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ABSTRACT

This paper investigates the effects of high or low fair-premium demand elas-
ticity in an insurance market where risk classification is restricted. The effects
are represented by the equilibrium premium, and the risk-weighted insurance
demand or “loss coverage”. High fair-premium demand elasticity leads to a
collapse in loss coverage, with an equilibrium premium close to the risk of the
higher-risk population. Low fair-premium demand elasticity leads to an
equilibrium premium close to the risk of the lower-risk population, and high
loss coverage – possibly higher than under more complete risk classification.
The demand elasticity parameters which are required to generate a collapse in
coverage in the model in this paper appear higher than the values for demand
elasticity which have been estimated in several empirical studies of various
insurance markets. This offers a possible explanation of why some insurance
markets appear to operate reasonably well under community rating, without
the collapse in coverage which insurance folklore suggests.
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1. INTRODUCTION

Conventional wisdom or “insurance folklore” suggests that the absence of risk
classification in an insurance market is likely to lead to an adverse selection
spiral, which may progress until the market largely disappears. A succinct artic-
ulation of this concept is provided by the policy document Insurance & Super-
annuation Risk Classification Policy published by the Institute of Actuaries of
Australia (IAA, 1994), which explains:

“In the absence of a system that allows for distinguishing by price between
individuals with different risk profiles, insurers would provide an insurance or
annuity product at a subsidy to some while overcharging others. In an open
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market, basic economics dictates that individuals with low risk relative to price
would conclude that the product is overpriced and thus reduce or possibly
forgo their insurance. Those individuals with a high level of risk relative to
price would view the price as attractive and therefore retain or increase their
insurance. As a result the average cost of the insurance would increase, thus
pushing prices up. Then, individuals with lower loss potential would continue
to leave the marketplace, contributing to a further price spiral. Eventually
the majority of consumers, or the majority of providers of insurance, would
withdraw from the marketplace and the remaining products would become
financially unsound”.

However, the concept that restrictions on risk classification lead inevitably to
market collapse is difficult to reconcile with the operation of many extant insur-
ance markets. In particular, there are various markets in which regulators impose
some restrictions on risk classification, or even mandate “community rating”,
whereby little or no classification of risk is permitted. Examples of restrictions
which stop short of pure community rating include the prohibition of rating
by gender, race or genetic test results in a number of insurance markets. Exam-
ples of community rating in voluntary health insurance include schemes in
Ireland, Australia, Switzerland and South Africa, and US states including New
York, New Jersey, and Vermont1. These schemes generally include some pro-
vision for risk equalization payments between insurers, or stop-loss state rein-
surance (but not always, and the relevant provisions are not always actually
used). However the prevalence and persistence of various community rating
schemes or partial restrictions on rating factors does not seem consistent with
the notion that regulatory limitations on risk classification lead inevitably to
market collapse.

This paper uses a simple model of an insurance market with two risk
groups, one lower-risk and one higher-risk. Insurance market outcomes in the
absence of risk classification are characterized by the pooled premium charged
to all policyholders, and the risk-weighted insurance demand or “loss cover-
age”. It is shown that insurance market outcome in the absence of risk
classification depends on a parameter for the elasticity of demand for insur-
ance at an actuarially fair premium, that is the “fair-premium demand elas-
ticity”. High fair-premium demand elasticity leads to an equilibrium premium
close to the risk of the higher-risk population, and a low loss coverage. But
for sufficiently low fair-premium demand elasticity, this market collapse does
not occur; instead, the market stabilizes with a relatively low premium, and
relatively high loss coverage – possibly higher than under more complete risk
classification. The ranges for the demand elasticity parameter characterized
as “high” and “low” are separated by a threshold range for the parameter
which leads to an unstable market outcome – either multiple equilibria (that
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is, more than one pooled premium is capable of equilibrating insurers’ revenue
and claims), or near-equilibria for an extended range of premium values. Gen-
erally, the threshold range of values for the demand elasticity parameter above
which a collapse in coverage occurs in the model in this paper appears higher
than the values for demand elasticity which have been estimated in empirical
studies of various insurance markets. The high demand elasticity conditions
which correspond to the threshold for a large fall in coverage in the model in
this paper may explain why some insurance markets appear to operate rea-
sonably well under community rating, without the collapse in coverage which
insurance folklore suggests.

A number of previous authors have suggested that insurance folklore accounts
of adverse selection spirals might sometimes be overblown. Siegelman (2004)
surveys the use of rhetoric about adverse selection in legal judgments and
public policy advocacy, drawing a contrast with the limited and sometimes
contradictory evidence from empirical studies. Buchmueller & DiNardio (2002)
note that “Whilst the notion that community rating leads to adverse selection
death spirals appears to have passed into the “conventional wisdom”, at least
amongst industry analysts and policy experts, this is not a result which arises
naturally from the simplest economic models of insurance”. These authors
found no evidence for an adverse selection spiral after the State of New York
introduced pure community rating for health insurance in 1993. From a prac-
tical perspective, some actuaries may feel that their experience of community
rating is more negative. One careful study did report evidence of an adverse
selection spiral in health insurance (Cutler & Reber, 1998)2; but their example
was essentially a case of selection against one insurer amongst many in a sce-
nario where different health insurance plans offered differing benefit structures
and premiums. However, this is not the same as the selection against the whole
market which it is often said will lead to collapse of the market under manda-
tory community rating. Intuitively, in the scenario of multiple health plans,
the various choices are reasonably close substitutes, and so demand elasticity
for any one plan may be high; but in the scenario of mandatory community rat-
ing, remaining uninsured is often not a close substitute for being insured, and so
demand elasticity for insurance from all providers could be lower. The model in
this paper allows the effects of different demand elasticities to be explored in
greater depth.

There are a number of approaches to modeling adverse selection in recent
actuarial literature. One approach uses Markov models with an assumed high
degree of adverse selection, in the sense that a small proportion of the population
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health insurance plans with different benefits, originally with an employer contribution as a fixed
percentage of the premiums. The employer contribution was then changed to the same flat contribu-
tion irrespective of which plan the employee chose. This led to a rapid migration of younger, healthier
employees from the more expensive plan with better benefits to the cheaper plan with lower benefits.
The more expensive plan suffered reducing enrolments and progressively increasing per capita costs,
leading to its withdrawal three years after the change in employer contributions.



acquires private information (eg a genetic test result) indicating much higher
risk, and this leads to much higher transition intensity into the insured state,
or a tendency to buy much larger amounts of insurance; the effect of this
adverse selection is measured by the increase in the pooled insurance price,
compared with the price if the private information did not exist. In this
approach, it is sufficient to use exogenous and very high assumptions for the
transition intensities, because the rarity of the private information considered
means that even extreme assumptions lead to negligible increases in the pooled
premium (Macdonald, 1997, 1999, 2003). However if the private information
considered is more common and indicative of only moderately higher risk,
extreme assumptions may be neither plausible nor sufficient. In these cir-
cumstances a second approach is to postulate utility functions for insureds,
and that adverse selection arises only if lower risks achieve lower expected
utility by insuring at the pooled price than by not insuring (Macdonald &
Tapadar, 2007). A third approach is to model insurance demand from lower
and higher-risk groups as a function of the pooled price, with a demand elas-
ticity parameter, and investigate insurance market outcome under different
demand elasticities (De Jong & Ferris, 2006). The present paper follows this
third approach.

Some previous economics literature has drawn attention to the possibility
of multiple equilibria in markets with adverse selection, in particular Wilson
(1979, 1980). However these papers focus on the markets for goods of varying
quality – where the quality is known to sellers, but unobservable by buyers –
rather than on insurance markets. Rose (1993) showed that although multiple
equilibria in markets for goods of varying quality are theoretically possible, they
are extremely unlikely, provided that the quality distribution of the goods fol-
lows any of a range of plausible probability distributions. The present paper
provides some insight into why multiple equilibria may also be unlikely,
although not impossible, in models of insurance markets.

The rest of this paper is structured as follows. Section 2 outlines the insur-
ance market model, and characterizes the possible equilibria according to
whether loss coverage is higher or lower than under full risk classification.
Section 3 investigates conditions for multiple equilibria in the model, consid-
ering the relative sizes of the higher and lower-risk populations, their relative
risks, and demand elasticity. Conclusions are given in Section 4.

2. THE MODEL

We assume that potential insureds can in principle be divided into two groups,
which we refer to as populations. Members of population 1 are lower-risk, and
members of population 2 are higher-risk. We assume that regulation requires
all insurers to use community rating, that is a single common insurance price
must apply irrespective of whether an individual risk belongs to the higher or
lower-risk population; competition in risk classification of a “cream-skimming”
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FIGURE 1: Insurance demand function for specimen values of fair-premium elasticity l.

nature is not possible. We also assume that the probability of a loss is inde-
pendent of insurance purchase, that is moral hazard is ignored. Equilibrium
in the insurance market occurs when total premiums equal total claims, that
is insurers make zero profits in equilibrium.

The demand for insurance from population i at a premium of p is specified
along the lines suggested by de Jong & Ferris (2006):

di(p) = Pi e
1 – (p /mi)

li
i = 1,2 (1)

where 

– Pi is the number of members of the population of risk class i who buy insur-
ance at an actuarially fair premium, that is when p = mi

– mi is the risk (expectation of claim) for population i

– li is an elasticity parameter for insurance demand of population i.

The specification of Pi as the number of members of population i who buy
insurance at an actuarially fair premium assumes that all insurance is for unit
sum assured, that is every agent either buys one unit of insurance or none.
This simplification is convenient for exposition, but it is not necessary: Pi could
alternatively be regarded as the fair-premium money demand for insurance
from population i (as in de Jong & Ferris, 2006).

The formula can be interpreted as follows: when p is very small relative to
mi demand from population i will be high. As the “premium loading” p /mi

increases, demand from population i declines along an inverse exponential
curve towards zero; this reflects the fact that if the premium loading p /mi is high
enough, almost no-one would buy insurance. This specification allows a range
of plausible demand curves to be specified for the relevant range of m1 < p ≤ m2.
This is illustrated in Figure 1.
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The parameter li specifies the responsiveness of demand from population i to
changes in the premium p. The price elasticity of demand di with respect to p
is defined as
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Fair-premium demand elasticity

Note that the parameter li represents the price elasticity of demand for insur-
ance from population i when p = mi, that is when the premium is equal to the
true risk for population i. Hence we refer to li as the “fair-premium demand
elasticity”. The actual elasticity of demand from population i at any other
premium p is given by Equation (2) above. It can be seen that demand is more
elastic at higher premiums, and less elastic at lower premiums; this accords
with the usual economic intuition.

Specifying an equilibrium

The total premium income from the two populations when a single rate of
pooled premium p is charged will be 

p(d1(p) + d2(p)) (3)

The total claims cost (total insured losses) from these policies will be 

d1(p)m1 + d2(p)m2 (4)

and the insurers’ expected profit (loss, if negative) when charging this pooled
premium is total income less total claims, that is (3) – (4).

An equilibrium pooled premium p* is a value of p for which the expected
profit is zero.

The existence of a premium for which expected profit is zero can be demon-
strated as follows. Clearly setting p = m1 will lead to negative expected profits,
because at least some higher risks will buy insurance at this cheap price.
Setting p = m2 leads to either zero expected profits, or (provided at least some
lower risks participate at this high price) strictly positive expected profits. The
expected profit in our model is a continuous function of p. Thus there is at least
one solution p = p* in the interval ( m1, m2] such that expected profit is zero.
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FIGURE 2: Low elasticity: (l1,l2) = (0.5, 0.9) giving increased loss coverage under pooling.

The above exposition is subject to the implicit constraint that the increased
demand from higher risks at the pooled premium, d2(p), cannot exceed the
total number of higher risks in the population. This constraint is non-binding
provided the fair-premium demand P2 is a sufficiently small fraction, say t2, of
the total (insured and uninsured) higher-risk population. It is easy to set up
the model to include explicit “fair-premium demand fractions” ti < 1, repre-
senting the proportions of each population who buy insurance at an actuarially
fair premium. In practice we might expect t1 > t2, because for lower risks insur-
ance is cheaper relative to the prices of other goods and services. However,
changing the relative values of the ti is mathematically equivalent to changing
the relative values of the fair-premium demands Pi, and hence for parsimony
we omit the ti in this paper.

Example 

To illustrate the use of this model, we set P1 = 9,000, P2 = 1,000; and m1 = 0.01,
m2 = 0.04. It seems plausible that l1 < l2, because for lower risks insurance is
cheaper relative to the prices of other goods and services. We shall investigate
the equilibrium for various pairs of values of the elasticity parameters (l1, l2)
for the two populations.
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Figure 2 shows the equilibrium in this model for relatively inelastic demand,
(l1, l2) = (0.5, 0.9). Figure 2 can be interpreted as follows. The horizontal
dashed line, labeled (I = C), is a reference level representing total premiums
(and, by assumption, total claims) if risk-differentiated premiums are charged
to the two populations. All other curves represent premiums or claims when a
single rate of premium p is charged to both populations. On the left hand side
of the graph, where the single rate of premium p is low, demand for insurance
at this price is high, and so total claims paid are high. Because of the low pre-
mium, total premiums collected are low; the market is far from equilibrium, and
insurers make large losses. Insurers will therefore increase the single premium, and
some customers will leave the market. As customers leave the market, total claims
decrease monotonically (the downward sloping curve); but total premiums collected
increase, because the increase in premium rate outweighs the number of cus-
tomers leaving the market. So the curve of total premium income slopes upwards,
at least initially. The intersection (shown by the arrow) of the darker curves for
total premiums and total claims represents a pooling equilibrium.

More examples

Figure 3 shows the result for more elastic demand (l1,l2) = (0.8, 1.2), with all
other parameters as in Figure 2. Note that in this case the equilibrium is at a
lower level of total income and total claims than in the risk-differentiated pop-
ulation. A public policymaker might regard this as a worse outcome than the
result under full risk classification.

Figure 4 illustrates the result for very elastic demand, (l1,l2) = (1.5, 2.0),
with all other parameters as in Figure 2. The total premiums and total claims
curves intersect very close to the terminal value for p, with virtually all the
lower risks out of the market. A public policymaker would probably regard this
as a bad outcome from restricted risk classification.

Loss coverage

The pooling equilibrium in Figure 2 is at a higher level of total premiums and
total claims than in the risk-differentiated market; that is, a 7% higher number
of losses is now compensated by insurance, despite a 14% lower number of policies
sold. This happens because under the assumed demand elasticities, the shift in
coverage towards higher risks and away from lower risks when risk classification
is restricted more than outweighs the reduction in number of policies sold.
The lower number of policies sold corresponds to lower insurance demand, that
is !i di(p); the higher number of losses compensated by insurance corresponds
to higher insurance demand weighted by risk, that is !i di(p)mi. We refer to
this ‘risk-weighted’ insurance demand as the loss coverage:

Loss coverage = id
i 1

2

=

! (p) . mi (5)
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FIGURE 3: High elasticity: (l1,l2) = (0.8, 1.2) giving reduced loss coverage under pooling.

FIGURE 4: Very high elasticity: (l1,l2) = (1.5, 2.0), greatly reduced loss coverage under pooling.
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From a public policy perspective, loss coverage may be a better metric than
number of policies sold for comparing the effects of alternative risk classifi-
cation schemes. This is because loss coverage focuses on the expected losses
compensated by insurance (risk-weighted insurance demand), which seems a
better indicator of the social efficacy or benefit of insurance to the whole
population than number of policies sold (un-weighted insurance demand). The
loss coverage metric implies that the public policymaker places higher priority
on higher-risk individuals being insured: for example, insurance of one higher-
risk individual is worth the same to the policymaker as insurance of two lower-
risk individuals, if the probability of loss for each higher risk is twice that of
each lower risk. In other words, insurances held by higher and lower-risk indi-
viduals are regarded as equally desirable by the policymaker ex post, when all
uncertainty about who will suffer a loss has been resolved; but insurances held
by higher-risk individuals are regarded as (risk-proportionately) more desirable
by the policymaker ex ante.

For a public policymaker who uses the loss coverage metric, adverse selection
is not necessarily adverse. Sufficiently low demand elasticities are consistent with
a moderate level of adverse selection, which may reduce insurance demand but
increase loss coverage (as shown in Figure 2). However, higher demand elas-
ticities are consistent with “too much” adverse selection, which reduces both
insurance demand and loss coverage (as shown in Figure 3, or in a more extreme
manner in Figure 4). Under the loss coverage criterion, public policy on risk
classification can be seen as a question of degree: given the demand elasticities
in a particular market, what restrictions on risk classification (if any) are
required to induce the optimal degree of adverse selection, which maximises
the loss coverage? Applications, extensions and limitations of the loss coverage
concept are discussed in greater detail in Thomas (2008).

When comparing alternative risk classification schemes, it is often conve-
nient to define loss coverage in some normalized form. For example, later in
this paper we will use the ratio of expected losses covered under community
rating to expected losses covered under risk-differentiated premiums, so
that loss coverage is normalized to be 1 under risk-differentiated premiums.
Alternatively, loss coverage could be normalized to be 1 under compulsory
insurance of the whole population.

Generalizing for more than two risk groups

We can generalize the above to any distribution of risks in the population,
rather than just higher and lower-risk groups, as follows. Let g be a risk para-
meter, let mg be the expected loss for a risk with parameter g, let fg be the den-
sity of the risks in the whole population, and let rg be the demand from risks
with risk parameter g. The expected demand for insurance from the whole
population is

E[rg] = gr# fg dg. (6)
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FIGURE 5: Determination of pooled premium: a well-defined single equilibrium.

The loss coverage is

E[rg mg] = gr# mg fg dg. (7)
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and for an equilibrium in the presence of adverse selection, the pooled premium
needs to be equal to this.

Graphically, an equilibrium premium is determined where the expected claims
per contract crosses the 45-degree line representing the premium, as shown at
the arrow in Figure 5. Note that if the actual premium increases above the
equilibrium level, insurers make progressively increasing profits; if the pre-
mium decreases, insurers make progressively increasing losses. The monotonic
nature of the profit function implies that the equilibrium shown is stable and
well-defined.
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3. POSSIBILITY OF MULTIPLE EQUILIBRIA

To generate multiple equilibria, the expected claims per contract must cross the
45-degree single premium line more than once. Whether this is possible under
suitable elasticity conditions depends on the relative sizes of the higher and
lower-risk populations, and their relative risks. Figure 6 shows the multiple



FIGURE 6: Determination of pooled premium: multiple equilibria.

equilibria resulting from the following parameters: P2 = 5% of total popula-
tion; m1 = 0.01, m2 = 0.04; l1 = l2 = 1.35. Equilibria are shown by the arrows
at p = 0.0166, 0.0261 and 0.0355, and the market is very close to equilibrium
for p anywhere in the range [0.0166, 0.0355]. This near-equilibrium for a wide
range of premiums suggests an unstable market, in two senses: (i) increases
or reductions in the premium anywhere in between the upper and lower equi-
libria lead to only small losses or profits for insurers (that is, the profit signal
from an incorrect premium remains weak even when the premium deviates
considerably from an equilibrium); and (ii) at the middle equilibrium, increases
in the premium from this level initially lead to small losses for insurers, and
reductions in the premium initially lead to small profits for insurers (that is,
the profit signal has the wrong sign). In both these senses, the market is unsta-
ble.

The plot of total income and total claims corresponding to Figure 6 is
shown as Figure 7. The total income and total claims curves intersect in three
places shown by the arrows along their downward slope. As the premium
increases between the first and third intersections, profit changes very little,
but loss coverage drops dramatically.

True multiple equilibria arise only from a limited critical range of elasticity
parameter values, which may almost never apply in practice, and so do not
correspond to any regularly observed real-world phenomena. However, any
elasticity values higher than this critical range also lead to an undesirable equi-
librium, in the sense that the premium is much higher and the loss coverage
is much lower than the result under full risk classification. In this sense, the
critical range of elasticity parameters associated with multiple equilibria can
be thought of as a “threshold” range at or above which unsatisfactory equi-
libria arise. We shall see later that for some relative populations and relative
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FIGURE 7: Multiple equilibria for l1 = l2 = 1.35.
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risks, true multiple equilibria can never arise; but in such cases there may still
be a critical range of elasticity values which lead to “near-equilibrium” over
an extended range of values for the premium. Again, any elasticity values
higher than this threshold range lead to an undesirable equilibrium, with
much higher premium and much lower loss coverage than under full risk
classification.

Specifying the conditions for multiple equilibria

The conditions for multiple equilibria which were represented graphically in
Figure 6 can be specified as follows. First note that when the premium is zero,
average cost per claim exceeds the premium. When the premium is m2, average
cost per claim must be less than or equal to the premium. Hence if the aver-
age cost per claim curve is to cross the premium line more than once, it must
at some point cross the premium line from below. This gives us two necessary



and sufficient conditions which must be satisfied simultaneously to give a
“middle” equilibrium, which is one of at least three possible equilibria3:
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In words, we can interpret these conditions as follows. As the premium p
increases, higher risks are attracted and lower risks drop out of the market; the
average cost per claim increases, but generally at a lower rate than the (unit)
increase in premium. For multiple equilibria to arise, the average cost per claim
of the risks attracted by the pooled premium needs to increase faster than the
unit increase in premium, over some interval of the feasible range for p; and
simultaneously, the average cost per claim needs to be equal to the premium p.
Alternatively, we can think of the rate of increase of the average cost per claim
as the price elasticity of the average risk attracted by the pooled premium.
For multiple equilibria, this price elasticity needs to exceed 1, over some inter-
val of the feasible range for p; and simultaneously, the average cost per claim
needs to be equal to the premium p.

We can investigate this further using the two-populations model specified
earlier. l1 and l2 were previously both regarded as free parameters, but a flexible
alternative (with obvious extensions for more than two risk groups) is to spec-
ify a “base” elasticity, say l, for the larger, lower-risk population 1 and then set

l m
m

l
a

2
1

2= d n (11)

where a is an index for the variation of the fair-premium demand elasticity as
the fair premium itself changes. This specification is convenient for expository
purposes because it allows us to plot equilibrium premiums and loss coverages
against the single elasticity parameter l. There are no absolute theoretical lim-
its on the value of a, but it can be seen that 0 ≤ a ≤ 1 may be a reasonable
range –

– if a = 0, fair-premium demand elasticity is the same for both risk groups;
– if a < 0, fair-premium demand elasticity is inversely related to the fair pre-

mium; this seems unlikely, because it implies a negative income effect from
the higher-risk fair premium representing a larger part of the consumer’s total
budget constraint;
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ate an average cost per claim curve which crosses the premium line more than three times; but more
idiosyncratic demand specifications may be capable of doing so.



– if a > 1, fair-premium demand elasticity increases more than proportion-
ately with the fair premium; this is possible, if the fair premium for higher
risks represents a large part of their total budget constraint; but for the typ-
ical case where insurance is a small part of the consumer’s total budget con-
straint, it seems unlikely.

We will show figures in tables for a = 0, 1/3 and 2/3. It turns out that the qual-
itative pattern of results is similar for all these values, and so for brevity all
graphs are based on a = 1/3 only. This seems a reasonable value, in that it
allows for fair-premium demand elasticity in the higher-risk population to be
moderately higher than in the lower-risk population, as is expected from the
income effect (ie the higher-risk fair premium represents a larger part of the
consumer’s total budget constraint). There is no specific empirical evidence or
theoretical argument to support a = 1/3, but the qualitatively similar pattern
of results obtained from other values in the range 0 ≤ a ≤ 1 suggests that this
is not critical to our results.

We set P1 : P2 = 95:5, rather than 90:10 as in section 2 above4, and hereafter
denote this by the phrase “5% higher-risk population fraction”. Recall that
for multiple equilibria, the average cost per claim needs to cross the 45-degree
premium line from below; that is, the average cost per claim for the risks
attracted by the pooled premium needs to increase faster than the unit increase in
the premium, over some part of the feasible range for the premium. Intuitively,
this could occur either because the risk difference between the two popula-
tions is high, or because fair-premium demand elasticity is high; and the higher
the risk difference, the smaller the fair-premium demand elasticity required to
produce multiple equilibria. This intuition is confirmed in Table 1, which shows
the critical ranges of fair-premium demand elasticities l which generate mul-
tiple equilibria, for various relative risks.

What happens if the fair-premium demand elasticity is near, but not within,
the critical range which generates multiple equilibria? If the elasticity is slightly
higher, the equilibrium premium will be slightly higher than the highest of the
multiple equilibria; and if the elasticity is slightly lower, the equilibrium pre-
mium will be slightly lower than the lowest of the multiple equilibria. In effect,
the multiple equilibria correspond to a “jump” in the plot of equilibrium pre-
mium or loss coverage against the fair-premium demand elasticity l. This
“jump” effect is illustrated in Figure 8, which shows equilibrium premium and
corresponding loss coverage as a function of fair-premium demand elasticity l
for the case m2 /m1 = 4 and a = 1/3 (i.e. the central cell of Table 1). The dashed
horizontal line in the left panel in Figure 8 represents the population-weighted
average of the risk-differentiated premiums. The dashed horizontal line in the
right panel represents the loss coverage if risk-differentiated premiums are
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charged; this is normalized to a value of 1. The gaps left in the premium and
loss coverage curves for 1.33 < l < 1.40 correspond to the region where any
value of l generates three equilibria, which are located between the upper and
lower limits indicated by the ends of the curves on either side of the gaps.
The three crosses show the multiple solutions generated for the specimen value
l = 1.35; an analogous triad of solutions arises for any l in the range 1.33 <
l < 1.40.

The characteristic sigmoid pattern of the graphs shown in Figure 8, with
a jump in the premium and loss coverage around the region of multiple solutions,
provides a basis for distinguishing between an archetypal adverse selection
spiral, with a large increase in premium and reduction in loss coverage com-
pared to the result under risk-differentiated premiums, and other scenarios
where the insurance system stabilizes after only a modest rise in premiums.
If fair-premium demand elasticity is at or above the threshold range which
generates multiple solutions, we have an archetypal adverse selection spiral.
But if fair-premium demand elasticity is below the threshold range, the equi-
librium premium is only slightly above the population-weighted average of the
risk-differentiated premiums.

From a public policy viewpoint, any equilibrium for l > 1.33 in Figure 8
might be regarded as a bad outcome from restricted risk classification, because
loss coverage is drastically reduced as compared with the result if risk-differ-
entiated premiums are charged. For lower values of l, say l < 1, the reduction
in loss coverage is much smaller; a public policymaker might in some cases
regard this as a “price worth paying” to satisfy other policy objectives such as
social solidarity. For l < 0.71, loss coverage actually increases slightly under
restricted risk classification as compared with risk-differentiated premiums.
In such cases, the adverse selection resulting from restricted risk classification
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TABLE 1

FAIR-PREMIUM DEMAND ELASTICITIES l WHICH GENERATE MULTIPLE EQUILIBRIA, FOR VARIOUS

RELATIVE RISKS (5% HIGHER-RISK POPULATION FRACTION)

Relative risk Ranges for fair-premium demand elasticity l
m2 / m1 which generate multiple equilibria

(eg “2.76 – 3.26” denotes 2.76 < l < 3.26)

a = 0 a = 1/3 a = 2/3

2 2.76 – 3.26 2.74 – 3.15 2.72 – 3.05 
3 1.70 – 1.87 1.68 – 1.78 1.65 – 1.70
4 1.33 – 1.40 1.30 – 1.32 ≈ 1.27†
5 1.13 – 1.16 ≈ 1.15† ≈ 1.06†
6 1.002 – 1.012 ≈ 1.0† ≈ 0.95†

† There are no true multiple equilibria for these combinations of a and relative risks. The values shown
are those corresponding to “near multiple equilibria”.



FIGURE 8: Equilibrium premium and loss coverage as a function of l for 5% higher-risk population
fraction; crosses show specimen multiple solutions for l = 1.35.

is arguably not “adverse” at all; a public policymaker might regard the increased
loss coverage as a good outcome.5

What if the higher-risk fraction of the population differs from the 5%
assumed in Table 1? If the higher-risk fraction is smaller, for example a higher-
risk fraction of 2†% of the total population, the demand elasticity parameters
which generate multiple equilibria increase, as shown in Table 2. In one
sense, this makes multiple equilibria less plausible: some of the required demand
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5 The increase in loss coverage for l < 0.71 is very small in Figure 8, but larger increases can be gen-
erated if the higher-risk population is a larger fraction of the total population, or if the difference in
fair-premium demand elasticities between the two populations is larger; for example, see Figure 10 in
this paper.

TABLE 2

FAIR-PREMIUM DEMAND ELASTICITIES l WHICH GENERATE MULTIPLE EQUILIBRIA, FOR VARIOUS

RELATIVE RISKS (2†% HIGHER-RISK POPULATION FRACTION)

Relative risk Ranges for fair-premium demand elasticity l
m2 / m1 which generate multiple equilibria

(eg “2.98 – 4.94” denotes 2.98 < l < 4.94)

a = 0 a = 1/3 a = 2/3

2 2.98 – 4.94 2.95 – 4.83 2.93 – 4.76
3 1.83 – 2.71 1.82 – 2.60 1.81 – 2.54
4 1.44 – 1.96 1.42 – 1.85 1.40 – 1.79
5 1.23 – 1.58 1.21 – 1.47 1.19 – 1.42
6 1.09 – 1.35 1.08 – 1.25 1.05 – 1.20



FIGURE 9: Equilibrium premium and loss coverage as a function of l for 2†% higher-risk population
fraction; crosses show specimen multiple solutions for l = 1.70.

elasticity parameters are now very high. But in a different sense, the smaller
higher-risk fraction makes it easier to generate multiple equilibria: as shown in
Table 2, multiple equilibria are generated by l in wider ranges than in Table 1.

Figure 9 shows equilibrium premium and corresponding loss coverage as
a function of fair-premium demand elasticity for the case m2 /m1 = 4 and a = 1/3
(ie the central cell of Table 2). The heavy dashed horizontal lines represent the
population-weighted average of the risk-differentiated premiums (in the left
panel), and the loss coverage if risk-differentiated premiums are charged (in the
right panel). The gaps left in the plots for 1.42 < l < 1.85 correspond to the
region where any value of l generates three equilibria, which are located
between the between the upper and lower limits indicated by the ends of the
curves on either side of the gap. The three crosses show the multiple solutions
generated by l = 1.70; an analogous triad of solutions arises for any l in the
range 1.42 < l < 1.85. It can be seen that for any l ≤ 1.42, the equilibrium
pooled premium is only very slightly higher than the population-weighted
average of the risk-differentiated premiums (the horizontal dashed line at p =
0.01075). Loss coverage is generally slightly lower than under risk-differenti-
ated premiums, unless l < 0.73, where it becomes very slightly higher. For any
l ≥ 1.85, the equilibrium pooled premium is far above the population-weighted
average premium, and loss coverage is drastically reduced.

What happens if the higher-risk fraction of the population is more than 5%?
If the higher-risk fraction is say 10%, then to generate multiple equilibria, l2

substantially less than l1 is required, as shown in Table 3. However l2 sub-
stantially less than l1 is often rather implausible. The higher price of insurance
for higher risks, relative to the price of other goods and services, lead us to
expect that l2 would generally be higher than l1. Given the reasonable con-
straint l2 ≥ l1, we can specify a critical fraction for the higher-risk population
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which ensures that no multiple equilibria arise. This critical fraction is shown
for various population relative risks in Table 4.

When the higher-risk population fraction only modestly exceeds the frac-
tion required to ensure no multiple equilibria, there is still a region of “near
multiple equilibria”, where the equilibrium premium and the corresponding loss
coverage change rapidly with changes in l. This effect is illustrated in the upper
panels of Figure 10, which show the plots for a 10% higher-risk population
fraction, with m2 /m1 = 4 and a = 1/3. The region of “near multiple equilibria”
is centred around l ≈ 1.23; it can be seen that the equilibrium premium and loss
coverage plots against l display sigmoid and reverse sigmoid patterns respectively,
with their highest rates of change centred around l ≈ 1.23. As the higher-risk pop-
ulation fraction is increased further, the sigmoid and reverse sigmoid patterns
gradually flatten out. This effect is illustrated in the lower panels in Figure 10,
which show the plots for a 20% higher-risk population fraction, still with m2 /m1

= 4 and a = 1/3. The less skewed population (80:20 instead of 90:10) leads to
a less steep “jump” between the low-premium and high-premium regions.
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TABLE 3

APPROXIMATE FAIR-PREMIUM DEMAND ELASTICITIES l1 AND l2 REQUIRED TO PRODUCE MULTIPLE EQUILIBRIA,
FOR VARIOUS RELATIVE RISKS (10% HIGHER-RISK POPULATION FRACTION)

Relative risk Approximate fair-premium demand elasticity li

m2 / m1 required to produce multiple equilibria

l1 l2

2 ≈2.60 <1.44
3 ≈1.60 <0.52
4 ≈1.23 <0.28
5 ≈1.05 <0.11

≥ 6 Cannot generate multiple equilibria 

TABLE 4

THRESHOLD HIGHER RISK POPULATION (AS FRACTION OF TOTAL POPULATION) REQUIRED TO ENSURE NO

MULTIPLE EQUILIBRIA, GIVEN l2 ≥ l1

Relative risk Threshold higher risk population P2

m2 / m1 (as fraction of total population) required to
ensure no multiple equilibria, given l2 ≥ l1

2 > 9.0%
3 > 7.3%
4 > 6.2%
5 > 5.6%
6 > 5.1%



FIGURE 10: Equilibrium premium and loss coverage as a function of fair-premium demand elasticity,
m2 /m1 = 4.

To summarize the numerical results in Tables 1 to 4 and Figure 10, we make
the following observations.

– Variations in the parameter a have only a small effect on the demand elas-
ticity parameter required to generate multiple equilibria. This can be under-
stood as follows. The parameter a indexes the demand elasticity “premium”
or “margin” for the higher-risk population over that of the lower-risk popu-
lation. The much larger size of the lower-risk population means that at most
equilibria, most of the income and claims relate to the lower-risk population.
Hence the results are driven mainly by the “base” demand elasticity parameter,
with only a small effect from the demand elasticity “premium” or “margin”
for the higher-risk population.
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– As relative risk (m2 /m1) increases, the demand elasticity parameter required
to generate multiple equilibria decreases. This can be understood as follows.
Recall that multiple equilibria require the average cost per claim for risks
attracted by the pooled premium to be increasing faster over some range than
the unit increase in the premium. This can happen either because the demand
response to the premium increase is high, or because the difference in the
risks is high.

– As relative risk (m2 /m1) increases, the range of demand elasticity parameters
which generate multiple equilibria becomes narrower. This can be understood
by reference to Figure 6, as follows. As the demand elasticity parameter
increases through the critical range, the scenario of three intersections
between average claim costs and premium shown in Figure 6 moves towards
a single intersection at a premium above the highest of the three inter-
sections. For the multiple equilibria to disappear, the average cost per claim
curve in Figure 6 must move upwards sufficiently so as to eliminate its inter-
sections with the 45-degree premium line at lower premiums. If the relative
risk ( m2 /m1) is low, the average cost per claim changes only slowly as the
elasticity parameter (and hence insurance demand) changes; and hence the
multiple intersections in Figure 6 persist for a wider range of demand elas-
ticity parameters.

– As the higher-risk fraction of the population increases, the demand elastic-
ity parameter required to generate multiple equilibria decreases. However,
if the higher-risk fraction of the population exceeds a threshold, multiple
equilibria cannot arise, given the reasonable constraint l2 ≥ l1. This can be
understood as follows. With a larger higher-risk fraction, the higher-risk
population makes a material contribution to the average cost per claim over
the full range ( m1, m2] of feasible premium levels. As p is increased, lower risks
have a higher propensity to leave the market than higher risks; but the mate-
rial weighting of the higher risks, at all premium levels, means that the higher
rate of exit of lower risks never raises the rate of change of the average cost
per claim above 1, with the average cost per claim also simultaneously equal
to the premium. In effect, the material weighting of higher risks in the aver-
age cost per claim over the full range ( m1, m2] of feasible premium levels acts
as a “drag” on the rate of change of the average cost per claim. This “drag”
on the rate of change of the average cost per claim from the weighting of
higher risks also increases with the relative risk ( m2 /m1). The latter point
explains the last line in Table 3: for high relative risk, m2 /m1 ≥ 6, even very
low l2, much less than l1, cannot generate multiple equilibria6.
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6 For further insight into this “drag” from a larger higher-risk population fraction, consider a case
where the skew is reversed, so that the higher-risk population forms the larger part of the total pop-
ulation, say P2 = 90%. In this case, it is obvious that over the full range ( m1, m2] of feasible premium
levels, the lower risks will always contribute very little to the average cost per claim. The average
cost per claim will always be close to the risk level for the higher-risk population, and will change
only slightly as p changes.



Conditions which preclude multiple equilibria irrespective of relative populations
and risks

It is also possible to specify broad regions of the parameter space for (l1, l2)
where multiple equilibria can never arise, irrespective of the higher-risk popu-
lation fraction and the relative risk. First note that the total claims curve in
Figures 2, 3, 4 and 7 must always slope downwards over the full feasible range
( m1, m2 ]. Multiple equilibria arise if the total income curve intersects the total
claims curve more than once in the range ( m1, m2]. This cannot happen if the
total income curve slopes upwards over the full range ( m1, m2]. The total income
curve is the sum of the income from populations 1 and 2. So if the total income
curve for each population slopes upwards over the full range – that is, there is
no maximum in the premium income curve below m2 – then multiple equilibria
cannot occur.

The condition for a maximum in total premium income from population i,
say Fi, is 
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For population 1, note that p /m1 ≤ m2 /m1 and hence

l1( m2 /m1)
l1 ≤ 1 (13)

is a sufficient condition for the absence of a maximum in the premium income
curve F1 below m2. But m2 /m1 > 1, and hence the condition (13) for absence of
a maximum in F1 below m2 requires l1 ≤ 1. For any given relative risk ( m2 /m1),
the maximum value of l1 which admits a maximum in F1 below m2 can then
be found as the unique solution for l1 of
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1
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Moving on to population 2, and applying equation (12) above, note that
p /m2 ≤ 1. Hence l2 < 1 is a sufficient condition for the absence of a maximum
in F2 below m2.

The above conditions lead to Table 5, which shows for a range of relative
risks ( m2 /m1) the regions of the (l1, l2) parameter space in which multiple equi-
libria can never occur, irrespective of the relative sizes and fair-premium take-
ups of the two populations.

The conditions in Table 5 are sufficient to ensure that multiple equilibria
cannot occur, irrespective of the higher-risk population fraction; but they are
not necessary conditions. They can be thought of as conditions to give a graph
of total premiums and total claims of the type characterized by Figure 2: the
total income curve slopes upwards over the entire range ( m1, m2 ]. But even if
the total income curve slopes downwards towards the upper end of the range
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( m1, m2 ], it may intersect the total claims curve only once: that is, a graph of
the type characterized by Figure 3 or Figure 4. Therefore the li can be higher
than the values in Table 5 and still be “safe” in the sense of not produce mul-
tiple equilibria. Multiple equilibria arise only when the graph is of the type
characterized by Figure 7.

Comparison with empirical demand elasticities

The fair-premium demand elasticity parameters in Tables 1 to 5 can be compared
with empirical estimates of demand elasticity for various classes of insurance.
We defined demand elasticity using absolute values for convenience in this
paper, but the estimates in empirical papers are generally given with the neg-
ative sign, and so we quote them in that form. For example, for yearly renewable
term insurance in the US, an estimate of –0.4 to –0.5 has been reported (Pauly
et al, 2003). A questionnaire survey about life insurance purchasing decisions
produced an estimate of –0.66 (Viswanathan et al, 2007). For private health
insurance in the US, several studies estimate demand elasticities in the range
of 0 to –0.2 (Chernew et al., 1997; Blumberg et al., 2001; Buchmueller and Ohri,
2006). For private health insurance in Australia, Butler (1999) estimates demand
elasticities in the range –0.36 to –0.50 (higher than in the US, perhaps because
Australia’s universal Medicare is a better substitute for private insurance than
is available to most people in the US). These magnitudes are significantly lower
than the threshold values of fair-premium demand elasticity required to gen-
erate multiple equilibria (or above the threshold, low-coverage equilibria) in
our model. Demand elasticity for some types of insurance might be higher,
particularly where there is a good substitute for the insurance. However,
actual demand elasticitity magnitudes significantly lower than the threshold
values which lead to multiple equilibria (or above the threshold, low-coverage
equilibria) in our model may explain why some insurance markets appear to
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TABLE 5

REGIONS OF PARAMETER SPACE FOR (l1, l2) WHERE MULTIPLE EQUILIBRIA CANNOT OCCUR,
IRRESPECTIVE OF POPULATION FRACTIONS (P1, P2)

Relative risk Absence of multiple equilibria is assured
m2 / m1 for the following parameter pairs:

l1 l2

2 <0.641 <1
3 <0.548 <1
4 <0.500 <1
5 <0.469 <1
6 <0.448 <1



operate reasonably well under community rating, without the collapse in cov-
erage which insurance folklore suggests.

The remarks in the preceding paragraph are made in the context that all
insurers are required to operate the same risk classification regime, as was
assumed when setting up the model in section 2 of the paper. The remarks
will probably not apply where different insurers are permitted to compete by
offering different risk classification regimes. In this scenario, where different
insurers’ products are close substitutes offered on different underwriting terms,
it seems plausible that the demand elasticity for insurance from a particular
insurer might be much higher than demand elasticity for insurance from any
insurer. The “adverse selection spiral” may then be a good description of the
fate of one insurer which does not classify risks adequately in a setting where
others insurers do7. But this does not necessarily mean that it is a good descrip-
tion of the fate of a market where no insurers classify risk.

4. CONCLUSION

This paper has used a simple model with two populations, one higher-risk and
one lower-risk, to investigate insurance market outcomes when insurers are
not permitted to differentiate premiums by risk level. Market outcomes were
characterized by the equilibrium pooled premium when risk classification
was restricted, and the corresponding risk-weighted insurance demand or “loss
coverage.” It was suggested that from a public policy perspective, loss coverage
(risk-weighted insurance demand) might be a better metric from a public policy
perspective than number of policies sold (un-weighted insurance demand),
because loss coverage focuses on the expected losses actually compensated by
insurance.

For the model in this paper, the main results are as follows. Insurance mar-
ket outcome in the absence of risk classification can be related to a parameter
for the elasticity of demand for insurance at an actuarially fair premium, that
is the “fair-premium demand elasticity.” High fair-premium demand elasticity
leads to an equilibrium premium close to the risk of the higher-risk popula-
tion, and a much lower loss coverage than under risk-differentiated premiums.
This can be thought of as the conclusion of an archetypal adverse selection
spiral. From a public policy perspective, it might be considered a bad outcome
from community rating. But for sufficiently low fair-premium demand elas-
ticity, this collapse in coverage does not occur; instead, the market stabilizes
with a premium only slightly higher than the population-weighted average of
risk-differentiated premiums, and relatively high loss coverage – possibly higher
than under more complete risk classification. From a public policy perspective,
this might be considered a good outcome from community rating.
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The ranges for the demand elasticity parameter characterized above as
“high” and “low” are separated by a threshold range for the parameter which
leads to an unstable market outcome – either multiple equilibria (that is, more
than one pooled premium is capable of equilibrating insurers’ revenue and
claims), or near-equilibria for an extended range of premium values. Generally,
the threshold range for the fair-premium demand elasticity parameter at or
above which an unsatisfactory outcome arises in the model in this paper appears
higher than the demand elasticity values which have been estimated in empir-
ical studies of a number of insurance markets. The high demand elasticity
which is required to generate an unsatisfactory outcome offers a possible expla-
nation of why some insurance markets appear to operate reasonably well under
community rating, without the collapse in coverage which insurance folklore
suggests. Finally, it is emphasized that these conclusions are based on a specific
model, which may require some generalization before the results are widely
applied.
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