Rank $t \mathcal{H}$-primes in quantum matrices.

Stéphane Launois
Laboratoire de Mathématiques - UMR6056, Université de Reims
Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : stephane.launois@univ-reims.fr

Abstract

Let \mathbb{K} be a (commutative) field and consider a nonzero element q in \mathbb{K} which is not a root of unity. In [5], Goodearl and Lenagan have shown that the number of \mathcal{H}-primes in $R=O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$ which contain all $(t+1) \times(t+1)$ quantum minors but not all $t \times t$ quantum minors is a perfect square. The aim of this paper is to make precise their result: we prove that this number is equal to $(t!)^{2} S(n+1, t+1)^{2}$, where $S(n+1, t+1)$ denotes the Stirling number of second kind associated to $n+1$ and $t+1$. This result was conjectured by Goodearl, Lenagan and McCammond. The proof involves some closed formulas for the poly-Bernoulli numbers that were established in [10 and [1].

2000 Mathematics subject classification: 16W35 (20G42 11B68 11B73).

1 Introduction.

Fix a (commutative) field \mathbb{K} and an integer n greater than or equal to 2 , and choose an element q in $\mathbb{K}^{*}:=\mathbb{K} \backslash\{0\}$ which is not a root of unity. Denote by $R=O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$ the quantization of the ring of regular functions on $n \times n$ matrices with entries in \mathbb{K} and by $\left(Y_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ the matrix of its canonical generators. The bialgebra structure of R gives us an action of the group $\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{2 n}$ on R by \mathbb{K}-automorphisms (See [5]) via:

$$
\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \cdot Y_{i, \alpha}=a_{i} b_{\alpha} Y_{i, \alpha} \quad\left((i, \alpha) \in \llbracket 1, n \rrbracket^{2}\right) .
$$

In [9], Goodearl and Letzter have shown that R has only finitely many \mathcal{H}-invariant prime ideals (See [9], 5.7. (i)) and that, in order to calculate the prime and primitive spectra of R, it is enough to determine the \mathcal{H}-invariant prime ideals of R (See [9, Theorem 6.6). Next, using the theory of deleting derivations, Cauchon has found a formula for the exact number of \mathcal{H}-invariant prime ideals in R (See 4], Proprosition 3.3.2). In this paper, we investigate these ideals.

In [12] (See also [13]), we have proved, assuming that $\mathbb{K}=\mathbb{C}$ (the field of complex numbers) and q is transcendental over \mathbb{Q}, that the \mathcal{H}-invariant prime ideals in $O_{q}\left(\mathcal{M}_{n}(\mathbb{C})\right)$ are generated by quantum minors, as conjectured by Goodearl and Lenagan (See [5] and [6]). Next, using this result together with Cauchon's description for the set of \mathcal{H}-invariant prime ideals of $O_{q}\left(\mathcal{M}_{n}(\mathbb{C})\right)$ (See 4], Théorème 3.2.1), we have constructed an algorithm which provides an explicit generating set of quantum minors for each \mathcal{H}-invariant prime ideal in $O_{q}\left(\mathcal{M}_{n}(\mathbb{C})\right.$) (See [11] or [13]).

On the other hand, Goodearl and Lenagan have shown (in the general case where $q \in \mathbb{K}^{*}$ is not a root of unity) that, in order to obtain descriptions of all the \mathcal{H}-invariant prime ideals of R, we just need to determine the \mathcal{H}-invariant prime ideals of certain "localized step-triangular factors" of R, namely the algebras

$$
R_{\mathbf{r}}^{+}:=\frac{R}{\left.\left\langle Y_{i, \alpha}\right| \alpha>t \text { or } i<r_{\alpha}\right\rangle}\left[\bar{Y}_{r_{1}, 1}^{-1}, \ldots, \bar{Y}_{r_{t}, t}^{-1}\right]
$$

and

$$
R_{\mathbf{c}}^{-}:=\frac{R}{\left.\left\langle Y_{i, \alpha}\right| i>t \text { or } \alpha<c_{i}\right\rangle}\left[\bar{Y}_{1, c_{1}}^{-1}, \ldots, \bar{Y}_{t, c_{t}}^{-1}\right],
$$

where $t \in \llbracket 0, n \rrbracket$ and where $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right)$ and $\mathbf{c}=\left(c_{1}, \ldots, c_{t}\right)$ are strictly increasing sequences of integers in the range $1, \ldots, n$ (See [5], Theorem 3.5). Using this result, Goodearl and Lenagan have computed the \mathcal{H}-invariant prime ideals of $O_{q}\left(\mathcal{M}_{2}(\mathbb{K})\right)$ (See [5]) and $O_{q}\left(\mathcal{M}_{3}(\mathbb{K})\right)$ (See [6]).

The aims of this paper are to provide a description for the set \mathcal{H}-Spec $\left(R_{\mathrm{r}}^{+}\right)$of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$and to count the rank $t \mathcal{H}$-invariant prime ideals of $R(t \in \llbracket 0, n \rrbracket)$, that is those \mathcal{H}-invariant prime ideals of R which contain all $(t+1) \times(t+1)$ quantum minors but not all $t \times t$ quantum minors. In [5], the authors have shown that the number of rank $t \mathcal{H}$-invariant prime ideals of R is a perfect square. More precisely, they have established (See [5, 3.6) that, for any $t \in \llbracket 0, n \rrbracket$:

$$
\begin{equation*}
\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|=\left(\sum_{\substack{\mathrm{r}=\left(r_{1}, \ldots, r_{t}\right) \\ 1 \leq r_{1}<\cdots<r_{t} \leq n}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|\right)^{2} \tag{1}
\end{equation*}
$$

where \mathcal{H}-Spec ${ }^{[t]}(R)$ denotes the set of rank $t \mathcal{H}$-invariant prime ideals of R and where \mathcal{H}-Spec $\left(R_{\mathbf{r}}^{+}\right)$ denotes the set of \mathcal{H}-invariant prime ideals of R_{r}^{+}. The above relation (11) opens a potential route to count the rank $t \mathcal{H}$-invariant prime ideals of R : if we can compute the number of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$, then we will be able to count the rank $t \mathcal{H}$-invariant prime ideals of R.

So, to compute the number of rank $t \mathcal{H}$-invariant prime ideals of R, the first step is to study the \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$. Since this algebra is induced from R by factor and localization, we first construct (See Section 2), by using the deleting derivations theory (See [4), Hinvariant prime ideals of R that provide, after factor and localization, $2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}}$ \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$(See Section [3.2). Next, by using (11), we are able to show that the number of rank $t \mathcal{H}$-invariant prime ideals of R is greater than or equal to $(t!)^{2} S(n+1, t+1)^{2}$, where $S(n+1, t+1)$ denotes the Stirling number of second kind associated to $n+1$ and $t+1$ (See Proposition 3.9). Finally, after observing that the number of \mathcal{H}-invariant prime ideals of R is equal to the poly-Bernoulli number $B_{n}^{(-n)}$ (See Proposition [2.7), we use a closed formula for the poly-Bernoulli number $B_{n}^{(-n)}$ (See [1], Theorem 2) in order to prove our main result: the number of rank $t \mathcal{H}$-invariant prime ideals of R is actually equal to $(t!)^{2} S(n+1, t+1)^{2}$. This result was conjectured by Goodearl, Lenagan and McCammond. As a corollary, we obtain a description for the set of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$(See Section 3.4).

$2 \mathcal{H}$-invariant prime ideals in $O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$.

Throughout this paper, we use the following conventions:

- If I is a finite set, $|I|$ denotes its cardinality.
- \mathbb{K} denotes a (commutative) field and we set $\mathbb{K}^{*}:=\mathbb{K} \backslash\{0\}$.
- $q \in \mathbb{K}^{*}$ is not a root of unity.
- n denotes a positive integer with $n \geq 2$.
- $R=O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$ denotes the quantization of the ring of regular functions on $n \times n$ matrices with entries in \mathbb{K}; it is the \mathbb{K}-algebra generated by the $n \times n$ indeterminates $Y_{i, \alpha}, 1 \leq i, \alpha \leq n$, subject to the following relations:
If $\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ is any 2×2 sub-matrix of $\mathcal{Y}:=\left(Y_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$, then

1. $y x=q^{-1} x y, \quad z x=q^{-1} x z, \quad z y=y z, \quad t y=q^{-1} y t, \quad t z=q^{-1} z t$.
2. $t x=x t-\left(q-q^{-1}\right) y z$.

These relations agree with the relations used in [4], [5, 6], [12] and [11, but they differ from those of [14] and [2] by an interchange of q and q^{-1}. It is well known that R can be presented as an iterated Ore extension over \mathbb{K}, with the generators $Y_{i, \alpha}$ adjoined in lexicographic order. Thus the ring R is a Noetherian domain. We denote by F its skew-field of fractions. Moreover, since q is not a root of unity, it follows from [7. Theorem 3.2] that all prime ideals of R are completely prime.

- It is well known that the group $\mathcal{H}:=\left(\mathbb{C}^{*}\right)^{2 n}$ acts on R by \mathbb{K}-algebra automorphisms via:

$$
\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \cdot Y_{i, \alpha}=a_{i} b_{\alpha} Y_{i, \alpha} \quad \forall(i, \alpha) \in \llbracket 1, n \rrbracket^{2} .
$$

An \mathcal{H}-eigenvector x of R is a nonzero element $x \in R$ such that $h(x) \in \mathbb{K}^{*} x$ for each $h \in \mathcal{H}$. An ideal I of R is said to be \mathcal{H}-invariant if $h(I)=I$ for all $h \in \mathcal{H}$. We denote by $\underline{\mathcal{H}-\operatorname{Spec}(R)}$ the set of \mathcal{H}-invariant prime ideals of R.

The aim of this paragraph is to construct \mathcal{H}-invariant prime ideals of R that, after factor and localization, will provide \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$(See the introduction for the definition of this algebra). In order to do this, we use the description of the set $\mathcal{H}-\operatorname{Spec}(R)$ that Cauchon has obtained by applying the theory of deleting derivations (See [4]).

2.1 Standard deleting derivations algorithm and description of $\mathcal{H}-\operatorname{Spec}(R)$.

In this section, we provide the background definitions and notations for the standard deleting derivations algorithm (See [4, [2, 11]) and we recall the description of the set $\mathcal{H}-\operatorname{Spec}(R)$ that Cauchon has obtained by using this algorithm (See [4).

Notations 2.1

- We denote by \leq_{s} the lexicographic ordering on \mathbb{N}^{2}. We often call it the standard ordering on \mathbb{N}^{2}. Recall that $(i, \alpha) \leq_{s}(j, \beta) \Longleftrightarrow[(i<j)$ or $(i=j$ and $\alpha \leq \beta)]$.
- We set $E_{s}=\left(\llbracket 1, n \rrbracket^{2} \cup\{(n, n+1)\}\right) \backslash\{(1,1)\}$.
- Let $(j, \beta) \in E_{s}$. If $(j, \beta) \neq(n, n+1),(j, \beta)^{+}$denotes the smallest element (relatively to $\left.\leq_{s}\right)$ of the set $\left\{(i, \alpha) \in E_{s} \mid(j, \beta)<_{s}(i, \alpha)\right\}$.

In [4], Cauchon has shown that the theory of deleting derivations (See [3]) can be applied to the iterated Ore extension $R=\mathbb{C}\left[Y_{1,1}\right] \ldots\left[Y_{n, n} ; \sigma_{n, n}, \delta_{n, n}\right]$ (where the indices are increasing for \leq_{s}). The corresponding deleting derivations algorithm is called the standard deleting derivations algorithm. It consists in the construction, for each $r \in E_{s}$, of the family $\left(Y_{i, \alpha}^{(r)}\right)_{(i, \alpha) \in[1, n]^{2}}$ of elements of $F=\operatorname{Fract}(R)$, defined as follows:

1. If $r=(n, n+1)$, then $Y_{i, \alpha}^{(n, n+1)}=Y_{i, \alpha}$ for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.
2. Assume that $r=(j, \beta)<_{s}(n, n+1)$ and that the $Y_{i, \alpha}^{\left(r^{+}\right)}\left((i, \alpha) \in \llbracket 1, n \rrbracket^{2}\right)$ are already constructed. Then, it follows from [3. Théorème 3.2.1] that $Y_{j, \beta}^{\left(r^{+}\right)} \neq 0$ and, for all $(i, \alpha) \in$ $\llbracket 1, n \rrbracket^{2}$, we have:

$$
Y_{i, \alpha}^{(r)}= \begin{cases}Y_{i, \alpha}^{\left(r^{+}\right)}-Y_{i, \beta}^{\left(r^{+}\right)}\left(Y_{j, \beta}^{\left(r^{+}\right)}\right)^{-1} Y_{j, \alpha}^{\left(r^{+}\right)} & \text {if } i<j \text { and } \alpha<\beta \\ Y_{i, \alpha}^{\left(r^{+}\right)} & \text {otherwise } .\end{cases}
$$

Notation 2.2

Let $r \in E_{s}$. We denote by $R^{(r)}$ the subalgebra of $F=\operatorname{Fract}(R)$ generated by the $Y_{i, \alpha}^{(r)} \quad((i, \alpha) \in$ $\left.\llbracket 1, n \rrbracket^{2}\right)$, that is, $R^{(r)}:=\mathbb{C}\left\langle Y_{i, \alpha}^{(r)} \mid(i, \alpha) \in \llbracket 1, n \rrbracket^{2}\right\rangle$.

Notations 2.3

We set $\bar{R}:=R^{(1,2)}$ and $T_{i, \alpha}:=Y_{i, \alpha}^{(1,2)}$ for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.

Let $(j, \beta) \in E_{s}$ with $(j, \beta) \neq(n, n+1)$. The theory of deleting derivations allows us to construct embeddings $\varphi_{(j, \beta)}: \operatorname{Spec}\left(R^{(j, \beta)^{+}}\right) \longrightarrow \operatorname{Spec}\left(R^{(j, \beta)}\right)$ (See 3], 4.3). By composition, we obtain an embedding $\varphi: \operatorname{Spec}(R) \longrightarrow \operatorname{Spec}(\bar{R})$ which is called the canonical embedding. In [4, Cauchon has described the set $\mathcal{H}-\operatorname{Spec}(R)$ by determining its "canonical image" $\varphi(\mathcal{H}-$ $\operatorname{Spec}(R))$. To do this, he has introduced the following conventions and notations.

Conventions 2.4

- Let $v=(l, \gamma) \in \llbracket 1, n \rrbracket^{2}$.

1. The set $C_{v}:=\{(i, \gamma) \mid 1 \leq i \leq l\} \subset \llbracket 1, n \rrbracket^{2}$ is called the truncated column with extremity v.
2. The set $L_{v}:=\{(l, \alpha) \mid 1 \leq \alpha \leq \gamma\} \subset \llbracket 1, n \rrbracket^{2}$ is called the truncated row with extremity v.

- W denotes the set of all the subsets in $\llbracket 1, n \rrbracket^{2}$ which are a union of truncated rows and columns.

Notation 2.5

Given $w \in W, K_{w}$ denotes the ideal in \bar{R} generated by the $T_{i, \alpha}$ such that $(i, \alpha) \in w$.
(Recall that K_{w} is a completely prime ideal in the quantum affine space \bar{R} (See [8], 2.1).)

The following description of the set $\mathcal{H}-\operatorname{Spec}(R)$ was obtained by Cauchon (See [4], Corollaire 3.2.1).

Proposition 2.6

1. Given $w \in W$, there exists a (unique) \mathcal{H}-invariant (completely) prime ideal J_{w} in R such that $\varphi\left(J_{w}\right)=K_{w}$.
2. $\mathcal{H}-\operatorname{Spec}(R)=\left\{J_{w} \mid w \in W\right\}$.

2.2 Number of \mathcal{H}-invariant prime ideals in R.

In [4], Cauchon has used his description of the set $\mathcal{H}-\operatorname{Spec}(R)$ in order to give a formula for the total number $S(n)$ of \mathcal{H}-invariant prime ideals of R. More precisely, he has established (See [4], Proposition 3.3.2) that:

$$
S(n)=(-1)^{n-1} \sum_{k=1}^{n}(k+1)^{n} \sum_{j=1}^{k}(-1)^{j-1}\binom{k}{j} j^{n},
$$

that is

$$
S(n)=(-1)^{n} \sum_{k=1}^{n}(-1)^{k} k!(k+1)^{n}\left(\frac{(-1)^{k}}{k!} \sum_{j=1}^{k}(-1)^{j}\binom{k}{j} j^{n}\right) .
$$

Recall (See [15], p. 34) that $\frac{(-1)^{k}}{k!} \sum_{j=1}^{k}(-1)^{j}\binom{k}{j} j^{n}=\frac{(-1)^{k}}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} j^{n}$ is equal to the Stirling number of second kind $S(n, k)$ (See, for example, 15 for more details on the Stirling numbers of second kind). Hence, we have:

$$
S(n)=(-1)^{n} \sum_{k=1}^{n}(-1)^{k} k!(k+1)^{n} S(n, k),
$$

that is

$$
\begin{equation*}
S(n)=(-1)^{n} \sum_{k=1}^{n} \frac{(-1)^{k} k!}{(k+1)^{-n}} S(n, k) . \tag{2}
\end{equation*}
$$

On the other hand, it follows from [10, Theorem 1] that:

$$
(-1)^{n} \sum_{k=0}^{n} \frac{(-1)^{k} k!}{(k+1)^{-n}} S(n, k)=B_{n}^{(-n)},
$$

where $B_{n}^{(-n)}$ denotes the poly-Bernoulli number associated to n and $-n$ (See 10 for the definition of the poly-Bernoulli numbers). Observing that $S(n, 0)=0$ (See [15]), we get:

$$
(-1)^{n} \sum_{k=1}^{n} \frac{(-1)^{k} k!}{(k+1)^{-n}} S(n, k)=B_{n}^{(-n)},
$$

and thus, we deduce from (2) that:

Proposition 2.7

$$
|\mathcal{H}-\operatorname{Spec}(R)|=B_{n}^{(-n)}
$$

This rewriting of Cauchon's formula was first obtained by Goodearl and McCammond.

2.3 Vanishing and non-vanishing criteria for the entries of q-quantum matrices.

Let $J_{w}(w \in W)$ be an \mathcal{H}-invariant prime ideal of R (See Proposition 2.6). In the next section, we will need to know which indeterminates $Y_{i, \alpha}$ belong to J_{w}, that is which $y_{i, \alpha}:=Y_{i, \alpha}+J_{w}$ are zero. This problem is dealt with in Proposition 2.12 and Proposition 2.16 where we respectively obtain a non-vanishing criterion and a vanishing criterion for the entries of q-quantum matrices.

For the remainder of this section, K denotes a \mathbb{K}-algebra which is also a skew-field. Except otherwise stated, all the considered matrices have their entries in K.

Definitions 2.8

Let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be a $n \times n$ matrix and let $(j, \beta) \in E_{s}$.

- We say that M is a q-quantum matrix if the following relations hold between the entries of M :
If $\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ is any 2×2 sub-matrix of M, then

1. $y x=q^{-1} x y, \quad z x=q^{-1} x z, \quad z y=y z, \quad t y=q^{-1} y t, \quad t z=q^{-1} z t$.
2. $t x=x t-\left(q-q^{-1}\right) y z$.

- We say that M is a (j, β)-q-quantum matrix if the following relations hold between the entries of M :
If $\left(\begin{array}{cc}x & y \\ z & t\end{array}\right)$ is any 2×2 sub-matrix of M, then

1. $y x=q^{-1} x y, \quad z x=q^{-1} x z, \quad z y=y z, \quad t y=q^{-1} y t, \quad t z=q^{-1} z t$.
2. If $t=x_{v}$, then $\begin{cases}v \geq_{s}(j, \beta) & \Longrightarrow t x=x t \\ v<_{s}(j, \beta) & \Longrightarrow t x=x t-\left(q-q^{-1}\right) y z .\end{cases}$

Conventions 2.9

Let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be a q-quantum matrix.
As runs over the set E_{s}, we define matrices $M^{(r)}=\left(x_{i, \alpha}^{(r)}\right)_{(i, \alpha) \in[1, n]^{2}}$ as follows:

1. If $r=(n, n+1)$, then the entries of the matrix $M^{(n, n+1)}$ are defined by $x_{i, \alpha}^{(n, n+1)}:=x_{i, \alpha}$ for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.
2. Assume that $r=(j, \beta) \in E_{s} \backslash\{(n, n+1)\}$ and that the matrix $M^{\left(r^{+}\right)}$is already known.

The entries $x_{i, \alpha}^{(r)}$ of the matrix $M^{(r)}$ are defined as follows:
(a) If $x_{j, \beta}^{\left(r^{+}\right)}=0$, then $x_{i, \alpha}^{(r)}=x_{i, \alpha}^{\left(r^{+}\right)}$for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.
(b) If $x_{j, \beta}^{\left(r^{+}\right)} \neq 0$ and $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$, then
$x_{i, \alpha}^{(r)}= \begin{cases}x_{i, \alpha}^{\left(r^{+}\right)}-x_{i, \beta}^{\left(r^{+}\right)}\left(x_{j, \beta}^{\left(r^{+}\right)}\right)^{-1} x_{j, \alpha}^{\left(r^{+}\right)} & \text {if } i<j \text { and } \alpha<\beta \\ x_{i, \alpha}^{\left(r^{+}\right)} & \text {otherwise } .\end{cases}$
We say that $M^{(r)}$ is the matrix obtained from M by applying the standard deleting derivations algorithm at step r.
3. If $r=(1,2)$, we set $t_{i, \alpha}:=x_{i, \alpha}^{(1,2)}$ for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.

Observe that the formulas of Conventions 2.9 allow us to express the entries of $M^{\left(r^{+}\right)}$in terms of those of $M^{(r)}$.

Proposition 2.10 (Restoration algorithm)

Let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be a q-quantum matrix and let $r=(j, \beta) \in E_{s}$ with $r \neq(n, n+1)$.

1. If $x_{j, \beta}^{(r)}=0$, then $x_{i, \alpha}^{\left(r^{+}\right)}=x_{i, \alpha}^{(r)}$ for all $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$.
2. If $x_{j, \beta}^{(r)} \neq 0$ and $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$, then

$$
x_{i, \alpha}^{\left(r^{+}\right)}= \begin{cases}x_{i, \alpha}^{(r)}+x_{i, \beta}^{(r)}\left(x_{j, \beta}^{(r)}\right)^{-1} x_{j, \alpha}^{(r)} & \text { if } i<j \text { and } \alpha<\beta \\ x_{i, \alpha}^{(r)} & \text { otherwise } .\end{cases}
$$

Note that our definitions of q-quantum matrix and (j, β) - q-quantum matrix slightly differ from those of [2] (See [2], Définitions III.1.1 and III.1.3). Because of this, we must interchange q and q^{-1} whenever carrying over result of [2].

Lemma 2.11

Let $(j, \beta) \in E_{s}$.
If $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ is a q-quantum matrix, then the matrix $M^{(j, \beta)}$ is (j, β)-q-quantum.
Proof: This lemma is proved in the same manner as [2, Proposition III.2.3.1].
We deduce from the above Lemma 2.11 the following non-vanishing criterion for the entries of a q-quantum matrix.

Proposition 2.12

Let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be a q-quantum matrix and let $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$. If $t_{i, \alpha} \neq 0$, then $x_{i, \alpha} \neq 0$. In other words, if $x_{i, \alpha}=0$, then $t_{i, \alpha}=0$.
 aim, we proceed by decreasing induction (for \leq_{s}) on (j, β).

Since $x_{i, \alpha}^{(n, n+1)}=x_{i, \alpha}$, the case $(j, \beta)=(n, n+1)$ is done. Assume now that $(j, \beta)<_{s}(n, n+1)$ and $x_{i, \alpha}^{(j, \beta)^{+}}=0$. If $x_{i, \alpha}^{(j, \beta)}=x_{i, \alpha}^{(j, \beta)^{+}}$, we obviously have $x_{i, \alpha}^{(j, \beta)}=0$. Next, if $x_{i, \alpha}^{(j, \beta)} \neq x_{i, \alpha}^{(j, \beta)^{+}}$, then
$i<j$ and $\alpha<\beta$. Hence, it follows from Lemma 2.11] that the matrix $\left(\begin{array}{ll}x_{i, \alpha}^{(j, \beta)^{+}} & x_{i, \beta}^{(j, \beta)^{+}} \\ x_{j, \alpha}^{(j, \beta)^{+}} & x_{j, \beta}^{(j, \beta)^{+}}\end{array}\right)$is q-quantum, so that

$$
x_{j, \beta}^{(j, \beta)^{+}} x_{i, \alpha}^{(j, \beta)^{+}}-x_{i, \alpha}^{(j, \beta)^{+}} x_{j, \beta}^{(j, \beta)^{+}}=-\left(q-q^{-1}\right) x_{i, \beta}^{(j, \beta)^{+}} x_{j, \alpha}^{(j, \beta)^{+}} .
$$

Since $x_{i, \alpha}^{(j, \beta)^{+}}=0$, we deduce from this equality that, in $K, x_{i, \beta}^{(j, \beta)^{+}} x_{j, \alpha}^{(j, \beta)^{+}}=0$. Thus, $x_{i, \beta}^{(j, \beta)^{+}}=$ 0 or $x_{j, \alpha}^{(j, \beta)^{+}}=0$. On the other hand, since $i<j$ and $\alpha<\beta$, we have $x_{i, \alpha}^{(j, \beta)}=x_{i, \alpha}^{(j, \beta)^{+}}-$ $x_{i, \beta}^{(j, \beta)^{+}}\left(x_{j, \beta}^{(j, \beta)^{+}}\right)^{-1} x_{j, \alpha}^{(j, \beta)^{+}}$. Now it follows from the induction hypothesis that $x_{i, \alpha}^{(j, \beta)^{+}}=0$. Hence, we have
$x_{i, \alpha}^{(j, \beta)}=-x_{i, \beta}^{(j, \beta)^{+}}\left(x_{j, \beta}^{(j, \beta)^{+}}\right)^{-1} x_{j, \alpha}^{(j, \beta)^{+}}$. Finally, since $x_{i, \beta}^{(j, \beta)^{+}}=0$ or $x_{j, \alpha}^{(j, \beta)^{+}}=0$, we get $x_{i, \alpha}^{(j, \beta)}=0$, as desired. This achieves the induction.

In particular, we have shown that $x_{i, \alpha}^{(1,2)}=0$, that is $t_{i, \alpha}=0$.
Proposition 2.12furnishes a non-vanishing criterion for the entries of a q-quantum matrix. In order to construct, in the next section, \mathcal{H}-invariant prime ideals of R that will provide, after factor and localization, \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}:=\frac{R}{\left.\left\langle Y_{i, \alpha}\right| \alpha>t \text { or } i<r_{\alpha}\right\rangle}\left[\bar{Y}_{r_{1}, 1}^{-1}, \ldots, \bar{Y}_{r_{t}, t}^{-1}\right]$ $\left(\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right)\right.$ with $\left.1 \leq r_{1}<\cdots<r_{t} \leq n\right)$, we also need to get a vanishing criterion for the entries $x_{i, \alpha}, \alpha>t$ or $i<r_{\alpha}$, of a q-quantum matrix. This is what we do now.

Notation 2.13

If t denotes an element of $\llbracket 0, n \rrbracket$, we set:

$$
\mathbf{R}_{t}:=\left\{\left(r_{1}, \ldots, r_{t}\right) \in \mathbb{N} \mid 1 \leq r_{1}<\cdots<r_{t} \leq n\right\}
$$

(If $t=0$, then $\mathbf{R}_{0}=\emptyset$.)

For the remainder of this section, we fix $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$, and we denote by $w_{\mathbf{r}}$ the subset of $\llbracket 1, n \rrbracket^{2}$ corresponding to indeterminates $Y_{i, \alpha}$ that have been set equal to zero in $R_{\mathbf{r}}^{+}$, that is, we set:

$$
w_{\mathbf{r}}:=\left[\bigcup_{\alpha \in \llbracket 1, t]} \llbracket 1, r_{\alpha}-1 \rrbracket \times\{\alpha\}\right] \bigcup \llbracket 1, n \rrbracket \times \llbracket t+1, n \rrbracket .
$$

For instance, if $n=3, t=2$ and $\mathbf{r}=(1,3)$, we have:

Note that $w_{\mathbf{r}}$ is a union of truncated columns, so that:

Remark 2.14

$w_{\mathbf{r}}$ belongs to W.

Observation 2.15

Let $(i, \alpha) \in w_{\mathbf{r}}$. If $\beta \in \llbracket \alpha, n \rrbracket$, then $(i, \beta) \in w_{\mathbf{r}}$.
Proof: We distinguish two cases.

- If $(i, \alpha) \in \llbracket 1, n \rrbracket \times \llbracket t+1, n \rrbracket$, then $\alpha \geq t+1$. Hence $\beta \geq \alpha \geq t+1$ and thus, we have $(i, \beta) \in \llbracket 1, n \rrbracket \times \llbracket t+1, n \rrbracket \subseteq w_{\mathbf{r}}$, as required.
- Assume now that $(i, \alpha) \in \bigcup_{\gamma \in[1, t]} \llbracket 1, r_{\gamma}-1 \rrbracket \times\{\gamma\}$, so that we have $\alpha \leq t$ and $i \leq r_{\alpha}-1$. If $\beta>t$, we conclude as in the previous case that $(i, \beta) \in w_{\mathbf{r}}$. So we assume that $\beta \leq t$. Since $i \leq r_{\alpha}-1$ and since $\alpha \leq \beta \leq t$, we have $i \leq r_{\alpha}-1 \leq r_{\beta}-1$. Hence, $(i, \beta) \in \llbracket 1, r_{\beta}-1 \rrbracket \times\{\beta\} \subseteq w_{\mathbf{r}}$, as desired.

This observation allows us to prove the following vanishing criterion:

Proposition 2.16

Let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be a q-quantum matrix.
If $t_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$, then $x_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$.
Proof: Assume that $t_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$. We first prove by induction on (j, β) (with $\overline{\text { respect }}$ of \leq_{s}) that $x_{i, \alpha}^{(j, \beta)}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$ and $(j, \beta) \in E_{s}$.

If $(j, \beta)=(1,2)$, then $x_{i, \alpha}^{(1,2)}=t_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$, as required. Assume now that $(j, \beta)<_{s}(n, n+1)$ and that $x_{i, \alpha}^{(j, \beta)}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$. Let $(i, \alpha) \in w_{\mathbf{r}}$. If $x_{i, \alpha}^{(j, \beta)^{+}}=x_{i, \alpha}^{(j, \beta)}$, the desired result follows from the induction hypothesis. Next, if $x_{i, \alpha}^{(j, \beta)^{+}} \neq x_{i, \alpha}^{(j, \beta)}$, it follows from Proposition 2.10 that $x_{j, \beta}^{(j, \beta)} \neq 0, i<j, \alpha<\beta$ and $x_{i, \alpha}^{(j, \beta)^{+}}=x_{i, \alpha}^{(j, \beta)}+x_{i, \beta}^{(j, \beta)}\left(x_{j, \beta}^{(j, \beta)}\right)^{-1} x_{j, \alpha}^{(j, \beta)}$. Since $(i, \alpha) \in w_{\mathbf{r}}$, we deduce from the induction hypothesis that $x_{i, \alpha}^{(j, \beta)}=0$, so that $x_{i, \alpha}^{(j, \beta)^{+}}=$ $x_{i, \beta}^{(j, \beta)}\left(x_{j, \beta}^{(j, \beta)}\right)^{-1} x_{j, \alpha}^{(j, \beta)}$. Moreover, since $(i, \alpha) \in w_{\mathbf{r}}$ and $\alpha<\beta$, it follows from Observation 2.15 that $(i, \beta) \in w_{\mathbf{r}}$. Then, we deduce from the induction hypothesis that $x_{i, \beta}^{(j, \beta)}=0$, so that $x_{i, \alpha}^{(j, \beta)^{+}}=x_{i, \beta}^{(j, \beta)}\left(x_{j, \beta}^{(j, \beta)}\right)^{-1} x_{j, \alpha}^{(j, \beta)}=0$. This achieves the induction.

In particular, we have proved that $x_{i, \alpha}=x_{i, \alpha}^{(n, n+1)}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$.

$2.4 \mathcal{H}$-invariant prime ideals J_{w} with $w_{\mathbf{r}} \subseteq w$.

As in the previous section, we fix $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$, and we set:

$$
w_{\mathbf{r}}:=\left[\bigcup_{\alpha \in \llbracket 1, t]} \llbracket 1, r_{\alpha}-1 \rrbracket \times\{\alpha\}\right] \bigcup \llbracket 1, n \rrbracket \times \llbracket t+1, n \rrbracket .
$$

Recall (See Proposition (2.6) that, if $w \in W$, there exists a (unique) \mathcal{H}-invariant prime ideal of R associated to w (See Proposition [2.6) and that the $J_{w}(w \in W)$ are exactly the \mathcal{H}-invariant prime ideals in R. This section is devoted to the \mathcal{H}-invariant prime ideals $J_{w}(w \in W)$ of R with $w_{\mathbf{r}} \subseteq w$. More precisely, we want to know which indeterminates $Y_{i, \alpha}$ belong to these ideals.

Let $w \in W$.

1. Set $R_{w}:=\frac{R}{J_{w}}$. It follows from [3, Lemme 5.3.3] that, using the notations of Section 2.1, R_{w} and $\frac{\bar{R}}{K_{w}}$ are two Noetherian algebras with no zero-divisors, which have the same skewfield of fractions. We set $F_{w}:=\operatorname{Fract}\left(R_{w}\right)=\operatorname{Fract}\left(\frac{\bar{R}}{K_{w}}\right)$.
2. If $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}, y_{i, \alpha}$ denotes the element of R_{w} defined by $y_{i, \alpha}:=Y_{i, \alpha}+J_{w}$.
3. We denote by M_{w} the matrix, with entries in the \mathbb{K}-algebra F_{w}, defined by:

$$
M_{w}:=\left(y_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}} .
$$

Let $w \in W$. Since $\mathcal{Y}=\left(Y_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ is a q-quantum matrix, M_{w} is also a q-quantum matrix. Thus, we can apply the standard deleting derivations algorithm to M_{w} (See Conventions 2.9 with $K=F_{w}$) and if we still denote $t_{i, \alpha}:=y_{i, \alpha}^{(1,2)}$ for $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$, we get:

Proposition 2.18

$t_{i, \alpha}=0$ if and only if $(i, \alpha) \in w$.
Proof: By [3, Propositions 5.4.1 and 5.4.2], there exists a \mathbb{K}-algebra homomorphism $f_{(1,2)}: \bar{R} \rightarrow$ $\overline{F_{w}}$ such that $f_{(1,2)}\left(T_{i, \alpha}\right)=t_{i, \alpha}$ for $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$. Its kernel is K_{w} and its image is the subalgebra of F_{w} generated by the $t_{i, \alpha}$ with $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}$. Hence, $t_{i, \alpha}=0$ if and only if $T_{i, \alpha} \in K_{w}$, that is, if and only if $(i, \alpha) \in w$.

Consider now an element w in W with $w_{\mathbf{r}} \subseteq w$ and denote by J_{w} the (unique) \mathcal{H}-invariant prime ideal of R associated to w (See Proposition (2.6). Since $w_{\mathbf{r}} \subseteq w$, we deduce from Proposition 2.18 that $t_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$. Hence, we can apply Proposition 2.16 to the q-quantum matrix M_{w} and we obtain that $y_{i, \alpha}=0$ for all $(i, \alpha) \in w_{\mathbf{r}}$, that is, $Y_{i, \alpha} \in J_{w}$ for all $(i, \alpha) \in w_{\mathbf{r}}$. So we have just established:

Proposition 2.19

Let $w \in W$ with $w_{\mathbf{r}} \subseteq w$. If $(i, \alpha) \in w_{\mathbf{r}}$, then $Y_{i, \alpha}$ belongs to J_{w}.

We will now add truncated rows to the " $w_{\mathbf{r}}$ diagram" in order to obtain \mathcal{H}-invariant prime ideals of R that will provide, after factor and localisation, \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$. We will see later (See Section 3.4) that the \mathcal{H}-invariant prime ideals of R obtained by adding truncated rows to the " $w_{\mathbf{r}}$ diagram" are the only \mathcal{H}-invariant prime ideals of R that will provide, after factor and localisation, \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$.

Notation 2.20

We set $\Gamma_{\mathbf{r}}:=\left\{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{N}^{n} \mid \gamma_{k} \in \llbracket 0, l \rrbracket\right.$ if $\left.k \in \llbracket r_{l}+1, r_{l+1} \rrbracket\right\}$. (Here $r_{0}=0$ and $r_{t+1}=n$.)

For instance, if $n=3, t=2$ and $\mathbf{r}=(1,3)$, we have:

$$
\Gamma_{\mathbf{r}}=\left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{N}^{3} \mid \gamma_{1}=0, \gamma_{2} \leq 1 \text { and } \gamma_{3} \leq 1\right\} .
$$

Theorem 2.21

Let $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}$ and set $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}:=w_{\mathbf{r}} \bigcup\left(\bigcup_{k \in[1, n]}\{k\} \times \llbracket 1, \gamma_{k} \rrbracket\right)$.
Then $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$ belongs to W and the \mathcal{H}-invariant prime ideal $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ of R has the following properties:

1. $Y_{i, \alpha} \in J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ for all $(i, \alpha) \in w_{\mathbf{r}}$.
2. $Y_{r_{k}, k} \notin J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ for all $k \in \llbracket 1, t \rrbracket$.

Proof: Since $w_{\mathbf{r}}$ is a union of truncated columns and since $\bigcup_{k \in \llbracket 1, n]}\{k\} \times \llbracket 1, \gamma_{k} \rrbracket$ is a union of truncated rows, $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$ is a union of truncated rows and columns, so that $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)} \in W$.

Since $w_{\mathbf{r}} \subseteq w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$, we deduce from Proposition 2.19 that $Y_{i, \alpha} \in J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ for all $(i, \alpha) \in w_{\mathbf{r}}$.

Now we want to prove that $Y_{r_{k}, k} \notin J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ for all $k \in \llbracket 1, t \rrbracket$. Assume this is not the case, that is, assume that there exists $k \in \llbracket 1, t \rrbracket$ with $Y_{r_{k}, k} \in J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$. Then, $y_{r_{k}, k}=0$ and it follows from Proposition 2.12 that $y_{r_{k}, k}^{(1,2)}=t_{r_{k}, k}=0$. Thus, we deduce from Proposition 2.18 that $\left(r_{k}, k\right) \in w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$.

Observe now that, since $k \leq t,\left(r_{k}, k\right) \notin \llbracket 1, n \rrbracket \times \llbracket t+1, n \rrbracket$. Further, it is obvious that $\left(r_{k}, k\right) \notin \bigcup_{\alpha \in[1, t]} \llbracket 1, r_{\alpha}-1 \rrbracket \times\{\alpha\}$. Hence, $\left(r_{k}, k\right) \notin w_{\mathbf{r}}$.

All this together shows that $\left(r_{k}, k\right) \in w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)} \backslash w_{\mathbf{r}}=\bigcup_{l \in[1, n]}\{l\} \times \llbracket 1, \gamma_{l} \rrbracket$, so that $k \leq \gamma_{r_{k}}$.
However, since $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}$, we have $\gamma_{r_{k}} \leq k-1$. This is a contradiction and thus we have proved that $Y_{r_{k}, k} \notin J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ for all $k \in \llbracket 1, t \rrbracket$.

Let us now give an example for the elements $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}\left(\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \Gamma_{\mathbf{r}}\right)$ of Theorem [2.21] If $n=3, t=2$ and $\mathbf{r}=(1,3)$, we have already note that

$$
\Gamma_{\mathbf{r}}=\left\{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbb{N}^{3} \mid \gamma_{1}=0, \gamma_{2} \leq 1 \text { and } \gamma_{3} \leq 1\right\}
$$

so that the elements $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}\left(\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \Gamma_{\mathbf{r}}\right)$ of Theorem [2.21] are:

(As previously, if $w \in W$, the black boxes symbolize the elements of w.)

3 Number of rank $t \mathcal{H}$-invariant prime ideals in $O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$.

In this paragraph, using the previous section, we begin by constructing \mathcal{H}-invariant prime ideals of the algebra $R_{\mathbf{r}}^{+}:=\frac{O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)}{\left.\left\langle Y_{i, \alpha}\right| \alpha>t \text { or } i<r_{\alpha}\right\rangle}\left[\bar{Y}_{r_{1}, 1}^{-1}, \ldots, \bar{Y}_{r_{t}, t}^{-1}\right]$, where $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=$ $\left(r_{1}, \ldots, r_{t}\right)$ is a strictly increasing sequence of integers in the range $1, \ldots, n$. Next, following the route sketched in the introduction, we establish our main result: the number $\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|$ of \mathcal{H}-invariant prime ideals of $R=O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$ which contain all $(t+1) \times(t+1)$ quantum minors but not all $t \times t$ quantum minors is equal to $(t!)^{2} S(n+1, t+1)^{2}$, where $S(n+1, t+1)$ denotes the Stirling number of second kind associated to $n+1$ and $t+1$. From this result, we derive a description of the set of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$.

3.1 \mathcal{H}-invariant prime ideals in $R_{\mathbf{r}, 0}^{+}$.

Throughout this section, we fix $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$, and we define $w_{\mathbf{r}}$ as in the previous section.

As in [5. 2.1], we set $R_{\mathbf{r}, 0}^{+}=\frac{R}{\left\langle Y_{i, \alpha} \mid(i, \alpha) \in w_{\mathbf{r}}\right\rangle}$.
Recall (See [5] 2.1) that $R_{\mathbf{r}, 0}^{+}$can be written as an iterated Ore extension over \mathbb{K}. Thus, $R_{\mathbf{r}, 0}^{+}$ is a Noetherian domain. Moreover, since q is not a root of unity, it follows from [7] Theorem 3.2] that all primes of R are completely prime and thus, since this property survives in factors, all primes in the algebra $R_{\mathbf{r}, 0}^{+}$are completely prime.

Observe now that, since the indeterminates $Y_{i, \alpha}$ are \mathcal{H}-eigenvectors, $\left\langle Y_{i, \alpha} \mid(i, \alpha) \in w_{\mathbf{r}}\right\rangle$ is an \mathcal{H}-invariant ideal of R. Hence, the action of \mathcal{H} on R induces an action of \mathcal{H} on $R_{\mathbf{r}, 0}^{+}$by automorphisms. As usually, an \mathcal{H}-eigenvector x of $R_{\mathbf{r}, 0}^{+}$is a nonzero element $x \in R_{\mathbf{r}, 0}^{+}$such that $h(x) \in \mathbb{K}^{*} x$ for each $h \in \mathcal{H}$, and an ideal I of $R_{\mathbf{r}, 0}^{+}$is said to be \mathcal{H}-invariant if $h(I)=I$ for all $h \in \mathcal{H}$. Further, we denote by $\underline{\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}, 0}^{+}\right)}$the set of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}, 0}^{+}$.

Notations 3.1

- We denote by $\pi_{\mathbf{r}, 0}^{+}: R \rightarrow R_{\mathbf{r}, 0}^{+}$the canonical surjective \mathbb{K}-algebra homomorphism.
- If $(i, \alpha) \in \llbracket 1, n \rrbracket^{2}, \bar{Y}_{i, \alpha}$ denotes the element of $R_{\mathbf{r}, 0}^{+}$defined by $\bar{Y}_{i, \alpha}:=\pi_{\mathbf{r}, 0}^{+}\left(Y_{i, \alpha}\right)$.

Let $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}$ (See Notation 2.20) and define $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$ as in Theorem 2.21] Recall (See Theorem 2.21) that $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$ is an element of W and that the \mathcal{H}-invariant prime ideal $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ of R contains the indeterminates $Y_{i, \alpha}$ with $(i, \alpha) \in w_{\mathbf{r}}$, so that $\left\langle Y_{i, \alpha} \mid(i, \alpha) \in w_{\mathbf{r}}\right\rangle \subseteq$ $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$. Thus, $\pi_{\mathbf{r}, 0}^{+}\left(J_{\left.w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}\right)}\right)$ is a (completely) prime ideal of $R_{\mathbf{r}, 0}^{+}$. More precisely, we have:

Proposition 3.2

$J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}}:=\pi_{\mathbf{r}, 0}^{+}\left(J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}\right)$ is an \mathcal{H}-invariant (completely) prime ideal of $R_{\mathbf{r}, 0}^{+}$which does not contain the $\bar{Y}_{r_{k}, k}(k \in \llbracket 1, t \rrbracket)$.

Proof: We have already explained that $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}}$is a (completely) prime ideal of $R_{\mathbf{r}, 0}^{+}$. Moreover, since $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ is \mathcal{H}-invariant, it is easy to check that $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}}$is also \mathcal{H}-invariant. Finally, since $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}}$ does not contain the indeterminates $Y_{r_{k}, k}$ with $k \in \llbracket 1, t \rrbracket$ (See Theorem (2.21), $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}}^{+}$does not contain the $\bar{Y}_{r_{k}, k}=\pi_{\mathbf{r}, 0}^{+}\left(Y_{r_{k}, k}\right)$ with $k \in \llbracket 1, t \rrbracket$.

$3.2 \mathcal{H}$-invariant prime ideals in R_{r}^{+}.

As in the previous section, we fix $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$. In [5] 2.1], Goodearl and Lenagan have observed that the $\bar{Y}_{r_{k}, k}$ with $k \in \llbracket 1, t \rrbracket$ are regular normal elements in $R_{\mathbf{r}, 0}^{+}$, so that we can form the Ore localization:

$$
R_{\mathbf{r}}^{+}:=R_{\mathbf{r}, 0}^{+} S_{\mathbf{r}}^{-1}
$$

where $S_{\mathbf{r}}$ denotes the multiplicative system of $R_{\mathbf{r}, 0}^{+}$generated by the $\bar{Y}_{r_{k}, k}$ with $k \in \llbracket 1, t \rrbracket$.
In the previous section, we have noted that all the primes of $R_{\mathbf{r}, 0}^{+}$are completely prime. Since this property survives in localization, all the primes of $R_{\mathbf{r}}^{+}$are also completely prime.

Observe now that, since the $\bar{Y}_{r_{k}, k}$ with $k \in \llbracket 1, t \rrbracket$ are \mathcal{H}-eigenvectors of $R_{\mathbf{r}, 0}^{+}$, the action of \mathcal{H} on $R_{\mathbf{r}, 0}^{+}$extends to an action of \mathcal{H} on $R_{\mathbf{r}}^{+}$by automorphisms. We say that an ideal I of $R_{\mathbf{r}}^{+}$is $\mathcal{H}-$ invariant if $h(I)=I$ for all $h \in \mathcal{H}$ and we denote by \mathcal{H} - $\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)$the set of \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$. Observe now that contraction and extension provide inverse bijections between the set $\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)$and the set of those \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}, 0}^{+}$which are disjoint from S_{r}.

Let $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}$ (See Notation 2.20) and define $w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}$ as in Theorem 2.21] By Proposition 3.2] $J_{w_{\mathbf{r}},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}:=\pi_{\mathbf{r}, 0}^{+}\left(J_{\left.w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}\right)}\right)$ is an \mathcal{H}-invariant (completely) prime ideal of $R_{\mathbf{r}, 0}^{+}$which does not contain the $\bar{Y}_{r_{k}, k}(k \in \llbracket 1, t \rrbracket)$. Since $S_{\mathbf{r}}$ is generated by the $\bar{Y}_{r_{k}, k}(k \in \llbracket 1, t \rrbracket)$, $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}}^{+}$is an \mathcal{H}-invariant (completely) prime ideal of $R_{\mathbf{r}, 0}^{+}$which is disjoint from $S_{\mathbf{r}}$. Thus, we have the following statement:

Proposition 3.3

$J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1}$ is an \mathcal{H}-invariant (completely) prime ideal of $R_{\mathbf{r}}^{+}$.

We will prove later (See Section 3.4) that the $J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1}\left(\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}\right)$ are exactly the \mathcal{H}-invariant prime ideals of $R_{\mathbf{r}}^{+}$.

We deduce from the above Proposition 3.3 that:

Corollary 3.4

$R_{\mathbf{r}}^{+}$has at least $1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}} \mathcal{H}$-invariant prime ideals.

Proof: It follows from Proposition 3.3 that $R_{\mathbf{r}}^{+}$has at least $\left|\Gamma_{\mathbf{r}}\right| \mathcal{H}$-invariant prime ideals, and it is obvious that $\left|\Gamma_{\mathbf{r}}\right|=1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}}$.

3.3 Number of rank $t \mathcal{H}$-invariant prime ideals in $O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$.

For convenience, we recall the following definitions (See [14]):

Definitions 3.5

- Let m be a positive integer and let $M=\left(x_{i, \alpha}\right)_{(i, \alpha) \in[1, m]^{2}}$ be a square q-quantum matrix. The quantum determinant of M is defined by:

$$
\operatorname{det}_{q}(M):=\sum_{\sigma \in S_{m}}(-q)^{l(\sigma)} x_{1, \sigma(1)} \ldots x_{m, \sigma(m)}
$$

where S_{m} denotes the group of permutations of $\llbracket 1, m \rrbracket$ and $l(\sigma)$ denotes the length of the m-permuation σ.

- Let $\mathcal{Y}:=\left(Y_{i, \alpha}\right)_{(i, \alpha) \in[1, n]^{2}}$ be the q-quantum matrix of the canonical generators of R. The quantum determinant of a square sub-matrix of \mathcal{Y} is called a quantum minor.

We can now define the rank $t \mathcal{H}$-invariant prime ideals of R, as follows:

Definition 3.6

Let $t \in \llbracket 0, n \rrbracket$. An \mathcal{H}-invariant prime ideal J of $R=O_{q}\left(\mathcal{M}_{n}(\mathbb{K})\right)$ has rank t if J contains all $(t+1) \times(t+1)$ quantum minors but not all $t \times t$ quantum minors.
As in [5], 3.6], we denote by \mathcal{H}-Spec ${ }^{[t]}(R)$ the set of rank $t \mathcal{H}$-invariant prime ideals of R.

Note that there is only one element in $\mathcal{H}-\operatorname{Spec}^{[0]}(R):\left\langle Y_{i, \alpha} \mid(i, \alpha) \in \llbracket 1, n \rrbracket^{2}\right\rangle$, the augmentation ideal of R. Further, Goodearl and Lenagan have observed (See [5], 3.6) that $\mid \mathcal{H}$-Spec ${ }^{[1]}(R) \mid$ $=\left(2^{n}-1\right)^{2}$ and $\mid \mathcal{H}-$ Spec $^{[n]}(R) \mid=(n!)^{2}$.

Observation 3.7

The sets \mathcal{H}-Spec ${ }^{[t]}(R)(t \in \llbracket 0, n \rrbracket)$ partition the set \mathcal{H}-Spec ${ }^{[t]}(R)$.
Proof: Let P be an \mathcal{H}-invariant prime ideal of R. Let $t \in \llbracket 0, n \rrbracket$ be maximal such that P does not contain all $t \times t$ quantum minors. Then P clearly belongs to \mathcal{H}-Spec ${ }^{[t]}(R)$. Hence, we have proved that $\mathcal{H}-\operatorname{Spec}(R)=\bigcup_{t \in[0, n]} \mathcal{H}$-Spec ${ }^{[t]}(R)$. Since this union is obviously disjoint, we get $\mathcal{H}-\operatorname{Spec}(R)=\bigsqcup_{t \in[0, n]} \mathcal{H}-$ Spec $^{[t]}(R)$, as desired.

In [5], the authors have established the following result that will be our starting point to compute the cardinality of \mathcal{H}-Spec ${ }^{[t]}(R)$:

Proposition 3.8 (See [5], 3.6)

For all $t \in \llbracket 0, n \rrbracket$, we have $\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|=\left(\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|\right)^{2}$.
Before computing $\mid \mathcal{H}$-Spec ${ }^{[t]}(R) \mid$, we first give a lower bound for $\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|$.

Proposition 3.9

For any $t \in \llbracket 0, n \rrbracket$, we have

$$
\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right| \geq t!S(n+1, t+1)
$$

where $S(n+1, t+1)$ denotes the Stirling number of second kind associated to $n+1$ and $t+1$ (See, for instance, [15] for the definition of $S(n+1, t+1)$).

Proof : First, we deduce from Corollary 3.4 the following inequality:

$$
\begin{equation*}
\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right| \geq \sum_{\mathbf{r} \in \mathbf{R}_{t}} 1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}} \tag{3}
\end{equation*}
$$

On the other hand, we know (See [15], Exercise 16 p46) that:

$$
\begin{equation*}
S(n+1, t+1)=\sum_{a_{1}+\cdots+a_{t+1}=n+1} 1^{a_{1}-1} 2^{a_{2}-1} \ldots(t+1)^{a_{t+1}-1} . \tag{4}
\end{equation*}
$$

Observe now that the map $f:\left\{\left(a_{1}, \ldots, a_{t+1}\right) \in\left(\mathbb{N}^{*}\right)^{t+1} \mid a_{1}+\cdots+a_{t+1}=n+1\right\} \rightarrow\left\{\left(r_{1}, \ldots, r_{t}\right) \in\right.$ $\left.\left(\mathbb{N}^{*}\right)^{t} \mid 1 \leq r_{1}<\cdots<r_{t} \leq n\right\}=\mathbf{R}_{t}$ defined by $f\left(a_{1}, \ldots, a_{t+1}\right)=\left(a_{1}, a_{1}+a_{2}, \ldots, a_{1}+\cdots+a_{t}\right)$ is a bijection and that its inverse f^{-1} is defined by $f^{-1}\left(r_{1}, \ldots, r_{t}\right)=\left(r_{1}, r_{2}-r_{1}, \ldots, r_{t}-r_{t-1}, n+\right.$ $1-r_{t}$) for all $\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$. Thus, by means of the change of variables $\left(a_{1}, \ldots, a_{t+1}\right)=$ $f^{-1}\left(r_{1}, \ldots, r_{t}\right)$, the above equality (4) is transformed to

$$
S(n+1, t+1)=\sum_{1 \leq r_{1}<\cdots<r_{t} \leq n} 1^{r_{1}-1} 2^{r_{2}-r_{1}-1} \ldots t^{r_{t}-r_{t-1}-1}(t+1)^{n-r_{t}},
$$

so that

$$
t!S(n+1, t+1)=\sum_{\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}} 1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}} .
$$

Thus, we deduce from inequality (3) that:

$$
\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right| \geq t!S(n+1, t+1)
$$

as desired.

Remark 3.10

The proof of the above Proposition 3.9 shows that, if there exists $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in$ \mathbf{R}_{t} such that $\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|>1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}}$, then

$$
\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|>t!S(n+1, t+1)
$$

We can now prove our main result which was conjectured by Goodearl, Lenagan and McCammond:

Theorem 3.11

If $t \in \llbracket 0, n \rrbracket$, then $\mid \mathcal{H}$-Spec ${ }^{[t]}(R) \mid=(t!S(n+1, t+1))^{2}$.
Proof : First, since the sets \mathcal{H}-Spec ${ }^{[t]}(R)(t \in \llbracket 0, n \rrbracket)$ partition \mathcal{H}-Spec (R) (See Observation 3.7), we have :

$$
|\mathcal{H}-\operatorname{Spec}(R)|=\sum_{t=0}^{n}\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right| .
$$

Recall now (See Proposition 2.7) that $|\mathcal{H}-\operatorname{Spec}(R)|$ is equal to the poly-Bernoulli number $B_{n}^{(-n)}$. Thus, we deduce from the above equality that:

$$
B_{n}^{(-n)}=\sum_{t=0}^{n} \mid \mathcal{H}-\text { Spec }^{[t]}(R) \mid
$$

Further, by [1. Theorem 2], $B_{n}^{(-n)}$ can also be written as follows:

$$
B_{n}^{(-n)}=\sum_{t=0}^{n}(t!S(n+1, t+1))^{2} .
$$

Hence, we have:

$$
\sum_{t=0}^{n} \mid \mathcal{H}-\text { Spec }^{[t]}(R) \mid=\sum_{t=0}^{n}(t!S(n+1, t+1))^{2},
$$

that is:

$$
\begin{equation*}
\sum_{t=0}^{n}\left(\mid \mathcal{H}-\text { Spec }^{[t]}(R) \mid-(t!S(n+1, t+1))^{2}\right)=0 \tag{5}
\end{equation*}
$$

On the other hand, recall (See [5, 3.6) that $\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|=\left(\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|\right)^{2}$. Thus, since $\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right| \geq t!S(n+1, t+1)$ (See Proposition [3.9), we have:

$$
\mid \mathcal{H}-\text { Spec }^{[t]}(R) \mid \geq(t!S(n+1, t+1))^{2} .
$$

In other words, each of the terms which appears in the sum on the left hand side of (5) is non-negative. Since this sum is equal to zero, each term of this sum must be zero, that is, for all $t \in \llbracket 0, n \rrbracket$, we have:

$$
\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|=(t!S(n+1, t+1))^{2} .
$$

Remark 3.12

The cases $t=0, t=1$ and $t=n$ were already known (See [5], 3.6).

3.4 Description of the set $\mathcal{H}-\operatorname{Spec}\left(R_{\mathrm{r}}^{+}\right)$.

Throughout this section, we fix $t \in \llbracket 0, n \rrbracket$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{t}\right) \in \mathbf{R}_{t}$. We now use the above Theorem 3.11 to obtain a description of the set $\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)$. More precisely, we show that the only \mathcal{H}-invariant prime ideals of R_{r}^{+}are those obtained in Proposition [3.3] that is, in the notations of Section 3.2

Theorem 3.13

$$
\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)=\left\{J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1} \mid\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}\right\}
$$

Proof: We already know (See Proposition 3.3) that

$$
\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right) \supseteq\left\{J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1} \mid\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}\right\} .
$$

Assume now that

$$
\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right) \supsetneqq\left\{J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1} \mid\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}\right\} .
$$

Then we have $\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|>\left|\Gamma_{\mathbf{r}}\right|$. Since $\left|\Gamma_{\mathbf{r}}\right|=1^{r_{1} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}} \text {, we get }{ }^{\text {a }} \text {, }}$ $\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|>1^{r_{1}} 2^{r_{2}-r_{1}} \ldots t^{r_{t}-r_{t-1}}(t+1)^{n-r_{t}}$. Thus, it follows from Remark 3.10 that

$$
\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|>t!S(n+1, t+1) .
$$

Hence we have

$$
\left(\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-S \operatorname{pec}\left(R_{\mathbf{r}}^{+}\right)\right|\right)^{2}>(t!S(n+1, t+1))^{2}
$$

Recall now (See [5] 3.6]) that

$$
\left|\mathcal{H}-\operatorname{Spec}^{[t]}(R)\right|=\left(\sum_{\mathbf{r} \in \mathbf{R}_{t}}\left|\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)\right|\right)^{2}
$$

All this together shows that $\mid \mathcal{H}$-Spec ${ }^{[t]}(R) \mid>(t!S(n+1, t+1))^{2}$.
However, it follows from Theorem 3.11 that $\mid \mathcal{H}$-Spec ${ }^{[t]}(R) \mid=(t!S(n+1, t+1))^{2}$. This is a contradiction and thus we have proved that $\mathcal{H}-\operatorname{Spec}\left(R_{\mathbf{r}}^{+}\right)=\left\{J_{w_{\mathbf{r},\left(\gamma_{1}, \ldots, \gamma_{n}\right)}^{+}} S_{\mathbf{r}}^{-1} \mid\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma_{\mathbf{r}}\right\}$.

Acknowledgments.

I thank T.H. Lenagan for very helpful conversations, and K.R. Goodearl for useful comments.

References

[1] T. Arakawa and M. Kaneko, On poly-Bernoulli numbers, Comment Math. Univ. St. Paul 48 (2) (1999), 159-167.
[2] G. Cauchon, Quotients premiers de $O_{q}\left(\mathcal{M}_{n}(k)\right)$, J. Algebra 180 (1996), 530-545.
[3] , Effacement des dérivations et spectres premiers d'algèbres quantiques, J. Algebra. 260 (2003), 476-518.
[4] , Spectre premier de $O_{q}\left(\mathcal{M}_{n}(k)\right)$, image canonique et séparation normale, J. Algebra. 260 (2003), 519-569.
[5] K.R. Goodearl and T.H. Lenagan, Prime ideals invariant under winding automorphisms in quantum matrices, Internat. J. Math. 13 (2002), 497-532.
[6] , Winding-invariant prime ideals in quantum 3×3 matrices, J. Algebra. 260 (2003), 657-687.
[7] K.R. Goodearl and E.S. Letzter, Prime factor algebras of the coordinate ring of quantum matrices, Proc. Amer. Math. Soc. 121 (1994), 1017-1025.
[8] , Prime and primitive spectra of multiparameter quantum affine spaces, Trends in ring theory (Miskolc, 1996), Canad. Math. Soc. Conf. Proc. Series, vol. 22, 1998, pp. 39-58.
[9] , The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), 1381-1403.
[10] M. Kaneko, Poly-Bernoulli numbers, J. de Théorie des Nombres de Bordeaux 9 (1997), 221-228.
[11] S. Launois, Generators for the \mathcal{H}-invariant prime ideals in $O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$, to appear in Proceedings of the Edinburgh Mathematical Society.
$[12]$ _, Les idéaux premiers invariants de $O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$, to appear in J. Algebra.
[13] ___ Idéaux premiers \mathcal{H}-invariants de l'algèbre des matrices quantiques, Thèse de doctorat, Université de Reims, 2003.
[14] B.J. Parshall and J.P. Wang, Quantum Linear Groups, Mem. Amer. Math. Soc., 439, 1991.
[15] R.P. Stanley, Enumerative Combinatorics I, Cambridge University Press, 1997.

