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Abstract. We present a new integrable partial differential equation found by

Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this

new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms

that are cubic, rather than quadratic. We give a matrix Lax pair for V. Novikov’s

equation, and show how it is related by a reciprocal transformation to a negative flow

in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as

well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form

of the finite-dimensional system for the interaction of N peakons, and the two-body

dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some

analogous results for another cubic peakon derived by Zhijun Qiao.
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1. Introduction

The subject of this paper is the partial differential equation (PDE)

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (1)

which was discovered very recently by Vladimir Novikov in a symmetry classification of

nonlocal PDEs with cubic nonlinearity [18]. The perturbative symmetry approach [17]

yields necessary conditions for a PDE to admit infinitely many symmetries. Using

this approach, Novikov was able to isolate the equation (1) and find its first few

symmetries, and he subsequently found a scalar Lax pair for it, proving that the equation

is integrable. Due to the uxxt term on the left hand side of (1), this equation is not an

evolutionary PDE for u. However, taking the convolution with the Green’s function

g(x) = exp(−|x|)/2 for the Helmholtz operator (1 − ∂2
x) gives the nonlocal (integro-

differential) equation ut + u2ux + g ∗ [3uuxuxx + 2(ux)
3 + 3u2ux] = 0. It is convenient to

define a new dependent variable m to be the Helmholtz operator acting on u, in which

case the equation (1) can be more concisely written as

mt + u2mx + 3uuxm = 0, m = u− uxx. (2)

Henceforth we work with the above form of the equation.

The work of Camassa and Holm [3], who derived the equation

mt + umx + 2uxm = 0, m = u− uxx (3)

from an asymptotic approximation to the Hamiltonian for the Green-Naghdi equations

in shallow water theory, has attracted a lot of interest in the past fifteen years, for

various reasons. To begin with, it is remarkable that the Camassa-Holm equation (3)

approximates unidirectional fluid flow in Euler’s equations at the next order beyond the

KdV equation, and yet preserves the property of being integrable, fitting as it does into

the hereditary symmetry framework of Fokas and Fuchssteiner [7], with a bi-Hamiltonian

structure and a Lax pair based on a linear spectral problem of second order. Also,

while there are smooth soliton solutions of (3) on a non-zero constant background (or

equivalently, with the addition of linear dispersion terms), the Camassa-Holm equation

has peakon solutions, which are peaked solitons of the form

u(x, t) =

N
∑

j=1

pj(t) exp(−|x− qj(t)|), (4)

where the positions qj and amplitudes pj satisfy the system of ODEs

q̇j =
N
∑

k=1

pk e
−|qj−qk|, ṗj = pj

N
∑

k=1

pk sgn(qj − qk) e
−|qj−qk| (5)

for j = 1, . . . , N .

The peakons are smooth solutions of (3) except at the peak positions x = qj ,

where the derivative of u is discontinuous. The equations (5) form an integrable finite-

dimensional Hamiltonian system, corresponding to geodesic flow on an N -dimensional
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manifold with inverse metric gjk = exp(−|qj − qk|). The positions qj and momenta

pj satisfy the canonical Poisson bracket {qj, pk} = δjk. The dynamics of two peakons

(N = 2) was solved explicitly in the original paper by Camassa and Holm [3], while

the explicit solution for arbitrary N was found by Beals, Sattinger and Szmigielski [2].

Fuchssteiner also showed that the equation (3) is related via a reciprocal transformation

to the first negative flow in the hierarchy of the Korteweg–de Vries equation.

One might wonder whether the Camassa-Holm equation is the only integrable PDE

of its kind, being a shallow water equation whose dispersionless version has weak soliton

solutions. This turns out not to be the case. Degasperis and Procesi used an asymptotic

integrability approach to isolate integrable third order equations, and discovered a new

equation with the dispersionless form

mt + umx + 3uxm = 0, m = u− uxx. (6)

The Degasperis-Procesi equation turns out to be integrable, with a bi-Hamiltonian

structure and a Lax pair based on a third order spectral problem [4], and it also arises

in shallow water theory [6]. The equation (6) is related by a reciprocal transformation

to a negative flow in the hierarchy of the Kaup-Kupershmidt equation [4, 13], and it

also has peakon solutions of the form (4) whose dynamics is described by an integrable

finite-dimensional Hamiltonian system with a non-canonical Poisson bracket (see [14],

and section 4 below). The explicit solution of the N -peakon dynamics was derived by

Lundmark and Szmigielski [16]. There are at least two distinct integrable analogues

of the Camassa-Holm equation in 2+1 dimensions [12, 15], while the Euler-Poincaré

equation on the diffeomorphism group (EPDiff) provides a geometrical generalisation

of the Camassa-Holm equation in arbitrary dimension [11], and admits weak solutions

with support on lower-dimensional submanifolds. Rosenau also found various PDEs

with nonlinear dispersion, which have solutions with compact support [21], some of

which are relatives of the Camassa-Holm equation [19].

In what follows we present a bi-Hamiltonian structure for the integrable hierarchy

of PDEs of which (2) is a member, present a matrix Lax pair corresponding to a zero

curvature representation for this equation, and show how it is related via a reciprocal

transformation to a negative flow in the Sawada-Kotera hierarchy. We also present a

system of Hamiltonian ODEs for the dynamics of peakon solutions of (2), and explicitly

integrate the equations for the interaction of two peakons. Finally, we compare our

results with analogous properties of the integrable PDE

mt +
(

m(u2 − u2
x)
)

x
= 0, m = u− uxx, (7)

which was recently obtained by Zhijun Qiao [20]. Qiao’s equation was the original

starting point for our study, since it has cubic (rather than quadratic) nonlinear terms,

and this is what led us to ask Vladimir Novikov to seek other integrable equations of

this kind.
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2. Lax pair and reciprocal transformation

The equation (2) arises as a zero curvature equation Ft − Gx + [F,G] = 0, this being

the compatibility condition for the linear system

Ψx = FΨ,

Ψt = GΨ,
(8)

where

F =







0 mλ 1

0 0 mλ

1 0 0






, G =







1
3λ2 − uux

ux

λ
− u2mλ u2

x
u
λ

− 2
3λ2 −ux

λ
− u2mλ

−u2 u
λ

1
3λ2 + uux






.(9)

We found the linear system (8) directly by applying the prolongation algebra method of

Wahlquist and Estabrook (see [22], and also [8]), but the details of this derivation will

not be given here‡. In any case, once a Lax pair is given one can use it to derive most

of the important properties of an integrable PDE.

The first important observation we wish to make about Vladimir Novikov’s equation

is that it is connected to a negative flow in the Sawada-Kotera hierarchy via a reciprocal

transformation. Upon rewriting the PDE (2) in the form

(m2/3)t + (m2/3u2)x = 0, (10)

it is immediately clear that m2/3 is a conserved density. Since each of the equations (3)

and (6) has a conserved density of the form m1/b, for b = 2, 3 respectively, and these

densities yield reciprocal transformations to negative flows in more familiar hierarchies,

this suggests that we should define the new independent variables X and T by

dX = m2/3 dx−m2/3u2 dt, dT = dt. (11)

The closure condition d2X = 0 for the exact one-form dX in the reciprocal

transformation (11) is just the conservation law (10). Transforming the time evolution

of m in (2), together with the definition m = u− uxx, leads to the equations
( 1

V

)

T
=
(W 2

V

)

X
, WXX −

(

VXX

2V
− (VX)2

4V 2
+

1

V 2

)

W + 1 = 0, (12)

where V = m2/3 and W = um1/3. The evolution equation for 1/V in the new

independent variables X, T is the reciprocal transformation of the equation (2).

However, in order to recognise (12) as a member of the Sawada-Kotera hierarchy we

need to apply the reciprocal transformation to the Lax pair. (For details of the Sawada-

Kotera hierarchy and its extensions we refer the reader to [10].)

By writing the column vector Ψ in components as Ψ = (ψ1, ψ2, ψ3)
T , we can

eliminate ψ1 and ψ3 from Ψx = FΨ to get a single scalar equation for ψ = ψ2, namely

ψxxx − 2mxm
−1ψxx − (mxxm

−1 − 2(mx)
2m−2 + 1)ψx = m2λ2ψ. (13)

‡ V. Novikov told us that he earlier found a scalar Lax pair for the PDE (2) based on a third order

spectral problem, by applying a reciprocal transformation to a symmetry of fifth order. Any scalar linear

problem for (2) should be equivalent to the matrix system (8), possibly after a gauge transformation.
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When the reciprocal transformation (11) is used to transform the x derivatives as

∂x = V ∂X , the equation (13) becomes

ψXXX + UψX = λ2ψ, with U = −VXX

2V
+

(VX)2

4V 2
− 1

V 2
, (14)

so that the second equation in (12) has the form WXX + UW + 1 = 0 for the same

potential U . The third order operator ∂3
X + U∂X in (14) is the standard Lax operator

for the Sawada-Kotera hierarchy, and by transforming the t derivatives in Ψt = GΨ

according to ∂t = ∂T −W 2∂X we find that the T evolution of ψ is given by

ψT =
1

λ2

(

WψXX −WXψX

)

− 2

3λ2
ψ. (15)

After gauging ψ by a factor of e2T/(3λ2) to remove the final term above, and then

replacing λ2 by λ and setting φ = −3W , we see that (14) and (15) are respectively

equivalent to equations (2.25) and (2.26) in [13], and the compatibility requirement

ψTXXX = ψXXXT for this pair of scalar equations gives two conditions, namely that

WXX + UW is independent of X, and UT + 3WX = 0. The latter two conditions follow

from (12) provided that U is given in terms of V as in (14).

3. Conserved densities and bi-Hamiltonian structure

The Lax pair (8) can be used to find infinitely many conserved densities for (2). Upon

setting ρ = (logψ)x in (13) it is clear that ρ satisfies the equation

ρxx + 3ρρx + ρ3 − 2mxm
−1(ρx + ρ2) +

(

m(m−1)xx − 1
)

ρ = m2λ2. (16)

The corresponding t evolution of ψ implies that ρt = Fx for some flux F , and so by

expanding ρ in powers of λ one finds coefficients that are conserved densities. The

asymptotic expansion for λ → ∞ has ρ3 ∼ m2λ2, so ρ ∼ m2/3λ2/3, which extends to

an infinite series ρ ∼ m2/3λ2/3 +
∑∞

j=1 µjλ
−2j/3. The densities µj are all determined

recursively from (16) as local functions of m; for example µ1 = m−5/3mxx− 4
3
m−8/3m2

x +

3m−2/3. An expansion in positive powers of λ for λ → 0 can consistently begin with

ρ ∼ −muλ2, but one must solve a second order differential equation to obtain each

subsequent term, which leads to increasingly nonlocal expressions in m and u. Since we

know that (2) is reciprocally related to a negative Sawada-Kotera flow, it is natural to

regard the µj as densities for Hamiltonians that generate a positive hierarchy of flows,

with the expansion around λ = 0 producing Hamiltonian densities for negative flows.

Having found these conserved densities, we require a pair of Hamiltonian operators

B1, B2 which are compatible (in the sense that B1 + B2, or any linear combination of

them, is Hamiltonian) and can be used to generate the hierarchy of flows that commute

with (2). From earlier studies on the Camassa-Holm and Degasperis-Procesi equations

[13, 14], we know that all nonlocal operators of the form

B = m1−1/bDxm
1/bĜm1/bDxm

1−1/b, (17)
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with Ĝ = (c1Dx + c2D
3
x)

−1 for constants b, c1, c2, are Hamiltonian, and have Casimir
∫

m1/bdx. In fact, the case b = 2 gives the third Hamiltonian structure for the Camassa-

Holm equation, and b = 3 gives the second Hamiltonian structure for the Degasperis-

Procesi equation. Since
∫

m2/3dx is a conserved quantity for (2), this suggests we should

consider the operator (17) with b = 3/2, and indeed we find that the equation can be

written in Hamiltonian form as

mt = B1
δH̃

δm
, H̃ =

1

4

∫

mudx, (18)

for B1 = −18B|b=3/2 in the case c1 = 4, c2 = −1. Some other conserved quantities are

H1 =
∫

1
8

(

u4 + 2u2u2
x − u4

x

3

)

dx, H5 =
∫

m2/3dx, H7 =
∫

1
3
(m−8/3m2

x + 9m−2/3)dx =
∫

µ1dx, and the next one has leading term H11 =
∫

(m−16/3m2
xxx + . . .)dx (up to

rescaling). These are the first few in the sequence of Hamiltonians that generate local

symmetries of weight k ≡ ±1 mod 6 according to

mtk = B2
δHk

δm
= B1

δHk+6

δm
, (19)

where B2 = (1 − D2
x)m

−1Dxm
−1(1 − D2

x). The recursion operator is R = B2B−1
1 , and

it generates the flows Rnmx of weight 6n + 1 and the flows Rnmt5 of weight 6n + 5.

However, when k = 5 or 7 the rightmost part of the identity (19) fails, since both H5

and H7 are Casimirs for B1; and the Hamiltonian H̃ is a Casimir for B2. The proof of

the following theorem will be presented in a forthcoming article.

Theorem 1 The operators B1 = −2(3mDx + 2mx)(4Dx − D3
x)

−1(3mDx + mx) and

B2 = (1 −D2
x)m

−1Dxm
−1(1 −D2

x) provide a bi-Hamiltonian structure for the hierarchy

of symmetries of the equation (2).

4. Peakon solutions

From (10) the travelling waves u = u(z), z = x−ct of (2) satisfy (u2−c)m2/3 = const. In

the general case this gives m = 1
2
c2D(u2 − c)−3/2 for constant D 6= 0, which integrates

further to (u′)2 = u2 + cDu(u2 − c)−1/2 + cE, for another constant E. This can be

reduced to a quadrature which is the sum of elliptic integrals of the third kind, namely

dz =
( 1

w−1
− 1

w+1
)dw

2
√

(Dw + E)(w2 − 1) + w2
, w = u(u2 − c)−1/2. (20)

However, if we require waves that vanish at spatial infinity, then D = 0, which implies

that m = 0 whenever u2 6= c. No smooth solution can satisfy the latter requirement,

but this observation suggests that there should be a weak solution of the form

u(x, t) = ±
√
c e−|x−ct−x0|, c > 0, x0 constant, (21)

which has the same form as the peakon for the Camassa-Holm and Degasperis-Procesi

equations, except that the amplitude is the square root of the speed rather than being

equal to the speed, as is the case for the peakon solutions of (3) and (6). The expression

(21) has m = 0 away from the peak, and u2 = c at the peak, but to regard it as a weak
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solution of (2) it is necessary to substitute it into the equation and integrate against

suitable test functions with support around the peak. For the single peakon (21) we

have m = ±2
√
c δ(x − ct − x0), but there is some subtlety in interpreting this as a

solution, because ux = ∓√
c sgn(x − ct − x0)e

−|x−ct−x0| and m are distributions, while

the equation (2) includes the product uxm. The integrals can be regularised by taking

the convention sgn(0) = 0, but a more rigorous alternative is to construct the peakon

distribution as a limit of smooth solutions of the PDE. For the Camassa-Holm equation

it is known that the single peakon arises as a weak solution in this way (see [19] for

a very detailed treatment), and multi-peakons arise similarly as a degenerate limit of

algebro-geometric solutions [1].

If we take u to be a linear superposition of N peakons, as in (4), so that

m = 2
∑N

j=1 pj(t)δ(x − qj(t)), then substituting into the equation (2) and integrating

against test functions supported at x = qj gives the equations of motion for the peak

positions and amplitudes.

Proposition 1 The equation (2) has peakon solutions of the form (4), whose positions

qj(t) and amplitudes pj(t) evolve according to the dynamical system

q̇j =
∑N

k,ℓ=1 pkpℓ e
−|qj−qk|−|qj−qℓ|,

ṗj = pj

∑N
k,ℓ=1 pkpℓ sgn(qj − qk) e

−|qj−qk|−|qj−qℓ|.
(22)

The above equations are not in canonical Hamiltonian form. However, in [14] one of us

showed how Hamiltonian operators of the form (17) are reduced to Poisson structures

on the finite-dimensional submanifold of N peaks or pulses, resulting in the Poisson

bracket

{qj , qk} = G(qj − qk), {qj, pk} = (b− 1)G′(qj − qk)pk,

{pj , pk} = −(b− 1)2G′′(qj − qk)pjpk,
(23)

where G is the skew-symmetric Green’s function for the operator Ĝ. For N > 2, the

Jacobi identity holds for this bracket if and only if G satisfies the functional equation

G′(α)(G(β) +G(γ)) + cyclic = 0 for α + β + γ = 0. (24)

This functional equation is also a sufficient condition for the operator (17) to be

Hamiltonian, and Braden and Byatt-Smith proved in the appendix to [14] that the

unique continuously differentiable, odd solution of equation (24) is G(x) = A sgn(x)(1−
e−B|x|) for arbitrary constants A,B. Up to rescaling x, this is the Green’s function for

the operator Ĝ = (Dx−D3
x)

−1 (or Ĝ = D−1
x in the degenerate case B → ∞). In the case

at hand, the operator B in Theorem 1 has Ĝ = (4Dx −D3
x)

−1, and the Hamiltonian H̃

reduces to a conserved quantity h for the equations of motion (22), which is quadratic

in the amplitudes pj.

Theorem 2 The equations (22) for the motion of N peakons in the PDE (2) are an

Hamiltonian vector field

q̇j = {qj , h}, ṗj = {pj, h}
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for the Hamiltonian h = 1
2

∑N
j,k=1 pjpk exp(−|qj −qk|), with the Poisson bracket specified

by

{qj , qk} = sgn(qj − qk)(1 − e−2|qj−qk|), {qj , pk} = e−2|qj−qk|pk,

{pj, pk} = sgn(qj − qk)e
−2|qj−qk|pjpk.

(25)

We conjecture that the equations (22) constitute a Liouville integrable Hamiltonian

system with N degrees of freedom. For N = 1 this is trivial, and for N = 2 the result

follows from the existence of a second independent integral in involution with h, namely

k = p2
1p

2
2(1 − e−2|q1−q2|), {k, h} = 0. (26)

The invariant k is degree four in the amplitudes, and for all N there is an analogous

integral, quartic in pj, obtained by restricting the Hamiltonian H1 to the peakon

submanifold. Indeed, the conserved densities for the negative flows in the hierarchy of

the PDE (2) should all reduce to integrals for the N -peakon dynamics, but the explicit

construction of N independent Poisson-commuting integrals for (22) is still in progress.

It is also worth mentioning that the Lax pair (8) can be used to obtain an N ×N Lax

matrix for the finite-dimensional system, satisfying

LΦ = −λ−2Φ, L = SPEP, (27)

where Sjk = sgn(qj − qk), P = diag(p1, . . . , pN), Ejk = exp(−|qj − qk|). The jth

component of the vector Φ is just ψ2(qj(t), t), where ψ2(x, t) is the second component

of Ψ in (8), and the corresponding time evolution Φ̇ = MΦ yields the Lax equation

L̇ = [M,L] for the system (22). However, unfortunately the spectral invariants of L,

which are the coefficients of the characteristic polynomial det(L + λ−2I) (a polynomial

in λ−2), do not provide enough integrals. For instance, when N = 2 we find that the

trace of L vanishes, while the trace of L2 gives k, but h does not appear. For higher

values of N we have found that the spectral invariants of L have degrees 4, 8, 12, . . .

but the integrals of degrees 2, 6, 10, . . . are missing. This leads us to expect that there

should be another Lax representation for this system which would provide the correct

number of integrals for Liouville’s theorem.

For the two-peakon dynamics, the equations of motion are

q̇1 = (p1 + p2e
−|q1−q2|)2 q̇2 = (p2 + p1e

−|q1−q2|)2

ṗ1 = sgn(q1 − q2)e
−|q1−q2|(p1 + p2e

−|q1−q2|)p1p2,

ṗ2 = −sgn(q1 − q2)e
−|q1−q2|(p2 + p1e

−|q1−q2|)p1p2,

(28)

and without loss of generality we consider the case where the peaks are initially well

separated, so that q1 << q2 with q1 ∼ c1t, q2 ∼ c2t (for c1 > c2 > 0), and we assume

that both amplitudes are positive, so p1 →
√
c1 and p2 →

√
c2 as t→ −∞. In terms of

these asymptotic speeds the Hamiltonian is h = 1
2
(c1 + c2) and the quartic invariant is

k = c1c2. Upon integrating the equations (28) we find elementary formulae for p2
2 − p2

1,

p1p2 and e−|q1−q2|, leading to the expressions

p2
2 − p2

1 = (c1 − c2) tanhT p1p2 =
√

c1c2 + (c1−c2)4

16(c1+c2)2
sech4T

q2 − q1 = 1
2
log
(

1 + 16c1c2(c1+c2)2

(c1−c2)4
cosh4 T

)

,
(29)
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where T = (c1 − c2)(t − t0)/2, with t0 being an arbitrary constant. The formula for

q1 + q2 is somewhat more formidable, being given in terms of a certain quadrature as

q1 + q2 = (c1 + c2)(t− t0) +

∫

f(T )dT + const. (30)

The integrand f is

f(T ) =
2(c21 − c22)

(

(c1 − c2)
2 + 8c1c2 cosh2 T

)

(c1 − c2)4 + 16c1c2(c1 + c2)2 cosh4 T
,

and the quadrature can be performed explicitly by partial fractions in tanh(T ), but the

answer is omitted here. From (29) and (30) it is apparent that the peakons exchange

speeds under the interaction, without a head-on collision, so that q1 ∼ c2t, q2 ∼ c1t as

t → ∞. They also undergo a phase shift, which is described by the asymptotics of the

term
∫

f(T )dT in (30), but the precise formula is rather unwieldy and will be presented

elsewhere.

5. Qiao’s equation

As we already mentioned, our interest in peakon equations with cubic nonlinearity began

with Qiao’s equation (7), which can also be written as

mt + (u2 − u2
x)mx + 2uxm

2 = 0. (31)

Qiao presented a 2× 2 Lax pair for this equation given by the linear system Ψx = UΨ,

Ψt = VΨ with

U =

(

−1
2

1
2
mλ

−1
2
mλ 1

2

)

,

V =

(

λ−2 + 1
2
(u2 − u2

x) −λ−1(u− ux) − 1
2
mλ(u2 − u2

x)

λ−1(u+ ux) + 1
2
mλ(u2 − u2

x) −λ−2 − 1
2
(u2 − u2

x)

)

.

(32)

Qiao also found a bi-Hamiltonian structure for his equation, namely

mt = B̃1
δH̃

δm
= B̃2

δH1

δm
(33)

where

B̃1 = −4DxmD
−1
x mDx, B̃2 = −2(Dx −D3

x), (34)

and H̃ , H1 are the same as the conserved quantities for (2) given in section 3 above.

(In Qiao’s original papers the quantity H0, proportional to H̃ here, is out by a factor

of 2, while the quantity denoted H1 in [20] is missing the u4
x term.) Note that the

first operator in (34) is of the form (17) with b = 1, and the compatibility of these

Hamiltonian structures can be proved by a slight extension of a result in [13].

If we apply the reciprocal transformation

dX =
m

2
dx− 1

2
m(u2 − u2

x)dt, dT = dt
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to Qiao’s equation (7) then we find the pair of equations

(m−2)T = −2uX , (muX)X = 4(u/m− 1). (35)

By transforming the Lax pair given by (32) and writing a scalar linear problem for ψ1,

the first component of Ψ, we find that the X part is

ψ1,XX + (vX − v2)ψ1 = −λ2ψ, v = m−1,

which is the Schrödinger equation corresponding to the spectral problem for KdV, and

the expression vX−v2 is the standard Miura map from modified KdV. The corresponding

time evolution is

ψ1,T = − 1

λ2

(

aψ1,X − 1

2
axψ1

)

, a = u−muX/2,

from which it is clear that the pair of equations (35) corresponds to a negative flow in

the (modified) KdV hierarchy.

Qiao has noted that the equation (7) does not have standard peakons of the form

u = ce−|x−ct|. The general travelling wave solution for this equation can be solved in

terms of an elliptic integral, and some interesting wave shapes have been found in [20] in

cases where this integral reduces to expressions in hyperbolic functions. However, here

we should like to point out that, at least formally, peakons of the form u = ±√
ce−|x−ct|

(just as found for (2) above) do provide solutions of Qiao’s equation. From the equation

in the form (31) it is clear that if m is given by a delta function then the m2 terms do not

make sense. However, if we take travelling waves u = u(z), z = x− ct and integrate (7)

along the z axis against an arbitrary test function ϕ, and then perform an integration

by parts, we find
∫

m
(

u2 − (u′)2 − c
)

ϕ′(z) dz = 0. (36)

For the peakon u(z) =
√
c e−|z| we have u′(z) = −√

c sgn(z)e−|z| and m(z) = 2
√
c δ(z),

and this satisfies (36) as long as we assume the usual convention that sgn(0) = 0. A

more careful derivation could be carried out along the lines of [19]. The equations for

N peakons should be extremely degenerate, since b = 1 and G(x) is proportional to

sgn(x) in the bracket (23), so pj are constant and the amplitudes of the peakons do not

change. The same conclusion is reached by integrating (7) against a test function and

performing integration by parts.

It seems that peakon equations with cubic nonlinearity have several novel features

compared with the Camassa-Holm and Degasperis-Procesi equations, and there are

many more things to be revealed by further study.
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