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Massless flows between minimal W models

Clare Dunning1

Dept. of Mathematics, University of York, York YO1 5DD, UK

Abstract

We study the renormalisation group flows between minimal W models by means of a new
set of nonlinear integral equations which provide access to the effective central charge of
both unitary and nonunitary models. We show that the scaling function associated to the
nonunitary models is a nonmonotonic function of the system size.

1. A recent study of the renormalisation group flows between nonunitary minimal models
revealed an unexpected behaviour for the groundstate energy E0(R), in that it was a non-
monotonic function of the system size R [1]. The nonmonotonicity was illustrated using the
finite-size scaling function ceff(r), which up to the bulk term is proportional to the groundstate
energy

E0(R) = Ebulk(M,R) − πceff (r)

6R
, r = MR , (1)

where M is the so-called crossover scale (the mass in massive theories). As the system size
goes to zero ceff(r) becomes the effective central charge

lim
r→0

ceff (r) = c− 24∆0 . (2)

We denote the actual central charge by c while ∆0 is the conformal dimension of the lowest
primary field of the UV CFT.

The effective central charge and the central charge of the unitary minimal models coincide,
and according to Zamolodchikov’s c-theorem [2] there exists a function c̃ which is monotonic.
However, apart from the UV and IR points at which c̃ equals the central charge of the relevant
CFT, it is not clear if there is any connection with E0(r). Nevertheless the groundstate
energy of the unitary models is always monotonic. Analogously it had been thought that
the groundstate energy of the nonunitary models would also be monotonic, but the results
of [1] and [3–6] provide a number of counter examples. In this letter we study a further set of
perturbed conformal field theories, demonstrating that ceff (r) behaves nonmonotonically for
the majority of nonunitary models.

We consider the minimal models WGp,q
N based on one of the simply laced Lie algebras

G = An−1,Dn, E6, E7, E8 [7]. The models are specified by two coprime integers p and q with
p > h, in terms of which the central charge and the effective central charge are

c = N

(
1 − h(h+ 1)(p − q)2

pq

)
, ceff = N

(
1 − h(h+1)

pq

)
. (3)

Here N denotes the rank of the algebra and h the dual Coxeter number. The primary fields
ΦΩ,Ω′ are labelled by a pair of weights Ω,Ω′ which satisfy

θ · Ω ≤ q , θ · Ω′ ≤ p , (4)
1
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where θ is the highest root of G [8]. All models have a primary field Φadj that has weights Ω′ =
Ωid and Ω = Ωadj corresponding to the trivial and adjoint representations of G respectively.
It has conformal dimensions

∆ = ∆̄ = 1 − (q−p)h
q

, (5)

and is relevant for all p, q such that q > p. Formally denoting the action of the unperturbed
CFT ACFT, that of the perturbed model may be written

A = ACFT + λ

∫
d2xΦadj , (6)

reproducing for A1 the well-known φ13 perturbations of the Virasoro minimal models.
Depending on the sign of the coupling constant λ, the perturbation either leads to a massive

quantum field theory, or it induces a ‘massless flow’ into a conformal field theory with smaller
effective central charge. One of the standard methods of studying the groundstate energy
of both types of model is the thermodynamic Bethe ansatz. The result is a set of coupled
nonlinear integral equations (the TBA equations), whose solution provides direct access to
ceff (r) at all values of r.

The unitary WGp,p+1
N can alternatively be described as Gk

N × G1
N/Gk+1

N coset models at
k = p−h, in terms of which the perturbing operator Φadj is usually known as Φid,id,adj.
TBA equations describing the evolution of the effective central charge between these coset
models, and therefore the unitary WG models, are already known [9–11], and they verify the
conjectured pattern of flows [8, 12]:

WGp,p+1
N + Φadj →WGp−1,p

N . (7)

By dropping the restriction q = p+ 1, we may also consider flows originating from the much
larger class of nonunitary WG minimal models, which also have a description as a coset but

at fractional level Gp/(q−p)−h
N × G1

N/G
p/(q−p)−h+1
N . Analogous to the known behaviour of the

φ13 perturbations of the Virasoro models [13–16], it is natural to suppose that the nonunitary
generalisation of (7) will be

WGp,q
N + Φadj → WG2p−q,p

N . (8)

TBA equations describing massless flows from these nonunitary models are not yet known.
Instead, motivated by [1,6], we propose a different type of nonlinear integral equation (NLIE)
whose solution provides access to the effective central charge of both unitary and nonunitary
minimal models. The equations can be found in section 2, and are tested in section 3. In
4 and 5 we extract some exact results and make a comparison with ultraviolet and infrared
perturbation theory. The connection between the massive models and the Gross-Neveu models
and other comments can be found in section 6.

2. Our starting point is a set of nonlinear integral equations that encode the groundstate
energy of the imaginary-coupled simply laced affine Toda field theories. Our interest in these
theories lies in the fact that for values of the Toda coupling constant β2 = p/(p + 1) the
theory can be consistently restricted to the massive Φadg perturbation of the unitary WGp,p+1

N

minimal models [17–22]. Moreover, the massive φ13 perturbation of the nonunitary WAp,q
1

minimal models can be obtained from the sine-Gordon model by tuning the coupling to
β2 = p/q. A similar result may be true for the nonunitary minimal models based on the other
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An−1 Ma = M sin(πa/h)/ sin(π/h) 1 ≤ a ≤ n− 1

Dn Mn−1 = Mn = M/2 sin(π/h) , Ma = M sin(πa/h)/ sin(π/h) 1 ≤ a ≤ n− 2

E6 M1 = M2 = M , M3 = 2M cos(π/4) , M4 = M5 = 2M cos(π/12)

M6 = 4M cos(π/12) cos(π/4)

E7 M1 = M , M2 = 2M cos(5π/18) , M3 = 2M cos(π/9) , M4 = 2M cos(π/18)

M5 = 2M2 cos(π/18) , M6 = 2M3 cos(2π/9) , M7 = 2M3 cos(π/18)

E8 M1 = M , M2 = 2M cos(π/5) , M3 = 2M cos(π/30) , M4 = 2M2 cos(7π/30)

M5 = 2M2 cos(2π/15) , M6 = 2M2 cos(π/30)

M7 = 4M2 cos(π/5) cos(7π/30) , M8 = 4M2 cos(π/5) cos(2π/15)

Table 1: The mass normalisation.

simply laced Lie algebras [23], and at the level of the NLIEs we do find the choice β2 = p/q
yields both unitary and nonunitary perturbed models.

The NLIEs describing the groundstate energy of the massive imaginary-coupled Toda
field theories were first obtained in [24, 25], and have appeared in a different context in [26].
The effective central charge is defined in terms of N functions which satisfy a set of coupled
equations

f (a)(θ) = − i
2mare

θ + iπ
∑

b=1

C−1
ab αb + 2i

N∑

b=1

[∫

C
dθ′ ϕab(θ − θ′)ℑm ln(1 + ef

(b)(θ′))
]
. (9)

The integration contour C runs just below the real axis while r is built from the lightest mass
M of the theory and the cylinder size R via r = MR. We have set ma = Ma/M , where
each mass Ma is associated to a node of the Dynkin diagram via the labelling of [27], and
is such that (M1,M2, . . . ,MN ) forms an eigenvector of the Cartan matrix with eigenvalue
4 sin2(π/2h). Our particular normalisation is given in table 1. The kernel functions

ϕab(θ) =

∫ ∞

−∞

dk

2π
eikθ

(
δab −

sinh(π
h (ξ+1)k))

sinh(π
hξk) cosh(π

hk)
C−1

ab (k)

)
(10)

are written in terms of the ‘deformed’ Cartan matrix Cab(k), which is equal to 2 if a = b, and
−1/ cosh(πk/h) if nodes a and b of the relevant Dynkin diagram are connected. Note that at
k = 0 it reduces to the standard Cartan matrix Cab. The exact effective central charge may
be determined using

ceff (r) = −6r

π2

N∑

a=1

ma

[∫

C
dθ sinh θℑm ln(1 + ef

(a)(θ))

]
. (11)

Due to the nonlinear nature of (9) and (11), ceff (r) is usually obtained by solving the
equations numerically. However, like the TBA equations, the NLIEs can be exactly evaluated
at the ultraviolet point [28], the result for the above equations being [25]

ceff(0) = N − 3ξ

ξ+1

N∑

a,b=1

C−1
ab αaαb . (12)

3



The effective central charge of the massive Φadj perturbation of WGp,q
N is obtained by setting

the parameter ξ and the twists α = (α1, α2, . . . , αN ) to

ξ = p/(q−p) , α = (2/p, 2/p, . . . , 2/p) . (13)

The affine Toda coupling constant β2 is related to ξ via β2 = ξ/(ξ + 1), and the above
ensures β2 = p/q. The choice of α is motivated by [29,30] for the A1 related models, and the
prescription given in [25] which yields the central charge of the WG minimal models rather
than ceff(r). As a first check we insert (13) into (12), simplify using 12

∑N
a,b=1 C

−1
ab = Nh(h+1),

and recover the expected UV effective central charge (3).
In accordance with (8) we modify the massive equations to interpolate from a model with

ξ = p/(q−p) to one with ξ′ = (2p−q)/(p−q), that is ξ′ = ξ−1. Motivated by [1,6], we associate

two functions f
(a)
R and f

(a)
L to each node of the Dynkin diagram, introduce new kernels and

twists such that the functions satisfy

f
(m)
R (θ) = − i

2mare
θ + iπ

N∑

b=1

C−1
ab α

′
b

+2i
N∑

b=1

[∫

C
dθ′ φab(θ−θ′)ℑm ln(1 + ef

(b)
R

(θ′)) +

∫

C
dθ′ χab(θ−θ′)ℑm ln(1 + e−f

(b)
L

(θ′))

]
, (14)

f
(m)
L (θ) = − i

2mare
−θ − iπ

N∑

b=1

C−1
ab α

′
b

−2i

N∑

b=1

[∫

C
dθ′ φab(θ−θ′)ℑm ln(1 + e−f

(b)
L

(θ′)) +

∫

C
dθ′ χab(θ−θ′)ℑm ln(1 + ef

(b)
R

(θ′))

]
. (15)

and replace the formula for the effective central charge with

ceff(r) = −6r

π2

N∑

a=1

ma

[∫

C
dθ eθℑm ln(1 + ef

(a)
R

(θ)) −
∫

C
dθ e−θℑm ln(1 + e−f

(a)
L

(θ))
]
. (16)

As explained in [1], we fix the kernel functions by considering the equations in the limits
in which r → 0 and r → ∞. In the far infrared, the massless equations coincide with the
ultraviolet limit of the massive equations, with kernel ϕab(θ) replaced by φab(θ). Since this
should describe a model with parameter ξ−1 we set φab(θ) to

φab(θ) =

∫ ∞

−∞

dk

2π
eikθ

(
δmt −

sinh(πξ
h k)

sinh(π
h (ξ−1)k) cosh(π

hk)
C−1

mt (k)

)
. (17)

For very small r, the massless equations should instead coincide with the ultraviolet limit of
the massive equations with parameter ξ. After some manipulations [1], the fourier transformed
massive and massless equations can be directly compared. With the tilde denoting the fourier
transformed functions, the equations will match provided χ̃ab(k) and α′

a satisfy

ϕ̃ab(k) = φ̃ab(k) +
N∑

c,d=1

χ̃ac(k)[11 − φ̃(k)]−1
cd χ̃db(k) , (18)

αa = α′
a +

N∑

c,d=1

χ̃ac(0)[11 − φ̃(0)]−1
cd χ̃db(0) . (19)
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Inserting the expressions for ϕ̃ab and φ̃ab into (18) we find

(
sinh(π

hk)

sinh(π
h (ξ−1)k) cosh(π

hk)

)2

C−1
ab (k) =

N∑

c,d=1

χ̃ac(k)Ccd(k) χ̃db(k) . (20)

After multiplying both sides by Cfa(k) and summing over the index a, we can write the
right hand side as a square: (χ̃(k)C(k))2fb. Taking the square root and inverting the fourier
transform yields

χab(θ) = ±
∫
dk

2π
eikθ sinh(π

hk)

sinh(π
h (ξ−1)k) cosh(π

hk)
C−1

ab (k) . (21)

The above only fixes χab(θ) up to a sign, but we find that choosing the negative sign results
in an effective central charge consistent with a WG minimal model, whereas the other choice
does not yield a recognisable formula for ceff(0). With the negative sign we find the new twists
should be

α′
a =

ξ

ξ−1
αa . (22)

To avoid the pole in (22) at ξ = 1, and the poles in the kernels which cross the real axis as ξ
falls below one, we only consider models with 2p > q and therefore ξ > 1. This is a sensible
restriction since a flow of the form (8) with 2p < q would have an infrared CFT labelled by
(2p − q, p), the first of which is negative.

3. The massless NLIEs have ultraviolet and infrared values of ceff(r) which exactly match
those of the conjectured flow (8) provided we continue to use the massive prescription for ξ
and α (13). We find

ceff(0) = N

(
1 − h(h+1)

pq

)
, ceff (∞) = N

(
1 − h(h+1)

(2p−q)p

)
. (23)

The massless flows naturally fall into families indexed by an integer J = q−p :

WGp,p+J
N + Φadj →WGp−J,p

N . (24)

At J = 1 there is a unique family corresponding to the flows between the unitary minimal
models. For these models we tested the massless NLIEs against the the TBA equations
[10, 11], typically finding very good agreement. As expected the effective central charge was
consistently monotonic. For J > 1 there are ϕ(J) different families, each of which interpolates
between nonunitary models (here ϕ denotes the Euler-ϕ function). Solving the NLIEs for the
nonunitary models, we found that ceff(r) increases away from its UV value, undergoes a
number of oscillations and then settles down to the predicted IR value. The nonmonotonic
behaviour of two families of flows is illustrated in Figures 1 and 2.

4. To strengthen the validity of the conjectured equations we extract a number of further
predictions, which are then compared with results from ultraviolet and infrared conformal
perturbation theory.

The UV groundstate energy of a CFT perturbed by a primary field Φ of conformal dimen-
sion ∆UV is predicted to behave as [31,32]

E0(R) = RB(λ) − πcpert(r)

6R
, cpert(r) = ceff(0) +

∞∑

j=1

Cj (λRy)j , (25)

5
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Figure 1: A family based on WA3 with J=6. Figure 2: A family based on WD4 with J=2.

where y = 2(1 − ∆UV) and the coefficients Cj are proportional to the connected correlation
functions of the perturbing field on the plane. The action (6) implies λ and M must satisfy

λ = κMy (26)

for a dimensionless constant κ, further implying that cpert expands in powers of ry. On the
other hand, the 2(ξ+1)iπ/h periodicity ∗ of the nonlinear integral equations suggests that
ceff (r) expands as a series in r2h/(1+ξ), which will agree with cpert(r) provided 2(1 − ∆UV) =
2h/(1+ξ). Substituting p/(q−p) for ξ, we find the NLIEs predict a value of ∆UV which exactly
matches the conformal dimension of Φadj (5).

The expansion

ceff(r) = ceff (0) +B(r) +

∞∑

j=1

cj (ry)j , (27)

differs from cpert(r) by the bulk term B(r), but it may easily be extracted from the NLIEs.
For this we need the leading asymptotics of the kernels as θ → −∞. The denominator of the
inverse deformed Cartan matrix has either a term of the form sinh(πk) (An) or cosh(πk/2)
(Dn, E6, E7, E8), both possibilities leading to a simple pole in the kernels φab(θ) and χab(θ)
at k = −i. Moreover, the kernels (17, 21) have a pole at k = −ih/(ξ−1), which contributes a
term proportional to ehθ/(ξ−1). Therefore we have

φab(θ) ∼ φ
(1)
ab e

θ + p
(1)
ab e

hθ/(ξ−1) + . . . , θ → −∞ , (28)

χab(θ) ∼ χ
(1)
ab e

θ + c
(1)
ab e

hθ/(ξ−1) + . . . , θ → −∞ . (29)

∗While the periodicity is easily extracted from the associated Bethe ansatz equations [25,26], it is less trivial
to see directly from the NLIEs.
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The expansion coefficients can be calculated by taking the appropriate residues, but we will

only need φ
(1)
1a and χ

(1)
1a , both of which can be written as

φ
(1)
1a =

sin(π
hξ) sin(π

h )

π sin(π
h (ξ−1)) ν(G)

ma , χ
(1)
1a =

sin2(π
h )

π sin(π
h (ξ−1)) ν(G)

ma , (30)

where
ν(An−1) = 1 , ν(Dn) = 1/2 , ν(E6) =

√
2/3 sin(π/12)

ν(E7) =
2√
3

sin(π/18) sin(2π/9) , ν(E8) =
sin(π/30)

2
√

3 sin(π/5)
. (31)

A small generalisation of the argument described in [1] yields the massive and massless bulk
terms:

Bmassive(r) = − 3 sin(π
hξ) ν(G)

2π sin(π
h (1 + ξ)) sin(π

h )
r2 , Bmassless(r) =

3 ν(G)

2π sin(π
h (1 + ξ)))

r2 . (32)

The bulk term corresponding to the massive perturbation of the unitary minimal models
has been calculated by Fateev [33] in the context of the associated coset. By analytically
continuing the coset parameter k to rational values (set k = ξ−h), we find Fateev’s massive
bulk term exactly coincides with ours for both unitary and nonunitary models.

The massless bulk terms are new, but we can make at least one concrete check before
turning to numerics: the models with p = h+1 and q = h+2 correspond to the coset G1

N ×
G1

N/G2
N , for which the massive and massless perturbations are known to coincide [9, 34], as

fortunately do our bulk terms at ξ = h+1.
The bulk terms have a simple pole whenever ξ+1 = mh for some integer m, which should

cancel against one of the terms in the infinite sum so that the expansion (27) continues to be
regular [35–37]. In all cases the result, found by evaluating

lim
ξ=mh−1

B(r)

r2
[r2 − r

2m h
(ξ+1) ] , (33)

is a logarithmic term:

Bmassive(r)|ξ=mh−1 =
3 ν(G)

π2m
r2 ln r , Bmassless(r)|ξ=mh−1 =

3(−1)m ν(G)

π2m
r2 ln r . (34)

Now we are in position to compare (25) with (27), apart from one remaining difficulty. The
perturbative coefficients Cj are usually hard to calculate, and instead it is easier to estimate,
from the massless and massive NLIEs respectively, the expansion coefficients cj and c̃j . The
perturbative coefficients Cj do not depend on λ, and if we assume the mass and crossover
scales M are equal we should find

cj = (−1)j c̃j . (35)

We include a small sample of our numerics in table 2. Such good agreement provides an
excellent check on both the massive and massless NLIEs, the associated bulk terms and the
above assumption on M .

5. Close to the infrared fixed point the model is described by the action of the infrared CFT
plus an infinite number of contributions from irrelevant operators, resulting in a theory which

7



WA7,10
2 +Φadj

j c̃j cj
0 1.657142856 1.657142856
1 -1.49526585 1.49526587
2 0.01009599 0.01009595
3 -0.0015271 0.0015278
4 0.0000603 0.0000602

WD15,17
4 +Φadj

j c̃j cj
0 3.34117647 3.34117646
1 -0.1962515 0.1962514
2 0.067572 0.067573
3 0.003602 -0.003603
4 0.00005 0.000008

Table 2: Comparison of the massive and massless UV coefficients, found via the NLIEs.

is unrenormalisable. However by considering the contribution of a finite number of fields it is
still possible to make a comparison with results from either NLIEs such as ours or from TBA
equations [38,39]. We consider

A = AIR + g

∫
ψ d2x+ t

∫
T T̄ d2x+ . . . , (36)

where the (possibly missing) irrelevant field ψ of dimension ∆IR and T T̄ of dimension 2 belong
to the infrared CFT. The couplings are related to the crossover scale M as

g = κgM
2−2∆IR , t = κtM

−2 . (37)

The action implies ceff(r) has IR expansion

ceff(r) ∼ ceff(∞) +
∞∑

j=1

gj(κgr)
(2−2∆IR)j +

∞∑

j=1

tj(κtr)
−2j + . . . . (38)

From the NLIE point of view [1] corrections to ceff(r) come from the θ → −∞ asymptotic of
χab(θ) given by (29), the ehθ/(ξ−1) term generating a a series of the form r−2h/(ξ−1). Comparing
with the CPT expansion (38) leads to the prediction ∆IR = 1 + h/(ξ−1), which can be
identified with the conformal dimension of the primary field Φadj ′ with weights Ω = Ωid, Ω′ =
Ωadj.

We can also extract a prediction for κt from the NLIEs. We start with the first two
coefficients of the series generated by T T̄ [39]:

t1 = −π
3ceff(∞)2

6
, t2 =

π6ceff(∞)3

18
, (39)

and compare them with the coefficients of r−2 and r−4 found from the NLIEs. Adapting the
TBA argument [37], we use the eθ term in the expansion of χab(θ) to find

ceff(r) ∼ ceff (∞) − 2π2

3
c2eff (∞)χ

(1)
11 r

−2 + 2c3eff (∞)

(
2π2

3
χ

(1)
11

)2

r−4 + . . . . (40)

The explicit form

χ
(1)
11 r

−2 =
sin2(π

h )

π sin(π
h (ξ−1))ν(G)

r−2 (41)

8



indicates a pole whenever ξ−1 = m′h for some integer m′. Evaluating as for the UV case we
find (41) becomes

χ
(1)
11 r

−2|ξ=m′h+1 = −2(−1)m
′

sin2(π
h )

π2m′ν(G)
r−2 ln r . (42)

The infrared expansion coefficients have been obtained numerically for the models WAp,p+1
1 +

φ13, p = 5, . . . , 10 in [37, 40], and they show good agreement with our predictions, while for
WAp,p+1

1 and WD2n+2,2n+3
n+1 we find agreement with the theoretical results of [37]. Finally, the

effective central charge of the φ12, φ21 and φ15 perturbations of the Virasoro minimal models
is exactly half that of certain WA2 models:

WAp,q
1 + φ12 ↔ WAp,2q

2 + Φadj

WAp,q
1 + φ21 ↔ WAq,2p

2 + Φadj (43)

WAp,q
1 + φ15 ↔ WA2p,q

2 + Φadj .

Only the φ21 and φ15 perturbed models have a massless flow, and the IR expansion coeffi-
cients found in [1] match with those predicted above for the associated WA2 model. The
correspondence actually works for any value of ξ since the φ12/φ21/φ15 NLIE is based on the
tadpole diagram T1, which is related by folding to A2.

Finally, comparing (40, 41) to (38, 39) yields the promised prediction for κt:

κt =
4 sin2(π

h )

π2 sin(π
h (ξ−1)) ν(G)

. (44)

6. We have shown that the function ceff(r) for nonunitary models interpolates from a CFT
in the ultraviolet to an infrared CFT that has smaller effective central charge, but in a
nonmonotonic way. It is likely that there is a function, as yet unknown, which monotically
interpolates between the nonunitary CFTs and satisfies a ‘nonunitary c-theorem’.

We’d like to make two further comments concerning the massive nonlinear integral equa-
tions. First, level-rank (or KNS) duality [23,41] relates two nonunitary minimal models

WAn,p
n−1 = WAp−n,p

p−n−1 , n, p coprime , (45)

which both have a field Φadj with conformal dimension ∆ = (pn−p−n2)/p, resulting in entirely
equivalent perturbed theories. It is not at all obvious that the NLIEs based on An−1 and those
based on Ap−n−1 at the appropriate values of ξ will produce the same value of ceff (r), but
provided the normalisation of the lightest mass is such that the coupling λ is the same for
both models, our numerical studies confirm this. By equating the massive bulk terms we find

sin(π/(p − n)) M[n−1] = sin(π/n) M[p−n−1] ; (46)

the same result can also be deduced from the relation λ = κMy given for the unitary minimal
models in [33]. We can rule out a massless flow from WAn,p

n−1 via Φadj by considering the

conjectured IR model WA2n−p,n
n−1 , a sensible CFT if 2n−p > h. Since h = n this would require

p < n, contradicting the assumption n < p.
As mentioned above, the massive φ15 and φ12 perturbations of the the Virasoro models

WA2,p
1 (for odd p greater than 4) are integrable, and the groundstate energy can be found
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using a single NLIE based on A
(2)
2 [42], with appropriate tuning of the free parameters. Thus

by level-rank duality the models WAp−2,p
p−3 have up to two extra massive perturbations in

addition to Φadj whose groundstate energy can be described in terms of a nonlinear integral
equation.

Second, the massive NLIEs encode the finite-size effects of a further set of models obtained
by sending ξ = k−h to infinity. In this limit the perturbed coset Gk

N ×G1
N/Gk+1

N +Φadj becomes
the G Gross Neveu model [22, 43], with groundstate energy described in terms of an infinite
number (k.N) of coupled TBA equations. The NLIEs offer a clear advantage over the TBA
as the N equations can still be solved numerically at any value of r. The kernels

ϕab(θ) =

∫ ∞

−∞

dk

2π
eikθ

(
δab −

eπ|k|/h

cosh(π
hk)

C−1
ab (k)

)
(47)

form part of the prefactors of the associated S-matrices [44]. The perturbation is (almost)
marginal and the ultraviolet expansion of the effective central charge no longer has a simple
power series form (27). By studying the NLIEs (numerically and analytically) we hope to
uncover the expected logarithmic corrections to ceff(r). If this approach is successful there
are a number of two-dimensional sigma models which have an interpretation as a perturbed
conformal field theory [44]. Since in all cases the groundstate energy is described by an infinite
number of TBA equations, it would also be interesting to extend the current set of NLIEs to
include such models.

Finally we remark that even though the groundstate energy of the perturbed nonunitary

models is apparently real, recent results based on the A
(2)
2 models indicate the massive finite

size spectrum may in general be complex [45]. It remains an open question to study the
excited states of the massless models, perhaps via the massless NLIEs, to see if a similar
result holds.
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