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Prime ideals in the quantum grassmannian

S Launois, T H Lenagan and L Rigal∗

Abstract

We consider quantum Schubert cells in the quantum grassmannian and give a cell

decomposition of the prime spectrum via the Schubert cells. As a consequence, we

show that all primes are completely prime in the generic case where the deformation

parameter q is not a root of unity. There is a natural torus action of H = (k∗)n on

Gq(m,n) and the cell decomposition of the set of H-primes leads to a parameterisation

of the H-spectrum via certain diagrams on partitions associated to the Schubert

cells. Interestingly, the same parameterisation occurs for the non-negative cells in

recent studies concerning the totally non-negative grassmannian. Finally, we use

the cell decomposition to establish that the quantum grassmannian satisfies normal

separation and catenarity.

2000 Mathematics subject classification: 16W35, 16P40, 16S38, 17B37, 20G42, 05Exx,

05Axx.

Key words: Quantum matrices, quantum grassmannian, quantum Schubert variety, quan-

tum Schubert cell, prime spectrum, total positivity.

Introduction

Let m ≤ n be positive integers and let Oq(Mm,n(k)) denote the quantum deformation

of the affine coordinate ring on m × n matrices, with nonzero deformation parameter q

in the base field. The quantum deformation of the homogeneous coordinate ring of the

grassmannian, denoted Oq(Gm,n(k)), is defined as the subalgebra of Oq(Mm,n(k)) generated

by the maximal quantum minors of the generic matrix of Oq(Mm,n(k)). To simplify, these

algebras will be referred to in the sequel as the algebra of quantum matrices and the

quantum grassmannian, respectively.

The main goal of this work is the study of the prime spectrum of the quantum grass-

mannian. This algebra is naturally endowed with the action of a torus H. Thus, according

∗This research was supported by a Marie Curie Intra-European Fellowship within the 6th European

Community Framework Programme and by Leverhulme Research Interchange Grant F/00158/X
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to the philosophy of the stratification theory as developed by Goodearl and Letzter (see

[1]), our main concern is the set of H-prime ideals (namely, the prime ideals invariant under

the action of H). Recall that if A is an algebra and H a torus which acts on A by algebra

automorphisms then the stratification theory suggests a study of the prime spectrum of

A by means of a partition into strata, each stratum being indexed by an H-prime ideal.

For many algebras arising from the theory of quantum groups, general results have been

proved about such a stratification. For example, when such an algebra is a certain kind

of iterated skew polynomial extension, general results show that it has only finitely many

H-primes and that each stratum is homeomorphic to the spectrum of a suitable commu-

tative Laurent polynomial ring. However, the algebra which interests us here is far from

being such an extension and it is not even clear at the outset that it has finitely many

H-primes. For this reason, these general results do not apply and we are led to use a very

different approach which has a geometric flavour. Recall that a classical approach to the

study of the grassmanian variety Gm,n(k) is to use its partition into Schubert cells and their

closures which are the so-called Schubert subvarieties of the grassmannian. Notice that, in

this decomposition, Schubert cells are indexed by Young diagrams fitting in a rectangular

m× (n−m) Young diagram. Our method is inspired by this classical geometric setting.

Quantum analogues of Schubert varieties (or rather of their coordinate rings) were

studied in [14] in order to show that the quantum grassmannian has a certain combinato-

rial structure, namely the stucture of a quantum graded algebra with a straightening law.

Subsequently, some of their properties have been established in [15]. In this paper, we

define quantum Schubert cells as noncommutative dehomogenisations of quantum Schu-

bert varieties. Using the structure of a quantum graded algebra with a straightening law

enjoyed by the quantum grassmannian, we are then in position to define a partition of its

prime spectrum. This partition is called a cell decomposition since it turns out that the set

of H-primes of a given component is in natural one-to-one correspondence with the set of

H-primes of an associated quantum Schubert cell. Hence, the description of the H-primes

of the quantum grassmannian reduces to that of the H-primes of each of its associated

quantum Schubert cells. (Here, the actions of H on the quantum Schubert varieties and

cells are naturally induced by its action on the quantum grassmannian.)

On the other hand, we can show that a quantum Schubert cell can be identified as

a subalgebra of a quantum matrix algebra, with the variables that are included sitting

naturally in the Young diagram associated to that cell. As a consequence, we can establish

properties for quantum Schubert cells akin to known properties of quantum matrix alge-

bras. For example, we are able to parameterise the H-prime ideals of a quantum Schubert

cell by Cauchon diagrams on the corresponding Young diagram, in the same way that

Cauchon was able to parameterise the H-prime ideals in quantum matrices, see [3]. This is

achieved by using the theory of deleting derivations as developed by Cauchon in [2]. This
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theory utilizes certain changes of variables in the field of fractions of the algebra under

consideration. In the case of quantum matrices, these changes of variable can be reinter-

preted using quasi-determinants, see [5]. Recently, Cauchon diagrams in Young diagrams

have appeared in the literature under the name Le-diagrams see, for example, [16] and

[17].

By using this approach, we are able to show that there are only finitely many H-prime

ideals in Oq(Gm,n(k)). More precisely, we show that such H-primes are in natural one-

to-one correspondence with Cauchon diagrams defined on Young diagrams fitting into a

rectangular m× (n−m) Young diagram. Following on from this description, we are able

to calculate the number of H-prime ideals in the quantum grassmannian.

In addition, we are able to show that prime ideals in the quantum grassmannian are

completely prime, and that this algebra satisfies normal separation and, hence, is catenary.

Again, the method is to establish these properties for each quantum Schubert cell and then

transfer them to the quantum grassmannian.

To conclude this introduction, it should be stressed that there are very interesting

connections between our results in the present paper and recent results in the theory of

total positivity. More details on this are given in Section 5.

1 Basic definitions

Throughout the paper, k is a field and q is a nonzero element of k that is not a root of

unity. Occasionally, we will remind the reader of this restriction in the statement of results.

In this section, we collect some basic definitions and properties about the objects we in-

tend to study. Most proofs will be omitted since these results already appear in [10, 14, 15].

Appropriate references will be given in the text.

Let m,n be positive integers.

The quantisation of the coordinate ring of the affine variety Mm,n(k) of m × n ma-

trices with entries in k is denoted Oq(Mm,n(k)). It is the k-algebra generated by mn

indeterminates xij , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, subject to the relations:

xijxil = qxilxij , for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkj = qxkjxij , for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;

xijxkl = xklxij , for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkl − xklxij = (q − q−1)xilxkj, for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

To simplify, we write Mn(k) for Mn,n(k) and Oq(Mn(k)) for Oq(Mn,n(k)). The m × n

matrix X = (xij) is called the generic matrix associated with Oq(Mm,n(k)).
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As is well known, there exists a k-algebra transpose isomorphism between Oq(Mm,n(k))

and Oq(Mn,m(k)), see [14, Remark 3.1.3]. Hence, from now on, we assume that m ≤ n,

without loss of generality.

An index pair is a pair (I, J) such that I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n} are subsets

with the same cardinality. Hence, an index pair is given by an integer t such that 1 ≤ t ≤ m

and ordered sets I = {i1 < · · · < it} ⊆ {1, . . . , m} and J = {j1 < · · · < jt} ⊆ {1, . . . , n}.

To any such index pair we associate the quantum minor

[I|J ] =
∑

σ∈St

(−q)ℓ(σ)xiσ(1)j1 . . . xiσ(t)jt
.

Definition 1.1 – The quantisation of the coordinate ring of the grassmannian of m-

dimensional subspaces of kn, denoted by Oq(Gm,n(k)) and informally referred to as the

(m× n) quantum grassmannian is the subalgebra of Oq(Mm,n(k)) generated by the m×m

quantum minors.

An index set is a subset I = {i1 < · · · < im} ⊆ {1, . . . , n}. To any index set we

associate the maximal quantum minor [I] := [{1, . . . , m}|I] of Oq(Mm,n(k)) which is, thus,

an element of Oq(Gm,n(k)). The set of all index sets is denoted by Πm,n. Since Πm,n is in

one-to-one correspondence with the set of all maximal quantum minors of Oq(Mm,n(k)),

we will often identify these two sets. We equip Πm,n with a partial order ≤st defined in the

following way. Let I = {i1 < · · · < im} and J = {j1 < · · · < jm} be two index sets, then

I ≤st J ⇐⇒ is ≤ js for 1 ≤ s ≤ m.

For example, Figure 1 shows the partial ordering on generators of Oq(G3,6(k)).

Let A be a noetherian k-algebra, and assume that the torus H := (k∗)r acts rationally

on A by k-algebra automorphisms. (For details concerning rational actions of tori, see [1,

Chapter II.2].) A two-sided ideal I of A is said H-invariant if h · I = I for all h ∈ H. An

H-prime ideal of A is a proper H-invariant ideal J of A such that whenever J contains the

product of two H-invariant ideals of A then J contains at least one of them. We denote

by H-Spec(A) the H-spectrum of A; that is, the set of all H-prime ideals of A. It follows

from [1, Proposition II.2.9] that every H-prime ideal is prime when q is not a root of unity;

so that in this case H-Spec(A) coincides with the set of all H-invariant prime ideals of A.

There are natural torus actions on the classes of algebras that we study here, including

quantum matrices, partition subalgebras of quantum matrices and quantum grassmanni-

ans. These actions are rational; and so the remarks above apply.
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First, there is an action of a torus H := (k∗)m+n on Oq(Mm,n(k)) given by

(α1, . . . , αm, β1, . . . , βn) ◦ xij := αiβjxij .

In other words, one is able to multiply through rows and columns by nonzero scalars.

Next, there is an action of the torus H := (k∗)n on Oq(Gm,n(k)) which comes from the

column action on quantum matrices. Thus, (α1, . . . , αn)◦[i1, . . . , im] := αi1 . . . αim [i1, . . . , im].

We shall be interested in prime ideals left invariant under the action of this torus. The set

of such prime ideals is the H-spectrum of Oq(Gm,n(k)).
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Figure 1: The partial ordering ≤st on Oq(G3,6(k)).

We recall the definition of quantum Schubert varieties given in [15].

Definition 1.2 – Let γ ∈ Πm,n and put Πγ
m,n = {α ∈ Πm,n |α 6≥st γ}. The quantum

Schubert variety S(γ) associated to γ is

S(γ) := Oq(Gm,n(k))/〈Πγ
m,n〉.

(Note that S(γ) was denoted by Oq(Gm,n(k))γ in [15].)

This definition is inspired by the classical description of the coordinate rings of Schu-

bert varieties in the grassmannian. For more details about this matter, see [6, Section
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6.3.4].

Note that each of the maximal quantum minors that generate Oq(Gm,n(k)) is an H-

eigenvector. Thus, the H-action on Oq(Gm,n(k)) transfers to the quantum Schubert vari-

eties S(γ).

In order to study properties of the quantum grassmannian, the notion of a quantum

graded algebra with a straightening law (on a partially ordered set Π) was introduced in

[14]. We now recall the definition of these algebras and mention various properties that

we will use later.

Let A be an algebra and Π a finite subset of elements of A with a partial order <st. A

standard monomial on Π is an element of A which is either 1 or of the form α1 . . . αs, for

some s ≥ 1, where α1, . . . , αs ∈ Π and α1 ≤st · · · ≤st αs.

Definition 1.3 – Let A be an N-graded k-algebra and Π a finite subset of A equipped with

a partial order <st. We say that A is a quantum graded algebra with a straightening law

(quantum graded A.S.L. for short) on the poset (Π, <st) if the following conditions are

satisfied.

(1) The elements of Π are homogeneous with positive degree.

(2) The elements of Π generate A as a k-algebra.

(3) The set of standard monomials on Π is a linearly independent set.

(4) If α, β ∈ Π are not comparable for <st, then αβ is a linear combination of terms λ or

λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.

(5) For all α, β ∈ Π, there exists cαβ ∈ k∗ such that αβ− cαββα is a linear combination of

terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.

By [14, Proposition 1.1.4], if A is a quantum graded A.S.L. on the partially ordered

set (Π, <st), then the set of standard monomials on Π forms a k-basis of A. Hence, in the

presence of a standard monomial basis, the structure of a quantum graded A.S.L. may be

seen as providing more detailed information on the way standard monomials multiply and

commute.

Example 1.4 – It is shown, in [14, Theorem 3.4.4], that Oq(Gm,n(k)) is a quantum graded

algebra with a straightening law on (Πm,n,≤st).

From our point of view, one important feature of quantum graded A.S.L. is the follow-

ing. Let A be a k-algebra which is a quantum graded A.S.L. on the set (Π,≤st). A subset

Ω of Π will be called a Π-ideal if it is an ideal of the partially ordered set (Π,≤st) in the
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sense of lattice theory; that is, if it satisfies the following property: if α ∈ Ω and if β ∈ Π,

with β ≤st α, then β ∈ Ω. We can consider the quotient A/〈Ω〉 of A by the ideal generated

by Ω. Clearly, it is still a graded algebra and it is generated by the images in A/〈Ω〉 of

the elements of Π \ Ω. The important point here is that A/〈Ω〉 inherits from A a natural

quantum graded A.S.L. structure on Π \ Ω (or, more precisely, on the canonical image of

Π \ Ω in A/〈Ω〉). In particular, the set of homomorphic images in A/〈Ω〉 of the standard

monomials of A which either equal 1 or are of the form α1 . . . αt (t ∈ N∗) and α1 /∈ Ω form

a k-basis for A/〈Ω〉. The reader will find all the necessary details in §1.2 of [14].

Example 1.5 – Let γ ∈ Πm,n. It is clear that the set Πγ
m,n introduced in Definition 1.2 is

a Πm,n-ideal. Hence, the discussion above shows that the quantum Schubert variety S(γ)

is a quantum graded A.S.L. on the canonical image in S(γ) of Πm,n \ Πγ
m,n. In particular,

the canonical images in S(γ) of the standard monomials of Oq(Gm,n(k)) which either equal

to 1 or are of the form [I1] . . . [It], for some t ≥ 1 and with γ ≤st [I1], form a k-basis of

S(γ).

Remark 1.6 – Let γ ∈ Πm,n. As mentioned in Example 1.5, the quantum Schubert

variety S(γ) is a quantum graded A.S.L. on the canonical image in S(γ) of Πm,n \Πγ
m,n. At

this point, it is worth noting that the set Πm,n \Πγ
m,n has a single minimal element, namely

γ, and that the image of γ is a normal nonzerodivisor in S(γ), by [14, Lemma 1.2.1].

2 Partition subalgebras of quantum matrices

Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. The partition

subalgebra Aλ of Oq(Mm,n(k)) is defined to be the subalgebra of Oq(Mm,n(k)) generated by

the variables xij with j ≤ λi. By looking at the defining relations for quantum matrices,

it is easy to see that Aλ can be presented as an iterated Ore extension with the variables

xij added in lexicographic order. As a consequence, partition subalgebras are noetherian

domains. Recall that there is an action of a torus H := (k∗)m+n on Oq(Mm,n(k)) given by

(α1, . . . , αm, β1, . . . , βn)◦xij := αiβjxij . This action induces an action on Aλ, by restriction.

Our main aim in this section is to observe that the Goodearl-Letzter stratification theory

and the Cauchon theory of deleting derivations apply to partition subalgebras of quantum

matrices. As a consequence, we can then exploit these theories to obtain information about

the prime and H-prime spectra of partition subalgebras.

The conditions needed to use the theories have been brought together in the notion

of a (torsion-free) CGL-extension introduced in [12, Definition 3.1]; the definition is given

below, for convenience.
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Definition 2.1 An iterated skew polynomial extension

A = k[x1][x2; σ2, δ2] . . . [xn; σn, δn]

is said to be a CGL extension (after Cauchon, Goodearl and Letzter) provided that the

following list of conditions is satisfied:

• With Aj := k[x1][x2; σ2, δ2] . . . [xj ; σj, δj ] for each 1 ≤ j ≤ n, each σj is a k-algebra

automorphism of Aj−1, each δj is a locally nilpotent k-linear σj-derivation of Aj−1,

and there exist nonroots of unity qj ∈ k∗ with σjδj = qjδjσj ;

• For each i < j there exists a λji ∈ k∗ such that σj(xi) = λjixi;

• There is a torus H = (k∗)r acting rationally on A by k-algebra automorphisms;

• The xi for 1 ≤ i ≤ n are H-eigenvectors;

• There exist elements h1, . . . , hn ∈ H such that hj(xi) = σj(xi) for j > i and such

that the hj-eigenvalue of xj is not a root of unity.

If, in addition, the subgroup of k∗ generated by the λji is torsionfree then we will say

that A is a torsionfree CGL extension.

For a discussion of rational actions of tori, see [1, Chapter II.2].

It is easy to check that all of these conditions are satisfied for partition subalgebras (for

exactly the same reasons that quantum matrices are CGL-extensions).

Proposition 2.2 Partition subalgebras of quantum matrix algebras are CGL-extensions

and are torsion-free CGL extensions when the parameter q is not a root of unity.

Proof: It is only necessary to show that we can introduce the variables xij that define the

partition subalgebra in such a way that the resulting iterated skew polynomial extension

satisfies the list of conditions above. Lexicographic ordering is suitable.

Corollary 2.3 Let Aλ be a partition subalgebra of quantum matrices and suppose that Aλ

is equipped with the induced action of H. Then Aλ has only finitely many H-prime ideals

and all prime ideals of Aλ are completely prime when the parameter q is not a root of

unity.
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Proof: This follows immediately from the previous result and [1, Theorem II.5.12 and

Theorem II.6.9].

In fact, we can be much more precise about the number of H-primes. We will prove

below that there exists a natural bijection between the H-prime spectrum of Aλ and

Cauchon diagrams defined on the Young diagram corresponding to the partition λ.

Suppose that Yλ is the Young diagram corresponding to the partition λ. Then a Cau-

chon diagram on Yλ is an assignment of a colour, either white or black, to each square of the

diagram Yλ in such a way that if a square is coloured black then either each square above

is coloured black, or each square to the left is coloured black. These diagrams were first

introduced by Cauchon, [3], in his study of the H-prime spectrum of quantum matrices.

Recently, they have occurred with the name Le-diagrams in work of Postnikov, [16], and

Williams, [17].

Lemma 2.4 Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm > 0.

The number of H-prime ideals in Aλ is equal to the number of Cauchon diagrams defined

on the Young diagram corresponding to the partition λ.

Proof: Let nλ denote the number of H-prime ideals in Aλ. First, we obtain a recurrence

relation for nλ.

The H-prime spectrum of Aλ can be written as a disjoint union:

H-Spec(Aλ) = {J ∈ H-Spec(Aλ)|xm,λm
∈ J} ⊔ {J ∈ H-Spec(Aλ)|xm,λm

/∈ J}.

It follows from the complete primeness of every H-prime ideal of Aλ that an H-prime

ideal J of Aλ that contains xm,λm
must also contain either xi,λm

for each i ∈ {1, . . . , m} or

xm,α for each α ∈ {1, . . . , λm}. Let I1 be the ideal generated by xi,λm
for i ∈ {1, . . . , m},

and let I2 be the ideal generated by xm,α for α ∈ {1, . . . , λm}. Set I3 := I1 + I2. As

Aλ

I1
≃ A(λ1−1,λ2−1,...,λm−1),

Aλ

I2
≃ A(λ1,λ2,...,λm−1) and

Aλ

I3
≃ A(λ1−1,λ2−1,...,λm−1−1),

we obtain

nλ = n(λ1−1,λ2−1,...,λm−1) + n(λ1,λ2,...,λm−1) − n(λ1−1,λ2−1,...,λm−1−1)

+ |{J ∈ H-Spec(Aλ)|xm,λm
/∈ J}|.

(Even though the above isomorphisms are not always H-equivariant, they preserve the

property of being an H-prime.)
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As Aλ is a CGL extension, one can apply the theory of deleting derivations to this

algebra. In particular, it follows from [2, Théorème 3.2.1] that the multiplicative system

of Aλ generated by xm,λm
is an Ore set in Aλ, and

Aλ[x
−1
m,λm

] ≃ A(λ1,λ2,...,λm−1,λm−1)[y
±1; σ],

where σ is the automorphism of A(λ1,λ2,...,λm−1,λm−1) defined by σ(xiα) = q−1xiα if i = m

or α = λm, and σ(xiα) = xiα otherwise. Denote this isomorphism by ψ, and note that

ψ(xm,λm
) = y. As xm,λm

is an H-eigenvector, the action of H on Aλ extends to an action

of H on Aλ[x
−1
m,λm

], and so on A(λ1,λ2,...,λm−1,λm−1)[y
±1; σ]. It is easy to show that this

action restricts to an action on A(λ1,λ2,...,λm−1,λm−1) which coincides with the “natural”

action of H on this algebra. Hence the isomorphism ψ induces a bijection from {J ∈

H-Spec(Aλ)|xm,λm
/∈ J} to H-Spec(A(λ1,λ2,...,λm−1,λm−1)[y

±1; σ]); and so it follows from [12,

Theorem 2.3] that there exists a bijection between {J ∈ H-Spec(Aλ)|xm,λm
/∈ J} and

H-Spec(A(λ1,λ2,...,λm−1,λm−1)). Hence

|{J ∈ H-Spec(Aλ)|xm,λm
/∈ J}| = n(λ1,λ2,...,λm−1,λm−1);

so that

nλ = n(λ1−1,λ2−1,...,λm−1) + n(λ1,λ2,...,λm−1) − n(λ1−1,λ2−1,...,λm−1−1) + n(λ1,λ2,...,λm−1,λm−1).

On the other hand, it follows from [17, Remark 4.2] that the number of Cauchon di-

agrams (equivalently, Le-diagrams) defined on the Young diagram corresponding to the

partition λ satisfies the same recurrence. As the number of H-prime ideals in A(1) is equal

to 2 which is also the number of Cauchon diagrams defined on the Young diagram corre-

sponding to the partition λ = (1), the proof is complete.

Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and let Aλ

be the corresponding partition subalgebra of generic quantum matrices. Let Cλ denote the

set of Cauchon diagrams on the Young diagram Yλ corresponding to the partition λ. We

have just seen that the sets H-Spec(Aλ) and Cλ have the same cardinality. In fact, there

is a natural bijection between these two sets which carries over important algebraic and

geometric information. This natural bijection arises by using Cauchon’s theory of deleting

derivations developed in [2] and [3].

As Aλ is a CGL extension, the theory of deleting derivations can be applied to the

iterated Ore extension Aλ = k[x1,1] . . . [xm,λm
; σm,λm

, δm,λm
] (where the indices are increas-

ing for the lexicographic order). Before describing the deleting derivations algorithm, we

introduce some notation. Denote by ≤lex the lexicographic ordering on N2 and set E :=

(
⊔m

i=1{i} × {1, . . . , λi} ∪ {(m,λm + 1)}) \ {(1, 1)}. If (j, β) ∈ E with (j, β) 6= (m,λm + 1),

then (j, β)+ denotes the least element (relative to ≤lex) of the set {(i, α) ∈ E |(j, β) < (i, α)}.
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The deleting derivations algorithm constructs, for each r ∈ E, a family of elements x
(r)
i,α

for α ≤ λi of F := Frac(Aλ), defined as follows.

1. If r = (m,λm + 1), then x
(m,λm+1)
i,α = xi,α for all (i, α) with α ≤ λi.

2. Assume that r = (j, β) < (m,λm + 1) and that the x
(r+)
i,α are already constructed.

Then, it follows from [2, Théorème 3.2.1] that x
(r+)
j,β 6= 0 and, for all (i, α), we have:

x
(r)
i,α =





x
(r+)
i,α − x

(r+)
i,β

(
x

(r+)
j,β

)−1

x
(r+)
j,α if i < j and α < β

x
(r+)
i,α otherwise.

As in [2], we denote by Aλ the subalgebra of Frac(Aλ) generated by the indeterminates

obtained at the end of this algorithm; that is, we denote by Aλ the subalgebra of Frac(Aλ)

generated by the ti,α := x
(1,2)
i,α for each (i, α) such that α ≤ λi. Cauchon has shown that

Aλ can be viewed as the quantum affine space Aλ generated by indeterminates tij for

j ≤ λi with relations tijtil = qtiltij for j < l, while tijtkj = qtkjtij for i < k, and all

other pairs commute. Observe that the torus H still acts by automorphisms on Aλ via

(a1, . . . , am, b1, . . . , bn).tij = aibjtij . The theory of deleting derivations allows the explicit

(but technical) construction of an embedding ϕ, called the canonical embedding, from

H-Spec(Aλ) into the H-prime spectrum of Aλ. The H-prime ideals of Aλ are well-known:

they are generated by the subsets of {tij}. If C is a Cauchon diagram defined on the

Young tableau corresponding to λ, then we denote by KC the (completely) prime ideal of

Aλ generated by the subset of indeterminates tij such that the square in position (i, j) is

a black square of C.

Theorem 2.5 Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm > 0

and let Aλ be the corresponding partition subalgebra of generic quantum matrices. Let Cλ

denote the set of Cauchon diagrams defined on the Young tableau corresponding to λ.

For every Cauchon diagram C ∈ Cλ, there exists a unique H-invariant (completely) prime

ideal JC of Aλ such that ϕ(JC) = KC. Moreover there is no other H-prime in Aλ; so that

H-Spec(Aλ) = {JC |C ∈ Cλ}.

Proof: As the sets H-Spec(Aλ) and {JC |C ∈ Cλ} have the same cardinality by the

previous lemma, it is sufficient to show that H-Spec(Aλ) ⊆ {JC |C ∈ Cλ}. This inclusion

can be obtained by following the arguments of [3, Lemmes 3.1.6 and 3.1.7]. The details

are left to the interested reader.
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Remark 2.6 Theorem 2.5 provides more than just an explicit bijection between the H-

spectrum of Aλ and Cλ. This natural bijection carries algebraic and geometric data. For

example, it can be shown that the height of JC is given by the number of black boxes of the

Cauchon diagram C. Also, the dimension of the H-stratum (in the sense of [1, Definition

2.2.1]) associated to JC can be read off from the Cauchon diagram C.

An algebra A is said to be catenary if for each pair of prime ideals Q ⊆ P of A all

saturated chains of prime ideals between Q and P have the same length. Our next aim

is to show that partition subalgebras of quantum matrix algebras are catenary. The key

property that we need to establish in order to prove catenarity is the property of normal

separation. Two prime ideals Q $ P are said to be normally separated if there is an

element c ∈ P\Q such that c is normal modulo Q. The algebra is normally separated if

each such pair of prime ideals is normally separated. In our case, a result of Goodearl,

see [7, Section 5], shows that it is enough to concentrate on the H-prime ideals. Suppose

that A is a k-algebra with a torus H acting rationally. If Q is any H-invariant ideal of A

then an element c is said to be H-normal modulo Q provided that there exists h ∈ H such

that ca − h(a)c ∈ Q for all a ∈ A. Goodearl observes that in this case one may choose

the element c to be an H-eigenvector. The algebra A has H-normal separation provided

that for each pair of H-prime ideals Q $ P there exists an element c ∈ P\Q such that c

is H-normal modulo Q.

A slightly weaker notion, also introduced by Goodearl, is that of normal H-separation.

The algebra A has normal H-separation provided that for each pair of H-primes Q $ P

there is an H-eigenvector c ∈ P\Q which is normal modulo Q. Goodearl shows that in

the situation that we are considering, normal H-separation implies normal separation, see

[7, Theorem 5.3].

Notice that, as explained in paragraph 5.1 of [7], the action of H induces a grading on

A by a suitable free abelian group. Using this grading, it is easy to see that A has normal

H-separation if and only if for each pair of H-primes Q $ P there is an element c ∈ P\Q

whose image in A/Q is normal and an H-eigenvector. This fact will be freely used in the

sequel.

Recall, from [12, Definition 2.5], the definition of a Cauchon extension. Let A be

a domain that is a noetherian k-algebra and let R = A[X; σ, δ] be a skew polynomial

extension of A. We say that R = A[X; σ, δ] is a Cauchon Extension provided that

• σ is a k-algebra automorphism of A and δ is a k-linear locally nilpotent σ-derivation

of A. Moreover we assume that there exists q ∈ k∗ which is not a root of unity such

that σ ◦ δ = qδ ◦ σ.
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• There exists an abelian group H which acts on R by k-algebra automorphisms such

that X is an H-eigenvector and A is H-stable.

• σ coincides with the action on A of an element h0 ∈ H.

• Since X is an H-eigenvector and since h0 ∈ H, there exists λ0 ∈ k∗ such that

h0.X = λ0X. We assume that λ0 is not a root of unity.

• Every H-prime ideal of A is completely prime.

Lemma 2.7 Suppose that R = A[X; σ, δ] is a Cauchon extension. Moreover, assume that

H is a torus and that the action of H on R is rational. If R has H-normal separation then

A has H-normal separation.

Proof: First, note that {Xn} is an Ore set in R, by [2, Lemme 2.1]; and so we can form the

Ore localization R̂ := RS−1 = S−1R. As X is an H-eigenvector, the rational action of H on

R extends to a rational action on R̂. We claim that R̂ has H-normal separation. Suppose

that Q $ P are H-prime ideals of R̂. Then Q ∩ R $ P ∩ R are distinct H-prime ideals

of R. Thus, there exist an element c ∈ (P ∩R)\(Q ∩ R) and an element h ∈ H such that

cr−h(r)c ∈ Q∩R for all r ∈ R . In particular, cX−λXc = cX−h(X)c ∈ Q∩R for some

λ ∈ k∗, asX is an H-eigenvector. From this it is easy to calculate that (λX)−kc−cX−k ∈ Q.

Now, let y = rX−k be an element of R̂. Then, working modulo Q, we calculate

cy = crX−k = h(r)(λX)−kc = h(r)h(X−k)c = h(rX−k)c = h(y)c;

so that R̂ has H-normal separation, as claimed.

For each a ∈ A, set

θ(a) =

+∞∑

n=0

(1 − q)−n

[n]!q
δn ◦ σ−n(a)X−n ∈ R̂

(Note that θ(a) is a well-defined element of R̂, since δ is locally nilpotent, q is not a

root of unity, and 0 6= 1 − q ∈ k.)

The following facts are established in [2, Section 2]. The map θ : A −→ R̂ is a k-

algebra monomorphism. Let A[Y ; σ] be a skew polynomial extension. Then θ extends to a

monomorphism θ : A[Y ; σ] −→ R̂ with θ(Y ) = X. Set B = θ(A) and T = θ(A[Y ; σ]) ⊆ R̂.

Then T = B[X;α], where α is the automorphism of B defined by α(θ(a)) = θ(σ(a)).

The element X is a normal element in T , and so the set S is an Ore set in T and

Cauchon shows that TS−1 = S−1T = R̂. Thus, R̂ = B[X,X−1;α]. Also, the H-action

transfers to B via θ, by [12, Lemma 2.6]. Note, in particular, that α coincides with the

action of an element of H on B.
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Thus, it is enough to show that B has H-normal separation, given that B[X,X−1;α]

has H-normal separation.

Let Q $ P be H-prime ideals of B. Set Q̂ = ⊕i∈ZQX
i and P̂ = ⊕i∈Z PX

i. Then

Q̂∩B = Q and P̂ ∩B = P , and it follows that Q̂ $ P̂ are H-prime ideals in B[X,X−1;α],

see [12, Theorem 2.3]. As B[X,X−1;α] has H-normal separation, there is an element

c ∈ P̂\Q̂ and an element h ∈ H such that cs−h(s)c ∈ Q̂, for each s ∈ B[X,X−1;α]. Now,

write c =
∑

i∈Z
ciX

i. Note that each ci ∈ P and at least one ci 6∈ Q, say ci0 6∈ Q. Let

b ∈ B. Then, cb− h(b)c ∈ Q̂. Therefore,
∑

i ciX
ib− h(b)ciX

i ∈ Q̂; and so

∑

i

(ciα
i(b) − h(b)ci)X

i ∈ Q̂

As Q̂ = ⊕i∈ZQX
i, this forces ciα

i(b)−h(b)ci ∈ Q for each i, and, in particular, ci0α
i0(b)−

h(b)ci0 ∈ Q. As b was an arbitrary element of B, we may replace b by α−i(b) to obtain

ci0b− hα−i(b)ci0 ∈ Q

As α coincides with the action of an element of H on B, this produces an element hi0 ∈ H

such that

ci0b− hi0(b)ci0 ∈ Q,

as required to show that B has H-normal separation.

Theorem 2.8 Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

and let Aλ be the corresponding partition subalgebra of generic quantum matrices. Then

Aλ has H-normal separation.

Proof: Let µ = (n, . . . , n) (m times); so that Yµ is an m × n rectangle. Then Aµ =

Oq(Mm,n(k)); and so Aµ has H-normal separation, by [3, Théorème 6.3.1]. We can con-

struct Aµ from Aλ by adding the missing variables xij in lexicographic order. At each stage,

the extension is a Cauchon extension. Thus, Aλ has H-normal separation, by repeated

application of the previous lemma.

Corollary 2.9 Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

and let Aλ be the corresponding partition subalgebra of generic quantum matrices. Then

Aλ has normal H-separation and normal separation.

Proof: We have seen earlier that H-normal separation implies normal H-separation.

Normal separation now follows from [7, Theorem 5.3].

Corollary 2.10 Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

and let Aλ be the corresponding partition subalgebra of generic quantum matrices. Then

Aλ is catenary.
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Proof: This follows from the previous results and [18, Theorem 0.1] which states that

if A is a normally separated filtered k-algebra such that gr(A) is a noetherian connected

graded k-algebra with enough normal elements then Spec(A) is catenary. (For the notion

of an algebra with enough normal elements see [19].)

Note that it is also possible to deduce this result from [8, Theorem 1.6]

3 Quantum Schubert cells

Quantum Schubert cells in the quantum grassmannian are obtained from quantum Schu-

bert varieties via the process of noncommutative dehomogenisation introduced in [10].

Recall that if R = ⊕Ri is an N-graded k-algebra and x is a regular homogeneous normal

element of R of degree one, then the dehomogenisation of R at x, written Dhom(R, x), is

defined to be the zero degree subalgebra S0 of the Z-graded algebra S := R[x−1]. If R is

generated as a k-algebra by a1, a2, . . . , as and each ai has degree one, then it is easy to

check that Dhom(R, x) = k[a1x
−1, . . . , asx

−1].

If σ denotes the automorphism of S given by σ(s) = xsx−1 for s ∈ S then σ induces

an automorphism of S0, also denoted by σ, and there is an isomorphism

θ : Dhom(R, x)[y, y−1; σ] −→ R[x−1]

which is the identity on Dhom(R, x) and sends y to x.

Let γ ∈ Πm,n. Recall from Remark 1.6 that S(γ) = Oq(Gm,n(k))/〈Πγ
m,n〉 and that γ is

a homogeneous regular normal element of degree one in S(γ). It follows that we can form

the localisation S(γ)[γ−1] and that S(γ) ⊆ S(γ)[γ−1].

Definition 3.1 The quantum Schubert cell associated to the quantum minor γ is denoted

by So(γ) and is defined to be Dhom(S(γ), γ).

Remark 3.2 In the classical case when q = 1, it can be seen that this definition coincides

with the usual definition of Schubert cells, as discussed, for example, in [4, Section 9.4]

It follows from the definition that So(γ) is generated by the elements x γ−1, for x ∈

Πm,n \ (Πγ
m,n ∪ {γ}). However, these elements are not independent; so we will pick out a

better generating set for the quantum Schubert cell.

This is achieved by using the quantum ladder matrix algebras introduced in [15, Section

3.1]. Let us recall the definition. To each γ = (γ1, . . . , γm) ∈ Πm,n, with 1 ≤ γ1 < · · · <
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γm ≤ n, we associate the substet Lγ of {1, . . . , m} × {1, . . . , n} defined by

Lγ = {(i, j) ∈ {1, . . . , m} × {1, . . . , n} | j > γm+1−i and j 6= γℓ for 1 ≤ ℓ ≤ m},

which we call the ladder associated with γ.

Consider the quantum minors mij defined by mij := [{γ1, . . . , γm} \ {γm+1−i} ∪ {j}],

for each (i, j) ∈ Lγ. These are the quantum minors that are above γ in the standard order

and differ from γ in exactly one position. Denote the set of these quantum minors by Mγ.

Proposition 3.3 So(γ) = k[mij γ
−1 | mij ∈ Mγ]

Proof: In the proof of [15, Theorem 3.1.6] it is shown that S(γ)[γ−1] is generated by

the elements γ, γ−1 and the mij . The Schubert cell So(γ) is the degree zero part of this

algebra. As γ and mij commute up to scalars, see [15, Lemma 3.1.4(v)], it is easy to check

that So(γ) is generated by mij γ
−1, as required.

Set m̃ij := mij γ
−1.

Lemma 3.4 There is an induced action of H = (k∗)n on So(γ) given by

(α1, α2, . . . , αn) ◦ m̃ij := α−1
γm+1−i

αjm̃ij .

Proof: This follows immediately from the fact that

m̃ij = [{γ1, . . . , γm}\{γm+1−i} ∪ {j}] [γ1, . . . , γm]
−1
.

We now need to establish the commutation relations between the m̃ij .

Definition 3.5 – Let γ = (γ1, . . . , γm) ∈ Πm,n, with 1 ≤ γ1 < · · · < γm ≤ n. The quantum

ladder matrix algebra associated with γ, denoted Oq(Mm,n,γ(k)), is the k-subalgebra of

Oq(Mm,n(k)) generated by the elements xij ∈ Oq(Mm,n(k)) such that (i, j) ∈ Lγ.

The following example, taken from [15] will help clarify this definition.

Example 3.6 – We put (m,n) = (3, 7) and γ = (γ1, γ2, γ3) = (1, 3, 6) ∈ Π3,7. In the 3× 7

generic matrix X = (xij) associated with Oq(M3,7(k)), put a bullet on each row as follows:

on the first row, the bullet is in column 6 because γ3 is 6, on the second row, the bullet is

in column 3 because γ2 is 3 and on the third row, the bullet is in column 1 because γ1 = 1.
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Now, in each position which is to the left of a bullet, or which is below a bullet, put a star.

To finish, place xij in any position (i, j) that has not yet been filled. We obtain




∗ ∗ ∗ ∗ ∗ • x17

∗ ∗ • x24 x25 ∗ x27

• x32 ∗ x34 x35 ∗ x37



.

By definition, the quantum ladder matrix algebra associated with γ = (1, 3, 6) is the

subalgebra of Oq(M3,7(k)) generated by the elements x17, x24, x25, x27, x32, x34, x35, x37.

Notice that if we rotate the matrix above through 180◦ then the xij involved in the

definition of Oq(M3,7,γ(k)) sit naturally in the Young Diagram of the partition λ = (4, 3, 1).

We will return to this point later.

Lemma 3.7 The quantum Schubert cell So(γ) is isomorphic to the quantum ladder matrix

algebra Oq(Mm,n,γ(k)).

Proof: Lemma 3.1.4 of [15] shows that the commutation relations for the mij are the

same as the commutation relations for corresponding variables xij in the quantum ladder

matrix algebra Oq(Mm,n,γ(k)). As γmij = qmijγ, for each i, j, by [15, Lemma 3.1.4(v)],

it follows that the m̃ij satisfy the same relations. Thus there is an epimorphism from

Oq(Mm,n,γ(k)) onto So(γ). A comparison of Gelfand-Kirillov dimensions similar to that

used in [15, Theorem 3.1.6] now shows that this epimorphism is in fact an isomorphism.

Theorem 3.8 The quantum Schubert cell So(γ) is (isomorphic to) a partition subalgebra

of Oq−1(Mm,n−m(k)).

Proof: For any n, there is an isomorphism δ : Oq(Mn(k)) −→ Oq−1(Mn(k)) defined by

δ(xij) = xn+1−i,n+1−j, see the proof of [9, Corollary 5.9]. The isomorphism δ can be used

to convert quantum ladder matrix algebras into partition subalgebras. As Schubert cells

are isomorphic to quantum ladder matrix algebras, the result follows.

The isomorphism described in the previous result carries over the H-action on So(γ) to

the partition subalgebra, and this induced action acts via row and column multiplications.

After suitable re-numbering of the components of H, this action coincides with the action

discussed at the beginning of Section 2. As a consequence of Theorem 3.8, the results

obtained in Section 2 apply to quantum Schubert cells. In particular, the following results

hold.
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Theorem 3.9 Let λ = (λ1, λ2, . . . , λm) be the partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

defined by λi + γi = n−m + i and let Yλ be the corresponding Young diagram. Then the

H-prime spectrum of So(γ) is in bijection with the set of Cauchon diagrams on the Young

diagram, Yλ, as described in Theorem 2.5.

Theorem 3.10 The quantum Schubert cell So(γ) has H-normal separation, normal H-

separation and normal separation.

Corollary 3.11 The quantum Schubert cell So(γ) is catenary.

4 The prime spectrum of the quantum grassmannian

In this section, we use the quantum Schubert cells to obtain information concerning the

prime spectrum of the quantum grassmannian. We show that, in the generic case, where q

is not a root of unity, all primes are completely prime and that there are only finitely many

primes that are invariant under the natural torus action on the quantum grassmannian.

By using a result of Lauren Williams, we are able to count the number of H-primes. Also,

we are able to show that the quantum grassmannian is catenary.

Note that the following result is valid for any q 6= 0.

Theorem 4.1 Let P be a prime ideal of Oq(Gm,n(k)) with P 6= 〈Π〉; that is, P is not the

irrelevant ideal. Then there is a unique γ in Π with the property that γ 6∈ P but π ∈ P for

all π 6≥st γ.

Proof: If Π ⊆ P then P is the irrelevant ideal. Otherwise, there exists γ ∈ Π with γ 6∈ P .

Choose such a γ that is minimal in Π with this property. Then λ ∈ P for all λ <st γ.

Note that 〈{λ | λ <st γ}〉 ⊆ P and that γ is normal modulo 〈{λ | λ <st γ}〉, by [14,

Lemma 1.2.1]; so that γ is normal modulo P .

Suppose that π 6≥st γ. If π <st γ then π ∈ P by the choice of γ. If not, then π and γ

are not comparable. Thus, we can write

πγ =
∑

kλµλµ

with kλµ ∈ k while λ, µ ∈ Π with λ <st γ, by [14, Theorem 3.3.8].

It follows that πγ ∈ P . Thus, π ∈ P , since γ 6∈ P and γ is normal modulo P .

This shows that there is a γ with the required properties. It is easy to check that there

can only be one such γ.
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This enables us to give a decomposition of the prime spectrum, Spec(Oq(Gm,n(k))).

Set Specγ(Oq(Gm,n(k))) to be the set of prime ideals P such that γ 6∈ P while π ∈ P for

all π 6≥st γ. The previous result shows that

Spec(Oq(Gm,n(k))) =
⊔

γ∈Π

Specγ(Oq(Gm,n(k)))
⊔

〈Π〉 .

We now re-instate our convention that q is not a root of unity.

Theorem 4.2 Let q be a non root of unity. Then all prime ideals of the quantum grass-

mannian Oq(Gm,n(k)) are completely prime.

Proof: Let P be a prime ideal of Oq(Gm,n(k)). If P = 〈Π〉 then Oq(Gm,n(k))/P ∼= k; so

P is completely prime.

Otherwise, suppose that P ∈ Specγ(Oq(Gm,n(k))). In this case, P = P/〈Πγ
m,n〉 is a

prime ideal in S(γ) = Oq(Gm,n(k))/〈Πγ
m,n〉 and it is enough to show that P is completely

prime. Set T := S(γ)[γ−1]. Then PT is a prime ideal of T and PT ∩ S(γ) = P . Thus

S(γ)/P ⊆ T/PT and so it is enough to show that PT is completely prime.

Now, the dehomogenisation isomorphism shows that T ∼= So(γ)[y, y−1; σ], where σ is the

automorphism determined by the conjugation action of γ, see the beginning of Section 3.

We know that So(γ) is a torsionfree CGL-extension by Proposition 2.2 and Theorem 3.8.

It is then easy to check that So(γ)[y; σ] is also a torsionfree CGL-extension. Thus, all prime

ideals of So(γ)[y; σ] are completely prime, by [1, Theorem II.6.9], and it follows that all

prime ideals of T ∼= So(γ)[y, y−1; σ] are completely prime, as required.

Of course, the decomposition of Spec(Oq(Gm,n(k))) above induces a similar decompo-

sition of H-Spec(Oq(Gm,n(k))):

H-Spec(Oq(Gm,n(k))) =
⊔

γ∈Π

H-Specγ(Oq(Gm,n(k)))
⊔

〈Π〉 ,

where H-Specγ(Oq(Gm,n(k))) is the set of H-prime ideals P such that γ 6∈ P while π ∈ P

for all π 6≥st γ.

Our next task is to show that H-Specγ(Oq(Gm,n(k))) is in natural bijection with

H-Spec(So(γ)) and hence in bijection with Cauchon diagrams on the associated Young

diagram Yλ. As a consequence, we are able to calculate the size of H-Spec(Oq(Gm,n(k))).

Remark 4.3 Recall from the beginning of Section 3 that, for any γ ∈ Πm,n, there is the

dehomogenisation isomorphism

θ : So(γ)[y, y−1; σ] −→ S(γ)[γ−1],
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where σ is conjugation by γ. Hence, the action of H on S(γ)[γ−1] transfers, via θ, to

an action on So(γ)[y, y−1; σ]. By Lemma 3.4, So(γ) is stable under this action and it

is clear that y is an H-eigenvector. Further, let h0 = (α1, . . . , αn) ∈ H be such that

αi = q2 if i /∈ {γ1, . . . , γm} and αi = q otherwise. Then, by using [15, Lemma 3.1.4(v)] and

Lemma 3.4, it is easily verified that the action of h0 on So(γ) coincides with σ. In addition,

h0(y) = qmy, since h0(γ) = qmγ. It follows that So(γ)[y, y−1; σ] satisfies Hypothesis 2.1 in

[12].

Theorem 4.4 Let P ∈ H-Specγ(Oq(Gm,n(k))); so that P is an H-prime ideal of Oq(Gm,n(k))

such that γ 6∈ P , while π ∈ P for all π 6≥st γ. Set T = S(γ)[γ−1] ∼= So(γ)[y, y−1; σ].

Then the assignment P 7→ PT ∩ So(γ) defines an inclusion-preserving bijection from

H-Specγ(Oq(Gm,n(k))) to H-Spec(So(γ)), with inverse obtained by sending Q to the in-

verse image in Oq(Gm,n(k)) of QT ∩ S(γ). (Note, we are treating the isomorphism above

as an id entification in these assignments.)

Proof: This follows from the conjunction of two bijections. First, standard localisation

theory shows that P = PT∩S(γ); and this gives a bijection between H-Specγ(Oq(Gm,n(k)))

and H-Spec(T ). For the second bijection, note that T ∼= So(γ)[y, y−1; σ] and that the au-

tomorphism σ is given by the action of an element of H, see Remark 4.3. Thus, it follows

from [12, Theorem 2.3] that there is a bijection between H-Spec(T ) and H-Spec(So(γ))

given by intersecting an H-prime of T with So(γ). The composition of these two bijections

produces the required bijection.

Corollary 4.5 H-Specγ(Oq(Gm,n(k))) is in bijection with the Cauchon diagrams on Yλ,

where λ is the partition associated with γ.

Proof: This follows from the previous theorem and Theorem 3.9.

It follows from this corollary and the partition of the H-spectrum of the quantum

grassmannian that the H-spectrum of the quantum grassmannian is finite. This finiteness is

a crucial condition needed to investigate normal separation, Dixmier-Moeglin equivalence,

etc. in the quantum case because of the stratification theory, see, for example, [7, Theorem

5.3], [1, Theorem II.8.4 ]. However, in this situation, we can say much more: we can say

exactly how many H-primes there are in the quantum grassmannian Oq(Gm,n(k)). This

is one more (the irrelevant ideal 〈Π〉) than the total number of Cauchon diagrams on the

Young diagrams Yλ corresponding to the partitions λ that fit into the partition (n−m)m.

This combinatorial problem has been solved by Lauren Williams, in [17]. The following

result is obtained by setting q = 1 in the formula for Ak,n(q) in [17, Theorem 4.1].
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Theorem 4.6

|H-Spec(Oq(Gm,n(k)))| = 1 +

m−1∑

i=0

(
n

i

) (
(i−m)i(m− i+ 1)n−i − (i−m+ 1)i(m− i)n−i

)

Proof: By using the results above, we see that, except for the irrelevant ideal, each

H-prime corresponds to a unique Cauchon diagram drawn on the Young diagram Yλ that

corresponds to the partition λ associated to the quantum minor γ which determines the

cell that P is in.

In [17, Theorem 4.1], Lauren Williams has counted the number of Cauchon diagrams

on the Young diagrams Yλ that fit into the partition (n−m)m; and this count, plus one,

gives the number of H-prime ideals of Oq(Gm,n(k)).

For example, |H-Spec(Oq(G2,4))| = 34 and |H-Spec(Oq(G3,6))| = 884. (These numbers

can be seen from the table in [16, Figure 23.1].)

We turn now to the questions of normal separation and catenarity. In order to establish

these properties for the quantum grassmannian, we need to use the dehomogenisation

isomorphism. Recall that the methods of [12] are available because of Remark 4.3.

Lemma 4.7 Let Q $ P be H-prime ideals in S(γ) that do not contain γ. Then, there is

an H-eigenvector in P\Q that is normal modulo Q.

Proof: Let Q $ P be H-prime ideals in S(γ) that do not contain γ. Set T := S(γ)[γ−1]

and observe that there is an induced action of the torus H on T , because γ is an H-

eigenvector. Note that P = PT ∩ S(γ) and Q = QT ∩ S(γ); so QT $ PT are H-prime

ideals in T . Now, set P0 := PT ∩ So(γ) and Q0 := QT ∩ So(γ) (here, we are treating

the isomorphism T ∼= So(γ)[y, y−1; σ] as an identification) and note that PT = ⊕n∈ZP0 y
n

and QT = ⊕n∈ZQ0 y
n; so Q0 $ P0 are H-prime ideals of So(γ), see Remark 4.3 and [12,

Theorem 2.3]. These observations make it clear that

So(γ)

Q0
[y, y−1; σ] ∼=

T

QT
∼=

S(γ)

Q
[γ−1].

As usual, So(γ) will denote So(γ)/Q0, etc.

The quantum Schubert cell So(γ) has H-normal separation, by Theorem 3.10. Thus,

there exists an H-eigenvector c ∈ P0\Q0 and an element h ∈ H such that ca− h(a)c ∈ Q0

for all a ∈ So(γ). Recall that the action of σ coincides with the action of an element hy

of H; so that yc = hy(c)y = λcy for some λ ∈ k∗. It follows that c is normal in T/QT .

Define σc : T/QT −→ T/QT by ct = σc(t)c for all t ∈ T . Note that σc|So(γ) = h|So(γ) and

that σc(y) = λ−1y.
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We claim that σc(S(γ)/Q) = S(γ)/Q; so that σc induces an isomorphism on this

algebra. In order to see this, note that S(γ)/Q is generated as an algebra by the images

of the quantum minors [α1, . . . , αm] for [α1, . . . , αm] ≥ γ. Now, [α1, . . . , αm] γ−1 ∈ So(γ),

because [α1, . . . , αm]γ−1 has degree zero in T so that [α1, . . . , αm]γ−1 ∈ So(γ). Thus,

recalling that γ is identified with y under the isomorphisms above,

σc([α1, . . . , αm]) = σc([α1, . . . , αm] γ−1)σc(γ) = h([α1, . . . , αm] γ−1)(λ−1y)

= µ [α1, . . . , αm] γ−1(λ−1y) = (µλ−1)[α1, . . . , αm] γ−1y

= (µλ−1)[α1, . . . , αm],

where the existence of µ ∈ k∗ is guaranteed because h is acting as a scalar on the element

[α1, . . . , αm] γ−1 ∈ So(γ)/Q0. The claim follows.

There exists d ≥ 0 such that c γd ∈ S(γ)/Q. It is obvious that cγd is an H-eigenvector,

because each of c and γ is an H-eigenvector. Also, cγd ∈ P\Q. Finally, c γd is normal in

S(γ)/Q, because S(γ)/Q is invariant under conjugation by each of c and γ.

Theorem 4.8 The quantum grassmannian Oq(Gm,n(k)) has normal H-separation and

hence normal separation.

Proof: Suppose that Q $ P are H-prime ideals of Oq(Gm,n(k)). Suppose that Q ∈

Specγ(Oq(Gm,n(k))). If γ ∈ P , then P contains the H-eigenvector γ.

Otherwise, γ 6∈ P and P ∈ Specγ(Oq(Gm,n(k))). In this case, it is enough to show that

there is a H-eigenvector in P\Q which is normal modulo Q, where P = P/〈Πγ
m,n〉 and

Q = Q/〈Πγ
m,n〉 are H-prime ideals in S(γ). However, this has been done in the previous

lemma.

Theorem 4.9 The quantum grassmannian Oq(Gm,n(k)) is catenary.

Proof: As in Corollary 2.10, this follows from the previous results and [18, Theorem 0.1].

Remark 4.10 It is obvious from the style of proof of the preceding results that there is

now a good strategy for producing results concerning the quantum grassmannian: first,

establish the corresponding results for partition subalgebras of quantum matrices, and

then use the theory of quantum Schubert cells and noncommutative dehomogenisation to

obtain the result in the quantum grassmannian. We leave any further developments for

interested readers.
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5 Concluding remark.

We end this work by stressing some important connections between the results established

in Section 4 above, and recent work of Postnikov in total positivity, see [16].

Let M+
m,n(R) denote the space of m × n real matrices of rank m and whose m × m

minors are nonnegative. The group GL+
m(R) of m ×m real matrices of positive determi-

nant act naturally on M+
m,n(R) by left multiplication. The corresponding quotient space

G+
m,n(R) = M+

m,n(R)/GL+
m(R) is the totally nonnegative grassmannian of m dimensional

subspaces in Rn. One can define a cellular decomposition of G+
m,n(R) by specifying, for

each element of G+
m,n(R), which m×m minors are zero and which are strictly positive. The

corresponding cells are called the totally nonnegative cells of G+
m,n(R). In [16], Postnikov

shows that totally nonnegative cells in G+
m,n(R) are in bijection with the Cauchon diagrams

on partitions fitting into the partition (n−m)m. For further details, see Sections 3 and 6

in [16].

Hence, by the results in Section 4 above, the set of totally nonnegative cells of G+
m,n(R)

is in one-to-one correspondance with the set of H-prime ideals of Oq(Gm,n(k)) distinct from

the augmentation ideal. We believe it would be interesting to understand this coincidence

and we intend to pursue this theme in a subsequent paper.
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