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5 Primitive ideals and automorphisms

of quantum matrices

S Launois and T H Lenagan ∗

Abstract

Let q be a nonzero complex number that is not a root of unity. We give a cri-

terion for 〈0〉 to be a primitive ideal of the algebra Oq(Mm,n) of quantum matrices.

Next, we describe all height one primes of Oq(Mm,n); these two problems are actu-

ally interlinked since it turns out that 〈0〉 is a primitive ideal of Oq(Mm,n) whenever

Oq(Mm,n) has only finitely many height one primes. Finally, we compute the au-

tomorphism group of Oq(Mm,n) in the case where m 6= n. In order to do this, we

first study the action of this group on the prime spectrum of Oq(Mm,n). Then, by

using the preferred basis of Oq(Mm,n) and PBW bases, we prove that the automor-

phism group of Oq(Mm,n) is isomorphic to the torus (C∗)m+n−1 when m 6= n and

(m,n) 6= (1, 3), (3, 1).

2000 Mathematics subject classification: 16W35, 16W20, 20G42, 81R50.

Key words: Quantum matrices, quantum minors, prime ideals, primitive ideals, automor-

phisms.

Introduction

The automorphism group of a polynomial algebra C[X1, . . . , Xn], for n ≥ 2, is in general far

from being understood. In the case n = 2 the group was described explicitly by Jung, [12].

However, it is only recently that Shestakov and Umirbaev, [19], have proved that the well-

known Nagata automorphism of C[X1, X2, X3] is wild; that is, the Nagata automorphism

cannot be written as a product of elementary automorphisms.

∗This research was supported by a Marie Curie Intra-European Fellowship within the 6th European

Community Framework Programme and by Leverhulme Research Interchange Grant F/00158/X

1

http://arXiv.org/abs/math/0511409v1


In this paper, we are interested in the quantum case. More precisely, when q is a nonzero

complex number that is not a root of unity, we study the automorphism group of the algebra

Oq(Mm,n) of m× n quantum matrices which in turn is a non-commutative deformation of

a polynomial ring in m× n indeterminates. We denote by Yi,α, (i, α) ∈ [[1, m]]× [[1, n]], the

canonical generators of Oq(Mm,n). It is well-known that the group H := (C∗)m+n acts on

Oq(Mm,n) by C-automorphisms via:

(a1, . . . , am; b1, . . . , bn).Yi,α = aibαYi,α ((i, α) ∈ [[1, m]] × [[1, n]]).

(Note that this is not a faithful action; for example, (a, . . . , a; 1, . . . , 1) and (1, . . . , 1; a, . . . , a)

have the same action on Oq(Mm,n), multiplying each Yi,α by a. This explains why the au-

tomorphism group is an (m + n − 1)-torus rather than an (m + n)-torus.)

It was observed by Alev and Chamarie, [1], that quantization implies rigidity and so

puts limits on the automorphism group of quantized algebras. This explains why it has

been possible to compute the automorphism group of several quantum algebras at least in

the generic case. For instance, Alev and Chamarie, [1], have described the automorphism

group of the algebra of 2 × 2 quantum matrices, Alev and Dumas, [2], the automorphism

group of the positive part of the quantized enveloping algebra of a complex simple Lie

algebra of type A2, the first author, [13], the automorphism group of the positive part of

the quantized enveloping algebra of a complex simple Lie algebra of type B2, ... .

One method to study the automorphism group of an algebra is to use the invariance of

the set of height one primes under the action of the automorphism group. This method was

used successfully by Rigal, [18], to compute the automorphism group of quantized Weyl

algebras and next by Gomez-Torrecillas and El Kaoutit, [6], to calculate the automorphism

group of the coordinate ring of quantum symplectic spaces. We also use this method in

the present paper. However, in the cases of quantized Weyl algebras and coordinate ring

of quantum symplectic spaces, the number of height one primes is finite (because of the

choice of parameters) and so the restrictions on the automorphisms are very strong. In

the case of the algebra of quantum matrices, the set of height one primes is in general not

finite; so the situation is substantially more complicated.

We start by considering when the algebra Oq(Mm,n) has only finitely many height one

primes. It turns out that, because of the stratification theorem of Goodearl and Letzter,

see [3] for example, this situation arises exactly when 〈0〉 is a primitive ideal of Oq(Mm,n).

Thus, the first section of this paper is devoted to this question: we establish a criterion for

the ideal 〈0〉 to be primitive in Oq(Mm,n). More precisely, we prove that 〈0〉 is a primitive

ideal of Oq(Mm,n) if and only if v2(m) 6= v2(n), where v2(k) denotes the 2-adic valuation

of a positive integer k. This shows, for example, that 〈0〉 is a primitive ideal of Oq(M2,3).
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This criterion together with the stratification theorem of Goodearl and Letzter shows that,

if v2(m) 6= v2(n), then Oq(Mm,n) has only finitely many height one primes and it turns

out that they are all H-invariant. On the other hand, if v2(m) = v2(n), then Oq(Mm,n)

has infinitely many height one primes. A finite number (those that are H-invariant) are

already known from previous work of the authors and Rigal, [14]. In the second part of

this paper, we provide an explicit generator for every height one prime of Oq(Mm,n). (Note

that, since Oq(Mm,n) is a Noetherian (non-commutative) UFD, every height one prime of

Oq(Mm,n) is generated by a normal element, [14].) Hence, in this second part, we describe

all normal elements of Oq(Mm,n) that generate a prime ideal.

Finally, in the third section, we investigate the automorphism group of Oq(Mm,n) when

m 6= n. Using the description of the height one primes of Oq(Mm,n) together with graded

arguments, we show that all height one primes that are H-invariant, except possibly one,

are invariant under every automorphism of Oq(Mm,n). Next, by using the preferred basis

of Oq(Mm,n) and certain PBW bases, we are able to prove that the automorphism group of

Oq(Mm,n) is isomorphic to the torus (C∗)m+n−1 when m 6= n and (m, n) 6= (1, 3), (3, 1). This

latter restriction occurs because of the existence of a rogue automorphism for quantum 3-

space (which may be viewed as 1×3 quantum matrices), see [1]. This is the only exception,

and our analysis recovers the Alev-Chamarie result for this exceptional case.

In the case where m = n, the algebra Oq(Mn) has a homogeneous central element of

degree n, the quantum determinant. The existence of this element considerably complicates

the computation of the automorphism group, since the graded arguments that we use in the

non-squared case do not put strong limits on the automorphism group and its action on the

height one primes in the square case. In addition, transposition provides an automorphism

that also clouds the analysis. The conjecture is that the automorphim group of Oq(Mn) is

generated by a torus and the transposition automorphism. This has been verified by Alev

and Chamarie, [1], in the 2× 2 case. Our present methods can recover the Alev-Chamarie

result, but, as yet, we are unable to deal with the general case, although we do have partial

results. We intend to return to this question in a subsequent paper.

1 A criterion for quantum matrices to be primitive.

In this section, we use the H-stratification theory of Goodearl and Letzter together with

the deleting derivations theory of Cauchon in order to characterize the integers m and n

such that 〈0〉 is a primitive ideal in Oq(Mm,n).
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1.1 The H-stratification of the prime spectrum of Oq(Mm,n).

Throughout this paper, we use the following conventions.

• If I is a finite set, |I| denotes its cardinality.

• [[a, b]] := {i ∈ N | a ≤ i ≤ b}.

• C denotes the field of complex numbers and we set C∗ := C \ {0}.

• q ∈ C∗ is not a root of unity.

• m, n denote positive integers.

• R = Oq(Mm,n) is the quantization of the ring of regular functions on m×n matrices with

entries in C; it is the C-algebra generated by the m × n indeterminates Yi,α, 1 ≤ i ≤ m

and 1 ≤ α ≤ n, subject to the following relations:

Yi,βYi,α = q−1Yi,αYi,β, (α < β);

Yj,αYi,α = q−1Yi,αYj,α, (i < j);

Yj,βYi,α = Yi,αYj,β, (i < j, α > β);

Yj,βYi,α = Yi,αYj,β − (q − q−1)Yi,βYj,α, (i < j, α < β).

It is well-known that R can be presented as an iterated Ore extension over C, with the

generators Yi,α adjoined in lexicographic order. Thus the ring R is a Noetherian domain;

we denote by F its skew-field of fractions. Moreover, since q is not a root of unity, it

follows from [10, Theorem 3.2] that all prime ideals of R are completely prime. We denote

by Spec(R) the set of (completely) prime ideals of R.

• It is well-known that the algebras Oq(Mm,n) and Oq(Mn,m) are isomorphic. Hence, we

assume that m ≤ n.

• It is easy to check that the group H := (C∗)m+n acts on R by C-algebra automorphisms

via:

(a1, . . . , am, b1, . . . , bn).Yi,α = aibαYi,α for all (i, α) ∈ [[1, m]] × [[1, n]].

An H-eigenvector x of R is a nonzero element x ∈ R such that h.x ∈ C∗x for each h ∈ H.

An ideal I of R is said to be H-invariant if h.I = I for all h ∈ H. We denote by H-Spec(R)

the set of H-invariant prime ideals of R. Since q is not a root of unity, it follows from [9,

5.7] that H-Spec(R) is a finite set. Note that 〈0〉 is an H-invariant prime ideal of R, since

R is a domain.

The action of H on R allows us to use the H-stratification theory of Goodearl and

Letzter, see [3, II.2], to constuct a partition of Spec(R) as follows. If J is an H-invariant
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prime ideal of R, we denote by SpecJ(R) the H-stratum of Spec(R) associated to J .

Recall that SpecJ(R) := {P ∈ Spec(R) |
⋂

h∈H h.P = J}. Then the H-strata SpecJ(R),

with J ∈ H-Spec(R), form a partition of Spec(R), see [3]:

Spec(R) =
⊔

J∈H-Spec(R)

SpecJ(R). (1)

Naturally, this partition induces a partition of the set Prim(R) of all (left) primitive ideals

of R as follows. For all J ∈ H-Spec(R), we set PrimJ(R) := SpecJ(R)∩Prim(R). Then it

is obvious that the H-strata PrimJ(R) (J ∈ H-Spec(R)) form a partition of Prim(R):

Prim(R) =
⊔

J∈H-Spec(R)

PrimJ(R).

One of the reasons that makes the H-stratification interesting is that it provides a powerful

tool for recognizing primitive ideals. Indeed, since C is uncountable and since the Noethe-

rian domain R is generated as an algebra by a finite number of elements, it follows from [3,

Proposition II.7.16] that the algebra R satisfies the Nullstellensatz over C, see [3, II.7.14].

Further the set of H-invariant prime ideals of R is finite. Thus [3, Theorem II.8.4] implies

that PrimJ(R) (J ∈ H-Spec(R)) coincides with the set of those primes in SpecJ(R) that

are maximal in SpecJ(R). Hence, we deduce the following criterion for R to be a primitive

ring.

Proposition 1.1 R is a primitive ring if and only if the 〈0〉-stratum of Spec(R) is reduced

to 〈0〉; that is, 〈0〉 is the only prime ideal in Spec〈0〉(R).

1.2 Dimension of the 〈0〉-stratum of Spec(R).

In this section, we show that the 〈0〉-stratum Spec〈0〉(Oq(Mm,n)) is Zariski-homeomorphic

to the prime spectrum of a commutative Laurent polynomial ring in dim(ker(B)) indeter-

minates, where B is a mn×mn matrix with entries in C. First, we describe the matrix B

explicitly and then we will compute the dimension of the kernel of B.

First recall, see [5], that the theory of deleting derivations can be applied to the iterated

Ore extension R = C[Y1,1] . . . [Ym,n; σm,n, δm,n] (where the indices are increasing for the

lexicographic order ≤). The corresponding deleting derivations algorithm is called the

standard deleting derivations algorithm. Before recalling its construction, we need to

introduce some notation.
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• We denote by ≤s the lexicographic ordering on N2. We often call it the standard

ordering on N2. Recall that (i, α) ≤s (j, β) if and only if [(i < j) or (i = j and α ≤

β)].

• We set Es = ([[1, m]] × [[1, n]] ∪ {(m, n + 1)}) \ {(1, 1)}.

• Let (j, β) ∈ Es. If (j, β) 6= (m, n+1), then (j, β)+ denotes the least element (relative

to ≤s) of the set {(i, α) ∈ Es | (j, β) <s (i, α)}.

As described in [5], the standard deleting derivations algorithm constructs, for each

r ∈ Es, a family (Y
(r)
i,α )(i,α)∈[[1,m]]×[[1,n]] of elements of F := Frac(R), defined as follows.

1. If r = (m, n + 1), then Y
(m,n+1)
i,α = Yi,α for all (i, α) ∈ [[1, m]] × [[1, n]].

2. Assume that r = (j, β) <s (m, n + 1) and that the Y
(r+)
i,α ((i, α) ∈ [[1, m]]× [[1, n]]) are

already constructed. Then, it follows from [4, Théorème 3.2.1] that Y
(r+)
j,β 6= 0 and,

for all (i, α) ∈ [[1, m]] × [[1, n]], we have:

Y
(r)
i,α =







Y
(r+)
i,α − Y

(r+)
i,β

(

Y
(r+)
j,β

)−1

Y
(r+)
j,α if i < j and α < β

Y
(r+)
i,α otherwise.

As in [4], we denote by R the subalgebra of Frac(R) generated by the indeterminates

obtained at the end of this algorithm, that is, we denote by R the subalgebra of Frac(R)

generated by the Ti,α := Y
(1,2)
i,α for each (i, α) ∈ [[1, m]] × [[1, n]].

Let N ∈ N∗ and let Λ = (Λi,j) be a multiplicatively antisymmetric N × N matrix over

C∗; that is, Λi,i = 1 and Λj,i = Λ−1
i,j for all i, j ∈ [[1, N ]]. We denote by CΛ[T1, . . . , TN ] the

corresponding quantum affine space; that is, the C-algebra generated by the N indetermi-

nates T1, . . . , TN subject to the relations TiTj = Λi,jTjTi for all i, j ∈ [[1, N ]]. In [5, Section

2.2], Cauchon has shown that R can be viewed as the quantum affine space generated by

the indeterminates Ti,α for (i, α) ∈ [[1, n]]2, subject to the following relations.

Ti,βTi,α = q−1Ti,αTi,β, (α < β);

Tj,αTi,α = q−1Ti,αTj,α, (i < j);

Tj,βTi,α = Ti,αTj,β, (i < j, α > β);

Tj,βTi,α = Ti,αTj,β, (i < j, α < β).
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Hence R = CΛ[T1,1, T1,2, . . . , Tm,n], where Λ denotes the mn × mn matrix defined as

follows. We set

A :=

















0 1 1 . . . 1

−1 0 1 . . . 1
...

. . .
. . .

. . .
...

−1 . . . −1 0 1

−1 . . . . . . −1 0

















∈ Mm(C),

and

B :=

















A Im Im . . . Im

−Im A Im . . . Im

...
. . .

. . .
. . .

...

−Im . . . −Im A Im

−Im . . . . . . −Im A

















∈ Mmn(C),

where Im denotes the identity matrix of Mm. Then Λ is the mn×mn matrix whose entries

are defined by Λk,l = qbk,l for all k, l ∈ [[1, mn]].

It follows from [4, Théorèmes 5.1.1, 5.5.1, 5.5.2] that Spec〈0〉(R) is Zariski-homeomorphic

to the prime spectrum of the quantum torus P (Λ) := RΣ−1, where Σ denotes the multi-

plicative system of R generated by the normal elements Ti,α with (i, α) ∈ [[1, m]] × [[1, n]].

Next, Spec(P (Λ)) is Zariski-homeomorphic via extension and contraction to the prime

spectrum of the centre Z(P (Λ)) of P (Λ), by [8, Corollary 1.5]. Further, Z(P (Λ)) turns

out to be a Laurent polynomial ring. To make this result precise, we need to introduce the

following notation.

If s = (s1,1, s1,2, . . . , sm,n) ∈ Zmn, then we set T s := T
s1,1

1,1 T
s1,2

1,2 . . . T
sm,n
m,n ∈ P (Λ).

As in [8], we denote by σ : Z
mn × Z

mn → C
∗ the antisymmetric bicharacter defined by

σ(s, t) :=
mn
∏

k,l=1

Λsktl
k,l for all s, t ∈ Z

mn.

Then it follows from [8, 1.3] that the centre Z(P (Λ)) of P (Λ) is a Laurent polynomial ring

in the variables (T b1)±1, . . . , (T br)±1, where (b1, . . . , br) is any basis of S := {s ∈ Zmn |

σ(s,−) ≡ 1}. Since q is not a root of unity, easy computations show that s ∈ S if and only

if Btst = 0. Hence the centre Z(P (Λ)) of P (Λ) is a Laurent polynomial ring in ker(Bt)

indeterminates; so we have just proved the following statement.

Proposition 1.2 Spec〈0〉(Oq(Mm,n)) is Zariski-homeomorphic to the prime spectrum of a

commutative Laurent polynomial ring in dim(ker(Bt)) = dim(ker(B)) indeterminates.
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We deduce from Propositions 1.1 and 1.2 the following criterion for R to be a primitive

ring.

Corollary 1.3 R is a primitive ring if and only if B is invertible.

We now compute the dimension of the kernel of B. First, straightforward computations

show that

dim(ker(B)) = m − rk [(A + I)n + (A − I)n] .

If i is a positive integer greater than or equal to 2, we denote by v2(i) the 2-adic

valuation of i; that is, m is the largest integer such that 2m|i.

One can easily check the following result.

Proposition 1.4

dim(ker(B)) =

{

0 if v2(m) 6= v2(n)

m ∧ n otherwise

where m ∧ n denotes the greatest common divisor of m and n.

Proof. Set ek := exp
(

i
(

(2k+1)π
m

))

for all k ∈ [[0, m − 1]]; that is, the ek are the mth

root of −1. It is easy to show that there exists U ∈ GLm(C) such that U−1AU =

diag( e0+1
e0−1

, . . . , em−1+1
em−1−1

). Hence we have

U−1 [(A + I)n + (A − I)n]U =

diag

((

2e0

e0 − 1

)n

+

(

2

e0 − 1

)n

, . . . ,

(

2em−1

em−1 − 1

)n

+

(

2

em−1 − 1

)n)

.

Since U ∈ GLm(C),

rk ((A + I)n + (A − I)n) = rk
(

U−1 [(A + I)n + (A − I)n]U
)

= {k ∈ [[0, m − 1]] |
(

2ek

ek−1

)n

+
(

2
ek−1

)n

6= 0} ,

so that

dim(ker(B)) =
{

k ∈ [[0, m − 1]] |
(

2ek

ek−1

)n

+
(

2
ek−1

)n

= 0
}

.

Now, easy calculations show that
(

2ek

ek−1

)n

+
(

2
ek−1

)n

= 0 if and only if en
k = −1; that

is, if and only if exp
(

i
(

(2k+1)nπ

m

))

= −1, that is, if and only if m|(2k + 1)n and (2k+1)n
m

is

an odd integer. Hence,

dim(ker(B)) = {k ∈ [[0, m − 1]] | m|(2k + 1)n and (2k+1)n
m

is odd} .
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We now distinguish between two cases.

• First, assume that v2(m) 6= v2(n). Suppose that there exists k ∈ [[0, m − 1]] such that

m|(2k + 1)n. Then v2(m) ≤ v2(n). This implies that v2(m) < v2(n), since v2(m) 6= v2(n);

and so (2k+1)n
m

is even. Hence there does not exist k ∈ [[0, m − 1]] such that m|(2k + 1)n

and (2k+1)n
m

is odd . This proves that, in this case,

dim(ker(B)) = {k ∈ [[0, m − 1]] | m|(2k + 1)n and (2k+1)n
m

is odd } = 0,

as desired.

• Next, assume that v2(m) = v2(n) = α. Write n = 2αv and m = 2αu with u, v odd. It

follows that

dim(ker(B)) = {k ∈ [[0, m − 1]] | u|(2k + 1)v and (2k+1)v
u

is odd }

= {k ∈ [[0, m − 1]] | u|(2k + 1)v} .

Set d′ = u ∧ v and u = d′u′. Note that d′ and u′ are odd, since u and v are odd. This

implies that dim(ker(B)) = {k ∈ [[0, m− 1]] | u′|(2k + 1)} , the number of odd multiples

of u′ less that 2m − 1 = 2α+1d′u′ − 1. Hence dim(ker(B)) = 2αd′ = m ∧ n, as required. �

Proposition 1.4 together with Proposition 1.2 and Corollary 1.3 yields the following

results.

Theorem 1.5 Spec〈0〉(Oq(Mm,n)) is Zariski-homeomorphic to the prime spectrum of a

commutative Laurent polynomial ring in αm,n indeterminates, where

αm,n =

{

0 if v2(m) 6= v2(n)

m ∧ n otherwise.

Theorem 1.6 Oq(Mm,n) is a primitive ring if and only if v2(m) 6= v2(n).

For example, Oq(M2) is not primitive, while Oq(M2,3) is primitive.

2 Height one primes in quantum matrices.

In this section, we investigate height one primes of R = Oq(Mm,n). Every height one

prime ideal of R is generated by a normal element, since R is a Noetherian UFD, [14].

In this section, we describe explicitly the normal elements that generate the height one

prime ideals. Some of them are already known. Indeed, the height one primes that are

H-invariant have been described in [14]. Hence, we mainly focus our attention on the other

height one primes: these belong to the 〈0〉-stratum of Spec(Oq(Mm,n)).
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2.1 Height one primes of Oq(Mm,n) that are H-invariant.

The algebra Oq(Mn) has a special element, detq, the quantum determinant, defined by

detq :=
∑

σ

(−q)l(σ)Y1,σ(1) · · ·Yn,σ(n),

where the sum is taken over the permutations of {1, . . . , n} and l(σ) is the usual length

function on such permutations. The quantum determinant is a central element of Oq(Mn),

see, for example, [17, Theorem 4.6.1]. If I is a t-element subset of {1, . . . , m} and Γ is a t-

element subset of {1, . . . , n}, then the quantum determinant of the subalgebra of Oq(Mm,n)

generated by Yi,α, with i ∈ I and α ∈ Γ, is denoted by [I | Γ]. The elements [I | Γ] are the

quantum minors of Oq(Mm,n). Note that the quantum minors are H-eigenvectors; and so

every ideal generated by a family of quantum minors is H-invariant.

It follows from [14, Proposition 4.2] that there are exactly m + n − 1 H-invariant

prime ideals in R that have height one. To make this result precise, let us introduce some

notation.

For 1 ≤ i ≤ n + m − 1, let bi be the quantum minor defined as follows.

bi :=











[1, . . . , i | n − i + 1, . . . , n] if 1 ≤ i ≤ m

[1, . . . , m | n − i + 1, . . . , n + m − i] if m < i ≤ n

[i − n + 1, . . . , m | 1, . . . , m + n − i] if n < i ≤ m + n − 1

Note that the bi with m ≤ i ≤ n are precisely the m × m minors of Oq(Mn) that have

consecutive column indices. They are homogeneous of degree m. This fact will be used

several times later.

Proposition 2.1 ([14], Proposition 4.2) There are precisely m+n−1 height one prime

ideals that are H-invariant in Oq(Mm,n). They are the ideals generated by b1, . . . , bm+n−1.

The quantum minors bi are normal elements of R. Moreover they belong to the algebra

R obtained from R by the standard deleting derivations algorithm, see Section 1.2. Indeed,

every quantum minor bi can be expressed as a product of the canonical generators Ti,α of

R as follows.

Lemma 2.2 For 1 ≤ i ≤ m + n − 1, we have

bi =











T1,n−i+1T2,n−i+2 . . . Ti,n if 1 ≤ i ≤ m

T1,n−i+1T2,n−i+2 . . . Tm,n+m−i if m < i ≤ n

Ti−n+1,1Ti−n+2,2 . . . Tm,m+n−i if n < i ≤ n + m − 1

10



Proof. This lemma is a consequence of [5, Proposition 5.2.2]. �

Recall that two elements a, b of Frac(R) = Frac(R) are said to q-commute if there exists

an integer • such that ab = q•ba. Since the Ti,α q-commute pairwise, it follows from the

previous Lemma 2.2 that the bj q-commute with the Ti,α and that the bj also q-commute

pairwise. Sometimes, it will not be necessary to know exactly the integers that appear in

the power of q. However, at some points, we will need the following commutation relations

that can be easily deduced from Lemma 2.2 and from the commutation relations between

the Ti,α.

Corollary 2.3 Assume that m < n. Then,

1. for all m ≤ i < j ≤ n,

bibj = qαijbjbi,

where αij := {n − i + 1, . . . , m + n − i} ∩ {n − j + 1, . . . , m + n − j} − m,

2. for all i ∈ {1, . . . , m − 1},

bnbi = qαibibn and bnbm+n−i = bm+n−ibn,

where αi := {n − i + 1, . . . , n} ∩ {m + 1, . . . , n} .

2.2 The 〈0〉-stratum of Spec(Oq(Mm,n)).

First, it follows from Theorem 1.5 that the 〈0〉-stratum of Spec(Oq(Mm,n)) is reduced to

〈0〉 when v2(m) 6= v2(n). Thus, throughout this section, we assume that v2(m) = v2(n); so

that Spec〈0〉(Oq(Mm,n)) is Zariski-homeomorphic to the prime spectrum of a commutative

Laurent polynomial ring in m∧n indeterminates. We set d := m∧n and we denote by m′

and n′ the positive integers such that m = dm′ and n = dn′. Observe that m′ and n′ are

odd, since v2(m) = v2(n). This observation will be crucial in what follows.

In Section 1.2, we have shown that Spec〈0〉(R) is Zariski-homeomorphic to the prime

spectrum of the quantum torus P (Λ) = RΣ−1, where Σ denotes the multiplicative system of

R generated by the normal elements Ti,α with (i, α) ∈ [[1, m]]×[[1, n]]. Moreover, Spec(P (Λ))

is Zariski-homeomorphic via extension and contraction to the prime spectrum of the centre

Z(P (Λ)) of P (Λ), by [8, Corollary 1.5]. Before describing the 〈0〉-stratum of R, we calculate

the centre Z(P (Λ)) of the quantum torus P (Λ)

11



2.2.1 The centre of the quantum torus P (Λ) = RΣ−1

Recall that the quantum minors bi belong to R. Moreover, the bi are invertible in the

quantum torus P (Λ) = RΣ−1,

For j ∈ {1, . . . , d}, set

∆j :=
m′+n′−1

∏

i=0

b
(−1)i

id+j .

(Here we set bm+n := 1.)

Theorem 2.4 Z(P (Λ)) = C[∆±1
1 , . . . , ∆±1

d ]

Proof. First, straightforward computations (see also [16, Theorem 2.13]) show that ∆1, . . . , ∆d

are central in P (Λ), so that Z(P (Λ)) ⊇ C[∆±1
1 , . . . , ∆±1

d ].

If s = (s1,1, s1,2, . . . , sm,n) ∈ Zmn, we set T s := T
s1,1

1,1 T
s1,2

1,2 . . . T
sm,n
m,n ∈ P (Λ). Since the

Ti,α q-commute, we deduce from Lemma 2.2 that the central elements ∆i can be expressed

as follows:

∆i = qγiT u(i)

,

where γi ∈ Z and u(i) = (u
(i)
1,1, u

(i)
1,2, . . . , u

(i)
m,n) ∈ Zmn with (u

(i)
1,m−d+1, u

(i)
1,m−d+2, . . . , u

(i)
1,m) =

(0, . . . , 0, 1, 0, . . . , 0) (the one being in the i-th position).

As in [8], we denote by σ : Zmn × Zmn → C∗ the antisymmetric bicharacter defined by

σ(s, t) =

mn
∏

k,l=1

Λsktl
k,l

for all s, t ∈ Zmn.

Then it follows from [8, 1.3] that the centre Z(P (Λ)) of P (Λ) is a Laurent polynomial

ring in the variables (T b1)±1, . . . , (T br)±1, where (b1, . . . , br) is any basis of S := {s ∈ Zmn |

σ(s,−) ≡ 1}.

Now, because of Theorem 1.5, we know r = rk(S) = d. Moreover, the ∆i are central,

so that the u(i) belong to S. To conclude, observe that, since we have

(u
(i)
1,m−d+1, u

(i)
1,m−d+2, . . . , u

(i)
1,m) = (0, . . . , 0, 1, 0, . . . , 0),

the group Zmn/
∑d

i=1 Zu(i) is torsionfree. Hence, the u(i) form a basis of S, and so the

centre Z(P (Λ)) of P (Λ) is a Laurent polynomial ring in the variables ∆±1
1 , . . . , ∆±1

d , as

desired. �
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2.2.2 Height one primes in Oq(Mm,n).

Let P a height one prime of R = Oq(Mm,n). Because of the H-stratification, see (1) in

Section 1.1, there exists an H-invariant prime ideal J of R such that P belongs to the

H-stratum associated to J . In particular, we have J ⊆ P . Since P has height one, this

implies that the height of J is at most 1. Thus, two cases arise.

1. First, suppose that J has height one. In this case, P = J , since P has height one;

so that P is an H-invariant height one prime ideal of R. Hence it follows from

Proposition 2.1 that there exists i ∈ {1, . . . , m + n − 1} such that P = 〈bi〉.

2. Next, suppose that J = 〈0〉. In this case, P is a height one prime ideal that belongs to

the 〈0〉-stratum of Spec(R). Note that this case can only arise when v2(m) = v2(n),

since it follows from Theorem 1.5 that the 〈0〉-stratum of Spec(Oq(Mm,n)) is reduced

to 〈0〉 when v2(m) 6= v2(n).

Let Spec1(R) denote the set of all height one primes of R. The previous discussion

proves the following statement.

Proposition 2.5

1. If v2(m) 6= v2(n), then

Spec1(R) = {〈bi〉 | i ∈ {1, . . . , m + n − 1}} .

2. If v2(m) = v2(n), then

Spec1(R) = {〈bi〉 | i ∈ {1, . . . , m + n − 1}} ∪ Spec1
〈0〉(R),

where Spec1
〈0〉(R) denotes the set of all height one primes of R that belong to the

〈0〉-stratum of Spec(R).

In order to complete the previous result, we now describe, in the case where v2(m) =

v2(n), the height one primes of Oq(Mm,n) that belongs to Spec〈0〉(Oq(Mm,n)).

Proposition 2.6 Assume that v2(m) = v2(n). Then, for any height one prime ideal P of

Oq(Mm,n) that belongs to Spec〈0〉(Oq(Mm,n)), there exists a unique (up to scalar) irreducible

13



polynomial V =
∑r1

i1=0 · · ·
∑rd

id=0 ai1,...,idX
i1
1 . . .X id

d ∈ C[X1, . . . , Xd] (where ri = degXi
V )

with V 6= Xi for all i ∈ {1, . . . , d} such that P = 〈u〉 where

u :=

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,id

d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij

.

Moreover, u is normal in R.

Proof. We proceed in three steps.

• Step 1. A generator for the extension of P in a localisation of R.

First, observe that the prime ideals in Spec〈0〉(R) do not contain any bi. Indeed, assume

that this is not the case; that is, assume that there exists P ∈ Spec〈0〉(R) with bi ∈ P for

a certain i. Then, since bi is an H-eigenvector, we have bi ∈
⋂

h∈H h.P = 〈0〉. This is a

contradiction; and so Spec〈0〉(R) ⊆ {P ∈ Spec(R) | bi /∈ P for all i}. On the other hand,

if P is a prime ideal of R such that bi /∈ P for all i, then
⋂

h∈H h.P is an H-invariant

prime ideal of R that does not contain any bi. However, because of [14, Proposition

2.9], every nonzero H-invariant prime ideal of R contains a height one prime that is H-

invariant. In other words, every nonzero H-invariant prime ideal of R contains a bi. Thus
⋂

h∈H h.P = 〈0〉 and so P ∈ Spec〈0〉(R). To sum up, we have shown that Spec〈0〉(R) =

{P ∈ Spec(R) | bi /∈ P for all i}.

Denote by T the localisation of R with respect of the multiplicatively closed set B

generated by the normal elements bi. Note that the torus H still acts rationally by au-

tomorphisms on T , since the bi are H-eigenvectors, see [3, Exercise II.3.A]. Moreover, it

follows from the previous study, and from classical results of non-commutative localisa-

tion theory, that the map ϕ : P → PB−1 is an increasing bijection from Spec〈0〉(R) onto

Spec (T ).

Next, T is H-simple; that is, the only H-invariant ideals in T are 〈0〉 and T , by [14,

Proposition 3.5]. The action of H on T is rational, see [3, Exercise II.3.A], and T is

H-simple; so [3, Corollary II.3.9] applies to T . Thus extension and contraction provide

mutually inverse bijections between Spec(T ) and Spec(Z(T )).

Now, recall that the bi can be expressed as products of Ti,α, see Lemma 2.2; so the bi

belong to the quantum torus P (Λ) = RΣ−1. Moreover, it follows from [4, Théorème 3.3.1]

that there exists a multiplicative system S of R such that R ⊆ RS−1 = P (Λ) = RΣ−1.

Hence T is a subalgebra of the quantum torus P (Λ) = RS−1, and R ⊆ T ⊆ P (Λ) =
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RΣ−1 = RS−1. Thus Z(T ) ⊆ Z(P (Λ)) = C[∆±1
1 , . . . , ∆±1

d ]. But the ∆i are just products

of b±1
i , so that they belong to T . Hence Z(T ) = C[∆±1

1 , . . . , ∆±1
d ].

Observe that ∆j can be written as follows.

∆j = q•
m′+n′−1

∏

i=0
i even

bid+j

m′+n′−1
∏

i=0
i odd

b−1
id+j ,

where as usual • denotes an integer, since the bi q-commute. For j ∈ {1, . . . , d}, we set

∆′
j =







m′+n′−1
∏

i=0
i even

bid+j













m′+n′−1
∏

i=0
i odd

bid+j







−1

. (2)

Since Z(T ) = C[∆±1
1 , . . . , ∆±1

d ], the centre of T is also the (commutative) Laurent polyno-

mial ring in the indeterminates ∆′
1, . . . , ∆

′
d, that is,

Z(T ) = C[∆
′±1
1 , . . . , ∆

′±1
d ].

Now, let P be a height one prime of R that belongs to Spec〈0〉(R). It follows from the

previous study that ϕ(P ) ∩ Z(T ) is a height one prime of Z(T ) = C[∆
′±1
1 , . . . , ∆

′±1
d ].

Hence there exists an irreducible polynomial V =
∑r1

i1=0 · · ·
∑rd

id=0 ai1,...,idX
i1
1 . . .X id

d ∈

C[X1, . . . , Xd], with ri = degXi
V , and with V 6= Xi for all i ∈ {1, . . . , d}, such that

ϕ(P ) ∩ Z(T ) =

〈

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,id∆
′i1
1 . . .∆

′id
d

〉

Z(T )

.

Thus,

ϕ(P ) =

〈

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,id∆
′i1
1 . . . ∆

′id
d

〉

T

,

since extension and contraction provide mutually inverse bijections between Spec(T ) and

Spec(Z(T )). Since the bi are invertible in T , (2) leads to ϕ(P ) = 〈u〉, where

u :=

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,id

d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij

.

Note that u is a normal element in both R and T .
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• Step 2. We prove that u is not contained in any 〈bk〉.

Set

ui1,...,id :=

d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij

for all (i1, . . . , id) ∈ [[0, r1]] × · · · × [[0, rd]]; so that

u =

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,idui1,...,id.

Since the bk are H-eigenvectors, it is clear that the ui1,...,id are also H-eigenvectors. Hence,

for all (i1, . . . , id) ∈ [[0, r1]]×· · ·× [[0, rd]], there exists a (unique) character fi1,...,id : H → C∗

such that h.ui1,...,id = fi1,...,id(h)ui1,...,id for all h ∈ H. The character fi1,...,id is called the

H-eigenvalue of the H-eigenvector ui1,...,id.

Claim 2.7 The ui1,...,id are H-eigenvectors with pairwise distinct H-eigenvalues.

Proof of Claim 2.7. Let (i1, . . . , id) ∈ [[0, r1]]×· · ·×[[0, rd]] and h := (g1, . . . , gm; h1, . . . , hn) ∈

H. Then,

h.ui1,...,id = g•
1 . . . g•

mh•
1 . . . h•

n−mh
αm−1

n−m+1 . . . hα0
n ui1,...,id,

where • ∈ Z and αk is the number of quantum minors involving the (n − k)-th column in

the product that defines ui1,...,id.

Now one can observe that, for all k ∈ {0, . . . , d − 1}, the (n − k)-th column appears

in bid+j if and only if either (i) k + 1 ≤ j ≤ d and 0 ≤ i ≤ m′ − 1, or (ii) 1 ≤ j ≤ k and

1 ≤ i ≤ m′.

Hence, since m′ is odd,

αk =
k

∑

j=1

(

m′ − 1

2
ij +

m′ + 1

2
(rj − ij)

)

+
d

∑

j=k+1

(

m′ + 1

2
ij +

m′ − 1

2
(rj − ij)

)

=

k
∑

j=1

(

m′ + 1

2
rj − ij

)

+

d
∑

j=k+1

(

m′ − 1

2
rj + ij

)

Now, let (i1, . . . , id), (i
′
1, . . . , i

′
d) ∈ [[0, r1]] × · · · × [[0, rd]], and assume that ui1,...,id and

ui′1,...,i′
d

are associated to the same H-eigenvalue. Then, since C is infinite, it follows from

the previous study that,

k
∑

j=1

(

m′ + 1

2
rj − ij

)

+
d

∑

j=k+1

(

m′ − 1

2
rj + ij

)

=
k

∑

j=1

(

m′ + 1

2
rj − i′j

)

+
d

∑

j=k+1

(

m′ − 1

2
rj + i′j

)

,
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for all k ∈ {0, . . . , d − 1}. Hence,

k
∑

j=1

(

i′j − ij
)

+
d

∑

j=k+1

(

ij − i′j
)

= 0,

for all k ∈ {0, . . . , d−1}. This forces ij = i′j for all j ∈ {1, . . . , d}; so the claim is proved. �

Next, we prove that u does not belong to any 〈bk〉. Indeed, assume that u ∈ 〈bk〉 for

a certain k ∈ {1, . . . , m + n − 1}. Then, since 〈bk〉 is an H-invariant prime ideal of R, it

follows from the previous claim and from [3, II.2.10] that:

If ai1,...,id 6= 0, then ui1,...,id =

d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij

∈ 〈bk〉 . (3)

Set k := rd + s with r ∈ {0, . . . , m′ + n′ − 1} and s ∈ {1, . . . , d}. We distinguish

between two cases. First, assume that r is even. Since the 〈bi〉 are pairwise distinct height

one completely prime ideals of R, we deduce from (3) that ai1,...,id = 0 if is = 0. This

implies that V =
∑r1

i1=0 · · ·
∑rd

id=0 ai1,...,idX
i1
1 . . .X id

d = XsV
′, with V ′ ∈ C[X1, . . . , Xd].

This contradicts the facts that V is irreducible and V 6= Xs.

Next, assume that r is odd. Since the 〈bi〉 are pairwise distinct height one completely

prime ideals of R, we deduce from (3) that ai1,...,id = 0 if is = rs. Now this contradicts

degXs
V = rs.

To sum up: u does not belong to any 〈bk〉.

• Step 3. We prove that P is generated by u.

Recall from step one that ϕ(P ) is generated by u. Hence, it is clear that P = ϕ(P )∩R ⊇

〈u〉. Let now x ∈ P . It remains to prove that x ∈ 〈u〉. There exists (α1, . . . , αm+n−1) ∈

Nm+n−1 such that xbα1
1 . . . b

αm+n−1

m+n−1 = ur with r ∈ R. Choose such a (α1, . . . , αm+n−1) ∈

Nm+n−1 minimal (for the lexicographic order). If (α1, . . . , αm+n−1) 6= 0, there exists k

such that αk 6= 0. Then ur = xbα1
1 . . . b

αm+n−1

m+n−1 belongs to the completely prime ideal of R

generated by bk. Hence, u ∈ 〈bk〉 or r ∈ 〈bk〉. Because of step two, the first possibility can

not happen. Hence, r ∈ 〈bk〉. Since bk is normal, we can write r = r′bk with r′ ∈ R. Thus

xbα1
1 . . . b

αm+n−1

m+n−1 = ur = ur′bk; and so xbα1
1 . . . bαk−1

k . . . b
αm+n−1

m+n−1 = ur′. This contradicts the

minimality of (α1, . . . , αm+n−1). Hence (α1, . . . , αm+n−1) = 0; and so x = ur ∈ 〈u〉, as

desired. �
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3 Automorphisms of quantum matrices

In this section, we investigate the group of automorphisms of Oq(Mm,n). Using graded ar-

guments together with the results of the previous sections, we show that, in the non-square

case, every H-invariant height one prime of Oq(Mm,n), except possibly one, is invariant un-

der every automorphism. Next, by using the preferred basis of Oq(Mm,n) introduced in [7],

we show that the group of automorphisms of Oq(Mm,n), with 2 ≤ m < n, is isomorphic to

the torus (C∗)m+n−1.

In the sequel, we will use several times the following well-known result concerning

normal elements of R.

Lemma 3.1 Let u and v two nonzero normal elements of R such that 〈u〉 = 〈v〉. Then

there exist λ, µ ∈ C∗ such that u = λv and v = µu.

3.1 q-commutation, gradings and automorphisms.

Let A = ⊕i∈NAi be a N-graded C-algebra with A0 = C. Assume that A is a domain

generated as an algebra by x1,..., xn, and that A1 = Cx1⊕· · ·⊕Cxn. We set A≥d := ⊕i≥dAi.

The following result was inspired by a result in [1].

Proposition 3.2 Assume that, for all i ∈ {1, . . . , n}, there exist j 6= i and qij 6= 1 such

that xixj = qijxjxi. Let σ be an automorphism of A and x be a nonzero homogeneous

element of degree d of A.

Then σ(x) = yd + y>d, where yd ∈ Ad \ {0} and y>d ∈ A>d.

Proof. First, observe that it is sufficient to prove that σ(Ad) ⊆ A≥d, for every automorphism

σ of A. Indeed, assume that this is the case, and let x be a nonzero homogeneous element

of degree d of A. Then we can write σ(x) = yd + y>d, where yd ∈ Ad and y>d ∈ A>d. If

yd = 0, then σ(x) = y>d ∈ A>d, and thus σ−1(A>d) is not contained in A>d. This is a

contradiction.

Hence it just remains to prove that, for every automorphism σ of A, we have σ(Ad) ⊆

A≥d. Naturally, it is sufficient to prove this result when x = xi is one of the canonical

generators of A. So let σ be an automorphism σ of A and i ∈ {1, . . . , n}. We can write

σ(xi) = αi + fi,

where αi ∈ C and fi ∈ A≥1. We have to prove that αi = 0.
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Now, by hypothesis, there exist j ∈ {1, . . . , n} and qij 6= 1 such that xixj = qijxjxi.

Set

σ(xj) = fj + gj,

where fj ∈ At, fj 6= 0 and gj ∈ A>t. Applying σ to the equality xixj = qijxjxi, and next

identifying the homogeneous part of degree t yields αifj = qijfjαi. Thus, αifj = 0, since

qij 6= 1. Now, since fj 6= 0, this forces αi = 0, as desired. �

Note that the commutativity hypothesis of the Proposition 3.2 is satisfied by the algebra

R = Oq(Mm,n), provided that n ≥ 2. Indeed, the relations that define R are all quadratic,

so that R = ⊕i∈NRi is a N-graded algebra, the canonical generators Yi,α of R having degree

one.

Next, for all (i, α) ∈ [[1, m]] × [[1, n]] and β 6= α, we have Yi,αYi,β = q•Yi,βYi,α with

• = ±1. Thus, the commutativity hypothesis of Proposition 3.2 is satisfied; and so one

can state:

Corollary 3.3 Let σ be an automorphism of R = Oq(Mm,n) and x an homogeneous ele-

ment of degree d of R.

Then σ(x) = yd + y>d, where yd ∈ Rd \ {0} and y>d ∈ R>d.

Note, for later use, that a t×t quantum minor of R is a homogeneous element of degree

t with respect to this grading of R. In the sequel, R will always be endowed with this

grading.

3.2 The action of Aut(Oq(Mm,n)) on the set of height one primes:

the non-square case.

Throughout this section, we assume that m < n. Our aim in this section is to show that

every H-invariant height one prime of Oq(Mm,n), except possibly one, is invariant under

every automorphism. In order to do this, we will distinguish between two cases.

3.2.1 The case where n 6= 3m.

Throughout this section, we assume that m < n and n 6= 3m. In this case, we first show

that the set of all H-invariant height one primes of R is invariant under every automorphism

of R, that is, we have:

Lemma 3.4 Assume that n 6= 3m. Let σ be an automorphism of R and i ∈ {1, . . . , m +

n − 1}. Then there exists j ∈ {1, . . . , m + n − 1} such that σ(〈bi〉) = 〈bj〉.
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Proof. First, assume that v2(m) 6= v2(n). It follows from Proposition 2.5 that {〈bi〉 | i ∈

[[1, m + n− 1]]} is exactly the set of all height one primes of R and so the result is obvious

in this case.

Next, assume that v2(m) = v2(n). We use the notation of Section 2.2. In particular,

d denotes the greatest common divisor of m and n, and we set m = dm′ and n = dn′.

Observe that m′ and n′ are odd. Note further that, since n 6= 3m, we have (m′, n′) 6= (1, 3).

Moreover, since m < n, we have m′ < n′. Since m′ and n′ are both odd, this forces n′ ≥ 5.

Since 〈bi〉 is a height one prime ideal of R, its image under σ is also a height one prime

ideal of R. We distinguish between two cases.

First, if 〈σ(bi)〉 is H-invariant, then it follows from Proposition 2.1 that 〈σ(bi)〉 = 〈bj〉

for some j and so the proof is complete in this case.

Next, assume that 〈σ(bi)〉 is not H-invariant. In this case, 〈σ(bi)〉 is a height one

(completely) prime ideal of R which is not H-invariant. Thus, 〈σ(bi)〉 belongs to the 〈0〉-

stratum of the prime spectrum of R, by Proposition 2.5; and so we deduce from Proposition

2.6 that there exist (r1, . . . , rd) ∈ Nd \ {0} and scalars ai1,...,id ∈ C such that 〈σ(bi)〉 = 〈u〉,

where

u :=

r1
∑

i1=0

· · ·

rd
∑

id=0

ai1,...,id

d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij

.

It follows from Proposition 2.6 that u is a normal element of R. On the other hand, σ(bi)

is normal, since bi is normal. Thus, we deduce from Lemma 3.1 that u ∈ C
∗σ(bi).

Now bi is a quantum minor of R = Oq(Mm,n), and so bi is a homogeneous element of

degree less than or equal to m. So Corollary 3.3 implies that

u 6∈ R>m. (4)

On the other hand, since (r1, . . . , rd) 6= 0, there exists k such that rk ≥ 1. Now, recalling

that m′ and n′ are odd and that n′ ≥ 5, we have:

deg







d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij





≥

{

deg
(

bkb(m′+1)d+k

)

if ik ≥ 1

deg
(

bm′d+kb(m′+n′−3)d+k

)

if ik = 0

Since m < n, we have m′ < n′. Further, m′ and n′ are odd, and so m′ + 1 < n′. Hence

m = m′d ≤ m′d + k ≤ (m′ + 1)d + k ≤ n = n′d. This implies that b(m′+1)d+k and bm′d+k
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are m × m quantum minors. Thus, in both cases, we get

deg







d
∏

j=1







m′+n′−1
∏

i=0
i even

bid+j







ij






m′+n′−1
∏

i=0
i odd

bid+j







rj−ij





≥ m + 1.

Thus u is a linear combination of terms of degree greater than m. This implies that

u ∈ R>m, contradicting (4); and so the proof is complete. �

In fact, more is true: each H-invariant height one prime is left invariant by any auto-

morphism, as the following result shows.

Proposition 3.5 Assume that n 6= 3m and let σ be an automorphism of R. Then, for

each i ∈ {1, . . . , m + n − 1}, there exists λi ∈ C
∗ such that σ(bi) = λibi.

Proof. Let i ∈ {1, . . . , m + n − 1}. It follows from Lemma 3.4 that there exists j ∈

{1, . . . , m+n−1} such that σ(〈bi〉) = (〈bj〉). Since σ(bi) and bj are normal, it follows from

Lemma 3.1 that there exists λj ∈ C∗ such that σ(bi) = λibj .

Thus, there exist scalars λ1, . . . , λm+n−1 ∈ C∗ and a permutation s ∈ Sm+n−1 such that

σ(bi) = λibs(i) for all i ∈ {1, . . . , m + n − 1}.

We will now prove that s is the identity, that is, s(i) = i for all i ∈ {1, . . . , m + n− 1}.

First, let i ∈ {m, . . . , n}, so that bi is a m × m quantum minor. Then bi ∈ Rm and it

follows from Corollary 3.3 that σ(bi) ∈ R≥m. Hence bs(i) ∈ R≥m. This implies that bs(i) is

also a m×m quantum minor, so that s(i) ∈ {m, . . . , n}. Thus s induces a permutation of

{m, . . . , n}.

We now prove with the help of a decreasing induction that s(i) = i for all i ∈ {m, . . . , n}.

It follows from Corollary 2.3 that bnbj = q•bjbn with • ≥ 0 for all j ∈ {m, . . . , n}.

Then, applying σ leads to bs(n)bs(j) = q•bs(j)bs(n) with • ≥ 0 for all j ∈ {m, . . . , n}.

Since s is a permutation of {m, . . . , n}, this implies that bs(n)bj = q•bjbs(n) with • ≥ 0

for all j ∈ {m, . . . , n}. Now, if s(n) 6= n, then we have s(n) + 1 ∈ {m, . . . , n} and

bs(n)bs(n)+1 = q−1bs(n)+1bs(n). This is a contradiction and so s(n) = n.

We now assume that m ≤ i < n. It follows from the induction hypothesis that s induces

a permutation of {m, . . . , i}; so that s(i) ≤ i. By using a similar argument to that in the

previous paragraph, we obtain s(i) = i.

Hence, s(i) = i for all i ∈ {m, . . . , n}.

Now let i ∈ {1, . . . , m − 1}. Then bi ∈ Ri; and so it follows from Proposition 3.2 that

σ(bi) ∈ R≥i \ R>i. Hence bs(i) ∈ R≥i \ R>i so that bs(i) is also a i × i quantum minor.

This implies that either s(i) = i or s(i) = m + n − i. Note that similar arguments show
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that either s(m + n − i) = i or s(m + n − i) = m + n − i; so s induces a permutation of

{i, m + n − i}. Observe that it follows from Corollary 2.3 that bnbm+n−i = bm+n−ibn and

bnbi = q•bibn with • > 0. Since we have already proved that s(n) = n, applying σ leads

to bnbs(m+n−i) = bs(m+n−i)bn and bnbs(i) = q•bs(i)bn with • > 0. This forces s(i) = i and

s(m + n − i) = m + n − i. �

3.2.2 The case where n = 3m.

Throughout this section, we assume that n = 3m. In this case, we are not able to prove

directly that the set of all H-invariant height one primes is invariant under every automor-

phism of R = Oq(Mm,n). However, by using arguments similar to those developed in the

proof of Lemma 3.4, one can establish the following weaker result.

Lemma 3.6 Assume that n = 3m. Let σ be an automorphism of R and i ∈ {1, . . . , m +

n − 1}.

Then, either

1. there exists j ∈ {1, . . . , m + n − 1} such that σ(〈bi〉) = 〈bj〉,

or,

2. there exist λ ∈ C∗ and µ ∈ C such that σ(bi) = λb2m + µbmb3m.

Proof. Note that v2(m) = v2(n), since n = 3m. Also, observe that the greatest common

divisor d of m and n is equal to m and that, if we set m = dm′ and n = dn′, then m′ = 1

and n′ = 3.

Since 〈bi〉 is a height one prime ideal of R, its image under σ is also a height one prime

ideal of R. We distinguish between two cases.

If 〈σ(bi)〉 is H-invariant, then it follows from Proposition 2.1 that σ(〈bi〉) = 〈bj〉 for

some j and so the proof is complete in this case.

Assume now that 〈σ(bi)〉 is not H-invariant. In this case, 〈σ(bi)〉 is a height one (com-

pletely) prime ideal of R which is not H-invariant. Thus it follows from Proposition 2.5

that 〈σ(bi)〉 belongs to the 〈0〉-stratum of the prime spectrum of R; and so, recalling that

d = m, we deduce from Proposition 2.6 that there exist (r1, . . . , rm) ∈ Nm \{0} and scalars

ai1,...,im ∈ C such that 〈σ(bi)〉 = 〈u〉 where

u :=

r1
∑

i1=0

· · ·
rm
∑

im=0

ai1,...,im

m
∏

j=1







3
∏

i=0
i even

bim+j







ij






3
∏

i=0
i odd

bim+j







rj−ij

.
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It follows that u is a normal element of R, by Proposition 2.6. On the other hand, σ(bi) is

normal in R, since bi is normal in R. . Hence, u ∈ C∗σ(bi), by Lemma 3.1.

Now bi is a quantum minor of R = Oq(Mm,n); and so bi is a homogeneous element of

degree less than or equal to m. Thus, Corollary 3.3 implies that

u 6∈ R>m. (5)

On the other hand, since (r1, . . . , rm) 6= 0, there exists k such that rk ≥ 1. We consider

three separate cases.

• First, suppose that k < m, then

deg







m
∏

j=1







3
∏

i=0
i even

bim+j







ij






3
∏

i=0
i odd

bim+j







rj−ij





≥

{

deg (bkb2m+k) if ik ≥ 1

deg (bm+kb3m+k) if ik = 0

Now, m + k and 2m + k are both between m and n, since k < m and n = 3m. Thus,

bm+k and b2m+k are m×m quantum minors. Also, bk and b3m+k are homogeneous of degree

greater than or equal to 1. Thus, in both cases, we get

deg







m
∏

j=1







3
∏

i=0
i even

bim+j







ij






3
∏

i=0
i odd

bim+j







rj−ij





≥ m + 1.

Hence u is a linear combination of terms of degree greater than m. This implies that

u ∈ R>m. This contradicts (5).

• Next, assume that k = m and rm ≥ 2. In this case, one can prove, by using similar

arguments, that u is a linear combination of terms of degree greater than m; so this case

cannot happen.

• Finally, assume that k = m and (r1, . . . , rm) = (0, . . . , 0, 1). In this case, there exist

λ′, µ′ ∈ C such that

u = λ′b2m + µ′bmb3m.

If λ′ = 0, then once again u is a linear combination of terms of degree greater than m,

contradicting (5). Hence λ′ 6= 0. Since we have already proved that u ∈ C∗σ(bi), we see

that there exist λ ∈ C∗ and µ ∈ C such that σ(bi) = λb2m + µbmb3m, as desired. �

The following commutation relations can be easily deduced from Corollary 2.3.
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Lemma 3.7 For all m ≤ i ≤ 3m:

bi(λb2m + µbmb3m) =

{

qαi,2m(λb2m + µbmb3m)bi if i < 2m

q−αi,2m(λb2m + µbmb3m)bi if i > 2m,

where αi,2m := {3m − i + 1, . . . , 4m − i} ∩ {m + 1, . . . , 2m} − m.

We can now obtain the analogous (but slightly weaker) result to Proposition 3.5 in the

n = 3m case.

Proposition 3.8 Assume that n = 3m and let σ be an automorphism of R. Then, for all

i ∈ {1, . . . , 4m − 1}, i 6= 2m, there exists λi ∈ C∗ such that σ(bi) = λibi.

Proof. Let i ∈ {1, . . . , 4m − 1} and assume that there exists j ∈ {1, . . . , 4m − 1} such

that σ(〈bi〉) = 〈bj〉. Then, it follows from Lemma 3.1 that there exists λj ∈ C∗ such that

σ(bi) = λibj , since σ(bi) and bj are normal.

Thus, we deduce from Lemma 3.6 that, for all i ∈ {1, . . . , 4m − 1}, either there exist

j ∈ {1, . . . , 4m − 1} and λi ∈ C∗ such that σ(bi) = λibj , or there exist λi, µi ∈ C with

λi 6= 0 such that σ(bi) = λib2m + µibmb3m.

We distinguish between two cases.

• If, for each i ∈ {1, . . . , 4m − 1}, there exist j ∈ {1, . . . , 4m − 1} and λi ∈ C∗ such that

σ(bi) = λibj , then, by using similar arguments to those in the proof of Proposition 3.5, we

show that σ(bi) = λibi for all i ∈ {1, . . . , 4m − 1}.

• Now, assume that there exist k ∈ {1, . . . , 4m−1}, and λk, µk ∈ C with λk 6= 0, such that

σ(bk) = λkb2m + µkbmb3m.

•• First, we show that k = 2m.

Observe that, for all i ∈ {1, . . . , m− 1} ∪ {3m + 1, . . . , 4m− 1}, the quantum minor bi

is a homogeneous element of degree less than m. Hence, σ(bi) /∈ R≥m, by Corollary 3.3.

Since σ(bk) = λkb2m + µkbmb3m ∈ R≥m, this shows that i 6= k. Thus, k ∈ {m, . . . , 3m}.

Next, let i ∈ {m, . . . , 3m}, so that bi is a m×m quantum minor. Then bi ∈ Rm and it

follows from Corollary 3.3 that σ(bi) ∈ R≥m. Hence, either

there exist j ∈ {m, . . . , 3m} and λi ∈ C∗ such that σ(bi) = λibj , (6)

or

there exist λi, µi ∈ C with λi 6= 0 such that σ(bi) = λib2m + µibmb3m. (7)
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We now prove that (7) can not happen, for all i ∈ {2m + 1, . . . , 3m}. Indeed, assume

that there exists i ∈ {2m + 1, . . . , 3m} such that σ(bi) = λib2m + µibmb3m. Note that

bibj = q•bjbi with • > 0, for all m ≤ j < i, by Corollary 2.3.

Hence, by applying σ, we obtain:

(λib2m + µibmb3m)σ(bj) = q•σ(bj)(λib2m + µibmb3m) (8)

with • > 0 for all m ≤ j < i. This implies that σ(bj) can not be equal to λb2m+µbmb3m with

λ, µ ∈ C, since λb2m + µbmb3m commutes with λib2m + µibmb3m by Lemma 3.7. Hence we

deduce from (6) and (7) that, for each j such that m ≤ j < i, there exist l ∈ {m, . . . , 3m−1}

and λj ∈ C∗ such that σ(bj) = λjbl. Moreover, we deduce from (8) and Lemma 3.7 that we

must have l ∈ {m, . . . , 2m − 1}. Thus, since i > 2m, there exist j 6= j′ with m ≤ j, j′ < i

with σ(bj) ∈ C
∗σ(bj′). This is impossible since σ is an automorphism and 〈bj〉 6= 〈bj′〉, by

Proposition 2.1.

Hence, for all i ∈ {2m+1, . . . , 3m}, there exist j ∈ {m, . . . , 3m} and λi ∈ C
∗ such that

σ(bi) = λibj . In other words, k 6= i for all i ∈ {2m + 1, . . . , 3m}.

A similar argument shows that, for all i ∈ {m, . . . , 2m−1}, there exist j ∈ {m, . . . , 3m}

and λi ∈ C∗ such that σ(bi) = λibj , and so k 6= i for all i ∈ {m, . . . , 2m − 1}.

In conclusion, the only possibility is k = 2m. Hence, we have already proved that:

1. There exist λ, µ ∈ C, with λ 6= 0, such that σ(b2m) = λb2m + µbmb3m.

2. For all i ∈ {m, . . . , 3m} with i 6= 2m, there exist j ∈ {m, . . . , 3m} and λi ∈ C∗ such

that σ(bi) = λibj .

3. For all i ∈ {1, . . . , m − 1} ∪ {3m + 1, . . . , 4m − 1}, there exist j ∈ {1, . . . , 4m − 1}

and λi ∈ C∗ such that σ(bi) = λibj .

•• We prove by induction that σ(bi) = λibi, for all i ∈ {2m + 1, . . . , 3m}.

First, we know that there exist λ2m+1 ∈ C∗ and j ∈ {m, . . . , 3m} such that σ(b2m+1) =

λ2m+1bj . It follows from Corollary 2.3 that b2mb2m+1 = qb2m+1b2m. Hence, applying σ

yields:

(λb2m + µbmb3m)bj = qbj(λb2m + µbmb3m).

In view of Lemma 3.7, this forces j = 2m + 1, as desired.

Next, let i ∈ {2m + 2, . . . , 3m}. It follows from the previous study that there exist

j ∈ {m, . . . , 3m} and λi ∈ C∗ such that σ(bi) = λibj . Moreover we deduce from the
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induction hypothesis that σ(bi−1) = λi−1bi−1. Now, Corollary 2.3 shows that bibi−1 =

qbi−1bi. Applying σ yields

bjbi−1 = qbi−1bj .

In view of Corollary 2.3, this implies that j = i, as desired.

Hence, σ(bi) = λibi, for all i ∈ {2m + 1, . . . , 3m}. A similar argument shows that

σ(bi) = λibi, for all i ∈ {m, . . . , 2m − 1}.

•• Now, let i ∈ {1, . . . , m − 1}. Then bi ∈ Ri; and so it follows from Proposition 3.2

that σ(bi) ∈ R≥i \ R>i. Now, there exist j ∈ {1, . . . , 4m − 1} and λi ∈ C∗ such that

σ(bi) = λibj because of the previous study. Hence we have bj ∈ R≥i \ R>i, so that bj is

also a i × i quantum minor. This implies that either j = i or j = 4m − i. Now, it follows

from Corollary 2.3 that b3mbi = q•bib3m with • > 0. Since we have already proved that

σ(b3m) = λ3mb3m, composing by σ leads to b3mbj = q•bjb3m with • > 0. On the other hand,

it follows Corollary 2.3 that b3mb4m−i = b4m−ib3m. So j can not be equal to 4m− i. Hence

j = i and so σ(bi) = λibi, as desired.

A similar argument shows that there exist λi ∈ C
∗ such that σ(bi) = λibi, for all

i ∈ {3m + 1, . . . , 4m − 1}. �

3.3 The automorphism group of non-square quantum matrices.

Theorem 3.9 Assume that m < n and (m, n) 6= (1, 3). Let σ be an automorphism of

Oq(Mm,n). Then there exist µi,α ∈ C∗ such that σ(Yi,α) = µi,αYi,α, for all (i, α) ∈ [[1, m]] ×

[[1, n]].

Proof. We proceed by induction on n. The case n = 2 easily follows from Proposition

3.5. So we assume that n ≥ 3. If m = 1, then n > 3, and so once again the result easily

follows from Proposition 3.5. So we assume that m ≥ 2. We need to see that σ acts

on each generator Yi,α by multiplication by a scalar. We do this by using preferred basis

arguments. We use the language and notation of [7].

Note that, because of [7, Proposition 5.3], the quantum minor bn = [1 . . .m|1 . . .m]

commutes with Yi,α, for 1 ≤ i, α ≤ m, and that bn[R | C] = q•[R | C]bn with • ≥ 0 for

all other quantum minors [R | C] of Oq(Mm,n). Thus, bn q•-commutes with each mono-

mial in the preferred basis where • is ≥ 0, and [7, Proposition 5.3] shows that • is equal

to zero if and only if the only quantum minors that occur in the monomial are those of

(Yi,α)i,α∈{1,...,m}. Observe further that, if bn = [1 . . .m|1 . . .m] commutes with an element
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y ∈ Oq(Mm,n), then it must commute with each of the monomials in the expression for y

in the preferred basis.

Now, let σ be an automorphism of Oq(Mm,n). We will show first that σ(Yi,α) = µi,αYi,α

for all 1 ≤ i, α ≤ m.

Set yi,α := σ(Yi,α). Since Yi,α commutes with bn and since σ acts on bn by multiplication

by a scalar (see Proposition 3.5 if n 6= 3m or Proposition 3.8 if n = 3m), then yi,α must

commute with bn. Thus, any monomial z in the expression for yi,α in the preferred basis

must also commute with bn. This means that the only quantum minors that can occur

in z are those of (Yi,α)i,α∈{1,...,m}. In particular, σ(Yi,α) belongs to the subalgebra Rm,m of

R = Oq(Mm,n) generated by Yi,α, 1 ≤ i, α ≤ m (which is a copy of Oq(Mm,m)). Hence σ

induces an automorphism of Rm,m.

Moreover, σ acts on the quantum minors bn+i = [i + 1, . . . , m|1, . . . , m − i] by multi-

plication by scalars, by Proposition 3.5 (if n 6= 3m) or Proposition 3.8 (if n = 3m). In

particular, there exists µm,1 ∈ C∗ such that σ(Ym,1) = µm,1Ym,1. Let j ∈ {1, . . . , m − 1}.

Then Yj,1Ym,1 = qYm,1Yj,1; so that σ(Yj,1)Ym,1 = qYm,1σ(Yj,1). Write σ(Yj,1) in the PBW

basis of Rm,m:

σ(Yj,1) =
∑

γ∈Γ

cγY
γ1,1

1,1 Y
γ1,2

1,2 . . . Y γm,m

m,m ,

where Γ is a finite subset of Nm2
. Hence σ(Yj,1)Ym,1 = qYm,1σ(Yj,1) implies that, for all

γ ∈ Γ such that cγ 6= 0, we have
∑m−1

i=1 γi,1 −
∑m

i=2 γm,i = 1. Thus, for all γ ∈ Γ such that

cγ 6= 0, there exists i ∈ {1, . . . , m − 1} with γi,1 6= 0. Denote by J , the prime ideal of R

generated by the Yi,1, with i ∈ {1, . . . , m}, and, similarly, denote by J ′ the prime ideal of

Rm,m generated by the Yi,1, with i ∈ {1, . . . , m}. Observe that J = Y1,1R+ · · ·+Ym,1R and

J ′ = Y1,1Rm,m+· · ·+Ym,1Rm,m. We have just proved that σ(Yj,1) ∈ J ′ for all j ∈ {1, . . . , m}.

Hence σ(J ′) = J ′ and σ(J) = J .

Thus, σ induces an automorphism of Rm,m/J ′ ≃ Oq(Mm,m−1). Now, because of

the induction hypothesis (and the isomorphism Oq(Mm,m−1) ≃ Oq(Mm−1,m)), we obtain

σ(Yi,α) = µi,αYi,α +
∑

γ∈Γ cγY
γ1,1

1,1 Y
γ1,2

1,2 . . . Y
γm,m
m,m with µi,α 6= 0 and at least one of γk,1 > 0

for each nonzero term of the sum. (Observe that we can apply the inductive hypothesis

since (m − 1, m) 6= (1, 3).)

On the other hand, it follows from Proposition 3.5 or Proposition 3.8 that
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σ(bn−1) = λbn−1 with λ ∈ C∗. Moreover, recalling that bn−1 = [1 . . .m|2 . . .m + 1], we

deduce from a transposed version of [7, Lemma 5.1] that, for all 1 ≤ i, α ≤ m, we have

bn−1Yi,α = q•Yi,αbn−1

with • = −1 if i = 1 and 0 otherwise. Let 1 ≤ i, α ≤ m with α 6= 1. Thus we must have

bn−1σ(Yi,α) = σ(Yi,α)bn−1. Since σ(Yi,α) = µi,αYi,α +
∑

γ∈Γ cγY
γ1,1

1,1 Y
γ1,2

1,2 . . . Y
γm,m
m,m with at

least one of γk,1 6= 0 for each nonzero term of the sum, this implies that the sum is empty

and so σ(Yi,α) = µi,αYi,α for all 1 ≤ i, α ≤ m with α 6= 1.

Now σ induces an automorphism of Rm,m that acts on the indeterminates Yi,α (1 ≤ i ≤

m and 1 < α ≤ m) by multiplication by scalars. Moreover, it follows from Proposition

3.5 or Proposition 3.8 that σ also acts on the bi = [i − n + 1, . . . , m | 1, . . . , m + n − i]

(n ≤ i ≤ m + n − 1) by multiplication by scalars. This forces σ(Yi,1) = µi,1Yi,1 for all

1 ≤ i ≤ m.

This establishes the following claim:

Claim 3.10 For all (i, α) ∈ [[1, m]]2, there exists µi,α ∈ C∗ such that σ(Yi,α) = µi,αYi,α.

It remains to consider the case that α > m. Let us now distinguish between two cases.

If n = m + 1, then σ is an automorphism of R = Oq(Mm,m+1) that acts on the indeter-

minates Yi,α (1 ≤ i, α ≤ m) by multiplication by scalars. Further, because of Proposition

3.5 or Proposition 3.8, σ also acts on the quantum minors bi = [1, . . . , i | n − i + 1, . . . , n]

(1 ≤ i ≤ m) by multiplication by scalars. This forces σ(Yi,m+1) = µi,m+1Yi,m+1 for all

1 ≤ i ≤ m. This finishes the proof of Theorem 3.9 in the case where n = m + 1.

Now, assume that m + 1 < n. Recall that J denotes the two-sided ideal generated

by the Yk,1, 1 ≤ k ≤ m. Note that J = Y1,1R + · · · + Ym,1R. It is well-known that the

monomials

Y
γ1,1

1,1 Y
γ2,1

2,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n

form a PBW basis of R. Observe that x =
∑

γ∈Γ cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y
γm,n
m,n belongs

to J if and only if at least one of the γk,1 ≥ 1 for all γ ∈ Γ such that cγ 6= 0.

It follows from Claim 3.10 that σ(J) = J . Hence σ induces an automorphism of

R/J ≃ Oq(Mm,n−1). Since m < n − 1 and m ≥ 2, it follows from the inductive hypothesis

that, for all (i, α) with m + 1 ≤ α ≤ n, we can write

σ(Yi,α) = µi,αYi,α +
∑

γ∈Γ

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n (9)
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where Γ is a finite subset of Nmn and at least one of the γk,1 ≥ 1 for all γ ∈ Γ such that

cγ 6= 0.

Let K the two-sided ideal generated by the Yk,2, 1 ≤ k ≤ m. Note that an element

x =
∑

γ∈Γ′

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n ∈ R

belongs to K if and only if at least one of the γk,2 ≥ 1 for all γ ∈ Γ′ such that cγ 6= 0.

It follows from Claim 3.10 that σ(K) = K. Hence σ induces an automorphism of

R/K ≃ Oq(Mm,n−1). Since m < n − 1 and m ≥ 2, the inductive hypothesis applies and,

for all (i, α) with m + 1 ≤ α ≤ n, we can write

σ(Yi,α) = µ′
i,αYi,α +

∑

γ∈Γ′

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n (10)

where Γ′ is a finite subset of Nmn and at least one of the γk,2 ≥ 1 for all γ ∈ Γ′ such that

cγ 6= 0.

Let (i, α) with m+1 ≤ α ≤ n. It remains to prove that σ acts on Yi,α by multiplication

by a scalar. First, identifying the two expressions (9) and (10) of σ(Yi,α) in the PBW basis

of R leads to:

σ(Yi,α) = µi,αYi,α +
∑

γ∈Γ

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n (11)

where Γ is a finite subset of Nmn such that at least one of the γk,1 ≥ 1 and at least one of

the γl,2 ≥ 1 for all γ ∈ Γ such that cγ 6= 0.

By Proposition 3.5 (if n 6= 3m) or Proposition 3.8 (if n = 3m), the automorphism σ

acts on bm = [1 . . .m | n − m + 1 . . . n] by multiplication by a scalar. Further, it follows

from a transposed version of [7, Lemma 5.1] that

bmYi,α =

{

q−1Yi,αbm if α ≤ n − m

Yi,αbm if α ≥ n − m + 1.

Hence

bmσ(Yi,α) =

{

q−1σ(Yi,α)bm if α ≤ n − m

σ(Yi,α)bm if α ≥ n − m + 1,

Thus
∑

γ∈Γ

cγq
−γ1,1−···−γm,1−···−γ1,n−m−···−γm,n−mY

γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n
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= q•
∑

γ∈Γ

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n ,

where q• = −1 if α ≤ n − m, and q• = 0 otherwise.

Consequently,

γ1,1 + · · ·+ γm,1 + · · ·+ γ1,n−m + · · ·+ γm,n−m =

{

1 if α ≤ n − m

0 if α ≥ n − m + 1,
(12)

for all γ ∈ Γ such that cγ 6= 0, since q is not a root of unity.

On the other hand, recall that

σ(Yi,α) = µi,αYi,α +
∑

γ∈Γ

cγY
γ1,1

1,1 . . . Y
γm,1

m,1 . . . Y
γ1,n

1,n . . . Y γm,n

m,n

where, for each nonzero term of the sum, at least one of the γk,1 is a positive integer and at

least one of the γl,2 is a positive integer. Hence, γ1,1+· · ·+γm,1+· · ·+γ1,n−m+· · ·+γm,n−m ≥

2 for all γ ∈ Γ with cγ 6= 0, since n−m ≥ 2. This contradicts (12). Thus Γ must be empty

for all (i, α) with α ≥ m and so σ(Yi,α) = µi,αYi,α for all α > m. This finishes the proof. �

Corollary 3.11 Assume that m < n and (m, n) 6= (1, 3). Let σ be an automorphism of

Oq(Mm,n). Then there exist unique nonzero complex numbers h1, . . . , hm, h′
1, . . . , h

′
n−1 such

that σ(Yi,α) = hih
′
αYi,α (with the convention h′

n = 1).

Thus, Aut(Oq(Mm,n)) is isomorphic to the torus (C∗)m+n−1.

Proof. Let σ be an automorphism of Oq(Mm,n). By Theorem 3.9, there exists a family

(µi,α)(i,α)∈[[1,m]]×[[1,n]] of elements of C∗ such that σ(Yi,α) = µi,αYi,α for all (i, α) ∈ [[1, m]] ×

[[1, n]]. Recall that, if (i, α), (j, β) ∈ [[1, m]] × [[1, n]] with i < j and α < β, then Yj,βYi,α =

Yi,αYj,β − (q − q−1)Yi,βYj,α. Hence, since σ is an automorphism, we must have µi,αµj,β =

µi,βµj,α for all (i, α), (j, β) ∈ [[1, m]] × [[1, n]] with i < j and α < β. In other words, the

matrix (µi,α)(i,α)∈[[1,m]]×[[1,n]] has rank 1. Hence, there exist unique nonzero complex numbers

h1, . . . , hm, h′
1, . . . , h

′
n−1, h

′
n = 1 such that µi,α = hih

′
α for all i, α, as desired. �

Note that, in the exceptional case where (m, n) = (1, 3), the automorphism group of

Oq(M1,3) has been computed by Alev and Chamarie, [1, Théorème 1.4.6]; in this case, the

group is not isomorphic to the torus (C∗)3, since the second case of Lemma 3.6 does arise.

Indeed, Alev and Chamarie show that any automorphism of Oq(M1,3) is of the form

σ(Y11) = µ1Y11, σ(Y12) = µ2Y12 + λY11Y13, σ(Y13) = µ3Y13,
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where µi 6= 0 and λ are complex numbers; so that the automorphism group is isomorphic

to the semidirect product C× (C∗)3. This result can easily be obtained from our analysis.
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male, J Algebra 260 (2003), 519–569
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no. 2, 597-601

[7] K R Goodearl and T H Lenagan, Quantum determinantal ideals, Duke Math J

103 (2000), 165-190.

[8] K R Goodearl and E S Letzter, Prime and primitive spectra of multiparameter

quantum affine spaces, in Trends in Ring Theory (Miskolc, 1996) (V Dlab and

L Marki, eds), Canad Math Soc Conf Proc Series 22 (1998), 39-58.

[9] K R Goodearl and E S Letzter, The Dixmier-Moeglin equivalence in quantum

coordinate rings and quantized Weyl algebras, Trans Amer Math Soc 352 (2000),

1381-1403

31



[10] K R Goodearl and E S Letzter, Prime factor algebras of the coordinate ring of

quantum matrices, Proc Amer Math Soc 121 (1994), 1017-1025

[11] K R Goodearl and R B Warfield, An introduction to noncommutative Noethe-

rian rings. Second edition. London Mathematical Society Student Texts, 61.

Cambridge University Press, Cambridge, 2004
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