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4Department of Mathematis, King's College London, London, United Kingdom1st February 2008AbstratWe onsider SUSY sine-Gordon theory in the framework of perturbed onformal�eld theory. Using an argument from Zamolodhikov, we obtain the vauum strutureand the kink adjaeny diagram of the theory, whih is ross-heked against the exatS matrix predition, �rst-order perturbed onformal �eld theory (PCFT), the NLIEmethod and trunated onformal spae approah. We provide evidene for onsistenybetween the usual Lagrangian desription and PCFT on the one hand, and betweenPCFT, NLIE and a massgap formula onjetured by Baseilha and Fateev, on theother. In addition, we extend the NLIE desription to all the vaua of the theory.1 IntrodutionSupersymmetri (SUSY) sine-Gordon theory (SSG) is of interest for several reasons. First,it is a two-dimensional integrable �eld theory and as suh, there is a wealth of analyti andnon-perturbative information available about its behaviour. Seond, it desribes supersym-metri solitons, whih have been investigated reently in the ontext of supersymmetrigauge theories in four (and other) dimensions. It an be expeted that SSG provides auseful laboratory for the analysis of solitons in supersymmetri theories, and their non-perturbative behaviour in general. Third, there has been a lot of ativity reently espeiallyonerning the situation when SSG has a nontrivial boundary ondition imposed on a time-like boundary. 1
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In spite of all the progress, muh less is known about SSG than its non-supersymmetriounterpart, i.e. ordinary sine-Gordon theory. Although its S matrix has been onjeturedseveral years ago [1℄, there is muh less evidene for its orretness than in the non-SUSYase. In partiular, the issue of quantum orretions to the soliton mass has been settledonly fairly reently in [2℄, where it was proven that it satis�es a BPS-like property, eventhough the theory only has N = 1 supersymmetry.There is also a ertain ontroversy in the literature onerning the vauum and kinkstruture of the triritial Ising model [3℄, the simplest nontrivial SUSY integrable �eldtheory, whih has a bearing on the S matrix of the SSG as well, sine the S matrix oftriritial Ising model provides the desription of the supersymmetri struture.In this paper we set out to larify the vauum and kink struture of the model (with-out boundaries), using information from several soures. First, in Setion 3 we apply anargument going bak to Zamolodhikov [4℄ whih gives a kink struture ompatible withthe S matrix onjetured in [1℄. In Setion 4 SSG is onsidered in the perturbed onformal�eld theory framework, whih is not entirely trivial, as a purely bosoni potential term hasto be omitted from the Lagrangian (it is expeted to be generated by radiative orretionsin this desription). To show that this desription is orret we onstrut a spin-3 on-served harge and verify it against the lassial limit. In addition, we analyze �rst-orderperturbative orretions of the lowest-lying energy levels, and in Setion 5 ompare themto the results obtained from a onjetured NLIE, �rst derived in [5℄, whih is extendedto provide a �nite volume desription of all the vauum levels. Finally, in Setion 6 weuse the trunated onformal spae method to investigate the �nite volume spetrum. Ouronlusions are presented in Setion 7.2 SSG theory2.1 Ation and disrete symmetriesThe supersymmetri sine-Gordon (SSG) theory is de�ned by the ation
ASSG =

∫

dtdx

(

1

2
∂µΦ∂

µΦ + iΨ̄γµ∂µΨ +mΨ̄Ψ cos
β

2
Φ +

m2

β2
cosβΦ

) (2.1)where Φ is a real salar, Ψ is a Majorana fermion �eld, m is a mass parameter and β is theoupling onstant. The theory is invariant under an N = 1 supersymmetry algebra andhas in�nitely many ommuting loal onserved harges [6℄. These harges survive at thequantum level and render the theory integrable, whih makes it possible to desribe theexat spetrum and the S matrix. We use the Weyl representation for the spinor �eld
γ0 =

(

0 i
−i 0

)

, γ1 =

(

0 i
i 0

)

, γ3 = γ0γ1 =

(

−1 0
0 1

)

Ψ =

(

ψ−
ψ+

) 2



where ψ± are real Weyl omponents with de�nite hirality.The supersymmetri theory has some disrete symmetries that play an important rolein what follows. The �eld theory interation is periodi
Φ → Φ + n

4π

β
, n ∈ Z (2.2)and even in the boson �eld

Φ → −Φ . (2.3)These symmetries are also present in the non-supersymmetri version of the sine-Gordonmodel. It is also interesting to observe that the Lagrangian is invariant under a half-periodshift
Φ → Φ +

2π

β
(2.4)if at the same time one hanges the relative sign of the fermion omponents, say

ψ+ → −ψ+ , ψ− → ψ− (2.5)or
Ψ → −γ3Ψ .2.2 Spetrum and sattering amplitudesThe spetrum onsists of the soliton/antisoliton multiplet, realizing supersymmetry in anonloal way, and breathers that are bound states of a soliton with an antisoliton.The building bloks of supersymmetri fatorized sattering theory were �rst desribedin [7℄, using an Ansatz in whih the full sattering amplitude is a diret produt of a partarrying the SUSY strutures and a part desribing all the rest of the dynamis. The fullSSG S matrix was onstruted in [1℄.The supersymmetri solitons are desribed by RSOS kinks Kǫ

ab (θ) of mass M and ra-pidity θ, where a, b take the values 0, 1
2
and 1 with |a−b| = 1/2, and desribe the supersym-metri struture, while ǫ = ± orresponds to topologial harge ±1 (soliton/antisoliton).Multi-partile asymptoti states are built as follows

∣

∣

∣
Kǫ1
a0a1

(θ1)K
ǫ2
a1a2

(θ2) . . .K
ǫN−1

aN−2aN−1
(θN−1)K

ǫN
aN−1aN

(θN)
〉 (2.6)where θ1 > θ2 > . . . > θN for an in state and θ1 < θ2 < . . . < θN for an out state. Thetwo-partile sattering proess

Kǫ1
ab (θ1) +Kǫ2

bc (θ2) → K
ǫ′
2

ad (θ2) +K
ǫ′
1

dc (θ1)has an amplitude of the form
SSUSY( a d

b c

∣

∣

∣

∣

θ1 − θ2

)

× SSG (θ1 − θ2 , λ)ǫ
′

1
ǫ′
2

ǫ1ǫ2
(2.7)3



i.e. the tensor struture of the sattering amplitude fatorizes into a part desribing theSUSY struture (whih we all the SUSY fator) and another part orresponding to thetopologial harge (the bosoni fator).The bosoni fator oinides with the usual sine-Gordon S matrix, but the relationbetween the parameter λ and β is di�erent from the sine-Gordon ase
λ =

8π

β2
− 1

2
.The SUSY fator is idential to the S matrix of the triritial Ising model perturbed bythe primary �eld of dimension 6

5
[4℄:

SSUSY( 0 1
2

1
2

0

∣

∣

∣

∣

θ

)

= SSUSY( 1 1
2

1
2

1

∣

∣

∣

∣

θ

)

= 2(iπ−θ)/2πi cos

(

θ

4i
− π

4

)

K(θ)

SSUSY( 1
2

0
0 1

2

∣

∣

∣

∣

θ

)

= SSUSY( 1
2

1
1 1

2

∣

∣

∣

∣

θ

)

= 2θ/2πi cos

(

θ

4i

)

K(θ)

SSUSY( 0 1
2

1
2

1

∣

∣

∣

∣

θ

)

= SSUSY( 1 1
2

1
2

0

∣

∣

∣

∣

θ

)

= 2(iπ−θ)/2πi cos

(

θ

4i
+
π

4

)

K(θ)

SSUSY( 1
2

1
0 1

2

∣

∣

∣

∣

θ

)

= SSUSY( 1
2

0
1 1

2

∣

∣

∣

∣

θ

)

= 2θ/2πi cos

(

θ

4i
− π

2

)

K(θ)

K(θ) =
1√
π

∞
∏

k=1

Γ
(

k − 1
2

+ θ
2πi

)

Γ
(

k − θ
2πi

)

Γ
(

k + 1
2
− θ

2πi

)

Γ
(

k + θ
2πi

) . (2.8)The supersymmetry fator has no poles in the physial strip and so the full supersymmetriamplitudes of the kinks have the same poles as in the ordinary sine-Gordon model. Theorresponding bound states are supersymmetri breathers Bn of mass
mn = 2M sin

πn

2λ
, n = 1, . . . , [λ] (2.9)whih transform in the ordinary boson-fermion doublet representation of the SUSY algebra.The bosoni omponent of Bn has a nontrivial (−1)n parity under bosoni �eld re�etion

Φ → −Φ.3 Kink and vauum struture of SUSY modelsHere we use an argument by Zamolodhikov [4℄ to larify the vauum and kink strutureof SUSY sine-Gordon theory. In its original form the argument is for the triritial Isingmodel; we brie�y reall it here.
4
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σFigure 3.1: The salar potential in the Landau-Ginzburg desription of the triritial Isingmodel

0 1/2 1
PSfrag replaementsFigure 3.2: The adjaeny diagram of kinks in the triritial Ising model3.1 Triritial Ising modelIn the bosoni Landau-Ginzburg formulation, the basi �eld is the (bosoni) spin �eld σ,and the ation is of the form

∫ (

1

2
(∂tσ)2 − 1

2
(∂xσ)2 − V (σ)

)

dxdt ,where the potential has the form
V (σ) = λ

(

σ2 − σ2
0

)2
σ2 .As an be seen from the form of the potential (Fig. 3.1), there are three vaua in themodel, and the kinks onnet them aording to the adjaeny diagram in Fig. 3.2, witha sattering amplitude given in (2.8).However, in the supersymmetri Landau-Ginzburg formalism the ation (in omponentform) looks like

∫ (

1

2
(∂tΦ)2 − 1

2
(∂xΦ)2 + ψ+∂−ψ+ + ψ−∂+ψ− +W ′(Φ)ψ+ψ− +W (Φ)2

)

dxdt ,5



V

PSfrag replaements
ΦFigure 3.3: The salar potential in the SUSY LG desription of the triritial Ising modelwhere

W (Φ) = µ
(

Φ2 − λ2
)

.The salar potential is of the form (Fig
 3.3)
V (Φ) = µ2

(

Φ2 − λ2
)2and has two minima

Φ = ±λ .How do we reonile this piture with the bosoni one, in whih there are three vaua?Zamolodhikov's argument goes as follows: at the minimum Φ = λ, the fermion mass ispositive, there is only one vauum, the Majorana fermion desribes the high temperaturephase of the Ising model and the vauum expetation value of the spin �eld vanishes:
〈σ〉 = 0 .However, when Φ = −λ, we are in the low temperature phase of the Ising model. Thereforethis vauum is twofold degenerate, with

〈σ〉 = ±σ0 .The kinks go from the 〈σ〉 = 0 vauum to the 〈σ〉 = ±σ0 ones. Therefore there are twopairs of kinks, and we get the same adjaeny diagram (Fig. 3.2), with the 〈σ〉 = 0 (RSOSlabel 1
2
) vauum in the middle, while the other two 〈σ〉 = ±σ0 (RSOS labels 0, 1) sit atthe edges.It must be mentioned that Fendley has onjetured another bootstrap S matrix for thetriritial Ising model in [3℄, based on an assumption that the kink struture in the SUSY6



Landau-Ginzburg formulation was di�erent from that of the bosoni formulation. Thebosoni and the super Landau-Ginzburg formulations are two di�erent loal desriptions ofthe model; their relation is very similar to the sine-Gordon/massive Thirring onnetion [8℄.However, in the ase of the sine-Gordon/massive Thirring relation the kink S matrix isindependent of the loal desription taken, and Zamolodhikov's argument indiates thatthis is the ase for the triritial Ising model as well. As a result, in both the bosoni and thefermioni desription the kink sattering is desribed by the same RSOS S matrix (2.8),ontrary to Fendley's assumption.1 The di�erene between the loal algebras manifestsitself in the di�erent boundary onditions presribed for the loal �elds, just as in thesine-Gordon/massive Thirring ase (f. also [9℄ for the situation in �nite volume).3.2 N=1 SUSY sine-Gordon theoryNow let us apply these onsiderations to N = 1 SUSY sine-Gordon theory. Here thebosoni potential is
− cos βΦwhile the mass term of the fermion is of the form

ψ−ψ+ cos
βΦ

2
.As a result, every even vauum Φ = 2n2π

β
, n ∈ Z is nondegenerate, while every oddvauum Φ = (2n + 1)2π

β
, n ∈ Z is doubly degenerate, with nonzero expetation value ofthe spin �eld assoiated to the Majorana fermion. We have a vauum struture analogousto that of triritial Ising model, whih periodially repeats itself (similarly to the periodivauum struture of the sine-Gordon model). This results in the adjaeny diagram shownin Fig. 3.4, whih is exatly the one that desribes the tensor produt S matrix of kinks

K±
ab , a = 0, 1

2
, 1.The disrete symmetries of the Lagrangian are manifest on the adjaeny diagram,whih is periodi in Φ with period 4π/β. The transformation (2.4, 2.5) is a translationwith 2π/β, together with the analogue of Kramers-Wannier duality ating on the Majoranafermion, and exhanges the broken phase of the fermion (two vaua) and the symmetriphase (a single vauum).Due to the periodiity of the vauum struture and the �eld theoreti potential, in�nite volume one an reate twisted setors depending on a ϑ angle aording to [10℄, orone an de�ne folded versions of the model by identifying vaua after a ertain number ofperiods [11℄.1TBA results also show that Fendley's S matrix yields an irrational value for the ultraviolet entralharge, thus it annot orrespond to a perturbation of triritial Ising model (M. Morioni, private om-muniation).
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Figure 3.4: A period of the adjaeny diagram of kinks in supersymmetri sine-Gordontheory3.3 The IR desriptionNow we give a qualitative desription of the onsequenes of imposing periodi boundaryonditions in the SSG theory in the IR domain, i.e in a large but �nite volume L. It isbased on the known features of the spetrum and the exat S matrix.The �rst onsequene of imposing periodi boundary onditions is that the single kinkstates are exluded. Some of the two kink states are allowed; namely those KabKbc wherethe a and c vaua are idential. As two kinks an fuse into breathers one may have singlebreather states in the setors where the topologial harge vanishes. It is easy to see, usingthe a → 1 − a symmetry of the SUSY fator (2.8), that the allowed two kink states aredivided into two sets,
(K0 1

2

K 1

2
0, K1 1

2

K 1

2
1) (K 1

2
0K0 1

2

, K 1

2
1K1 1

2

)losed under sattering. The �rst set ontains two vaua (the ones indexed by 0 and 1),while the seond one has a single vauum (the one indexed by 1
2
). It is a natural expetationthat in a �nite volume these three vaua are no longer degenerate but their energies areexponentially lose to eah other. Above all three vaua we also expet the repetition ofthe spetrum of (single) breather states albeit with their energies split. One of the aims ofthis paper is to give a qualitative veri�ation of this piture.The two sets of periodi two kink states have rather di�erent supersymmetry properties.To establish this we use the kink-kink-breather fusion oe�ients

|Kab(θ + iξ/2)Kbc(θ − iξ/2)〉 = fφabc|φ(θ)〉 + fψabc|ψ(θ)〉,(where |φ〉 and |ψ〉 stand for the bosoni and fermioni breathers respetively) expliitlygiven in [12℄. These expliit expressions reveal that the two kink states in the �rst setan fuse into bosoni breathers only, while the ones in the seond set an fuse into both8



bosoni and fermioni breathers. Furthermore, using the ation of supersymmetry harges(also given in [12℄), one an show that there is an unbroken N = 1 supersymmetry in thespae of states of the seond set.4 SSG as a perturbed onformal �eld theory4.1 The perturbed onformal �eld theory pitureWe onsider SUSY sine-Gordon theory as a perturbation of the c = 3/2 onformal �eldtheory of a free boson and a free fermion. The Hilbert spae of the theory is taken to bea tensor produt of the onformal free boson and free fermion, and we onsider only loalsetors, i.e. retain only states whih have integer onformal spin. At generi values of theompati�ation radius this permits only two boundary onditions on the fermion �eld
Ψ(x+ L) = ±Ψ(x)whih means either Neveu-Shwarz or Ramond boundary onditions on both omponentsof the fermion �elds (di�erent boundary onditions on the omponents would result insetors of noninteger spin).We take a onformal boson �eld φ ompati�ed on a irle of radius r, normalized withthe ation

1

8π

∫

d2z∂φ∂̄φwhih means that the anonial boson �eld of (2.1) an be written as Φ = 1√
4π
φ. Theonformal boson has a Û(1) × Û(1) symmetry generated by the modes of the urrents

J(z) = i∂φ =
∑

n

anz
−n−1 and J̄(z̄) = i∂̄φ =

∑

n

ānz̄
−n−1 .The highest weight vetors |n,m〉 of the urrent algebra are reated by the vertex operators

V(n,m)(z, z̄) =: ei(
n
r
+ mr

2
)ϕ(z)+i(n

r
−mr

2
)ϕ̄(z̄) : .In order to have a maximal loal operator algebra we take both n and m to be integers.The Hamiltonian, on the ylinder of irumferene L, in the setor |n,m〉 has the followingform

Hboson =
2π

L

(

(n

r

)2

+
(mr

2

)2

+
∑

k>0

(a−kak + ā−kāk) −
1

12

)

,where the bosoni modes satisfy
[ak, al] = kδk+l ; [ak, āl] = 0 ; [āk, āl] = kδk+l .9



In the Neveu-Shwarz setor, the fermioni part of the Hilbert spae an be generatedby the negative modes of the Eulidean fermioni �elds (orresponding to the Minkowski�elds ψ±)
ψ(z) =

∑

s+1/2∈Z
bsz

−s−1/2 ; ψ̄(z̄) =
∑

s+1/2∈Z
b̄sz̄

−s−1/2ating on the Neveu-Shwarz vauum |NS〉 and loality requires the total fermion numberto be even. The modes satisfy
{bs, bt} = δs+t ; {bs, b̄t} = 0 ; {b̄s, b̄t} = δs+t .The fermioni Hamiltonian takes the form (using onformal normalization onventions)
HNS =

1

2π

∫

d2z ψ∂̄ψ =
2π

L





∞
∑

s= 1

2

b−sbs −
1

24



 .In the Ramond setor, the fermioni �eld has integer mode expansion and both the leftand the right fermion number must be even. We denote the highest weight state by |R〉.The Hamiltonian in the Ramond setor is
HR =

2π

L

( ∞
∑

s=1

b−sbs +
1

48

)

.Writing cos β
2
Φ = 1

2
(V(1,0)+V(−1,0)) gives the relation 1

r
= β

4
√
π
between the ompati�ationradius r and the oupling β, and this leads to

p ≡ 1

λ
=

2

r2 − 1
.4.2 Conserved harges in the PCFT framework and the perturb-ing potentialA onvenient way to desribe the SUSY sine-Gordon model is to onsider it as an ap-propriate perturbation of the onformal �eld theory in its UV limit [13℄ by the operator

U1 = ψ̄ψ cos βΦ
2
. In [14℄ the SSG is desribed as a perturbation of the super Liouville theoryand it is shown that the purely bosoni piee of the potential U2 = m2

β2 cosβΦ vanishes inthe renormalized theory.The problem is that assuming the kineti terms of the boson and fermion �elds in theLagrangian provide the desription of the c = 3
2
theory, the two parts of the interation

U1 = ψ̄ψ cos βΦ
2

and U2 have di�erent onformal dimensions: ∆1 = ∆̄1 = 1
2

+ β2

32π
and

∆2 = ∆̄2 = β2

8π
. This, and the fat that they have di�erent supersymmetry propertieswould ompliate the PCFT desription. Nevertheless � using the onserved quantities �we argue below that for the SSG it is enough to onsider only U1 as a perturbation.10



This perturbation obviously preserves a (1, 1) supersymmetry generated by the super-urrentsG and Ḡ, sine in the super�eld formalismU1 an be written asG−1/2Ḡ−1/2 cos(β
2
Φ̂)with cos(β

2
Φ̂) being a Neveu-Shwarz superonformal primary �eld [15℄. Thus the real ques-tion is whether U1 provides an integrable perturbation of the c = 3

2
theory. For this it isenough if U1 preserves a single higher spin onserved quantity.One an look for a onserved spin 3 quantity generated by the density T4, where

T4 = (∂2
zΦ)2 + A(∂zΦ)4 +B(∂zΦ)2∂zψψ + C∂2

zψ∂zψ ,with onstants A, B and C. In the �rst order of the perturbation T4 is onserved if in theoperator produt T4(z)U1(w, w̄) the residue of the �rst order pole is a total derivative [13℄.Having omputed the residue one an eliminate the terms ontaining the derivatives of the
ψ �eld by using total derivatives; the remaining (non total derivative) terms then have theform

(Ãψ∂3
zΦ + B̃ψ∂2

zΦ∂zΦ + C̃ψ(∂zΦ)3) cos(
β

2
Φ) .Demanding the vanishing of Ã, B̃ and C̃ yields a linear inhomogeneous system of equationsfor A, B, C, that has a solution, whih shows that U1 generates an integrable perturbation.Furthermore the β → 0 limits of A, B, C reprodue the lassial expressions obtained in [16℄using both U1 and U2 as perturbations together with the lassial equations of motion. Thisprovides the justi�ation for only using U1 as the perturbation in the PCFT framework.Therefore in terms of the anonially normalized �elds the Lagrangian of the SSG iswritten in the perturbed CFT framework as

L =
1

2
∂µΦ∂

µΦ + iΨ̄γµ∂µΨ + µΨ̄Ψ cos
β

2
Φ .The oe�ient of the perturbing potential is denoted here by µ to emphasize that its (βdependent) dimension is di�erent from that of the lassial mass m. Identifying the bulkSUSY sine-Gordon model with the n = 2 ase of [17℄ gives the following relation betweenthe kink mass M and the µ parameter

µ

8
γ

(

1

2
− β2

32π

)

= M1− β2

16π

(

π

4

β2

16π − β2

)1− β2

16π

, γ(x) =
Γ(x)

Γ(1 − x)
. (4.1)This relation - whih onnets an IR and a UV parameters and is alled the massgaprelation - plays an important role in writing the TCSA program devised to analyze the�nite volume spetrum of SSG. Note that for β → 0, the massgap relation orretlyreprodues the lassial kink (soliton) mass M = 8µ

β2 .4.3 The PCFT analysis of energy levels in the UVThe �rst PCFT orretion to the UV energy levels an be expressed in terms of ertainintegrals over the omplex plane of various 2p and 4p funtions in the underlying onformal11



�eld theory [18℄. Indeed writing the (bare) Eulidean ation of the perturbed CFT on theylinder as
Ag = ACFT + g

∫

d2ξ χ(ξ),where g has mass dimension y = 2 − 2∆χ and χ(z) is normalized by 〈χ(z, z̄)χ(0, 0)〉 =
|z|−4∆χ , for small dimensionless volumes l = LM , the �rst orretion to the energy of astate |a〉, with L0|a〉 = ∆a|a〉 = L̄0|a〉, an be written as

6l

π
Ea(l) = −(c− 24∆a) − ca2κ

2l2y + o(l4y).Here c is the entral harge of the UV CFT, it is assumed that the symmetry properties ofthe �elds forbid any �rst order (o(ly)) orretions and to derive this formula the massgaprelation is written in the form g = κMy. We remark that the bulk energy onstant inSSG vanishes on aount of the supersymmetry. The oe�ient of the leading orretionat l → 0 an be written expliitly as
ca2 = 6(2π)1−2y

∫plane d2z

|z|y 〈a|χ(1, 1)χ(z, z̄)|a〉|onn . (4.2)Using the onformal normalized free fermions ψ, ψ̄ and the properly normalized V(±1,0)vertex operators to desribe the perturbation in the SUSY sine-Gordon model one obtains
χ(z, z̄) = ψ̄(z̄)ψ(z)

1√
2
(V(1,0)(z, z̄) + V(−1,0)(z, z̄))and

g =
µ

2π
√

2
. (4.3)This perturbation is relevant if the ompati�ation radius r > 1, and then |0〉, |1±〉, |2±〉and |3±〉 onstitute most of the lowest lying states in the various NS setors. (Here |N±〉,

N = 1, 2, 3 denote the states |N±〉 = 1√
2
(V(N,0)(0, 0)|0〉 ± V(−N,0)(0, 0)|0〉) with |0〉 beingthe tensor produt of the bosoni and NS vaua |0〉 = |0̃〉 ⊗ |NS〉). For these states it isstraightforward to determine the onformal orrelation funtions needed in eq.(4.2), andthe integrals an be evaluated using the general expression

∫

d2z
|z|ρ−2

|1 − z|2ν = πγ
(

ν − ρ

2

)

γ
(ρ

2

)

γ(1 − ν) . (4.4)(The integral is onvergent at z → 0 if ρ > 0, at z → 1 if ν < 1 and at z → ∞ if
2ν − ρ > 0; we keep the onditions 2ν > ρ > 0 but ontinue in ν above ν = 1 using ther.h.s. if neessary). The oe�ients of the leading PCFT orretions for these seven statesare summarized in Table 4.1, where the oe�ient α is

α =
3

2
(8)

2

r2
1

γ2
(

1
2
− 1

2r2

)

(

1

r2 − 1

)2− 2

r2

.12



State ∆a ca2κ
2

|0〉 0 αγ2
(

1
2

+ 1
2r2

)

γ
(

− 1
r2

)

|1±〉 1
2r2

αγ(1
2
− 1

2r2
)
[

γ(− 1
r2

)γ(1
2

+ 3
2r2

) ± 1
2
γ(1

2
− 1

2r2
)γ( 1

r2
)
]

|2±〉 2
r2

αγ(1
2
− 3

2r2
)γ(− 1

r2
)γ(1

2
+ 5

2r2
)

|3±〉 9
2r2

αγ(1
2
− 5

2r2
)γ(− 1

r2
)γ(1

2
+ 7

2r2
)Table 4.1: The �rst PCFT orretions for some statesNote that in all these ases it is neessary to make the analytial ontinuation in νto give meaning to the otherwise divergent integrals. This divergene is expeted as theonformal dimension of the perturbing operator ∆ = 1

2
+ 1

2r2
is greater than 1/2; thus thesingularity oming at z → 1 from the χ(1)χ(z) OPE is not integrable no matter what thestates |a〉 are.In the Ramond setor we expet that the ground state saling funtion vanishes identi-ally as a result of unbroken supersymmetry. The question is whether the (leading) PCFTorretions are onsistent with this expetation. The onformal ontribution to the salingfuntion vanishes sine

c− 24∆R =
3

2
− 24

1

16
= 0 .The next ontribution is proportional to the seond order oe�ient

c
|R〉
2 = 6(2π)1−2y

∫plane d2z

|z|y 〈R|χ(1, 1)χ(z, z̄)|R〉|onn ,where
|R〉 = lim

z,z̄→0
σ(z, z̄)|NS〉denotes the Ramond ground state. The integrand de�ning c|R〉2 is formally positive, butthe integral is divergent and needs regularization. Separating the integrand into a sum ofterms, after an appropriate partial integration it an be onverted into a form in whih eahterm an be regularized using (4.4). The sum of regularized terms turns out to vanish.In this sense PCFT is onsistent with a vanishing ground state saling funtion in theRamond setor.5 NLIETo probe the behaviour of the saling funtions between the ultraviolet and infrared limitsone an use the thermodynami Bethe Ansatz [19, 20℄. Fendley and Intriligator's TBAgluing idea [21℄ leads to a set of TBA equations for all hoies of the SSG oupling [22�24℄,but in pratie the equations take a simple form only at ertain β. Instead one an treat all13



values of the oupling on an equal footing by using an alternative type of nonlinear integralequation, originally developed for the ground state of the sine-Gordon model in [25℄ (andindependently in a related ontext in [26, 27℄), and whih usually goes by the aronymNLIE.The equations proposed in [5℄ for the SSG model onsist of a TBA-like funtion oupledto a nonlinear integral equation. The two piees re�et the fatorized nature of the S matrix,with the TBA part assoiated to the SUSY fator and the NLIE part to the bosoni fator.The original equations of [5℄ generate the lowest ground state in the Neveu-Shwarz setor,but a simple sign hange and appropriate hoie of parameters provides aess to the othertwo ground states. The equations are
ln y1(θ) = −il sinh(θ) + iπω +

∫ ∞

−∞
dθ′ χ(θ−θ′+ iπ

2
) ln(1 + (−1)δy2(θ

′))

+

∫

C1

dθ′ ϕ(θ−θ′) ln(1 + y1(θ
′)) −

∫

C2

dθ′ ϕ(θ−θ′) ln(1 + y−1
1 (θ′)) ;

ln y2(θ) =

∫

C1

dθ′ χ(θ−θ′− iπ
2
) ln(1 + y1(θ

′)) −
∫

C2

dθ′ χ(θ−θ′− iπ
2
) ln(1 + y−1

1 (θ′)) .The integrations ontours C1 and C2 run from −∞ to ∞ just below and above the realaxis respetively. The kernel ϕ(θ) is proportional to the logarithmi derivative of thesoliton-soliton sattering amplitude of the sine-Gordon model
ϕ(θ) =

∫

dk

2π
eikθ

sinh(p−1)πk
2

2 sinh π p k
2

cosh πk
2

,and χ(θ) is related to the SUSY fator of the S matrix
χ(θ) = 1/(2π cosh θ).The exat ground state energy depends only on the NLIE-like funtion via y1(θ)

E(l) = − i

2π

(∫

C1

dθ sinh θ ln(1 + y1(θ)) −
∫

C2

dθ sinh θ ln(1 + y−1
1 (θ))

)

.By setting the parameters ω and δ appropriately these equations provide aess to allthree vaua, though not for all possible hoies of (β, l) for eah state, as we shall ommenton further below. The appropriate settings are shown in table 5.1.Typially we an extrat a number of results analytially from nonlinear integral equa-tions, the simplest of whih is the ultraviolet value of the ground state energy. In theNeveu-Shwarz setor (δ = 0) the saling funtion behaves as :
6l

π
E(0) = −

(

3

2
− 12ω2

r2

)

,14



State ω δ

|0̃〉 ⊗ |NS〉 0 0

|1+〉 1 0

|0̃〉 ⊗ |R〉 1
2

1Table 5.1: Choie of NLIE parameters to obtain eah of the three ground states.while in the Ramond setor (δ = 1) we have
6l

π
E(0) = −

(

−12(ω − 1/2)2

r2

)

.Note that tuning ω aording to Table 5.1 yields the orret UV behaviour for eah groundstate:
6l

π
E(0) = − (c− 24∆a) .Furthermore the onformal dimension of the perturbing operator exatly mathes that of

U1. In the infrared limit (l → ∞) we dedue the saling funtions behaviour to be [5℄
E(l) ∼ −2

√
2 cos πω

∫

dθ

2π
cosh θ e−Ml cosh θ . (5.1)This result an be given a simple intuitive interpretation. First, let us note that theRSOS struture desribing the SUSY degrees of freedom of solitons has three nodes 0, 1/2,

1, whih orrespond to trunating the quantum group representation theory Uq(sl(2)) at
q4 = 1 to the tensor produt rule

0 ⊗ a = a , a = 0,
1

2
, 1

1

2
⊗ 1

2
= 0 ⊕ 1 , 1 ⊗ 1 = 0 .There is a notion of statistial dimension for these representations da (a = 0, 1/2, 1), whihsatis�es the ordinary rules under the tensor produt

d0da = da , a = 0,
1

2
, 1

d2
1

2

= d0 + d1 , d2
1 = d0 ,and the solution to these onditions is

d0 = d1 = 1 , d 1

2

=
√

2 .The kinks orrespond to the 1/2 representation, and the above results mean that they havea statistial dimension √
2. It might seem strange sine it is hard to interpret this as the15



r b2 ca2κ
2

√
15/3 −0.4305230886667 −0.4305230886637√
21/3 −0.7099942272385 −0.7099942272382

2 −0.5922281367467 −0.5922281367458

3 −0.2517882823698 −0.2517882823567

3.05 −0.2422117898616 −0.2422117898994Table 5.2: Comparison of PCFT orretion with NLIE for the �rst Neveu-Shwarz groundstatemultiplet length. However, a simple alulation shows that the number of 2n-kink states(negleting for the moment the topologial harge) with periodi boundary onditions growsas 2n (there are no odd-kink states on a irle) so the kinks indeed behave as a multiplet oflength √
2. The reason for this an be found in the nontrivial vauum adjaeny onditionsimposed on multi-kink states, whih do not allow for all possible sequenes to be realized.Armed with this, it is easy to interpret the result (5.1). For ω = 0 it is exatly theleading orretion from 2

√
2 partiles in �nite volume (or equivalently �nite temperature)to the free energy. The additional fator 2 omes from the fat that the topologial hargeintrodues a further doublet struture of the kinks. The ω dependene is easy to understandusing the same sort of instanton argument as in the ase of the ordinary sine-Gordonmodel [11℄. 2A �nal hek an be made by omparing NLIE data with the above perturbed onformaltheory preditions. Turning to the �rst Neveu-Shwarz ground state, we extrated theoe�ient b2 from NLIE data �tted to a suitably trunated series of the form
6l

π
Ea(l) = −(c− 24∆a) −

∑

n=1

b2nl
2ny ,then made a omparison with the oe�ient of the leading PCFT orretion ca2κ

2. Theresults displayed in Table 5.2 show exellent agreement. Numerial iteration of the NLIEsin the Ramond setor on�rms the Ramond ground state energy is identially zero for allhoies of l. This provides a nontrivial hek of the equations sine the NLIE funtions
y1(θ) and y2(θ) are not identially zero.It turns out to be harder to hek the NLIEs for the seond Neveu-Shwarz groundstate. For small values of r and large values of the ylinder size l the equations work well.This allows a omparison with PCFT, but does not allow one to obtain the value of ca2k2 to2We remark that a similar explanation an be made for the IR behaviour of the vauum saling funtionpredited by the NLIE, for all the frational supersymmetri sine-Gordon models, .f. formula (29) in[5℄. For the ase L of that paper, the statistial dimension of the kink representation 1/2 results in
2 cos(π/(L + 2)). SSG orresponds to L = 2, and ordinary sine-Gordon to L = 1 (i.e. the kinks havedimension 1 apart from the double degeneray orresponding to their topologial harge).16
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Figure 5.1: Comparing PCFT with NLIE for the seond Neveu-Shwarz ground stateas many deimal plaes as for the lower NS ground state. Instead, in Fig. 5.1 we omparethe PCFT result at ompati�ation radius r2 = 11 (equivalently p = 1/5)

c− 24∆|1+〉 + c
|1+〉
2 k2l2y ,using a solid line to the NLIE data −6lEa(l)/π (indiated by the symbol ◦). The agreementis very good.So what lies behind the di�ulties at some ouplings and/or ylinder size? For largervalues of r or smaller l the equations fail beause one or more zeros of 1+ y1(θ) attempt toross one of the integration ontours, resulting in a singularity in ln(1 + y1(θ)). (One thishas happened a zero of 1 + y2(θ) may also attempt to ross a ontour.) This behaviour isnot unexpeted: by sending the ylinder size l into the omplex plane the authors of [28,29℄were able to analytially ontinue a set of TBA equations desribing the ground state energyof a partiular model to a new set, whih gave aess to the �rst exited state. Here, wehave an additional parameter ω whih we analytially ontinue from 0 to 1 along the realaxis to obtain the seond NS ground state from the �rst. Singularities in the logarithmiterm of NLIEs of the type disussed here also arise via a seond mehanism, whih usuallyours as the (real) ylinder size l is dereased and is not expliitly onneted to an exitedstate. This so-alled `speials' problem was �rst desribed in the ontext of the ordinarysine-Gordon NLIE when the equation was tuned to study the various states of the minimalmodels perturbed by φ13 [30℄. Sine we are able to make a favourable omparison of NLIEdata and PCFT results for some ouplings r we leave the resolution of these problems forfuture investigation. This will also provide lues as how to modify the NLIEs to addressthe exited states, as has been done for the sine-Gordon NLIE in [9, 31�34℄.
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6 TCSA6.1 TCSA for the supersymmetri sine-Gordon modelThe supersymmetri sine-Gordon model an be viewed as a relevant perturbation of the
c = 3

2
free onformal �eld theory, onsisting of a free fermion and a free boson. Following theidea of the trunated onformal spae approah (TCSA) [35℄, the Hilbert spae is trunatedat a given onformal energy Eut, and so the Hamiltonian an be diagonalized numeriallyto obtain an approximate �nite volume spetrum. Sine the perturbing operator has salingdimension larger than 1/2 we are faed with divergenes in the TCSA data and hope toobtain relative energy levels only. Furthermore, the Hilbert spae ontains many morevetors up to a given energy ut than in a theory with a single salar �eld only, so onlyqualitative results are expeted.The matrix elements of the perturbing operator between any two onformal states |a〉and |b〉 with onformal weights (∆a, ∆̄a) and (∆b, ∆̄b) an be brought to the following form

〈a|g
∫ L

0

dxχ(ξ, ξ̄)|b〉 =
gL√

2

(

2π

L

)2∆

〈a|iψ(1)ψ̄(1)
(

V(1,0)(1, 1) + V(−1,0)(1, 1)
)

|b〉 δ∆a−∆̄a,∆b−∆̄busing a onformal mapping from the ylinder to the plane and translational invariane (the
δ expresses the onservation of momentum/onformal spin). Reall that ∆ = 1

2
+ 1

2r2
.We use relations (4.1,4.3) to write the PCFT oupling g in terms of the kink mass

M and to onvert the Hamiltonian into dimensionless form (energy measured in units of
M), parametrized by the dimensionless volume parameter l = ML. The Hilbert spaean be deomposed into setors of given onformal spin and given bosoni winding number(topologial harge).Using the mode expansions and U(1) harge onservation, the matrix elements of theperturbing operator an be alulated as the produt of separate bosoni and fermioniontributions. In the Ramond setor, matrix elements inluding the fermion zero modean be omputed using the relation

〈R|ib0b̄0|R〉 =
1

2
.Sine the interation is even in the bosoni �eld, the perturbing operator has the followingdisrete bosoni Z2 symmetry

|n,m〉 ↔ | − n,−m〉 ; an ↔ −an ; ān ↔ −ān .The disrete symmetry (2.4,2.5) means that the NS setor has an additional Z2 symmetryating as
|n,m〉 ↔ (−1)n|n,m〉 ; bs ↔ −bs , b̄s ↔ b̄s .There is no suh symmetry in the Ramond setor as a result of the presene of the fermionizero mode. 18



+ + (⊔⊓) − + (◦) + − (×) −− (+×) + (△) − (+)

|0〉 |1+〉 |0〉R
|2−〉 |1−〉 |1−〉R

|2+〉 |3+〉 |1+〉RTable 6.1: UV lassi�ation of the lowest lying states in the various NS and R setors for
r > 3. For r < 3 the order of the states is somewhat di�erent (|3+〉 is the third state inits setor), but they an still be identi�ed unambiguously.The Hilbert spae (see Setion 4.1) an be further deomposed with respet to thesesymmetries. In table 6.1 we list the lowest energy states of eah setor for zero spin and zerotopologial harge. The �rst sign refers to the NS parity, while the seond to the bosonione. In parenthesis we indiate the symbol we used in the TCSA data for the varioussetors and |N±〉R = 1√

2

(

V(N,0)(0, 0)|0〉R ± V(−N,0)(0, 0)|0〉R), where |0〉R = |0̃〉 ⊗ |R〉.6.2 Cheking TCSA against PCFTThe aim of this investigation is to on�rm the TCSA program by omparing the small vol-ume (UV) data for the low lying energy levels to the preditions of onformal perturbationtheory (PCFT). Sine the TCSA data are given in terms of the (IR) kink mass while thePCFT preditions in terms of the (UV) parameter µ, to make the formal omparison onehas to use the massgap relation. Nevertheless as the TCSA program is written using thesame massgap relation the suess of the omparison says nothing about the orretnessof this relation but may on�rm the TCSA program.Sine the saling dimension of the perturbing operator is larger than 1/2 both theonformal perturbation theory and TCSA are plagued by divergenes. As disussed insetion 3.3, in PCFT these divergenes are regularized by analytial ontinuation. Theintrodution of a �nite Eut in TCSA also regularizes these divergenes albeit in a di�erentway. Therefore the best one an do to ompare TCSA and the PCFT preditions is toonsider the di�erenes between the various energy levels rather than the levels themselves:
6l

π
(Eb(l) −Ea(l)) − 24(∆b − ∆a) = ∆cbaκ2l2y + o(l4y), ∆cba = ca2 − cb2 .This has two advantages: on the one hand the TCSA energy di�erenes depend less sensi-tively on Eut than the individual levels, and on the other the integrals de�ning ∆cba areonvergent thus they may be omputed as the appropriate di�erenes of the data in thetable 4.1.Using the identi�ations between the low lying TCSA lines and the |N±〉 states in table6.1 we ompare the TCSA energy di�erenes and the PCFT preditions in Fig. 6.1. Indiagram (a), the three ontinuous lines depit the PCFT preditions with ∆c|1−〉|0〉 ∆c|1+〉|0〉and ∆c|2+〉|0〉 respetively, while - in aordane with table 6.1 - the symbols ∗, ◦, � and19



× denote the TCSA data for
(

E−−
1 (l) −E++

1 (l)
) 6l

π
− 12

r2
,

(

E−+
1 (l) −E++

1 (l)
) 6l

π
− 12

r2
,

(

E++
2 (l) −E++

1 (l)
) 6l

π
− 48

r2
and

(

E+−
1 (l) −E++

1 (l)
) 6l

π
− 48

r2
,respetively. Note that the data is onsistent with the |2±〉 states being degenerate in theleading order of PCFT.In diagram (b), the �rst three lines and the �rst four sets of TCSA data are just likeon (a), while the fourth ontinuous line depits the leading PCFT predition for ∆c|3+〉|1+〉and the seond line of points marked by ◦ are the TCSA data

(

E−+
3 (l) − E−+

1 (l)
) 6l

π
− 96

r2
.The agreement between the data and the leading preditions is exellent, though the de-viations between them indiate that in some ases the higher order PCFT orretions arenot negligible even in this l region.6.3 IR spetrum from TCSASine the saling dimension of the perturbing operator is larger than 1/2 we have diver-genes in the TCSA data. This an be seen by inreasing the uto�: the energy levelsbeome more and more negative. The energy di�erenes, however, onverge but unfortu-nately very slowly. The �rst two lines in the (++), (−+) NS and in the (+) R setors,and the �rst (lowest) lines in the (+−), (−−) NS and (−) R setors are shown in Fig. 6.2,where we plot these lines relative to the ground state of the (++) NS setor.The various points are marked aording to table 6.1. The �rst row in the table orre-sponds to the UV limit of the three vaua as shown on the data. The next row, (the nextthree urves) orresponds to the �rst breathers exited above eah vaua, while the lastrow, (the last three urves) are related to the seond breathers. The bosoni breathers areidenti�ed on the basis of their behaviour under the disrete symmetries. The ompati�a-tion radius is r = 3.05 and the energy ut is 14, whih orresponds to approximately 13000states in the Ramond setor and 9000 states in the NS setors, respetively. Clearly theurves are in a qualitative agreement with the spetrum, but the partiular mass valuesare wrong. Indeed it an be seen that the TCSA onverges very slowly to the right values:by hanging the trunation level from 8 to 14 in steps of 2, the energy di�erenes hangealmost the same amount in eah step. However, the qualitative features of the spetrum(i.e. the degeneray and gap patterns) already appear for very small number of states andare stable against inreasing the trunation level.20
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Figure 6.2: Lowest lying states in the TCSA spetrumEven though the mass values onverge very slowly, the ase for the mass ratios is muhbetter. Calulating partiular mass ratios from the data, the preditions of S matrix theory(2.9) an be reprodued with a few perent auray, and are muh more stable againsthanging the ut.Furthermore, the TCSA data are also qualitatively onsistent with the dependene ofthe spetrum on the oupling, i.e. by hanging the ompati�ation radius r the numberand relative position of breather line triplets follows the predited spetrum.7 ConlusionsIn this work we investigated supersymmetri sine-Gordon theory (SSG), espeially thestruture of the vaua and the kinks onneting them. Using an argument due to Zamolod-hikov we lari�ed the vauum and kink struture and showed that it orresponds exatlyto the exat S matrix onjetured in [1℄. Then we formulated the theory in the perturbedonformal �eld theory (PCFT) framework, whih shows a striking di�erene to the usualLagrangian desription, namely the omission of a purely salar potential term. The �rstevidene we gave for the orretness of this desription ame from the onstrution of aspin-3 onserved harge, whih is neessary for integrability. Considering the lassial limit,we showed that the expression for this harge obtained in the PCFT framework redues tothe result known from the lassial Lagrangian approah, evidene that the two approahes22



indeed desribe the same model.Using PCFT, we obtained the leading behaviour of some energy levels in �nite volume,for the limit of small volume ( the ultraviolet regime). In partiular, we onluded thatthe energy of the Ramond ground state vanishes in this limit, whih is onsistent with thefat that it is expeted to vanish exatly due to unbroken SUSY in �nite volume in thissetor.The PCFT results were then ompared to results obtained from an NLIE equation forthe lowest lying Neveu-Shwarz state, whih is the true ground state in �nite volume. Thisomparison involves the mass gap relation between the PCFT oupling (an UV parameter)and the soliton mass (an IR quantity) onjetured earlier in [17℄. The omparison showedexellent agreement for several di�erent values of the dimensionless oupling parameter β(equivalently r) of the model, whih is a strong evidene for the orretness of the massgap formula on one hand, and for the onsisteny between the PCFT and NLIE approahon the other.We have also examined the large volume (infrared) limit of the NLIE and found aperfet agreement with onsiderations based on statistis of kinks and instanton alulusin �nite volume.The NLIE proposed in [5℄ was formulated for the true ground state of SSG, whih is thelowest lying state in the Neveu-Shwarz setor. Mathing onformal dimensions omputedfrom the NLIE with those predited from onformal �eld theory, we proposed equationsdesribing the other two vaua, one in the Ramond and the other in the Neveu-Shwarzsetor. Numerial iteration of the NLIE for the Ramond ground state gave a vanishingenergy for all volumes, as expeted, providing a very strong hek sine the solution ofthe equation itself is still nontrivial in this ase. For the seond Neveu-Shwarz vauum,onvergene properties of the iteration are not as good as for the other two ases, butthe UV behaviour mathes the PCFT predition niely, giving another on�rmation of theonsisteny between PCFT, NLIE and the massgap formula.Finally, we performed an analysis of the �nite volume problem using trunated onfor-mal spae approah (TCSA). We heked the validity of the approah in the UV regimeby a omparison with PCFT. While the numerial onvergene of the TCSA is not verygood (partially due to UV divergenes, but also to a rapidly growing number of states asthe energy ut is raised), it does on�rm the qualitative piture of the spetrum, both thedegeneraies and the behaviour of the breather levels are in aordane with the piturepresented before.There are many open issues. It would be very interesting to give a omplete hara-terization of the SSG �nite volume spetrum from the NLIE, like it has been done in thenon-SUSY ase [9, 25, 26, 30�34℄. It is not at all obvious how to ahieve that, however,mainly beause the NLIE for the SSG theory is of a mixed type - part of the system resem-bles the Destri-de Vega equation, while the other part looks like a thermodynami BetheAnsatz equation. It is likely that a reformulation of the NLIE is neessary.Another interesting problem would be to extend the analysis of the spetrum to theboundary ase, along the lines of non-SUSY sine-Gordon theory [36℄. This was part of themotivation to introdue TCSA for SSG, however, the slow onvergene of TCSA prevents23
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