simultaneously on X , the rational section

ξ = f/v = g/u of OX(3M − 3L) (2)

is regular: ξ ∈ H0(X, 3M − 3L). We regard ξ as a new variable and, using
equations (2), recompute the link starting from

X : (vξ = f, uξ = g) ∈ |3M − 2L| ∩ |3M − 2L| ⊂ F5

where the weighted scroll F5 is defined by the C× × C× action
(

0 0 1 1 1 3 1
1 1 0 −1 −1 −3 −2

)

on A7 with coordinates u, v, x, y, z, ξ, t. We have re-embedded X isomorphically
in a larger scroll: projection from ξ is the isomorphism to the original embed-
ding. Necessarily F ∋ x2t, since otherwise X would be singular along Γ (the
negative section y = z = ξ = t = 0), and then either f ∋ x2t, or g ∋ x2t. Pos-
sibly after renaming u, v, we may assume that f ∋ x2t. This case now divides
into two subcases.

Case 2a: val(F ) = 1, val(g) = 0. We can write the equations of X in the
form

(

f2 f1 + ξ f3

g1 + ξ g2 g3

)





u
v
x



 = 0. (3)

Following the link of F5, we see X 99K X1. We solve (3) by

η =
f2g2 − (f1 + ξ)(g1 + ξ)

x
=

f2g3 − f3(g1 + ξ)

v
=

(f1 + ξ)g3 − f3g2

u
(4)

and conclude that η ∈ H0(X1, 5M−6L) since the semistable locus of the action
defining X1 does not include u = v = x = 0. Once more, we make a new scroll
F6, by including η among the coordinates, and re-embed X ⊂ F6:

X : (Pfaff4×4M = 0) ⊂ F6

where F6 is defined by the C× × C× action
(

0 0 1 1 1 3 5 1
1 1 0 −1 −1 −3 −6 −2

)
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on A8 with coordinates u, v, x, y, z, ξ, η, t. Manipulating (4), the equations of
X ⊂ F6 are the 4× 4 Pfaffians of a 5× 5 skew symmetric matrix

M =









η f2 f1 + ξ f3

g1 + ξ g2 g3

x −v
u









.

The 2-ray game of X follows the link of the scroll F6. We sketch the steps:

1. Antiflip X 99K X1. This factors as X → Z1 ← X1, by the contraction
of Γ to Z1, both maps being the restrictions of maps of the scroll. The
exceptional locus u = v = 0 of Z1 ← X1 is defined by the equations of X1

in P4(1, 1, 3, 5, 1) with coordinates y, z, ξ, η, t, since that P4 is exceptional
in the scroll. We set x = 1 to see that t = 0, since f3 ∋ xt, and also that
η is eliminated. So antiflipped locus is

{

three P(1, 3)s meeting in a point
}

=
(

g3(y, z) = 0
)

⊂ P(1, 1, 3).

One can check in coordinates, as in Section 4.4.2, that this point is an
index 3 terminal singularity on X1. In Table 2, this antiflip is denoted by
(1, 1,−1,−1,−3).

2. Flop X1 99K X ′. Since −KX′ = M − L, curves that are contracted are
trivial against −KX′. See [BZ] for a detailed calculation, that also counts
the number of contracted curves.

3. Divisorial contraction to a point X ′ → Y ′. The divisor F = (t = 0) on
the scroll is contracted to a point, so F ∩ X ′ is too. The linear system
|6M − 5L| (and its multiples) define the morphism, so since

−6KX = 6(M − L) = (6M − 5L) + L

is negative on only the flipped curves, it must be relatively ample. There-
fore X ′ → Y ′ is extremal, and Y ′ has terminal singularities.

The result Y ′ is No. 6 of Altınok’s list of codimension 3 Fano 3-folds [Alt98].
This Sarkisov link is already known to us, calculated from the Y ′ end of the
link in [BZ] following Example 9.16 of [Rei].

Case 2b: val(F ) = 1, val(g) = 1. Now g is further specialised:

g = uf1 + vg1 with f1, g1 ∈ |3M − 3L|.

As usual, since u, v do not vanish simultaneously on X and uξ− g is identically
zero we write

uξ = uf1 + vg1 and η = (ξ − f1)/v = g1/u (5)
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and conclude that η ∈ H0(X, 3M − 4L). Again we include η as a new variable
and compute the link again starting from

X ∈ |3M − 2L| ∩ |3M − 3L| ⊂ F5

determined by the action

(

0 0 1 1 1 3 1
1 1 0 −1 −1 −4 −2

)

.

Unlike case 2a, here we have eliminated ξ from the coordinates using the equa-
tion ξ = vη + f1 of (5). Substituting for ξ calculates the equations of X ⊂ F5:

v2η + vf1 = f, uη = g1.

The 2-ray game of X follows the link of the scroll F5. The final contraction in
the link is given by the linear system |3M − 4L| and its multiples on X ′.

4.4.4 Unstable dP3 fibrations and condition (∗)

Consider the family of dP3 fibrations

X : (F = 0) ∈ |3M − 4L| ⊂ F(0, 2, 2, 4).

A general X has a 2-ray game that follows the scroll, but this gives a KX -trivial
bad link. Nevertheless, we find a special X which is nonrigid.

The polynomial F is a combination of the monomials of the Newton polygon

degree fibre monomial
0 xy2, xyz, xz2, x2t
2 y3, y2z, yz2, z3, xyt, xzt
4 y2t, yzt, z2t, xt2

6 yt2, zt2

8 t3

and we impose conditions on the coefficient polynomials α(u, v): we require ui

to divide the coefficient of fibre monomials according to the table

i fibre monomial
1 xyt, xzt
2 y2t, yzt, z2t
3 xt2

4 yt2, zt2

6 t3

with coefficients otherwise general. The reader can check that a general such
X is nonsingular away from a cD4 singularity at the point (0, 1; 0, 0, 0, 1). Note
that X satisfies condition (∗) because, even though it is special in the family,
the defining equation of X involves x2t with nontrivial coefficient, hence it is
still true that the 2-ray game from X follows the scroll (and ends in a bad link).
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Following Corti–Kollár [Cor96], [Kol97], X is unstable with respect to the
weight system w = (3, 2, 2, 0). Indeed, F is divisible by u6 after the substitution

u3x′, u2y′, u2z′, t′ for x, y, z, t.

Cancelling the u6 factor gives a dP3 fibration

Xst ∈ |3M − L| ⊂ F(0, 1, 1, 1)

that is square birational to X → P1. Note that the fibre at u = 0 has an Eckardt
point:

Xst ∩ (u = 0) =
(

tf2(x, y, z) = g3(y, z)
)

.

Even though it is not general in its family, Xst fails condition (∗), and Xst does
have a Sarkisov link, following the scroll, to a conic bundle over P2.
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A Birational transformations of scrolls

A.1 Definition of scrolls

We set our notation for rational scrolls and toric links between them. Our
treatment follows closely [Rei97, Chapter 2].

Throughout the Appendix, we consider actions of the group G = C× × C×

on affine space. The elements of G are ordered pairs (λ, µ) where λ, µ ∈ C×. We
denote by X = Hom(G, C×) the lattice of characters of G, with basis the coordi-
nate functions (projections on the two factors) χ1, χ2 such that χ1(λ, µ) = λ and
χ2(λ, µ) = µ. The dual lattice X∗ = Hom(X, Z) is based by the 1-parameter
subgroups e1, e2 such that e1(λ) = (λ, 1) and e2(µ) = (1, µ). Sometimes we
abuse notation and write λ for the element e1(λ) ∈ G (and, similarly, µ for
e2(µ)). Occasionally we abuse even further and identify λ with the coordinate
function χ1 : G→ C× (and, similarly, we identify µ with χ2).

We now define rational scrolls. Fix a base P = Pk, with homogeneous
coordinates u0, . . . , uk; in this paper, we only work with k = 1 or k = 2.
Consider now Cn+1, with coordinates x0, . . . , xn. Fix integers a0, . . . , an, usually
nonnegative and in increasing order. Consider the action of G on the affine space
A = Ck+1 × Cn+1, where the two factors of G act by

λ : (u0, . . . , uk, x0, . . . , xn) 7→(λu0, . . . , λuk, λ−a0x0, . . . , λ
−anxn)

µ : (u0, . . . , uk, x0, . . . , xn) 7→(u0, . . . , uk, µx0, . . . , µxn).

We summarise this action by writing down the matrix:
(

1 . . . 1 −a0 . . . −an

0 . . . 0 1 . . . 1

)

.
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By definition, the scroll F = F(a0, . . . , an) is the following quotient:

F(a0, a1, . . . , an) =
(

Ck+1 \ {0}
)

×
(

Cn+1 \ {0}
)

/G.

It is clear that F is a Pn-bundle over Pk.

A.2 Line bundles on scrolls

There is a 1-to-1 correspondence between line bundles on the scroll F and charac-
ters χ : G→ C× of the group G. To a character χ we associate a G-linearisation
of the trivial line bundle over A, by acting with χ in the direction of fibres. Tak-
ing the quotient of the G-linearisation by G, we form a bundle on F. Let us
denote by Lχ the resulting bundle. It is easy to chase through the definition
and see that the sections of Lχ are the global eigenfunctions with eigenvalue χ:

H0(F, Lχ) = {f : (Ck+1 \ {0})× (Cn+1 \ {0})→ C | f(gx) = χ(g)f(x)}.

Sometimes, we abuse notation and confuse the line bundle and the corresponding
character.

We denote by L and M the line bundles corresponding to χ1 and χ2. By what
we just said, the sections of L are the functions f : (Ck+1\{0})×(Cn+1\{0})→ C

such that

f(λu0, . . . , λuk, λ−a0x0, . . . , λ
−anxn) = λf(u0, . . . , uk, x0, . . . , xn)

f(u0, . . . , uk, µx0, . . . , µxn) = f(u0, . . . , uk, x0, . . . , xn).

It follows that H0(F, L) is based by the coordinate functions u0, . . . , un and L is
the pull-back π∗O(1) by the natural morphism π : F→ Pk. Similarly, the group
H0(F, M) of global sections of M is based by the monomials

uw0

0 · · ·u
wk

k xi where w0 + · · ·+ wk = ak.

A.3 F as a geometric quotient

Using the language of G-linearisations, we can view F as a geometric quotient
Ak+n+2//G in the sense of Geometric Invariant Theory. If G acts on A = Ak+n+2

as before and χ : G → C× is a character, then G acts on functions f ∈ OA by
gf(x) = χ(g)f(g−1x), and we denote Oχ

A
the invariants. The set of semistable

points is by definition

Ass
χ = {x ∈ A | ∃f ∈ Oχ

A
, f(x) 6= 0}.

The group G acts with finite stabilisers (in fact, freely) on the set of semistable
points, and the geometric quotient is by definition

A//G = Ass
χ /G.
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A.4 Linearisations and geometric quotients

Different linearisations lead to different quotients. We state what is going on
and leave the elementary proofs to the reader. We say that a linearisation is
useful if the set of semistable points is nonempty. To fix ideas, let us assume
that 0 = a0 ≤ a1 ≤ · · · ≤ an. The cone of useful linearisations is the cone

(R+[L] + R+[M − an−1L]) ∩ X

This cone is partitioned into chambers corresponding to different geometric
quotients. For example if χ ∈ R+[L] + R+[M ], then Ass

χ = (Ck+1 \ {0}) ×
(Cn+1 \ {0}) and we get our F back. However there are the other chambers

σi = (R+[M − ai−1L] + R+[M − aiL]) ∩ X,

whenever ai−1 < ai, and if χ ∈ σi

Ass
χ = (Ck+1+i \ {0})× (Cn+1−i \ {0}).

The corresponding quotient
Fi = Ass

χ /G

for χ ∈ σi is birational to F. The sequence of birational maps F = F0 99K F1 99K

· · · is a 2-ray game in the sense of [Cor00, Section 2.2]. For example if a1 > 0,
the move F 99K F1 is the antiflip of the section Γ = {x1 = x2 = · · · = xn = 0}
which generates one of the two extremal rays of NE(F).

A.5 Generalisations

The above can be generalised slightly to the action of G on An+1 given by the
matrix

(

α0 . . . αn

β0 . . . βn

)

.

We use this notation in the text as a shorthand for the action

x0, . . . , xn 7→ λα0x0, . . . , λ
αnxn

x0, . . . , xn 7→ µβ0x0, . . . , µ
βnxn.

Here we assume:

1. the rows are linearly independent (so we get a faithful action of G) and
all columns are nonzero,

2. all βi ≥ 0, and βn > 0,

3. the ratios αi/βi are in decreasing order.
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As before we denote L, M the G-linearisations corresponding to the characters
χ1, χ2. The cone of useful linearisations

(R+[α0M − β0L] + R+[αn−1M − βn−1L]) ∩ X

is partitioned into chambers

σi = (R+[αi−1M − βi−1L] + R+[αiM − βiL]).

(when αi−1/βi−1 > αi/βi). Choosing a character χ ∈ σi gives a semistable
locus Ass

χ = (Ci+1 \ {0})× (Cn−i \ {0}) and a geometric quotient Fi = Ass
χ /G.

A.6 Alternative viewpoints

There are at least two other points of view on birational maps of scrolls.
We can identify the cone of useful G-linearisations with the mobile cone

NM
1
(F) of the scroll. From this point of view, the main focus is the bigraded

ring
⊕

e,n

H0(F, eM + nL).

We can also view scrolls, and their generalisations, as special cases of rank 2
toric varieties.
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