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Derived A-infinity algebras in an operadic context

MURIEL LIVERNET
CONSTANZE ROITZHEIM
SARAH WHITEHOUSE

Derived A-infinity algebras were developed recently by Sagave. Their advantage over classical A-infinity
algebras is that no projectivity assumptions are needed to study minimal models of differential graded
algebras. We explain how derived A-infinity algebras can be viewed as algebras over an operad. More
specifically, we describe how this operad arises as a resolution of the operad d.As encoding bidgas, i.e.
bicomplexes with an associative multiplication. This generalises the established result describing the
operad A, as aresolution of the operad As encoding associative algebras. We further show that Sagave’s
definition of morphisms agrees with the infinity-morphisms of dA. -algebras arising from operadic
machinery. We also study the operadic homology of derived A -infinity algebras.
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Introduction

Mathematical areas in which A -structures arise range from geometry, topology and representation theory
to mathematical physics. One important application is to the study of differential graded algebras via A -
structures on their homology algebras. This is the theory of minimal models established by Kadeishvili in
the 1980s [Kad80]. However, the results concerning minimal models all have rather restrictive projectivity
assumptions.

To bypass these projectivity assumptions, Sagave recently developed the notion of derived A, -algebras
[Sag10]. Compared to classical A, -algebras, derived A, -algebras are equipped with an additional grading.
Using this definition one can define projective resolutions that are compatible with A -structures. With
these, Sagave established a notion of minimal models for differential graded algebras (dgas) whose homology
is not necessarily projective.

Sagave’s descriptions of derived A -structures are largely formula-based. In this paper, we provide an
alternative description of these structures using operads. It is not hard to write down an operad dA., that
encodes derived A -structures, but we also explain the context into which this operad fits. The category we
are going to work in is the category BiCompl, of bicomplexes with no horizontal differential. We will start
from an operad d.As in this category encoding bidgas, that is, monoids in bicomplexes (see Definition 1.3).
Our main theorem shows that derived A -algebras are algebras over the operad

dAs = (dAs)oo = Q(dAs))).
This means that the operad dA is a minimal model of a well-known structure.

We can summarize our main result and its relation to the classical case in the following table.

underlying category operad O (O-algebra
differential graded k-modules As dga
Aso Ao-algebra
BiCompl, dAs bidga

dA derived A-algebra




We hope that this provides a useful way of thinking about derived A, -structures. It should allow many
operadic techniques to be applied to their study and we give two examples. Firstly, we note a simple
consequence of the homotopy transfer theorem. Secondly we develop operadic homology of derived A -
algebras and relate this to formality of dgas.

This paper is organised as follows. We start by recalling some previous results in Section 1. In the first
part we summarise some definitions, conventions and results about derived A, -algebras. The second part
is concerned with classical A.,-algebras. We look at the operad As encoding associative algebras and
summarise how to obtain the operad A, as a resolution of As.

In Section 2 we generalise this to the operad d.As. More precisely, this operad lives in the category of
bicomplexes with trivial horizontal differential. It encodes bidgas and can be described as the composition
of the operad of dual numbers and .As using a distributive law. The main result of this section is computing
its Koszul dual cooperad.

Section 3 contains our main result. We describe the operad dA, encoding derived A, -algebras and show
that it agrees with the cobar construction of the reduced Koszul dual cooperad of d.As.

In Section 4 we consider co-morphisms and show that they coincide with the derived A, -morphisms defined
by Sagave. We also give an immediate application of the operadic approach, by deducing the existence of a
dA . -algebra structure on the vertical homology of a bidga over a field from the homotopy transfer theorem.

In Section 5, we study the operadic homology of derived A -algebras. By comparing this to the previously
defined Hochschild cohomology of [RW11], we deduce a criterion for intrinsic formality of a dga.

We conclude with a short section outlining some areas for future investigation.

The second author was supported by EPSRC grant EP/G051348/1.

1 A review of known results

Throughout this paper let k denote a commutative ring unless stated otherwise. All operads considered are
non-symmetric.

1.1 Derived A -algebras

We are going to recall some basic definitions and results regarding derived A, -algebras. This is just a brief
recollection; we refer to [Sag10] and [RW11] for more details.

We start by considering (N, Z)-bigraded k-modules

A= P Al
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The lower grading is called the horizontal degree and the upper grading the vertical degree. Note that the
horizontal grading is homological whereas the vertical grading is cohomological. A morphism of bidegree
(u, v) is then a morphism of bigraded modules that lowers the horizontal degree by u and raises the vertical
degree by v. We are observing the Koszul sign rule, that is

f ® 9)(x ®y) = (—DP"Tf(x) ® g(y)

if g has bidegree (p,q) and x has bidegree (i,j). Here we have adopted the grading conventions used
in [RWI11].

We can now say what a derived A -algebra is.

Definition 1.1 [SaglO] A derived Ao -structure (or dA-structure for short) on an (N,Z)-bigraded k-
module A consists of k-linear maps
mj; : A®j — A

of bidegree (i,2 — (i +j)) foreach i > 0, j > 1, satisfying the equations

(1) > T (1 @ myy @ 197) = 0

u=i+py=j+q—1
j=14r+t

forall u > 0 and v > 1. A dAy -algebra is a bigraded k-module together with a dA-structure.

Definition 1.2 [Sagl10] A map of dA.,-algebras from (A, m™) to (B, m®) consists of a family of k-module
maps f;; : A% — B of bidegree (i, 1 — i — j) with i > 0,j > 1, satisfying

(2) Z (_l)qurtJrPJﬁj(l@V ® mﬁq X 1®t) — Z (_l)amg(fp]m X - (g)fquj)7
u=i+p,y=j+q—1 Ll:l+P1++[7,,
J=ltrtt v=q1+-+q;
with
Jj—1 j
oc=u+ Y (Pt a0 +h+a( Y ps+ gy
k=1 s=k+1

Sagave does not define composition of maps of dA.,-algebras directly in terms of this definition. Instead
this is done via a certain reformulation as maps on the reduced tensor algebra; see [Sagl0, 4.5]. It follows
that dA -algebras form a category.

Examples of dA-algebras include classical Ay, -algebras, which are derived A -algebras concentrated in

horizontal degree 0. Other examples are bicomplexes and bidgas, in the sense of the following definition.

Definition 1.3 A bidga is a derived A, -algebra with m;; = 0 for i +j > 3. A morphism of bidgas is a
morphism of derived A, -algebras f;; with f;; = 0 for i +j > 2.

Sagave notes that this is equivalent to saying that a bidga is a monoid in the category of bicomplexes.
For derived A -algebras, the analogue of a quasi-isomorphism is called an E>-equivalence. To explain this,

we need to discuss twisted chain complexes. The terminology multicomplex is also used for a twisted chain
complex.



Definition 1.4 A twisted chain complex C is an (N, Z)-bigraded k-module with differentials d° : C — C
of bidegree (i, 1 — i) for i > 0 satisfying

Z (—DidfdS =0
i+p=u
for u > 0. A map of twisted chain complexes C — D is a family of maps f; : C — D of bidegree (i, —i)
satisfying
Yo Dfdg =Y dl
i+p=u i+p=u

The composition of maps f : E — F and g : F — G is defined by (gf), = Zi+p:u gifp and the resulting
category is denoted tChy.

A derived A -algebra has an underlying twisted chain complex, specified by the maps m;; for i > 0.

If f : C — D is a map of twisted chain complexes, then fj is a dy-chain map and H}(fy) induces a d; -chain
map.

Definition 1.5 A map f : C — D of twisted chain complexes is an E|-equivalence if H}(fy) is an
isomorphism for all # € Z and an E;-equivalence if Hﬁ’(Htv (fo)) is an isomorphism for all s € N, r € Z.

The first main advantage of derived A -structures over A -structures is that one has a reasonable notion
of a minimal model for differential graded algebras without any projectivity assumptions on the homology.

Theorem 1.6 [Sagl0] Let A be a dga over k. Then there is a degreewise k-projective dA,-algebra E
together with an E;-equivalence E —> A such that

e F is minimal (i.e. my; = 0),

e F isunique up to E;-equivalence,

o together with the differential m;; and the multiplication myg,, E is a termwise k-projective resolution
of the graded algebra H*(A).

The second and third authors then gave the analogue of Kadeishvili’s formality criterion for dgas using
Hochschild cohomology. They describe derived Ao -structures in terms of a Lie algebra structure on
morphisms of the underlying k-module A. Then they use this Lie algebra structure to define Hochschild
cohomology for a large class of derived A -algebras and eventually reach the following result [RW11,
Theorem 4.4]. Recall that a dga is called intrinsically formal if any other dga A’ such that H*(A) = H*(A')
as associative algebras is quasi-isomorphic to A.

Theorem 1.7 [RW11] Let A be a dga and E its minimal model with dA.,-structure m. By E., we denote
the underlying bidga of E, i.e. E = E as k-modules together with dA ., -structure i = my; + me,. If
HHy "(E,E)=0  form >3,

then A is intrinsically formal.



1.2 The operad As

The goal of our paper is to describe derived A -algebras as algebras over an operad, and to show that this
operad is a minimal model of a certain Koszul operad. The operad in question is an operad called d.As
(defined in Section 2), which is a generalisation of the operad .As that encodes associative algebras. So let
us recall this strategy for As itself. For this subsection only, let k be a field. We work in the category of
(cohomologically) differential graded k-vector spaces, denoted dgk-vs.

We will use the notation F (M) for the free (non-symmetric) operad generated by a collection M = {M(n)},>1
of graded k-vector spaces. It is weight graded by the number s of vertices in the planar tree representation
of elements of F(M) and we denote by F(5(M) the corresponding graded k-vector space. We denote by
P(M, R) the operad defined by generators and relations, F(M)/(R). A quadratic operad is an operad such
that R C Fo)(M).

Definition 1.8 The operad .As in dgk-vs is given by
As = P(ku, kas)

where g is a binary operation concentrated in degree zero, and as = p o y — p oy . The differential is
trivial.

It is easy to verify that an As-algebra structure on the differential graded k-vector space A, i.e. a morphism
of dg operads

P
As — Endy,
endows A with the structure of an associative dga, with multiplication

d(p) : A%? — A.

Theorem 1.9 The operad As is a Koszul operad, i.e. the map of operads in dgk-vs
Q(As) — As

is a quasi-isomorphism. Furthermore, an algebra over {2(As?) is precisely an A, -algebra.

Here, a quasi-isomorphism of operads is a quasi-isomorphism of dg-k-vector spaces in each arity degree.
We do not recall the definitions of the Koszul dual cooperad (—)i or the cobar construction {2(—) here.
(This is going to be discussed in greater detail for our computations later). Let us just mention now that the
cobar construction of a cooperad is a free graded operad endowed with a differential built from the cooperad
structure, so we can think of the map above as a free resolution of the operad .As. This result can be proved
using beautiful geometric and combinatorial methods such as the Stasheff cell complex. Unfortunately, the
derived case will not be as obviously geometric.

Our aim is to create an analogue of the above for the derived case. The first step is to consider working in
a different category- instead of differential graded k-vector spaces, we consider a category of graded chain
complexes over a commutative ring k.



The role of As in this case is going to be played by an operad d.As, which encodes bidgas rather than
associative dgas.

The first goal is showing that d.As is a Koszul operad, i.e. that
(dAS)so := Q(dAs)) — dAs

is a quasi-isomorphism of operads in an appropriate category. We are going to achieve this by “splitting”
dAs into two parts, namely the operad of dual numbers and As itself, via a distributive law.

Secondly, we are going to compute the generators and differential of (d.As) explicitly, so we can read off
that (d.As)~-algebras give exactly derived A -algebras in the sense of Sagave.

Our work will show that the operad controlling derived A, -algebras can be seen as a free resolution of the
operad encoding bidgas, in the same sense that the classical A, -operad is a free resolution of the operad
encoding associative dgas.

2 The operad d.As

In the first part of this section, we recall some basic notions about the Koszul dual cooperad of a given
operad and we compute the Koszul dual of d.As. Further details can be found in [Fre04], which covers
Koszul duality for operads over a general commutative ground ring. We also refer to the book of Loday and
Vallette [LV12].

We are first going to specify the category we work in. Again, let k be a commutative ring.

2.1 Vertical bicomplexes and operads in vertical bicomplexes

Definition 2.1 The category of vertical bicomplexes BiCompl, consists of bigraded k-modules as above
together with a vertical differential
dA : Ajl: — Ajl:-H

of bidegree (0, 1). The morphisms are those morphisms of bigraded modules commuting with the vertical
differential. We denote by Hom(A, B) the set of morphisms (preserving the bigrading) from A to B.

If ¢,d € A have bidegree (cy, ¢2) and (d,, d») respectively we denote by |c||d| the integer ¢1d; + cads.
We define a degree shift operation on BiCompl, as follows. Let A € BiCompl,. Then sA is defined as
(sA); = AT

with
dsa(sx) = —s(dax).

Soif ¢ € A is of bidegree (cy, ¢2), then sc € sA is of bidegree (c1,cy — 1).

This shift is compatible with the embedding of differential graded complexes into BiCompl, given by
C,=Cland C, =0,if k > 0.



The tensor product of two vertical bicomplexes A and B is given by
A®B),= @ AleB,
i+p=u,j+qg=v
with dygp =ds @ 1 + 1 ®dp : (A® B), = (A® B!,

Note that BiCompl, is isomorphic to the category of N-graded chain complexes of k-modules.

There are two other sorts of morphism that we will consider later and we introduce notation for these now.
(Various alternative choices of notation are used in the literature.) Let A and B be two vertical bicomplexes.
We write Homy for morphisms of k-modules. We will denote by Mor(A, B) the vertical bicomplex given

by
Mor(4, B, = [ ] Homw(A7, B.™)),
a?ﬁ
with vertical differential given by Ovior(f) = drf — (—1)ifdy for f of bidegree (1, ).
We will denote by Hom(A, B) the (cohomologically) graded complex given by
Hom(A, B)* = | [ Homy (A5, BJ),
a7ﬁ
with the same differential as above. One has

Hom(A, B) = Mor(A, B)) and Hom(A, B)* = Mor(A, B);.
Definition 2.2 A collection in BiCompl, is a collection A(n),>1 of vertical bicomplexes. We denote by

CBiCompl, the category of collections of vertical bicomplexes. This category is endowed with a monoidal
structure, the plethysm given by, for any two collections M and N,

MoN)m= P MERNL) - @N).
k, l|++lk=n

The unit for the plethysm is given by the collection

oy — {o, ifn 1

k concentrated in bidegree (0,0), ifn=1.

Given two collections A and B in BiCompl,, one can consider again the three collections
e Hom(A, B)(n) := {Hom(A(n), B(n)},> in the category of k-modules,
e Mor(A, B)(n) := {Mor(A(n), B(n)},> in the category of vertical bicomplexes and
e Hom(A, B)(n) := {Hom(A(n), B(n)},>1 in the category of complexes.

Definition 2.3 A (non-symmetric) operad in BiCompl, is a monoid in CBiCompl,. This is the usual
definition of operads in the symmetric monoidal category (BiCompl,, ®).

For a vertical bicomplex A, the endomorphism operad End, is the operad in vertical bicomplexes given by
End,(n) = Mor(A®", A), where the operad structure is given by the composition of morphisms, as usual.



2.2 The operad dAs

We now describe the operad in BiCompl, that encodes bidgas.

Definition 2.4 The operad d.As in BiCompl, is defined as P(M 45, Ra4s) Where

0 ifn>?2
Mg 4s(n) = { kmg, concentrated in bidegree (0,0), ifn =2

km| concentrated in bidegree (1,0), ifn =1

and

2
Raas = K(m o1 moa — mop 02 mop) @ kmy; @ K(my1 o1 moa — mop 01 myp — mep 02 mpy),

with trivial vertical differential.

This operad is clearly quadratic.

The following result is now essentially a matter of definitions, but we include the details for completeness.

Proposition 2.5 The category of d.As-algebras in BiCompl, is isomorphic to the category of bidgas.

Proof A dAs-algebra structure on a vertical bicomplex A is given by a morphism of operads
0 :dAs — Endy,.

Since A is a vertical bicomplex, itis (N, Z)-graded and comes with a vertical differential d4 = d" of bidegree
(0, 1). From the images of the operad generators we have morphisms

m = 0(mp) : A%* — A,
d" = 0(m;) : A — A,
of bidegree (0,0) and (1, 0) respectively.

The operad relations tell us precisely that m is associative, that " is a differential and that " is a derivation
with respect to m. The fact that ¢ is a morphism of operads in BiCompl,,, and that the differential on each
dAs(n) is trivial, gives us two further relations:

aMor(m) = 07
Mor(@") = 0.

The first of these relations tells us that d” is a derivation with respect to m and the second that d"d" —d"d" = 0.
This gives A precisely the structure of a bidga (with exactly Sagave’s sign conventions).

A morphism of d.As-algebras f : A — B is a map of vertical bicomplexes which also commutes with m
and d". This is precisely a morphism of bidgas. a



Let us describe the operad d.As in a little more detail. Let my; denote any (k — 1)-fold composite of my;.
(Because of the associativity relation, my does not depend on the choice of composition.) Due to the “Leibniz
rule relation” every element of d.As in arity k can be written as a k-linear combination of the elements

m(miy, ...,m{)

with ¢; € Z/2. The partial composition is given by

€1 €] 61 5/(
my(myy, ..., my,) o; my(myy, ..., m
k Ié; €i-1 & ds+1 1 €
€1 i- 1 : ko Cit] € e
1) > (=DPmyp—1(miy, .om T miy, o omT om, my L om)), i e =1,
€ €i—1 o1 1) Ok €it1 € : _
My (myy, ,myy my, ,myy, ,my,m s, my), if ¢, =0,

! k s—1
where a = | D ¢ (Z 5,) and 8 = ) 0,.
j=i+1 r=1 r=1
We see that we have an isomorphism of bigraded k-modules,

dAs(n) = K[xi, ..., x,]/(x3, ..., x2), lxi| = (1,0)

n

. . . . €1 € €1 €
determined by assigning the monomial x7' ...x;" to the element m,(m}},...,m}}).

Let D denote the operad of dual numbers in the category of vertical bicomplexes, namely
D = P(kmyy, kmi,)
with trivial differential.

We can now reformulate the above description of d.As in terms of plethysm and distributive laws; see [LV12,
8.6].

Lemma 2.6 The map
p:DoAs — AsoD

determined by
(@ 1my1 O Mg > Mg O1 M| + Mgy 02 M|

defines a distributive law, such that the induced operad structure on As o D coincides with the operad d.As.

Proof We adopt the notation and terminology of [LV12, 8.6.3]. We define
Q. Kkmq o(1) km02 — km()z o(1) kmy;

as above. This gives a rewriting rule for the quadratic operads D and As and it is clear that dAs is
isomorphic to As V, D. From the description of the operad d.As above, we see that the induced map
AsoD — AsV, D = dAs is an isomorphism. So, by [LV 12, Proposition 8.6.4], ¢ induces a distributive
law and an isomorphism of operads As oD — As V., D. a

10



For P = P(M, R) a quadratic operad, the Koszul dual cooperad P! of P is given by
Pl = C(sM, s°R).

Here C°(E,R) denotes the cooperad cogenerated by E with corelations R. (For a description see [LV12,
Section 7.1.4])

There are two ways of describing the cooperad (d.As)!, either by describing the distributive law
Dio Ast — Ast o Di
or by describing the elements of C¢(s(km;; & kmqy), s2R; 45) in the cofree cooperad FC(s(kmi; & kmygy)).
The first description implies that for every n, (dAs)i(n) is a free k-module.
Proposition 2.7 The underlying collection of the cooperad d.As' is isomorphic to that of
Dio Ast = K[p11] o As'

where p11 has bidegree (1, —1). Hence, as a k-module, (d.As)i(n) is free with basis given by elements v,
of bidegree (i, 1 — i — n). These elements are in 1-to-1 correspondence with the elements s(mp;)’ o p, in
Dio Asi.

Proof The first part of the claim follows from Lemma 2.6, since d.As = AsV D and by [LV12, Proposition
8.6.15], there is an isomorphism of underlying collections (As V, D)i = Di o Asi.

The cooperad structures of Di and Asi are well-known and can be shown by induction with the methods
used in Theorem 2.8. In arity n, Asi(n) is a free k-module on the generator p,. The element p, has
bidegree (0,1 — n). The cooperad D' is concentrated in arity 1. It is the free cooperad on the generator
smy. This implies that (d.As)i(n) is free on the image of the generators

Vin = (smi1)' © piy € (D' 0 As)(n)
in (dAs)i(n). We can read off a generator’s bidegree as

|Vin| = i(jm11] + |s]) + |pn| = (G, 1 — i — n).

Notation Let C be a cooperad and ¢ € C(rn). We are going to describe the cocomposition

A:C—CoC.
We write
Aec) = Z cjscr.
Jil|=n

Here, I = (i1, ..., §j) is a j-tuple with |I| =i; + --- + i;, and
cr = ¢ ®'”®Ci/’ e C¥.

If C = F¢(V) is a cofree cooperad cogenerated by a collection V, then it has a description in terms of trees
whose vertices are labelled by elements of V; see [LV12, 5.8.7]. Moreover if V(n) is a free k-module for
each n, then so is C(n), and a basis as a free k-module is given by planar trees whose vertices are labelled

11



by a basis of V. If the root of such a tree has arity k and is labelled by v we denote it by v(¢', ..., ) where
t', ..., are elements of C = F°(V). Remembering that

A = Z st

SIS D
(3) A(v(tl,...,rk)):l;v(t],...,rk)—i—Z(—l)":l T P,

one obtains the formula

(t!

k. 1 k
]l’hn?tjk)’tll ®"'®t1k-

We now compute the full structure of (d.As)'. From Proposition 2.7 we already know the structure of its
underlying bigraded k-modules, and we can use (3) to write down the cocomposition of its basis elements.

We remark that we have chosen to work directly with the cooperad (d.As)i, rather than with (d.As)'. This is
to avoid taking linear duals, which can be badly behaved over a general ground ring.

Theorem 2.8 The cooperad (d.As)! is a sub-cooperad of F¢(sM ;) with trivial differential. Its underlying
collection consists of free k-modules with basis {f;,i > 0,j > 1} such that pg; is the identity of the
cooperad, po2 = smo and gy = smyy € F(sMy4s). The other p;; are defined inductively via

it = p(pi-1,1), fori > 1,
pon = > (—=DPUTDuos(pop, pog), forn > 2,
p+q=n
i = Qo)+ S0 (= lssllelE 00 G i), fori > 1,7 > 2.
r+t=i
s+w=j

The element y; has bidegree (i, 1 — i — j). These elements satisfy

“ Ay =Y (O sy 0 @ @ g1y,
i+py+-tpj=u
q1+-Fgi=v

where

ji—1

J Jj—1 J
|$pge|( Z | Epraa]) + Zpk( Z q1)

M

X (@1;91)7 oo 7(p]’q])) =

~
l

(&)

1
- j
= Y (e+aG+b+ac > Gi+a).

1 I=k+1

~

bl
I

Proof Firstly we are going to show that those inductively defined elements form a sub-cooperad of
F(sMy45). Then we will see that this sub-cooperad contains the quadratic relations s’R, As- Together
with Proposition 2.7, this means that it must be (d.As)' itself.

For the first part we have to prove formula (4), which is done by induction on u + v.

One has
Alan) = > pits fp1

i+p=u

which is proved by induction from the definition

it = 11 (Pu—1,1)-
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The case of A(ug,) is similar to the general case A(u,,), so we only prove formula (4) for u > 1,v > 2.

We would like to prove that
Alp) =Y (=1 puigs

where the sum is taken over i,/,I = ((p1,q1), - .-, (Pj,q;)) suchthat i + >, px = u,> ., qx = V.

By formula (3) we have

6) A(Muv)=A<M11(Hu—1,v)+ > <—1>'%”“M+"Wuoz<umutw>>.

r+t=u,s+w=vy

We will evaluate the summands on the right hand side of the above formula separately using induction
together with formula (3).

Assume that we have proved (4) for all py; with k 4+ [ < u 4 v. This implies that

A1) =Y (=D Py i

Applying formula (3) allows us to relate this to A(z11(tty—1,,)) With the result that

A (pu—1)) = por; i Gu—1) + (=D Cpni i s .

Thus we have computed the first summand of (6). As for the second summand, the induction assumption
gives us

Alprs) = 3 (=D prs - and Apn) =Y (=P ps u,
with Iy = ((p1,q1), - - -, (prg7)) and I = ((pTJrlaqTJrl)a s 7(pja qj)) PUtting this in (3) gives
> limallimsl  yayxan
Apoa(prs, i) = _(—1)i=! (=X o (s 13605 1y @
+ po1s o2 (frss foaw)-
We will feed these computations back into (6) and will work out the signs to obtain the desired (4). Leti > 1

and j > 2. We are interested in computing the signs in front of elements of the type fi11(s4;—1,); 47 and of
the type f102(tprs Hno); pu Where

pty = i
T+ = j
I = ((plvql)uv(pjaqj))

For the first type the sign is (—1)X). For the second type the sign is of the form (—1)¥ where Y is computed
mod 2:

13



T
Y = [spars] ] + 1w+ gl 1tms] + X)) + X (D)

k=1
T 7—1 T 7—1 T
= [spurs||ptow| 4+ 1w + Z |Hpigel |1ys| + Z |$tpige|( Z ki) + Zpk( Z q1)
k=1 k=1 I=k+1 k=1 I=k+1
j—1 J j—1 i
+ D lsmpal O lmpaD+ D (D .
k=741 I=k+1 k=741 I=k+1
Let us now simplify the sign Y. Using the equalities
J T
|/~Ll‘w‘ = ’M’yé’—i_ Z ’MPM]}J? P+ZPk:V7
k=71+1 k=1

J

.
|bors| = 1pr| + Z | gl Z qr=w,

k=1 I=7+1

one gets

T J
Y = X(D) + [spurs| | ppow| + 1w + Z [ 4pgi € Z )

k=1 I=7+1
T T j
+ 3 i Qrgsh) + O p0 Y an
k=1 =1 I=7+1

J
= X() + Ispprllys| + Usttpr] +7ISDCD - ttpge]) + pw
k=1+1

=X{) + ‘SMM—H,UM/(;‘ + p(0 —w) + pw
=X{I) + ‘s/"LpTH)U”‘/(S‘ + p(s.

Putting this together, we obtain a summand of the form

(—I)X(])(Mll(,ui—l,/’)Qﬂl + Z (_1)|SMPT||U'75|+,D5M02(MPT’ MWS);MI) — (_1)X(1)ulj’ﬂ’l7

pty=i
T+=j

fori>1andj> 2.
If j = 1, we are interested in computing the sign in front of the element of the type fi11(pi—1,1); pu—in if

i > 1 orin front of 1ig1; jtuy if i = 0. In the first case one still gets (—1)X) with I = (u — i, v) as well as in
the second case.

If i = 0andj > 1 we are interested in computing the sign in front of the elements of the type 1102(ttor, tos); t1
where 7 + 6 = j which has already been computed and coincides with the desired sign. Consequently
formula (4) is proved.
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Hence the collection of y;;’s forms a sub-cooperad of the free cooperad F(sM 4,). Furthermore it contains
s*Ry 45, since

Ho3 = Smop O1 Sty — SMo2 O Moy,
12 = Ssmypj O] Smyy — SmMp O1 SM1] — S O SMyy,
and M21 = Smjj O Smqq.

We also know that its k-module structure coincides with the k-module structure of (d.As)', since the k-basis
elements p;;, are in bijection with the v;, of Proposition 2.7.

As a consequence, the cooperad described is the cooperad (d.As)!. |

Corollary 2.9 The infinitesimal cocomposition on (d.As)! is given by

A(1)(:ut4v) = Z (_l)r(l_p_q)+ptﬂij§ 1% & Upg @ 1€,

i+p=u
r+q+t=v,r+1+1=j

3 Derived A -structures

In this section we will prove our main result, Theorem 3.2, describing derived A, -algebras as algebras over
the operad (dAs)so. Again [Fre04] is our main reference for the cobar construction of a cooperad over
a general ground ring. We will also interpret our description in terms of coderivations and compare with
Sagave’s approach.

3.1 The operad dA.

We would now like to encode derived A, -algebras via an operad. Recall from Section 1 that a derived
Ao -structure on a bigraded module A consists of morphisms

Myt (A®V)E — AXT27u
such that for u > 0,v > 1,

> DT (1% @ myy @ 197) = 0.

u=i+p,y=j+q—1,
j=14r+t

If one considers myg; as an internal differential of A the relation reads

mor(m) — (DT> my (197 @ mgy @ 197) =
r+t+1=v

(=D > (=D Py (197 @ mpg @ 197,

u=i+p,y=j+q—1
J=14r+,G)#0,D),(p,q)#(0,1)
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Definition 3.1 The operad dA,, in BiCompl, is defined as the free operad
Fkmyy :u>0,v>1,(u,v) # (0,1)),

together with the differential

Doo(m) = (=11 N ()T (197 @ mpg @ 19,
”:i+P7V:j+q—17
J=14r+t,
(i), #(0,1)
Hence it is easily verified that an algebra over the operad dA., in BiCompl, is a derived A -algebra in the
above sense.

For a coaugmented cooperad C, the cobar construction Q(C) of C is the operad defined as F(s~!C), where
C is the cokernel of the coaugmentation, together with the differential dq = d; + d». Here, d, is induced
by the infinitesimal cocomposition map Ay of C and d; is induced by the internal differential of C itself.
Note that in our case C = d.As, this internal differential is trivial.

We can now state the main result of our paper.

Theorem 3.2 The operads (dAs)so = Q((dAs)") and dA,, agree. Hence, a derived A, -algebra is a
(dAs) -algebra.

Proof By definition, Q((dAs)!) is the free operad on the shift of (d.As)i. Let us denote its generators by
p,j:s_l,u,-j, fori >0,j>1,i4+j#1.

The elements p;; were described in Theorem 2.8. The element p;; obviously has bidegree (i,2 — i — j).

Recall that if C is a coaugmented cooperad then the differential on Q(C) is obtained from Ay as follows.
Assume

Ay(o) = Z ci; 1% ® ¢ ® 1%,

then
das~'e) =Y (—DF elsTle,(1%r @ 571 @ 191,

From Corollary 2.9 one gets

dolpw) =~ D (YT @ g @ 19
u=itp,v=j+q-1,
Jj=14r+t,
@), (p,)7#(0,1)

(7 .
_ (_l)u Z (_1)rq+pj+tpl_j(l®r ® P ® 1®t)'
u:i‘f‘l’»":j'i‘q—l,
Jj=14r+t,
(),(P,)#(0,1)
This is the definition 3.1 of the operad dA.., with 0, = —Jq. O
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Recall that a quadratic operad P is Koszul if the map of operads

is a quasi-isomorphism.
Proposition 3.3 The operad d.As is Koszul. Thus, dA, is a minimal model of d.As.

Proof We know that d.As = Do As by Proposition 2.7. The operads D and As are Koszul. Using Theorem
8.6.11 of [LV12], dAs is Koszul. O

Remark If we do not put in the multiplication and consider just the operad Do, = QD! in BiCompl,,, we
obtain an operad whose algebras are precisely the twisted chain complexes. This can be seen either directly
as a bigraded version of [LV12, 10.3.17] or by tracing just the j = 1 parts of the structure through our results.

3.2 Coderivations and Sagave’s approach

We now relate derived A, -structures to coderivations. In the classical case, an A, -structure on the
differential graded k-module A is equivalent to a coderivation of degree +1 on the reduced tensor coalgebra

d: T (sA) —s T (sA) suchthat d?>=0.

Sagave generalised this viewpoint to derived A, -algebras in the following way [Sagl0, Section 4]. A
derived Ao -structure on the bigraded k-module A is equivalent to a coderivation of degree +1

T (sA) a T (sA)
y y
T(s4) @ T (sA) — 0 7 6A) @ T<(sA)

such that (7(SA), d) is a twisted chain complex, see Definition 1.4, [Sagl0, Lemma 4.1]. The definition of
a differential of a twisted cochain complex differs from the condition d> = 0 by signs.

Our approach varies from this. In the setting of associative algebras in dg-k-modules, one has
Asi(A) = T (sA).
However, (dAs)i(A) is not given by T-C(SA) in the derived setting - we showed its structure in Theorem 2.8.

So in our setting, a derived A -structure on the vertical bicomplex A is given by a coderivation of degree
+1

(dAs)(A) d (dAs) (A)

AU)J« A<1>l
dO(1)1+10(|)d

((dAs) o1y (dAs))(A) ((dAs) oq1y (dAs))(A)

such that 4> = 0. Comparing those two equivalent conditions we see the following. Sagave’s description
has the advantage of a much easier coalgebra structure while the complexity of the derived A -structure
is encoded in the more complicated condition that a coderivation has to satisfy. In our description, a
coderivation has to satisfy the relatively simple condition d> = 0 while the complexity lies in the more
complicated coalgebra structure.
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4 Infinity morphisms and an application

The main purpose of this section is to describe co-morphisms of (d.As)o, = dAso-algebras, and to prove
that they coincide with the derived A, -morphisms defined by Sagave. At the end of the section, we give an
application of the homotopy transfer theorem.

4.1 Infinity morphisms

Using the language of operads, the natural notion of morphism between two dA-algebras A and B is a map
f : A — B respecting the algebra structure. This is the notion of a strict morphism. However, in the context
of P, -algebras where P is a Koszul operad, there is also a more general notion of co-morphism, which is
more relevant to the homotopy theory of P -algebras; see, for example, [LV12, Section 10.2]. In the case
of A, -algebras, this gives rise to the usual notion of A, -morphism between two A, -algebras A and B and
this can be formulated as a morphism of differential graded coalgebras between the bar constructions of A
and B.

As seen at the end of the previous section, a dA -structure m on the vertical bicomplex A is equivalent to a
square-zero coderivation D,, of degree +1 on the (d.As)i -coalgebra (d.As)i(A). This coalgebra corresponds
to the bar construction for A, -algebras in our framework. This lends itself to the following definition.

Definition 4.1 Let (A, m) and (B, m’) be dA,-algebras. An co-morphism of dA,-algebras is a morphism
F: (dAs)(A), Dy) — ((dAs)(B), D)
of (dAs)i -coalgebras.

We will interpret this definition in terms of twisting morphisms, but first, we give a recollection of some
facts based on the book of Loday and Vallette, adapted to the category of vertical bicomplexes. We will need
these as a basis for our computation.

Definition 4.2 Let (C,d¢) be a cooperad and (P,dp) an operad in vertical bicomplexes. Following the
notation of Section 2.1, we consider the collection in complexes Hom(C, P). It is a differential graded
operad called the convolution operad.

There is an operation * on Hom(C, P) defined by

A o
f*g :C _)(l> C (1) C —)fo(l)é P O(1) P ﬂ)—) 73,

where Ay and ;) are respectively the infinitesimal cocomposition and composition maps. As in [LV12,
6.4.4], this determines the structure of a differential graded pre-Lie algebra on Hn Hom(C, P)(n). The
associated differential graded Lie algebra is called the convolution Lie algebra.

Definition 4.3 A twisting morphism is an element « of degree 1 in the complex Hom(C, P) satisfying the
Maurer-Cartan equation
o) +axa=0.

We denote the set of twisting morphisms by Tw(C, P).
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By construction, the cobar construction 2 satisfies
HomBiCOmplvfop(Q(C)a P) = TW(C, P)7

where the left-hand side means morphisms of operads in vertical bicomplexes. This means that a dA -
structure m on the vertical bicomplex A, that is, a square-zero coderivation D,, of degree +1 on the
(dAs)i-coalgebra (dAs)i(A) as seen at the end of the previous section, is equivalent to a twisting morphism

Pm € Tw((dAs)', Endy).

Let A and B be vertical bicomplexes, and let End4, a collection in vertical bicomplexes, be given by
Endj(n) = Mor(A®", B).
The vertical differential is given by

n—1
Of) = daf —(=1Y > _fA¥ @dy@ 1"

v=0
for f in arity n and bidegree (i, ).

For f € Hom((dAs)i,Endg) and ¢ € Hom((d As)', End,), the map f * ¢ is given by the composite

A . . fo
Fro: @A) 2% (dAs) oy (dAs) Z°V% Endd o) Endy % End}

where p is induced by the composition of maps. Similarly, for v € Hom((d.As)', Endg) and f as above,
1 ® f is given by

b@f: (dAs) D (dAs) o (dAs) “Ys Endy o Endd 2 Endd

where A is given by composition of maps.

Now let
o € Tw((dAs)',Endy) and o, € Tw((dAs)', Endp)

be dA.-structures on the vertical bicomplexes A and B respectively. By [LV12, Theorem 10.2.6], an
oo-morphism
F : (dAs)(A) — (dAs)(B)

of dA, -algebras is equivalent to an element f € Hom((dAs)', End‘g) of degree 0 such that

S ox PmA — PmB ®f = a(f)

(note that the vertical bicomplex (d.As)i(n) has trivial differential). Taking this into account we arrive at the
following.

Theorem 4.4 An oco-morphism f : A —> B of dA-algebras is a morphism of derived A -algebras as
defined by Sagave, that is, a collection of maps

fuw 1 A®Y — B

of bidegree (1,1 — u — v) satisfying equation (2) of Definition 1.2.
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Proof Assume that f : (dAs)i — End’g satisfies

f* PmA — PmB ®f = a(f)
We know the structure of (d.As)' from Theorem 2.8. The underlying k-module of (d.As)! is free on generators
thuy of bidegree (u,1 — u — v). Write
fuv ::f(ﬂuv)

and recall that ¢, (1) = mf-} and ,,,5(p;j) = mg

Using the formulas given by Theorem 2.8, Corollary 2.9 and because ¢,,4 is of bidegree (0, 1) we obtain

(f * ) () = Z (_1)r(lfpfq)+pt+l+i+jﬁj(1®r ® m?q ® 1%
v:j+q“—:]Ij:pr+t+l
= > TGOS @ mp, 19
u=i+p
v=j+q—1,j=r+i+1
and
(Pt @) = > _(=1D¥mi(fpq0 @ -+ @ fig)
where
Jj—1 J
X =X((p1,90), - i ) = Y ((Pk +a)G+h+a Y i+ 6]1))-
k=1 I=k+1
Also,

v—1

Opnd () pu) = difun = (=)D fu (1% @ dy @ 177171,
1=0
With dy = mf); and dp = mg) , this equals

v—1

Dpna (M) ttan) = my () — (=D " £, (1% @ migy @ 17771,
=0
Putting this together, we arrive at
DY EDTRAS @ ), @ 19 = (D =1 mE(fg @ - @ )
vt iz

which is exactly formula (2) of Sagave’s definition. |

4.2 The homotopy transfer theorem for d.4s

As an immediate application of our operadic description, we can apply the homotopy transfer theorem;
see [LV12, Section 10.3]. To do so, we will need to now work over a ground field. Although this takes us
out of the context which motivated the introduction of derived A, -algebras, it nonetheless gives us a new
family of examples.

Let P be a Koszul operad, W a P, -algebra and V a homotopy retract of W. Recall that a P, -structure
on W is equivalent to an element ¢ € Tw(Pi, Endy). The homotopy transfer theorem [LV12, Theorem
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10.3.6] says that the homotopy retract V can be given a P -structure by the twisting morphism given by
the following composite

Pi & Fepiy T899, re(sEndy) % Endy.

(The map A is the coproduct map defined in [LV12, 5.8.12].) Moreover there is a standard way to interpret
this formula in terms of the combinatorics of trees.

We adopt the usual notation for this setting: we have the inclusion i : V — W and projection p : W — V
such that pi is the identity on V, and a homotopy & : W — W between ip and the identity on W,
1W — ip = dwh + hdw.

As a special case, we consider P = d.As and we let V = A be a bidga over a field. The vertical homology
W = HY(A) of A is a homotopy retract and we therefore obtain a derived A, -algebra structure on this.
Write dj, = my; for the horizontal differential and m = myg, for the multiplication. Making the transferred
structure explicit for this special case yields the following.

Proposition 4.5 There is a derived A -algebra structure on the vertical homology H"(A) of a bidga A
over a field, which can be described as follows. We obtain m;; as a (suitably signed) sum over the maps
corresponding to planar trees with j leaves, where each vertex has been assigned a weight of either 2 or 3,
and the number of vertices of weight 2 is i. The procedure for assigning a map to such a tree is as follows.
We adorn the trees with the map i on the leaves, the map p at the root and the map % on internal edges. On
vertices, we put the multiplication m at every vertex of weight 3 and the horizontal differential dj, at every
vertex of weight 2. |

This construction specializes to the A, -case which involves binary trees with no vertices of degree 2. That
is, we recover the expected A -algebra structure on the part concentrated in degrees (0, )); see [LV12,9.4.4,
10.3.8].

The signs can be calculated recursively from the explicit signs appearing in the formula (4) for A.

5 Operadic and Hochschild cohomology

In this section, we compute the tangent complex of a derived A, -algebra A, define the Hochschild cohomol-
ogy of A and make the link with the formality theorem of [RW11]. Hochschild cohomology has previously
only been defined, in [RW11], for a special class of derived A, -algebras, the “orthogonal” ones.

Given a vertical bicomplex A, the trigraded k-module C; (A, A) is defined by
Cp'(A,A) = Mor(A®", A)L.
We will describe a graded Lie structure on CH**1(A, A), where the grading is the total grading
ca’a,n=1] [I cr@a,

n>1 kjlk+j+n=N

that is, an element in CZJ(A,A) has total degree j + k + n.
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5.1 Lie structures

Let us make explicit Definition 4.2 for the differential graded pre-Lie structure on [ [, Hom((d As)', Enda)(n).

From Corollary 2.9, knowing the infinitesimal cocomposition on (d.As)!, the x operation on Hom((d.As)', End,)

is given by

®) (F * )(tty) = > (= 1y P apeHlsllinlf () (197 @ gljupg) © 159,
j=l4+r+tu=i+p,v=r+q+t

where |g| denotes the vertical grading.

For every N, there is a bijection

® =[] @ : [[Hom((dAs) Endp))¥ — ] Co™t' " @A, 4)
where @, : Hom((d.As)i, Endg)(m)V — [ C2NT17""(A, A) is given by evaluation:
u
() = | [ faCttun)-

The unique preimage of a family (G,),, where G, = (Go™T'="""),, is given by the family g = (g,)n =

(@, 1(G,)), in degree N defined via
gn(ﬂun) — Gz,NJrlfnfu.

We can now transport the pre-Lie structure on [ [, Hom((dAs)', Ends)(n) to CH *+1(A,A) as follows: let
F = (F,)n>1 be of total degree N + 1 and let G = (G,,)m>1 be of total degree M + 1. There are unique
families f = (f,)n, & = (gm)m of degree N and M respectively such that F = ®(f) and G = ®(g). Then

FxG:= 9 ~g).

Note that the total degree of F'x G is N + M + 1. Hence the pre-Lie product decreases the total degree by
one. That is, this pre-Lie product endows CH**!(A, A) with the structure of a graded pre-Lie algebra.

Naturally, this gives rise to a graded Lie algebra structure on CH**!(A, A) via
[F,G] = F G — (—=)NTDM+DG |,

Let us now compare the pre-Lie structure above with the pre-Lie structure on Cy"(A,A) built in [RW11].
Let f € C}"'(A,A) and g € C/"/(A,A). Then
f = fulpn) with |fy] =n+i+k—1
and
g = &m(tm) With |gu| =m+j+1—1.
Putting this into formula (8) yields

n—1
frg= Z(_1)(n+l)(m+l)+r(m+1)+j(n+1)+k(m+j+l+l)f(1®r ©g@ 191 ¢ C/};lj:[m—l,l+]'
r=0

Hence we can see that the sign in this formula differs from the sign in the other pre-Lie algebra structure
f ogw @ given in [RW11, Definition 2.11] by the sign (— 1) H+HD,

We can read off the following.
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Lemma 5.1 Let m € CH*(A,A). Then m defines a dA-structure on A if and only if m+m = 0. a

5.2 Hochschild cohomology

We now use this new Lie structure to define another notion of Hochschild cohomology of derived A -
algebras. This definition differs from that constructed in [RW11] by the different signs in the Lie structure,
as explained above. It has the advantage that it applies to all dA,-algebras rather than just the “orthogonal”
ones.

Definition 5.2 Let (A, m) be a dA,-algebra. Then the Hochschild cohomology of A is defined as
HH"(A,A) := H"(CH(A, A), [m, —]).

The morphism
[m,—]: CH*(A,A) — CH"(A,A)

is indeed a differential. Since m has total degree 2 and [—, —] has total degree —1, it raises degree by 1.
By [Livl1, Lemma 1.10] (with respect to the pre-Lie product o), one has [m, [m, —]] = [m xm, —], and the
right-hand side vanishes because of Lemma 5.1.

In the case of (A, m) being an associative algebra, this definition recovers the classical definition of Hochschild
cohomology of associative algebras.

Remark Because of the bijection ® the complex computing the Hochschild cohomology of A coincides
with the operadic cohomology. Recall that given a P-algebra A, its operadic cohomology with coefficients
in itself is H*(Hom(Pi(A),A), 0,) where 7 depends on the twisting cochain defining the structure on A.

As an example, when A is a bidga with m = m;| +myp, i.e. if A is a bidga with trivial horizontal differential,
the external grading is preserved by both bracketing with m1; and mg,. Hence we can, as in [RW11, Section
3.1], consider bigraded Hochschild cohomology

HH""(A,A) = HS(H CyL(ALA), [m, 1),
n
We denote this special case by HHZ;Zg (A, A). It corresponds to the operadic cohomology with respect to
the operad d.As.

When P is a Koszul operad, given a P, -algebra, one can still define its operadic cohomology as the
homology of the complex

(€)) (Hom(Pi(A),A), 0r),
where 7 represents the twisting cochain associated to the P -structure on A.

If A is a derived Ay -algebra, the complex (9) is exactly the complex of Definition 5.2. That is, op-
eradic cohomology for derived A, -algebras is Hochschild cohomology as defined at the beginning of the
subsection.

Note however, that in order to identify this cohomology theory with the André-Quillen cohomology of
derived A -algebras as in [LV12, Proposition 12.4.11] one needs to assume that A is bounded below for
the vertical grading and is free as a k-module.
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This more compact definition of Hochschild cohomology has some structural advantage over HHyy,, the
Hochschild cohomology defined in [RW11]. In particular, we see that the Lie bracket [—, —] on CH*(A, A)
induces a Lie bracket on

HH*(A,A) = H*(CH*(A,A),D = [m, —]).
This is the case because D is an inner derivation with respect to [—, —] due to the graded Jacobi identity.

Hence, the bracket of two cycles is again a cycle, and the bracket of a boundary and a cycle is a boundary.

Proposition 5.3 The (shifted) Hochschild cohomology of a dA ., -algebra HH**!(A, A) has the structure of
a graded Lie algebra. O

5.3 Uniqueness and formality

Definition 5.4 Let A be a bidga with mg; = 0,0 = my, 4 = mgy. Then

a=> ag a; € CIPIA,A), i+j>3
i

is a twisting cochain if 0 + p + a is a derived A -structure.
One can read off the following result immediately.

Lemma 5.5 The element a is a twisting cochain if and only if
—D(a) =ax*a

for D=1[0+ u,—]. O

The above is the Maurer-Cartan formula.

A key step in the obstruction theory leading to uniqueness of dA-structures is perturbing an existing
twisting cochain by an element b of total degree 1. Roughly speaking, this new perturbed dA . -structure
satisfies the following- it equals the existing dA-structure below a certain bidegree, is modified using b
in this bidegree and E;-equivalent to the “old” dA.,-structure. This has been shown in detail in [RW11,
Lemma 3.6], but we verify briefly that this also works with our new Lie bracket.

Lemma 5.6 Let A be abidga with multiplication p, horizontal differential 0 and trivial vertical differential.
Let a be a twisting cochain. Let either

(A) be "0, A) for some k, n such that k + n > 3, satisfying [9, 5] = 0

or

B) be 77" ™A, A), for some k,n with k + n > 3, satisfying [u, b] = 0.

Then there is a twisting cochain a satisfying

e the dA-structures 0 + p + a and m = 0 + p + a are E,-equivalent,

e ay, =au foru<korv<n-—1or(uv)=(,n—1)incase (A)and foru < k—1orv < n or
(u,v) = (k — 1,n) in case (B),
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® dp, = ag, — [, b] in case (A),

e ay, = ai, — [0, b] in case (B).

Proof A quick check of the signs in both Lie brackets shows that
[0, blrw = [0, D] and [u, blrw = [, D]

Hence this is identical to [RW11, Lemma 3.6], where the a,, are constructed inductively. O

We can now proceed to our uniqueness theorem, which has been shown in the context of [—, —]gy and
HHy, in [RW11, Theorem 3.7].

Theorem 5.7 Let A be abidga with multiplication y, horizontal differential 0 and trivial vertical differential.
If
HH}? "(A,A) =0 for r >3,

then every dA-structure on A with mg; = 0, m; = 0 and mgy = p is E;-equivalent to the trivial one.

Proof Let m be a dA,,-structure on A as given in the statement. We want to show that it is equivalent to
the dA o -structure 0 + p. We can write m = 0 + p + a with a a twisting cochain.

We look at ay,, k +n =t > 3. We show that m is equivalent to a dA ., -structure m = 0 + p + a with
ay, = 0 for fixed ¢ by induction on k.
To start this induction we assume that
a; =0 for i+j<t andfor i+j=1tif i <k.
The new equivalent dA -structure m will also satisfy
aj=ua; =0 for i+j<tandfor i+j=1tif i<k

as well as further
ai, = 0.

So to construct m, we “kill” ay, but leave the trivial lower degree a;; invariant.

Since a is a twisting cochain, it satisfies the Maurer-Cartan formula
—D(a) =a~*a.

However, an argument similar to [RW11, Theorem 3.7] shows that this implies D(ay,) = 0 for degree
reasons. Hence ay, is a cycle and gives us a class

[ar] € HHy 27574, 4)

in the Hochschild cohomology of A. This cohomology group has been assumed to be zero, hence a;, must
be a boundary too. Thus, there is a b of total degree 1 with D(b) = ay, . For degree reasons, this b has to be
of the form

b=bo+bi, byc Cl*7"MAA), by e CTTHALA)
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with
[t,b0] =0 and [0,b1] =0,

meaning that
D(b) = D(bo + b1) = [, b1] + [0, bo].

Then, just as in the proof of [RW11, Theorem 3.7], applying Lemma 5.6 to b; yields a dA-structure
m=0+ u+awith
dn = A — 11,011 — [0, bol = ag, — D(b) = 0.

O

It was shown in [RW 11, Section 4] that HH}';’VT,(A, A) is invariant under E,-equivalences. Since this argument
is independent of choice of signs in the Lie bracket, it also holds for our HHZ;;g .(A,A). Hence we can now
give a criterion for intrinsic formality of a dga. (Recall that a dga A is intrinsically formal if for any other

dga B with H*(A) = H*(B) as associative algebras, A and B are quasi-isomorphic.)

Corollary 5.8 Let A be a dga and E its minimal model with dA.-structure m. By E, we denote the
underlying bidga of E, i.e. E = E as k-modules together with dA-structure i = my; + mgy. If

HH,;? "(E,E)=0  form >3,

then A is intrinsically formal. |

6 Directions for further work

In this paper we have given an operadic perspective on derived A -structures, allowing us to view derived
Ao -algebras as algebras over an operad. By results of various authors [Fre09, Har10, Murl1], it follows
from our description that there is a model category structure on derived A -algebras such that the weak
equivalences are the E| -equivalences (see Definition 1.5). However, we do not expect this model structure to
be homotopically meaningful. Indeed, in order to view Sagave’s minimal models as some kind of cofibrant
replacement, one would need a model structure in which the weak equivalences are the E;-equivalences.
Producing such a model structure will involve a change of underlying category, probably to the category of
twisted chain complexes. One would then need a suitable model structure on this underlying category and
also to develop the appropriate notion of cobar construction. The apparent complication in carrying out such
a programme explains our choice to work with vertical bicomplexes in this paper. We expect to return to this
in future work.
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