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On the automorphism groups of q-enveloping algebras
of nilpotent Lie algebras.

Stéphane Launois∗

Abstract

We investigate the automorphism group of the quantised enveloping algebra
U+

q (g) of the positive nilpotent part of certain simple complex Lie algebras g in
the case where the deformation parameter q ∈ C

∗ is not a root of unity. Studying
its action on the set of minimal primitive ideals of U+

q (g) we compute this group in
the cases where g = sl3 and g = so5 confirming a Conjecture of Andruskiewitsch
and Dumas regarding the automorphism group of U+

q (g). In the case where g = sl3,
we retrieve the description of the automorphism group of the quantum Heisenberg
algebra that was obtained independently by Alev and Dumas, and Caldero. In the
case where g = so5, the automorphism group of U+

q (g) was computed in [16] by
using previous results of Andruskiewitsch and Dumas. In this paper, we give a new
(simpler) proof of the Conjecture of Andruskiewitsch and Dumas in the case where
g = so5 based both on the original proof and on graded arguments developed in [17]
and [18].

Introduction

In the classical situation, there are few results about the automorphism group of the
enveloping algebra U(L) of a Lie algebra L over C; except when dimL ≤ 2, these groups
are known to possess “wild” automorphisms and are far from being understood. For
instance, this is the case when L is the three-dimensional abelian Lie algebra [22], when
L = sl2 [14] and when L is the three-dimensional Heisenberg Lie algebra [1].

In this paper we study the quantum situation. More precisely, we study the automor-
phism group of the quantised enveloping algebra U+

q (g) of the positive nilpotent part of a
finite dimensional simple complex Lie algebra g in the case where the deformation param-
eter q ∈ C∗ is not a root of unity. Although it is a common belief that quantum algebras
are ”rigid” and so should possess few symmetries, little is known about the automorphism
group of U+

q (g). Indeed, until recently, this group was known only in the case where g = sl3

∗This research was supported by a Marie Curie Intra-European Fellowship within the 6th European
Community Framework Programme held at the University of Edinburgh.
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whereas the structure of the automorphism group of the augmented form Ǔq(b
+), where

b+ is the positive Borel subalgebra of g, has been described in [9] in the general case.
The automorphism group of U+

q (sl3) was computed independently by Alev-Dumas, [2],
and Caldero, [8], who showed that

Aut(U+
q (sl3)) ≃ (C∗)2

⋊ S2.

Recently, Andruskiewitsch and Dumas, [4] have obtained partial results on the automor-
phism group of U+

q (so5). In view of their results and the description of Aut(U+
q (sl3)), they

have proposed the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

Aut(U+
q (g)) ≃ (C∗)rk(g)

⋊ autdiagr(g),

where autdiagr(g) denotes the group of automorphisms of the Dynkin diagram of g.

Recently we proved this conjecture in the case where g = so5, [16], and, in collaboration
with Samuel Lopes, in the case where g = sl4, [18]. The techniques in these two cases are
very different. Our aim in this paper is to show how one can prove the Andruskiewitsch-
Dumas Conjecture in the cases where g = sl3 and g = so5 by first studying the action of
Aut(U+

q (g)) on the set of minimal primitive ideals of U+
q (g) - this was the main idea in

[16] -, and then using graded arguments as developed in [17] and [18]. This strategy leads
us to a new (simpler) proof of the Andruskiewitsch-Dumas Conjecture in the case where
g = so5.

Throughout this paper, N denotes the set of nonnegative integers, C∗ := C \ {0} and q
is a nonzero complex number that is not a root of unity.

1 Preliminaries.

In this section, we present the H-stratification theory of Goodearl and Letzter for the
positive part U+

q (g) of the quantised enveloping algebra of a simple finite-dimensional
complex Lie algebra g. In particular, we present a criterion (due to Goodearl and Letzter)
that characterises the primitive ideals of U+

q (g) among its prime ideals. In the next section,
we will use this criterion in order to describe the primitive spectrum of U+

q (g) in the cases
where g = sl3 and g = so5.

1.1 Quantised enveloping algebras and their positive parts.

Let g be a simple Lie C-algebra of rank n. We denote by π = {α1, . . . , αn} the set of simple
roots associated to a triangular decomposition g = n− ⊕ h⊕ n+. Recall that π is a basis of
an euclidean vector space E over R, whose inner product is denoted by ( , ) (E is usually
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denoted by h∗
R

in Bourbaki). We denote by W the Weyl group of g, that is, the subgroup
of the orthogonal group of E generated by the reflections si := sαi

, for i ∈ {1, . . . , n},
with reflecting hyperplanes Hi := {β ∈ E | (β, αi) = 0}, i ∈ {1, . . . , n}. The length of
w ∈ W is denoted by l(w). Further, we denote by w0 the longest element of W . We denote
by R+ the set of positive roots and by R the set of roots. Set Q+ := Nα1 ⊕ · · · ⊕ Nαn

and Q := Zα1 ⊕ · · · ⊕ Zαn. Finally, we denote by A = (aij) ∈ Mn(Z) the Cartan matrix
associated to these data. As g is simple, aij ∈ {0,−1,−2,−3} for all i 6= j.

Recall that the scalar product of two roots (α, β) is always an integer. As in [5], we
assume that the short roots have length

√
2.

For all i ∈ {1, . . . , n}, set qi := q
(αi,αi)

2 and

[

m
k

]

i

:=
(qi − q−1

i ) . . . (qm−1
i − q1−m

i )(qm
i − q−m

i )

(qi − q−1
i ) . . . (qk

i − q−k
i )(qi − q−1

i ) . . . (qm−k
i − qk−m

i )

for all integers 0 ≤ k ≤ m. By convention,

[

m
0

]

i

:= 1.

The quantised enveloping algebra Uq(g) of g over C associated to the previous data is the
C-algebra generated by the indeterminates E1, . . . , En, F1, . . . , Fn, K±1

1 , . . . , K±1
n subject to

the following relations:
KiKj = KjKi

KiEjK
−1
i = q

aij

i Ej and KiFjK
−1
i = q

−aij

i Fj

EiFj − FjEi = δij

Ki − K−1
i

qi − q−1
i

and the quantum Serre relations:

1−aij
∑

k=0

(−1)k

[

1 − aij

k

]

i

E
1−aij−k

i EjE
k
i = 0 (i 6= j) (1)

and
1−aij
∑

k=0

(−1)k

[

1 − aij

k

]

i

F
1−aij−k

i FjF
k
i = 0 (i 6= j).

We refer the reader to [5, 13, 15] for more details on this (Hopf) algebra. Further, as
usual, we denote by U+

q (g) (resp. U−
q (g)) the subalgebra of Uq(g) generated by E1, . . . , En

(resp. F1, . . . , Fn) and by U0 the subalgebra of Uq(g) generated by K±1
1 , . . . , K±1

n . More-
over, for all α = a1α1 + · · · + anαn ∈ Q, we set

Kα := Ka1
1 · · ·Kan

n .
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As in the classical case, there is a triangular decomposition as vector spaces:

U−
q (g) ⊗ U0 ⊗ U+

q (g) ≃ Uq(g).

In this paper we are concerned with the algebra U+
q (g) that admits the following presenta-

tion, see [13, Theorem 4.21]. The algebra U+
q (g) is (isomorphic to) the C-algebra generated

by n indeterminates E1, . . . , En subject to the quantum Serre relations (1).

1.2 PBW-basis of U+
q (g).

To each reduced decomposition of the longest element w0 of the Weyl group W of g, Lusztig
has associated a PBW basis of U+

q (g), see for instance [19, Chapter 37], [13, Chapter 8] or
[5, I.6.7]. The construction relates to a braid group action by automorphisms on U+

q (g).
Let us first recall this action. For all s ∈ N and i ∈ {1, . . . , n}, we set

[s]i :=
qs
i − q−s

i

qi − q−1
i

and [s]i! := [1]i . . . [s − 1]i[s]i.

As in [5, I.6.7], we denote by Ti, for 1 ≤ i ≤ n, the automorphism of U+
q (g) defined by:

Ti(Ei) = −FiKi,

Ti(Ej) =

−aij
∑

s=0

(−1)s−aijq−s
i E

(−aij−s)
i EjE

(s)
i , i 6= j

Ti(Fi) = −K−1
i Ei,

Ti(Fj) =

−aij
∑

s=0

(−1)s−aijqs
i F

(s)
i FjF

(−aij−s)
i , i 6= j

Ti(Kα) = Ksi(α), α ∈ Q,

where E
(s)
i :=

Es
i

[s]i!
and F

(s)
i :=

F s
i

[s]i!
for all s ∈ N. It was proved by Lusztig that the

automorphisms Ti satisfy the braid relations, that is, if sisj has order m in W , then

TiTjTi · · · = TjTiTj . . . ,

where there are exactly m factors on each side of this equality.
The automorphisms Ti can be used in order to describe PBW bases of U+

q (g) as follows.
It is well-known that the length of w0 is equal to the number N of positive roots of
g. Let si1 · · · siN be a reduced decomposition of w0. For k ∈ {1, . . . , N}, we set βk :=
si1 · · · sik−1

(αik). Then {β1, . . . , βN} is exactly the set of positive roots of g. Similarly, we
define elements Eβk

of Uq(g) by

Eβk
:= Ti1 · · ·Tik−1

(Eik).

Note that the elements Eβk
depend on the reduced decomposition of w0. The following

well-known results were proved by Lusztig and Levendorskii-Soibelman.
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Theorem 1.1 (Lusztig and Levendorskii-Soibelman)

1. For all k ∈ {1, . . . , N}, the element Eβk
belongs to U+

q (g).

2. If βk = αi, then Eβk
= Ei.

3. The monomials Ek1
β1
· · ·EkN

βN
, with k1, . . . , kN ∈ N, form a linear basis of U+

q (g).

4. For all 1 ≤ i < j ≤ N , we have

Eβj
Eβi

− q−(βi,βj)Eβi
Eβj

=
∑

aki+1,...,kj−1
E

ki+1

βi+1
· · ·Ekj−1

βj−1
,

where each aki+1,...,kj−1
belongs to C.

As a consequence of this result, U+
q (g) can be presented as a skew-polynomial algebra:

U+
q (g) = C[Eβ1 ][Eβ2 ; σ2, δ2] · · · [EβN

; σN , δN ],

where each σi is a linear automorphism and each δi is a σi-derivation of the appropriate
subalgebra. In particular, U+

q (g) is a noetherian domain and its group of invertible elements
is reduced to nonzero complex numbers.

1.3 Prime and primitive spectra of U+
q (g).

We denote by Spec(U+
q (g)) the set of prime ideals of U+

q (g). First, as q is not a root of
unity, it was proved by Ringel [21] (see also [10, Theorem 2.3]) that, as in the classical
situation, every prime ideal of U+

q (g) is completely prime.
In order to study the prime and primitive spectra of U+

q (g), we will use the stratifica-
tion theory developed by Goodearl and Letzter. This theory allows the construction of a
partition of these two sets by using the action of a suitable torus on U+

q (g). More precisely,
the torus H := (C∗)n acts naturally by automorphisms on U+

q (g) via:

(h1, . . . , hn).Ei = hiEi for all i ∈ {1, . . . , n}.

(It is easy to check that the quantum Serre relations are preserved by the group H.)
Recall (see [4, 3.4.1]) that this action is rational. (We refer the reader to [5, II.2.] for the
defintion of a rational action.) A non-zero element x of U+

q (g) is an H-eigenvector of U+
q (g)

if h.x ∈ C∗x for all h ∈ H. An ideal I of U+
q (g) is H-invariant if h.I = I for all h ∈ H. We

denote by H-Spec(U+
q (g)) the set of all H-invariant prime ideals of U+

q (g). It turns out
that this is a finite set by a theorem of Goodearl and Letzter about iterated Ore extensions,
see [11, Proposition 4.2]. In fact, one can be even more precise in our situation. Indeed,
in [12], Gorelik has also constructed a stratification of the prime spectrum of U+

q (g) using
tools coming from representation theory. It turns out that her stratification coincides with
the H-stratification, so that we deduce from [12, Corollary 7.1.2] that

Proposition 1.2 (Gorelik) U+
q (g) has exactly |W | H-invariant prime ideals.
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The action of H on U+
q (g) allows via the H-stratification theory of Goodearl and Letzter

(see [5, II.2]) the construction of a partition of Spec(U+
q (g)) as follows. If J is an H-

invariant prime ideal of U+
q (g), we denote by SpecJ(U+

q (g)) the H-stratum of Spec(U+
q (g))

associated to J . Recall that SpecJ(U+
q (g)) := {P ∈ Spec(U+

q (g)) |
⋂

h∈H h.P = J}. Then
the H-strata SpecJ(U+

q (g)) (J ∈ H-Spec(U+
q (g))) form a partition of Spec(U+

q (g)) (see [5,
II.2]):

Spec(U+
q (g)) =

⊔

J∈H-Spec(U+
q (g))

SpecJ(U+
q (g)).

Naturally, this partition induces a partition of the set Prim(U+
q (g)) of all (left) primi-

tive ideals of U+
q (g) as follows. For all J ∈ H-Spec(U+

q (g)), we set PrimJ(U+
q (g)) :=

SpecJ(U+
q (g))∩Prim(U+

q (g)). Then it is obvious that the H-strata PrimJ(U+
q (g)) (J ∈ H-

Spec(U+
q (g))) form a partition of Prim(U+

q (g)):

Prim(U+
q (g)) =

⊔

J∈H-Spec(U+
q (g))

PrimJ(U+
q (g)).

More interestingly, because of the finiteness of the set of H-invariant prime ideals of U+
q (g),

the H-stratification theory provides a useful tool to recognise primitive ideals without
having to find all its irreductible representations! Indeed, following previous works of
Hodges-Levasseur, Joseph, and Brown-Goodearl, Goodearl and Letzter have characterised
the primitive ideals of U+

q (g) as follows, see [11, Corollary 2.7] or [5, Theorem II.8.4].

Theorem 1.3 (Goodearl-Letzter) PrimJ(U+
q (g)) (J ∈ H-Spec(U+

q (g))) coincides with
those primes in SpecJ(U+

q (g)) that are maximal in SpecJ(U+
q (g)).

2 Automorphism group of U+
q (g).

In this section, we investigate the automorphism group of U+
q (g) viewed as the algebra

generated by n indeterminates E1, . . . , En subject to the quantum Serre relations. This
algebra has some well-identified automorphisms. First, there are the so-called torus auto-
morphisms; let H = (C∗)n, where n still denotes the rank of g. As U+

q (g) is the C-algebra
generated by n indeterminates subject to the quantum Serre relations, it is easy to check
that each λ̄ = (λ1, . . . , , λn) ∈ H determines an algebra automorphism φλ̄ of U+

q (g) with

φλ̄(Ei) = λiEi for i ∈ {1, . . . , n}, with inverse φ−1
λ̄

= φλ̄−1 . Next, there are the so-called di-
agram automorphisms coming from the symmetries of the Dynkin diagram of g. Namely,
let w be an automorphism of the Dynkin diagram of g, that is, w is an element of the
symmetric group Sn such that (αi, αj) = (αw(i), αw(j)) for all i, j ∈ {1, . . . , n}. Then one
defines an automorphism, also denoted w, of U+

q (g) by: w(Ei) = Ew(i). Observe that

φλ̄ ◦ w = w ◦ φ(λw(1) ,...,,λw(n)).

6



We denote by G the subgroup of Aut(U+
q (g)) generated by the torus automorphisms

and the diagram automorphisms. Observe that

G ≃ H ⋊ autdiagr(g),

where autdiagr(g) denotes the set of diagram automorphisms of g.
The group Aut(U+

q (sl3)) was computed independently by Alev and Dumas, see [2,
Proposition 2.3] , and Caldero, see [8, Proposition 4.4]; their results show that, in the case
where g = sl3, we have

Aut(U+
q (sl3)) = G.

About ten years later, Andruskiewitsch and Dumas investigated the case where g = so5,
see [4]. In this case, they obtained partial results that lead them to the following conjec-
ture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

Aut(U+
q (g)) = G.

This conjecture was recently confirmed in two new cases: g = so5, [16], and g = sl4, [18].
Our aim in this section is to show how one can use the action of the automorphism group
of U+

q (g) on the primitive spectrum of this algebra in order to prove the Andruskiewitsch-
Dumas Conjecture in the cases where g = sl3 and g = so5.

2.1 Normal elements of U+
q (g).

Recall that an element a of U+
q (g) is normal provided the left and right ideals generated

by a in U+
q (g) coincide, that is, if

aU+
q (g) = U+

q (g)a.

In the sequel, we will use several times the following well-known result concerning
normal elements of U+

q (g).

Lemma 2.1 Let u and v be two nonzero normal elements of U+
q (g) such that 〈u〉 = 〈v〉.

Then there exist λ, µ ∈ C∗ such that u = λv and v = µu.

Proof. It is obvious that units λ, µ exist with these properties. However, the set of units
of U+

q (g) is precisely C∗. �

7



2.2 N-grading on U+
q (g) and automorphisms.

As the quantum Serre relations are homogeneous in the given generators, there is an N-
grading on U+

q (g) obtained by assigning to Ei degree 1. Let

U+
q (g) =

⊕

i∈N

U+
q (g)i (2)

be the corresponding decomposition, with U+
q (g)i the subspace of homogeneous elements

of degree i. In particular, U+
q (g)0 = C and U+

q (g)1 is the n-dimensional space spanned
by the generators E1, . . . , En. For t ∈ N set U+

q (g)≥t =
⊕

i≥t U
+
q (g)i and define U+

q (g)≤t

similarly.
We say that the nonzero element u ∈ U+

q (g) has degree t, and write deg(u) = t, if
u ∈ U+

q (g)≤t \ U+
q (g)≤t−1 (using the convention that U+

q (g)≤−1 = {0}). As U+
q (g) is a

domain, deg(uv) = deg(u) + deg(v) for u, v 6= 0.

Definition 2.2 Let A =
⊕

i∈N
Ai be an N-graded C-algebra with A0 = C which is generated

as an algebra by A1 = Cx1 ⊕ · · · ⊕ Cxn. If for each i ∈ {1, . . . , n} there exist 0 6= a ∈ A
and a scalar qi,a 6= 1 such that xia = qi,aaxi, then we say that A is an N-graded algebra
with enough q-commutation relations.

The algebra U+
q (g), endowed with the grading just defined, is a connected N-graded

algebra with enough q-commutation relations. Indeed, if i ∈ {1, . . . , n}, then there exists
u ∈ U+

q (g) such that Eiu = q•uEi where • is a nonzero integer. This can be proved as
follows. As g is simple, there exists an index j ∈ {1, . . . , n} such that j 6= i and aij 6= 0,
that is, aij ∈ {−1,−2,−3}. Then sisj is a reduced expression in W , so that one can find
a reduced expression of w0 starting with sisj, that is, one can write

w0 = sisjsi3 . . . siN .

With respect to this reduced expression of w0, we have with the notation of Section 1.2:

β1 = αi and β2 = si(αj) = αj − aijαi

Then it follows from Theorem 1.1 that Eβ1 = Ei, Eβ2 = Eαj−aijαi
and

EiEβ2 = q(αi,αj−aijαi)Eβ2Ei,

that is,
EiEβ2 = q−(αi,αj)Eβ2Ei.

As aij 6= 0, we have (αi, αj) 6= 0 and so q−(αi,αj) 6= 1 since q is not a root of unity. So we
have just proved:

Proposition 2.3 U+
q (g) is a connected N-graded algebra with enough q-commutation re-

lations.
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One of the advantages of N-graded algebras with enough q-commutation relations is
that any automorphism of such an algebra must conserve the valuation associated to the
N-graduation. More precisely, as U+

q (g) is a connected N-graded algebra with enough q-
commutation relations, we deduce from [18] (see also [17, Proposition 3.2]) the following
result.

Corollary 2.4 Let σ ∈ Aut(U+
q (g)) and x ∈ U+

q (g)d \ {0}. Then σ(x) = yd + y>d, for
some yd ∈ U+

q (g)d \ {0} and y>d ∈ U+
q (g)≥d+1.

2.3 The case where g = sl3.

In this section, we investigate the automorphism group of U+
q (g) in the case where g = sl3.

In this case the Cartan matrix is A =

(

2 −1
−1 2

)

, so that U+
q (sl3) is the C-algebra

generated by two indeterminates E1 and E2 subject to the following relations:

E2
1E2 − (q + q−1)E1E2E1 + E2E

2
1 = 0 (3)

E2
2E1 − (q + q−1)E2E1E2 + E1E

2
2 = 0 (4)

We often refer to this algebra as the quantum Heisenberg algebra, and sometimes we denote
it by H, as in the classical situation the enveloping algebra of sl+3 is the so-called Heisenberg
algebra.

We now make explicit a PBW basis of H. The Weyl group of sl3 is isomorphic to the
symmetric group S3, where s1 is identified with the transposition (1 2) and s2 is identified
with (2 3). Its longest element is then w0 = (13); it has two reduced decompositions:
w0 = s1s2s1 = s2s1s2. Let us choose the reduced decomposition s1s2s1 of w0 in order to
construct a PBW basis of U+

q (sl3). According to Section 1.2, this reduced decomposition
leads to the following root vectors:

Eα1 = E1, Eα1+α2 = T1(E2) = −E1E2 + q−1E2E1 and Eα2 = T1T2(E1) = E2.

In order to simplify the notation, we set E3 := −E1E2 + q−1E2E1. Then, it follows from
Theorem 1.1 that

• The monomials Ek1
1 Ek3

3 Ek2
2 , with k1, k2, k3 nonnegative integers, form a PBW-basis

of U+
q (sl3).

• H is the iterated Ore extension over C generated by the indeterminates E1, E3, E2

subject to the following relations:

E3E1 = q−1E1E3, E2E3 = q−1E3E2, E2E1 = qE1E2 + qE3.

In particular, H is a Noetherian domain, and its group of invertible elements is
reduced to C∗.
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• It follows from the previous commutation relations between the root vectors that E3

is a normal element in H, that is, E3H = HE3.

In order to describe the prime and primitive spectra of H, we need to introduce two
other elements. The first one is the root vector E ′

3 := T2(E1) = −E2E1 + q−1E1E2. This
root vector would have appeared if we have choosen the reduced decomposition s2s1s2 of w0

in order to construct a PBW basis of H. It follows from Theorem 1.1 that E ′
3 q-commutes

with E1 and E2, so that E ′
3 is also a normal element of H. Moreover, one can describe the

centre of H using the two normal elements E3 and E ′
3. Indeed, in [3, Corollaire 2.16], Alev

and Dumas have described the centre of U+
q (sln); independently Caldero has described the

centre of U+
q (g) for arbitrary g, see [7]. In our particular situation, their results show that

the centre Z(H) of H is a polynomial ring in one variable Z(H) = C[Ω], where Ω = E3E
′
3.

We are now in position to describe the prime and primitive spectra of H = U+
q (sl(3));

this was first achieved by Malliavin who obtained the following picture for the poset of
prime ideals of H, see [20, Théorème 2.4]:

〈〈E1, E2 − β〉〉

AA
AA

AA
AA

AA
AA

AA
AA

〈〈E1, E2〉〉

��
��

��
��

��
��

��
�

==
==

==
==

==
==

==
=

〈〈E1 − α, E2〉〉

}}
}}

}}
}}

}}
}}

}}
}}

}

〈E1〉

}}
}}

}}
}}

}}
}}

}}
}}

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 〈E2〉

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

AA
AA

AA
AA

AA
AA

AA
AA

A

〈〈E3〉〉

OOOOOOOOOOOOOOOOOOOOOOOOOO
〈〈Ω − γ〉〉 〈〈E ′

3〉〉

oooooooooooooooooooooooooo

〈0〉
where α, β, γ ∈ C

∗.
Recall from Section 1.3 that the torus H = (C∗)2 acts on U+

q (sl3) by automorphisms
and that the H-stratification theory of Goodearl and Letzter constructs a partition of the
prime spectrum of U+

q (sl3) into so-called H-strata, this partition being indexed by the
H-invariant prime ideals of U+

q (sl3). Using this description of Spec(U+
q (sl3)), it is easy to

identify the 6 = |W | H-invariant prime ideals of H and their corresponding H-strata. As
E1, E2, E3 and E ′

3 are H-eigenvectors, the 6 H-invariant primes are:

〈0〉, 〈E3〉, 〈E ′
3〉, 〈E1〉, 〈E2〉 and 〈E1, E2〉.

Moreover the corresponding H-strata are:
Spec〈0〉(H) = {〈0〉} ∪ {〈Ω − γ〉 | γ ∈ C

∗},
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Spec〈E3〉(H) = {〈E3〉},
Spec〈E′

3〉
(H) = {〈E ′

3〉},
Spec〈E1〉(H) = {〈E1〉} ∪ {〈E1, E2 − β〉 | β ∈ C∗},
Spec〈E2〉(H) = {〈E2〉} ∪ {〈E1 − α, E2〉 | α ∈ C

∗}
and Spec〈E1,E2〉(H) = {〈E1, E2〉}.

We deduce from this description of the H-strata and the the fact that primitive ideals
are exactly those primes that are maximal within their H-strata, see Theorem 1.3, that
the primitive ideals of U+

q (sl3) are exactly those primes that appear in double brackets in
the previous picture.

We now investigate the group of automorphisms of H = U+
q (sl3). In that case, the torus

acting naturally on U+
q (sl3) is H = (C∗)2, there is only one non-trivial diagram automor-

phism w that exchanges E1 and E2, and so the subgroup G of Aut(U+
q (sl3)) generated by

the torus and diagram automorphisms is isomorphic to the semi-direct product (C∗)2 ⋊S2.
We want to prove that Aut(U+

q (sl3)) = G.
In order to do this, we study the action of Aut(U+

q (sl3)) on the set of primitive ideals
that are not maximal. As there are only two of them, 〈E3〉 and 〈E ′

3〉, an automorphism of
H will either fix them or permute them.

Let σ be an automorphism of U+
q (sl3). It follows from the previous observation that

either σ(〈E3〉) = 〈E3〉 and σ(〈E ′
3〉) = 〈E ′

3〉,

or σ(〈E3〉) = 〈E ′
3〉 and σ(〈E ′

3〉) = 〈E3〉.
As it is clear that the diagram automorphism w permutes the ideals 〈E3〉 and 〈E ′

3〉, we get
that there exists an automorphism g ∈ G such that

g ◦ σ(〈E3〉) = 〈E3〉 and g ◦ σ(〈E ′
3〉) = 〈E ′

3〉.

Then, as E3 and E ′
3 are normal, we deduce from Lemma 2.1 that there exist λ, λ′ ∈ C∗

such that
g ◦ σ(E3) = λE3 and g ◦ σ(E ′

3) = λ′E ′
3.

In order to prove that g ◦ σ is an element of G, we now use the N-graduation of U+
q (sl3)

introduced in Section 2.2. With respect to this graduation, E1 and E2 are homogeneous of
degree 1, and so E3 and E ′

3 are homogeneous of degree 2. Moreover, as (q−2 − 1)E1E2 =
E3 + q−1E ′

3, we deduce from the above discussion that

g ◦ σ(E1E2) =
1

q−2 − 1

(

λE3 + q−1λ′E ′
3

)

has degree two. On the other hand, as U+
q (sl3) is a connected N-graded algebra with

enough q-commutation relations by Proposition 2.3, it follows from Corollary 2.4 that
σ(E1) = a1E1+a2E2+u and σ(E2) = b1E1+b2E2+v, where (a1, a2), (b1, b2) ∈ C2\{(0, 0)},
and u, v ∈ U+

q (sl3) are linear combinations of homogeneous elements of degree greater than
one. As g ◦ σ(E1).g ◦ σ(E2) has degree two, it is clear that u = v = 0. To conclude that
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g ◦ σ ∈ G, it just remains to prove that a2 = 0 = b1. This can be easily shown by
using the fact that g ◦ σ(−E1E2 + q−1E2E1) = g ◦ σ(E3) = λE3; replacing g ◦ σ(E1) and
g ◦σ(E2) by a1E1 +a2E2 and b1E1 + b2E2 respectively, and then identifying the coefficients
in the PBW basis, leads to a2 = 0 = b1, as required. Hence we have just proved that
g ◦ σ ∈ G, so that σ itself belongs to G the subgroup of Aut(U+

q (sl3)) generated by the
torus and diagram automorphisms. Hence one can state the following result that confirms
the Andruskiewitsch-Dumas Conjecture.

Proposition 2.5 Aut(U+
q (sl3)) ≃ (C∗)2 ⋊ autdiagr(sl3)

This result was first obtained independently by Alev and Dumas, [2, Proposition 2.3],
and Caldero, [8, Proposition 4.4], but using somehow different methods; they studied this
automorphism group by looking at its action on the set of normal elements of U+

q (sl3).

2.4 The case where g = so5.

In this section we investigate the automorphism group of U+
q (g) in the case where g = so5.

In this case there are no diagram automorphisms, so that the Andruskiewitsch-Dumas
Conjecture asks whether every automorphism of U+

q (so5) is a torus automorphism. In [16]
we have proved their conjecture when g = so5. The aim of this section is to present a
slightly different proof based both on the original proof and on the recent proof by S.A.
Lopes and the author of the Andruskiewitsch-Dumas Conjecture in the case where g is of
type A3.

In the case where g = so5, the Cartan matrix is A =

(

2 −2
−1 2

)

, so that U+
q (so5) is

the C-algebra generated by two indeterminates E1 and E2 subject to the following relations:

E3
1E2 − (q2 + 1 + q−2)E2

1E2E1 + (q2 + 1 + q−2)E1E2E
2
1 + E2E

3
1 = 0 (5)

E2
2E1 − (q2 + q−2)E2E1E2 + E1E

2
2 = 0 (6)

We now make explicit a PBW basis of U+
q (so5). The Weyl group of so5 is isomorphic

to the dihedral group D(4). Its longest element is w0 = −id; it has two reduced decom-
positions: w0 = s1s2s1s2 = s2s1s2s1. Let us choose the reduced decomposition s1s2s1s2 of
w0 in order to construct a PBW basis of U+

q (so5). According to Section 1.2, this reduced
decomposition leads to the following root vectors:

Eα1 = E1, E2α1+α2 = T1(E2) =
1

(q + q−1)

(

E2
1E2 − q−1(q + q−1)E1E2E1 + q−2E2E

2
1

)

,

Eα1+α2 = T1T2(E1) = −E1E2 + q−2E2E1 and Eα2 = T1T2T1(E2) = E2.

In order to simplify the notation, we set E3 := −Eα1+α2 and E4 := E2α1+α2 . Then, it
follows from Theorem 1.1 that

• The monomials Ek1
1 Ek4

4 Ek3
3 Ek2

2 , with k1, k2, k3, k4 nonnegative integers, form a PBW-
basis of U+

q (so5).
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• U+
q (so5) is the iterated Ore extension over C generated by the indeterminates E1,

E4, E3, E2 subject to the following relations:

E4E1 = q−2E1E4

E3E1 = E1E3 − (q + q−1)E4, E3E4 = q−2E4E3,

E2E1 = q2E1E2 − q2E3, E2E4 = E4E2 − q2−1
q+q−1 E

2
3 , E2E3 = q−2E3E2.

In particular, U+
q (so5) is a Noetherian domain, and its group of invertible elements

is reduced to C
∗.

Before describing the automorphism group of U+
q (so5), we first describe the centre and

the primitive ideals of U+
q (so5). The centre of U+

q (g) has been described in general by
Caldero, [7]. In the case where g = so5, his result shows that Z(U+

q (so5)) is a polynomial
algebra in two indeterminates

Z(U+
q (so5)) = C[z, z′],

where
z = (1 − q2)E1E3 + q2(q + q−1)E4

and
z′ = −(q2 − q−2)(q + q−1)E4E2 + q2(q2 − 1)E2

3 .

Recall from Section 1.3 that the torus H = (C∗)2 acts on U+
q (so5) by automorphisms

and that the H-stratification theory of Goodearl and Letzter constructs a partition of the
prime spectrum of U+

q (so5) into so-called H-strata, this partition being indexed by the
8 = |W | H-invariant prime ideals of U+

q (so5). In [16], we have described these eight H-
strata. More precisely, we have obtained the following picture for the poset Spec(U+

q (so5)),
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〈〈E1, E2 − β〉〉

CC
CC

CC
CC

CC
CC

CC
CC

C
〈〈E1, E2〉〉

zz
zz

zzz
zz

zzz
zz

zzz

DDDD
DD

DDD
DD

DDD
DD

D
〈〈E1 − α, E2〉〉

{{
{{

{{
{{

{{
{{

{{
{{

{

〈E1〉

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 〈E2〉

lllllllllllllllllllllllllllllll

〈〈z, z′ − δ〉〉

CC
CC

CC
CC

CC
CC

CC
CC

C
〈〈E3〉〉

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
〈〈z − γ, z′ − δ〉〉 〈〈E ′

3〉〉

lllllllllllllllllllllllllllllll
〈〈z − γ, z′〉〉

{{
{{

{{
{{

{{
{{

{{
{{

{

〈z〉

DD
DD

DD
DD

DD
DD

DD
DD

DD
I 〈z′〉

zzzzz
zzz

zzz
zzz

zzz

〈0〉
where α, β, γ, δ ∈ C∗, E ′

3 := E1E2 − q2E2E1 and

I = {〈P (z, z′)〉 | P is a unitary irreductible polynomial of C[z, z′], P 6= z, z′}.
As the primitive ideals are those primes that are maximal in their H-strata, see Theorem

1.3, we deduced from this description of the prime spectrum that the primitive ideals of
U+

q (so5) are the following:
• 〈z − α, z′ − β〉 with (α, β) ∈ C2 \ {(0, 0)}.
• 〈E3〉 and 〈E ′

3〉.
• 〈E1 − α, E2 − β〉 with (α, β) ∈ C2 such that αβ = 0.
(They correspond to the “double brackets” prime ideals in the above picture.)

Among them, two only are not maximal, 〈E3〉 and 〈E ′
3〉. Unfortunately, as E3 and

E ′
3 are not normal in U+

q (so5), one cannot easily obtain information using the fact that
any automorphism of U+

q (so5) will either preserve or exchange these two prime ideals.
Rather than using this observation, we will use the action of Aut(U+

q (so5)) on the set
of maximal ideals of height two. Because of the previous description of the primitive
spectrum of U+

q (so5), the height two maximal ideals in U+
q (so5) are those 〈z − α, z′ − β〉

with (α, β) ∈ C2 \{(0, 0)}. In [16, Proposition 3.6], we have proved that the group of units
of the factor algebra U+

q (so5)/〈z − α, z′ − β〉 is reduced to C
∗ if and only if both α and β

are nonzero. Consequently, if σ is an automorphism of U+
q (so5) and α ∈ C∗, we get that:

σ(〈z − α, z′〉) = 〈z − α′, z′〉 or 〈z, z′ − β ′〉,
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where α′, β ′ ∈ C∗. Similarly, if σ is an automorphism of U+
q (so5) and β ∈ C∗, we get that:

σ(〈z, z′ − β〉) = 〈z − α′, z′〉 or 〈z, z′ − β ′〉, (7)

where α′, β ′ ∈ C∗.
We now use this information to prove that the action of Aut(U+

q (so5)) on the centre of
U+

q (so5) is trivial. More precisely, we are now in position to prove the following result.

Proposition 2.6 Let σ ∈ Aut(U+
q (so5)). There exist λ, λ′ ∈ C

∗ such that

σ(z) = λz and σ(z′) = λ′z′.

Proof. We only prove the result for z. First, using the fact that U+
q (so5) is noetherian, it

is easy to show that, for any family {βi}i∈N of pairwise distinct nonzero complex numbers,
we have:

〈z〉 =
⋂

i∈N

P0,βi
and 〈z′〉 =

⋂

i∈N

Pβi,0,

where Pα,β := 〈z − α, z′ − β〉. Indeed, if the inclusion

〈z〉 ⊆ I :=
⋂

i∈N

P0,βi

is not an equality, then any P0,βi
is a minimal prime over I for height reasons. As the P0,βi

are pairwise distinct, I is a two-sided ideal of U+
q (so5) with infinitely many prime ideals

minimal over it. This contradicts the noetherianity of U+
q (so5). Hence

〈z〉 =
⋂

i∈N

P0,βi
and 〈z′〉 =

⋂

i∈N

Pβi,0,

and so
σ (〈z〉) =

⋂

i∈N

σ(P0,βi
).

It follows from (7) that, for all i ∈ N, there exists (γi, δi) 6= (0, 0) with γi = 0 or δi = 0
such that

σ(P0,βi
) = Pγi,δi

.

Naturally, we can choose the family {βi}i∈N such that either γi = 0 for all i ∈ N, or
δi = 0 for all i ∈ N. Moreover, observe that, as the βi are pairwise distinct, so are the γi

or the δi.
Hence, either

σ (〈z〉) =
⋂

i∈N

Pγi,0,
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or
σ (〈z〉) =

⋂

i∈N

P0,δi
,

that is,
either 〈σ(z)〉 = σ (〈z〉) = 〈z′〉 or 〈σ(z)〉 = σ (〈z〉) = 〈z〉.

As z, σ(z) and z′ are all central, it follows from Lemma 2.1 that there exists λ ∈ C∗

such that either σ(z) = λz or σ(z) = λz′.
To conclude, it just remains to show that the second case cannot happen. In order to do

this, we use a graded argument. Observe that, with respect to the N-graduation of U+
q (so5)

defined in Section 2.2, z and z′ are homogeneous of degree 3 and 4 respectively. Thus, if
σ(z) = λz′, then we would obtain a contradiction with the fact that every automorphism
of U+

q (so5) preserves the valuation, see Corollary 2.4. Hence σ(z) = λz, as desired. The
corresponding result for z′ can be proved in a similar way, so we omit it. �

Andruskiewitsch and Dumas, [4, Proposition 3.3], have proved that the subgroup of
those automorphisms of U+

q (so5) that stabilize 〈z〉 is isomorphic to (C∗)2. Thus, as we
have just shown that every automorphism of U+

q (so5) fixes 〈z〉, we get that Aut(U+
q (so5))

itself is isomorphic to (C∗)2. This is the route that we have followed in [16] in order to
prove the Andruskiewitsch-Dumas Conjecture in the case where g = so5. Recently, with
Samuel Lopes, we proved this Conjecture in the case where g = sl4 using different methods
and in particular graded arguments. We are now using (similar) graded arguments to
prove that every automorphism of U+

q (so5) is a torus automorphism (witout using results
of Andruskiewitsch and Dumas).

In the proof, we will need the following relation that is easily obtained by straightfor-
ward computations.

Lemma 2.7 (q2 − 1)E3E
′
3 = (q4 − 1)zE2 + q2z′.

Proposition 2.8 Let σ be an automorphism of U+
q (so5). Then there exist a1, b2 ∈ C∗ such

that
σ(E1) = a1E1 and σ(E2) = b2E2.

Proof. For all i ∈ {1, . . . , 4}, we set di := deg(σ(Ei)). We also set d′
3 := deg(σ(E ′

3)). It
follows from Corollary 2.4 that d1, d2 ≥ 1, d3, d

′
3 ≥ 2 and d4 ≥ 3. First we prove that

d1 = d2 = 1.
Assume first that d1 + d3 > 3. As z = (1 − q2)E1E3 + q2(q + q−1)E4 and σ(z) = λz

with λ ∈ C∗ by Proposition 2.6, we get:

λz = (1 − q2)σ(E1)σ(E3) + q2(q + q−1)σ(E4). (8)

Recall that deg(uv) = deg(u) + deg(v) for u, v 6= 0, as U+
q (g) is a domain. Thus, as

deg(z) = 3 < deg(σ(E1)σ(E3)) = d1 + d3, we deduce from (8) that d1 + d3 = d4. As
z′ = −(q2 − q−2)(q + q−1)E4E2 + q2(q2 − 1)E2

3 and deg(z′) = 4 < d1 + d3 + d2 = d4 + d2 =
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deg(σ(E4)σ(E2)), we get in a similar manner that d2 + d4 = 2d3. Thus d1 + d2 = d3. As
d1 + d3 > 3, this forces d3 > 2 and so d3 + d′

3 > 4. Thus we deduce from Lemma 2.7 that
d3 + d′

3 = 3+ d2. Hence d1 + d′
3 = 3. As d1 ≥ 1 and d′

3 ≥ 2, this implies d1 = 1 and d′
3 = 2.

Thus we have just proved that d1 = deg(σ(E1)) = 1 and either d3 = 2 or d′
3 = 2. To

prove that d2 = 1, we distinguish between these two cases.
If d3 = 2, then as previously we deduce from the relation z′ = −(q2−q−2)(q+q−1)E4E2+

q2(q2 − 1)E2
3 that d2 + d4 = 4, so that d2 = 1, as desired.

If d′
3 = 2, then one can use the definition of E ′

3 and the previous expression of z′ in
order to prove that z′ = q−2(q2 − 1)E

′2
3 + E2u, where u is a nonzero homogeneous element

of U+
q (so5) of degree 3. (u is nonzero since 〈z′〉 is a completely prime ideal and E ′

3 /∈ 〈z′〉
for degree reasons.) As d′

3 = 2 and deg(σ(z′)) = 4, we get as previously that d2 = 1.
To summarise, we have just proved that deg(σ(E1)) = 1 = deg(σ(E2)), so that σ(E1) =

a1E1 + a2E2 and σ(E2) = b1E1 + b2E2, where (a1, a2), (b1, b2) ∈ C2 \ {(0, 0)}. To conclude
that a2 = b1 = 0, one can for instance use the fact that σ(E1) and σ(E2) must satisfy the
quantum Serre relations. �

We have just confirmed the Andruskiewitsch-Dumas Conjecture in the case where g =
so5.

Theorem 2.9 Every automorphism of U+
q (so5) is a torus automorphism, so that

Aut(U+
q (so5)) ≃ (C∗)2.

2.5 Beyond these two cases.

To finish this overview paper, let us mention that recently the Andruskiewitsch-Dumas
Conjecture was confirmed by Samuel Lopes and the author, [18], in the case where g = sl4.
The crucial step of the proof is to prove that, up to an element of G, every normal element
of U+

q (sl4) is fixed by every automorphism. This step was dealt with by first computing
the Lie algebra of derivations of U+

q (sl4), and this already requires a lot of computations!
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