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Abstract.

Often data from infectious disease are subject to classification errors, such as susceptible

individuals classified as infectives or vice versa. These kinds of classification error may lead

to imprecise record of the number of individuals infected in each household and therefore

unreliable results of inference from such data. It then becomes necessary to adjust our pa-

rameter estimation methods to cope with such errors and obtain precise maximum likelihood

estimates that reflect the true parameter values and model that best fit the final size epidemic

data.

In this work, we have proposed a theoretical framework leading to misclassification error

probabilities from the SIR household epidemic and procedures on how the inference should

be handled in the face of these errors, given the following scenarios,

(i) When there is no misclassification error in the data, (misclassification probability=0),

in which case, the true positives are classified as such, while true negatives are also correctly

classified as such.

(ii) When the false negative and positive misclassification probabilities are the same.

(iii) When these misclassification probabilities are different from each other.

Using maximum likelihood inference, we simulated household final size epidemic data with

error and showed that the parameters from the models with misclassification error in (ii) and

(iii) including the error rate can be correctly estimated just as in the case without error.

Since misspecification may wrongly be taken for miscclassification of the epidemic data, we

examined the effects of misspecification of the infectious period distribution on the estimates,

considering the three scenarios listed above to see how the behaviours of the estimates differ

from those of misclassification of the epidemic data.



The Pearson chi-square goodness of fit test and the Kolmogorov-Smirnov goodness of fit

test are employed to assess the goodness of fit of the models given three scenarios in (i)-(iii)

referred to as the two, three and four dimensional models respectively in relationship to the

number of parameters in the models. The three models are found to sufficiently fit the two

dimensional final size epidemic data. The three and four dimensional models perform well

on the three dimensional final size epidemic data, while the two dimensional model failed

to sufficiently fit the three dimensional final size epidemic data when the misclassification

probability is not close to 0.

Similar behaviours from the two dimensional model are observed on the four dimensional

final size epidemic data, while the three dimensional model performs well on the four dimen-

sional final size epidemic data when the misclassification probabilities are close to each other.

The four dimensional model performs well on the four dimensional final size data for any

choice of the misclassification probabilities in the permissible region, [0, 0.5).

These behaviours are further examined from the mean and variance of the Pearson chi-

square goodness of fit statistics of the three scenarios (i)-(iii) and those of the proportion of

the simulations rejected at 5% level of significance from the Pearson chi-square goodness of

fit test. We see that with increasing misclassification probabilities in the permissible region,

[0, 0.5), the proportion of the simulations rejected for the two and three dimensional models

tend to 1 respectively, while those of the four dimensional model remains consistently stable

around 5% as theoretically expected.

Also, we employed the chi-square difference goodness of fit test and the Kolmogorov-

Smirnov goodness of fit test, given the three scenarios and found the behaviours of the models

to be consistent with our earlier studies.

We employed these procedures to the [1] Tecumseh Michigan influenza A(H3,N2) epidemic

data and [28] Seattle Influenza 1975 − 1976 B(H1N1), 1978 − 1979 A(H1N1) epidemic data

and found that the three models sufficiently fit the final size epidemic data.

We have shown that the four dimensional model outperforms the two and three dimen-

sional models and that the two and three dimensional model are only useful if the misclassifi-

cation probabilities are close to 0 as in the case of the two dimensional model and when they



are close to each as in the case of the three dimensional model respectively.

However if the misclassification probabilities are far apart then the two and three dimen-

sional models struggle fitting to the four dimensional final size epidemic data. Hence the need

for the four dimensional model.

Also we see that in the presence of misspecification of the models, the two dimensional

model is better than the complex models if the epidemic data are not misclassified otherwise

the complex models are better.



Contents
1 Introduction. 1

1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation of the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Introduction to the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Background of study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Empirical Approach to the study of Infectious Disease. . . . . . . . . . 8

1.4.2 Work on stochastic epidemic modelling. . . . . . . . . . . . . . . . . . 9

1.5 Misclassification of household epidemic data. . . . . . . . . . . . . . . . . . . 11

1.5.1 Epidemic modelling in the presence of misclassification. . . . . . . . . 13

1.5.2 Literature on modelling misclassified finite count data. . . . . . . . . . 14

1.6 The stochastic SIR epidemic model. . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Branching process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Convergence of the general stochastic epidemic. . . . . . . . . . . . . . . . . 19

1.9 Final size household epidemic data. . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 Dimensionality of household epidemic data. . . . . . . . . . . . . . . . . . . . 21

1.11 The Gontcharoff polynomial. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 The stochastic SIR household epidemic model. 24

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Household structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Two level mixing epidemic model. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Branching process for two level mixing epidemic model. . . . . . . . . . . . . 27

2.5 Community based SIR household epidemic model with temporary immunity. . 28

2.6 Community based SIR household epidemic model with permanent immunity. 28

i



2.6.1 Calculation of the final size probabilities. . . . . . . . . . . . . . . . . 29

2.7 Threshold parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Mean final size of single household epidemic. . . . . . . . . . . . . . . . . . . . 31

2.9 Numerical simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Inference on the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Global epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Maximum likelihood estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Theoretical properties of the parameters of the stochastic SIR household

epidemic model. 39

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The mean final size of single household epidemic. . . . . . . . . . . . . . . . . 39

3.3 Properties of βk for small and large local infection rates. . . . . . . . . . . . . 41

3.4 The mean final size of the single household epidemic for small λL. . . . . . . . 43

3.5 The mean final size of the single household epidemic, for large local infection

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Further properties of the mean final size. . . . . . . . . . . . . . . . . . . . . . 45

3.7 Properties of the threshold parameter for small and large local infection rates. 50

3.8 Proportion of the initial susceptibles that are ultimately infected. . . . . . . . 52

3.9 Proportion of the initial susceptibles that are ultimately infected at the lower

boundary of the local infection rate. . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Proportion of the initial susceptibles that are ultimately infected near the upper

boundary of the local infection rate. . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Theoretical properties of the Gamma function and global epidemic. . . . . . . 57

4 Fitting the SIR household model to final size epidemic data. 60

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Model fitting to the two dimensional final size data. . . . . . . . . . . . . . . 60

4.3 Replication of published results. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Simulation and inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ii



4.5 Plots of the estimates with minimum epidemic size of 10. . . . . . . . . . . . 66

4.5.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Plots of the estimates and table of mean, standard deviation, mean square error

and root mean square error with minimum epidemic size of 50. . . . . . . . . 68

4.6.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Plots of the estimates and table of mean, standard deviation, mean square error

and root mean square error with minimum epidemic size of 100. . . . . . . . . 70

4.7.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Plots of the estimates and table of mean, standard deviation, mean square error

and root mean square error with minimum epidemic size of 1000. . . . . . . . 71

4.9 Parameter estimates with minimum epidemic size of 1000. . . . . . . . . . . . 73

4.9.1 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.0446 and λG = 0.1955 with minimum epidemic size of 1000. 74

4.9.2 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.13 and λG = 0.17 with minimum epidemic size of 1000. . . 76

4.9.3 Plots of the estimates of λL, λG and π when the theoretical parameters

are λL = 0.1 and λG = 0.29 with minimum epidemic size of 1000. . . . 77

4.9.4 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.25 and λG = 0.39 with minimum epidemic size of 1000. . . 78

5 Stochastic SIR household model for misclassified data. 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 The SIR household epidemic model with two different misclassification proba-

bilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 The three dimensional final size epidemic model. . . . . . . . . . . . . . . . . 88

5.3.1 Maximum likelihood estimation. . . . . . . . . . . . . . . . . . . . . . 89

iii



5.4 Numerical simulations and inferences on the three and four dimensional final

size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Fitting the three models to data from the four dimensional model. . . 90

5.4.2 Fitting the two, three and four dimensional models to the four dimen-

sional final size epidemic data when εFN = 0.02, εFP = 0.1. . . . . . . 93

5.4.3 Fitting the two, three and four dimensional models to the four dimen-

sional final size epidemic data when εFN = 0.3, εFP = 0.2. . . . . . . . 94

5.4.4 Fitting the two, three and four dimensional models to the four dimen-

sional final size epidemic data when εFN = 0.2, εFP = 0.2. . . . . . . . 95

5.5 Numerical simulations and inferences. . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Comparison of the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Simulations with the theoretical parameter, λL = 0.13, λG = 0.17, π =

0.7423, z = 0.4275, R∗ = 1.4316. . . . . . . . . . . . . . . . . . . . . . 99

5.6.2 Simulations with theoretical parameters, λL = 0.1, λG = 0.29, π =

0.4199, z = 0.7298, R∗ = 2.2166. . . . . . . . . . . . . . . . . . . . . . 101

5.7 Summary of behaviour of the models. . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Simulations and inferences of the three models. . . . . . . . . . . . . . . . . . 104

5.8.1 Fitting the two, three and four dimensional models to the three dimen-

sional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . 106

5.8.2 Fitting the two, three and four dimensional models to the three dimen-

sional simulated final size epidemic data, when ε = 0.01. . . . . . . . . 106

5.8.3 Fitting the two, three and four dimensional models to the three dimen-

sional simulated final size epidemic data, when ε = 0.02. . . . . . . . . 107

5.8.4 Fitting the two, three and four dimensional models to three dimensional

simulated final size epidemic data, when ε = 0.2. . . . . . . . . . . . . 107

5.9 Table of mean, standard deviation and root mean square error of the estimates

for the two, three and four dimensional models, when ε = 0.01, 0.02 and ε = 0.2.109

5.10 Simulations and inferences of the two and three dimensional models for z ∈ [0, 1].110

iv



5.10.1 Plots of the RMSE of the Parameter estimates when, λL = 0.2, λG =

0.12, π = 0.8999, z = 0.2144, R∗ = 1.1653. . . . . . . . . . . . . . . . 112

5.10.2 Plots of the RMSE of the parameter estimates when λL = 0.1, λG =

0.29, π = 0.4199, z = 0.7298, R∗ = 2.2166. . . . . . . . . . . . . . . . . 113

5.11 Summary of performance of the two, three and four dimensional models on

final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Chi-square goodness of fit test. 116

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Computation method of the Pearson chi-square goodness of fit statistic. . . . 118

6.3 Degrees of freedom of the Pearson chi-square goodness of fit test. . . . . . . . 120

6.4 Likelihood ratio chi-squared goodness of fit test. . . . . . . . . . . . . . . . . . 120

6.5 Kolmogorov-Smirnov test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Proportion of the simulations rejected from the Pearson chi-square goodness of

fit test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Pearson chi-square goodness of fit test on two dimensional final size epidemic

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Numerical simulations on two dimensional final size epidemic data. . . . . . . 126

6.8.1 The Pearson chi-square and the Kolmogorov-Smirnov goodness of fit

tests on two dimensional final size epidemic data. . . . . . . . . . . . . 126

6.8.2 Table of mean and variance of the Pearson chi-square test on the two

dimensional final size epidemic data. . . . . . . . . . . . . . . . . . . . 127

6.9 The Pearson chi-square and the Kolmogorov-Smirnov goodness of fit tests on

the three dimensional final size epidemic data. . . . . . . . . . . . . . . . . . . 129

6.9.1 When the misclassification probability ε = 0.1. . . . . . . . . . . . . . 130

6.9.2 When the misclassification probability ε = 0.3. . . . . . . . . . . . . . 131

6.9.3 Table of mean and variance of the Pearson chi-square goodness of fit

statistic on the three dimensional final size epidemic data. . . . . . . . 132

v



6.10 Plots of the mean and variance of the Pearson chi-square goodness of fit statistic

on the three dimensional final size data. . . . . . . . . . . . . . . . . . . . . . 133

6.11 The Pearson chi-square goodness of fit tests on the four dimensional final size

epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.11.1 When the misclassification probabilities are εFN = 0 and εFP = 0.2. . 137

6.11.2 When the misclassification probabilities are εFN = 0.2 and εFP = 0. . 138

6.11.3 When the misclassification probabilities are εFN = 0.01 and εFP = 0.02 140

6.11.4 When the misclassification probabilities are εFN = 0.02 and εFP = 0.01 142

6.11.5 When the misclassification probabilities are εFN = 0.2 and εFP = 0.3 144

6.11.6 When the misclassification probabilities are εFN = 0.3 and εFP = 0.2 146

6.12 Table of mean and variance of the Pearson chi-square goodness of fit statistics

of the three models on the four dimensional final size epidemic data. . . . . . 148

6.13 Plots of the mean and variance of the Pearson chi-square goodness of fit statistic.150

6.13.1 Exploring the estimates along the diagonals, εFN = 0.2− εFP , εFP ∈

[0, 0.2], theoretical parameters corresponding to z = 0.7298, 0.2144 re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.13.2 Exploring the estimates along the vertical axis of the misclassification

probability region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.13.3 Exploring the estimates along the horizontal axis of the misclassification

probability region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.14 Fitting the three models to [1] Tecumseh Michigan Influenza A(H3N2) epidemic

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.15 Analyses of the Seattle influenza datasets. . . . . . . . . . . . . . . . . . . . . 157

6.15.1 Analyses of the epidemic datasets. . . . . . . . . . . . . . . . . . . . . 158

6.16 Fitting the three models to the Seattle household epidemic data. . . . . . . . 159

6.16.1 The 1975-1976 Seattle B(H1N1) influenza epidemic. . . . . . . . . . . 159

6.16.2 The 1978-1979 Seattle A(H1N1) influenza epidemic. . . . . . . . . . . 160

6.17 Discussion and Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

vi



7 Hypothesis test between the models. 164

7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Chi-square difference test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Kolmogorov-Smirnov test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 Proportion of the simulations rejected from the chi-square difference test. . . 166

7.5 Chi-square difference and the Kolmogorov-Smirnov tests on the two dimen-

sional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.6 Table of mean and variance of the chi-square difference tests on the two dimen-

sional final size epidemic Data. . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.7 Chi-square difference and the Kolmogorov-Smirnov tests on the three dimen-

sional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.8 Table of mean and variance of the chi-square difference statistic on the three

dimensional final size epidemic Data. . . . . . . . . . . . . . . . . . . . . . . . 174

7.9 Plots of the mean and variance of the chi-square difference statistic on the three

dimensional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . 175

7.10 The chi-square difference and Kolmogorov-Smirnov tests on the four dimen-

sional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.11 Table of mean and variance of the chi-square difference statistic. . . . . . . . 190

7.12 Plots of the mean and variance of the chi-square difference statistic on the four

dimensional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . 191

7.13 Fitting the three models to [1] Tecumseh Michigan Influenza A(H3N2) epidemic

data using chi-square difference statistic. . . . . . . . . . . . . . . . . . . . . . 194

7.14 Fitting the three models to [28] Seattle Influenza epidemic data using chi-square

difference statistic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.15 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8 Estimation in the presence of model misspecification. 197

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

vii



8.2 Simulating epidemic data with exp(4.1) and estimating model parameters with

Gamma(2, 4.1/2) infectious period distributions. . . . . . . . . . . . . . . . . 198

8.3 Simulating epidemic data with Gamma(2, 4.1/2) and estimating model param-

eters with exp(4.1) infectious period distributions. . . . . . . . . . . . . . . . 200

8.4 Discussion and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5 Effects of misspecification on the estimates of the three models from two di-

mensional epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.6 When the epidemic is simulated with theoretical parameters (λL, λG) = (0.1, 0.29)

and Gamma(2, 4.1/2) infectious period distribution, estimated with exp(4.1)

infectious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.7 Discussion and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.8 Misspecification in the face of misclassification. . . . . . . . . . . . . . . . . . 207

8.9 When the epidemic data is simulated with exp(4.1) and estimated with Gamma(2, 4.1/2)

infectious period distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.10 Plots of the estimates and table of mean, standard deviation, root mean square

error when the epidemic data is simulated with Gamma(2, 4.1/2) and estimated

with exp(4.1) infectious period distributions. . . . . . . . . . . . . . . . . . . 212

8.11 Conclusion and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.12 Misspecification in the face of different misclassification Probabilities. . . . . . 216

8.13 Plots of the estimates and table of mean, standard deviation, root mean square

error when the epidemic data is simulated with exp(4.1) and estimated with

Gamma(2, 4.1/2) infectious period distributions. . . . . . . . . . . . . . . . . 217

8.13.1 Plots of the estimates and table of mean, standard deviation, root mean

square error when the epidemic data is simulated with Gamma(2, 4.1/2)

and estimated with exp(4.1) infectious period distributions. . . . . . . 220

8.14 Conclusion and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9 Summary, Conclusion and Extensions. 226

9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

viii



9.2 Summary of Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.4 Possible Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

9.5 Overall Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

9.6 Limitation of the Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.7 Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Bibliography 240

ix



List of Figures

2.1 Histogram of 1000 simulations of household epidemic with Gamma(2, 2.05)

infectious period distribution and parameter estimates from [1] but fifty times

its population size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 The beta function with increasing λL. . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The mean fnal size as function of the local infection rate. . . . . . . . . . . . . 46

3.3 The mean final size as function of the number of initial infectives . . . . . . . 48

3.4 The mean final size as function of number of the initial susceptibles . . . . . . 49

3.5 The threshold parameter with varying local infection rate. . . . . . . . . . . . 52

3.6 The proportion of the initial susceptible ultimately infected at the end of the

epidemic in the presence of varying values of π. . . . . . . . . . . . . . . . . . 54

4.1 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters corresponding to z = 0.1775 and minimum

epidemic size of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters corresponding to z = 0.1775 and Minimum

Epidemic size of 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters corresponding to z = 0.1775 and Minimum

Epidemic size of 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Histograms of number infected from simulations of household epidemic, with

population sizes of 1414, and 70700 respectively, minimum epidemic size of 1

and simulation runs of 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



4.5 Plots of the Estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters λL = 0.0446, λG = 0.1955 and minimum

epidemic size of 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters λL = 0.13, λG = 0.17 and minimum epi-

demic size of 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number in-

fected with theoretical parameters λL = 0.1, λG = 0.29 and minimum epidemic

size of 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number

infected with theoretical parameters λL = 0.25, λG = 0.39 and minimum epi-

demic size of 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =

0.02, εFP = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =

0.3, εFP = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =

0.2, εFP = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Plots of the root mean square error of the maximum likelihood estimates of the

three models when, λL = 0.13, λG = 0.17, π = 0.7423, z = 0.4275, R∗ = 1.4316. 101

5.5 Plots of the root mean square error of the maximum likelihood estimates for

the three models, when λL = 0.1, λG = 0.29, π = 0.4199, R∗ = 2.2166. . . . . 103

5.6 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.01106

5.7 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.02.107

5.8 Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.2. 108

5.9 Plots of the RMSE estimates of λL for three and two dimensional optimization

when z = 0.2144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



5.10 Plots of the RMSE estimates of λL for three and two dimensional optimization

when λL = 0.1, λG = 0.29, π = 0.4199, z = 0.7298, R∗ = 2.2166. . . . . . . . 113

6.1 Density histograms of the Pearson chi-square goodness of fit and the Kolmogorov-

Smirnov goodness of fit tests on the models two dimensional final size epidemic

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Density histograms of the Pearson chi-square and the Kolmogorov-Smirnov

goodness of fit tests of the three models on three dimensional final size epidemic

data, when ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Density histograms of the Pearson chi-square and the Kolmogorov Smirnov

goodness of fit tests of the three models on the three dimensional final size

epidemic data when ε = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Plots of the mean and variance of the Pearson chi-square goodness of fit statis-

tics for the three models when λL = 0.1, λG = 0.29 and λL = 0.2, λG = 0.12. 134

6.5 Plots of the proportion of the simulations rejected at 5% significance from the

Pearson chi-square goodness of fit tests. . . . . . . . . . . . . . . . . . . . . . 135

6.6 Density histograms of the Pearson chi-square goodness of fit statistics superim-

posed with their theoretical counterparts and plots of the empirical cumulative

distribution function of the Pearson chi-square goodness of fit statistic with

their hypothesized distributions for the three models on the four dimensional

final size epidemic data when εFN = 0 and εFP = 0.2.. . . . . . . . . . . . . . 137

6.7 Density histogram of the Pearson chi-square, the likelihood ratio chi-squared

goodness of fit statistics superimposed with their theoretical counterparts and

plots of the empirical cumulative distribution functions with their theoretical

counterparts of the three models on the four dimensional final size epidemic

data when εFN = 0.2 and εFP = 0. . . . . . . . . . . . . . . . . . . . . . . . . 139

xii



6.8 Density histograms of the Pearson chi-square goodness of fit statistics superim-

posed with their theoretical counterparts and plot of the empirical cumulative

distribution functions of the Pearson chi-square goodness of fit statistics with

their theoretical counterparts of the three models on the four dimensional final

size epidemic data when εFN = 0.01 and εFP = 0.02. . . . . . . . . . . . . . . 141

6.9 Density histograms of the Pearson chi-square goodness of fit statistics superim-

posed with their theoretical counterparts and plots of the empirical cumulative

distribution functions of the Pearson chi-square goodness of fit statistics with

their theoretical counterparts of the three models on the four dimensional final

size epidemic data when εFN = 0.02 and εFP = 0.01. . . . . . . . . . . . . . . 143

6.10 Density histograms of Pearson chi-square goodness of fit statistics superim-

posed with their theoretical counterparts and plots of the empirical cumulative

distribution functions of the Pearson chi-square goodness of fit statistics with

their theoretical counterparts of the three models on the four dimensional final

size epidemic data when εFN = 0.2 and εFP = 0.3. . . . . . . . . . . . . . . . 145

6.11 Density histograms of chi-square goodness of fit statistics superimposed with

their theoretical counterparts and plots of the empirical cumulative distribu-

tion functions of the Pearson chi-square goodness of fit statistics with their

theoretical counterparts of the three models on the four dimensional final size

epidemic data when εFN = 0.3 and εFP = 0.2.. . . . . . . . . . . . . . . . . . 147

6.12 Plots of the mean and variance of the chi-square goodness of fit statistics for

the three models when the estimates are explored along the diagonals of the

misclassification region for theoretical parameters corresponding to z = 0.7298

and z = 0.2144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.13 Plots of the proportion of the simulations rejected from the Pearson chi-square

goodness of fit test to four dimensional final size epidemic data for theoretical

parameters corresponding to z = 0.2144. and z = 0.7298 respectively. . . . . . 152

xiii



6.14 Plots of the mean and variance of the chi-square goodness of fit statistics for

the three models with εFP = 0.01, while varying εFN with step size of 0.01,

for theoretical parameters corresponding to z = 0.7298 and z = 0.2144. . . . . 154

6.15 Plots of the mean and variance of the chi-square goodness of fit statistics for

the three models with εFN = 0.01, while varying εFP with step size of 0.01,

for theoretical parameters corresponding to z = 0.7298 and z = 0.2144. . . . . 156

7.1 Density histograms of the chi-square difference statistic on two dimensional

final size epidemic data and plots of the empirical distribution of the chi-square

difference statistic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2 Density histograms of the chi-square difference statistic on the three dimen-

sional final size epidemic data and those of the empirical and cumulative dis-

tribution functions when ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 Density histograms of the chi-square difference statistic on the three dimen-

sional final size epidemic data and those of the empirical and cumulative dis-

tribution functions when ε = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 The mean and variance of the chi-square difference statistic on the three di-

mensional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . 176

7.5 Proportion of the simulations rejected at 5% significance from the chi-square

difference test for z = 0.7298 and z = 0.2144 when it is the three dimensional

final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.6 Density histograms of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of the empirical cumulative distribution functions with their theoretical

counterparts when εFN = 0 and εFP = 0.2. . . . . . . . . . . . . . . . . . . . 179

7.7 Density histograms of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of the empirical cumulative distribution functions with their theoretical

counterparts when εFN = 0.2 and εFP = 0 . . . . . . . . . . . . . . . . . . . . 181

xiv



7.8 Density histograms of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of the empirical cumulative distribution functions, when εFN = 0.01 and

εFP = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.9 Density histogram of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of the empirical cumulative distribution functions with their theoretical

counterparts when, εFN = 0.02 and εFP = 0.01 . . . . . . . . . . . . . . . . . 185

7.10 Density histograms of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of their empirical distribution functions with their theoretical counter-

parts when, εFN = 0.2 and εFP = 0.3 . . . . . . . . . . . . . . . . . . . . . . . 187

7.11 Density histograms of the chi-square difference statistic on the four dimensional

final size epidemic data superimposed with their theoretical counterparts and

those of their empirical distribution functions with their theoretical counter-

parts when, εFN = 0.3 and εFP = 0.2 . . . . . . . . . . . . . . . . . . . . . . . 189

7.12 Plots of the mean and variance of the chi-square difference statistic for the three

models in the parameter estimates are explored along the diagonal, εFN = 0.2−

εFP over the misclassification region with theoretical parameters corresponding

to z = 0.7298 and z = 0.2144. respectively. . . . . . . . . . . . . . . . . . . . 192

7.13 Proportion of the simulations rejected at 5% significance from the chi-square

difference test with theoretical parameters corresponding to z = 0.7298 and

z = 0.2144, when the true data is the four dimensional final size epidemic data. 193

8.1 Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution and

when the epidemic data is simulated with exp(1.4) infectious period distribution.199

8.2 Plots of the estimates with exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution.200

xv



8.3 Plots of the estimates from the three models when the epidemic is simulated

with theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious pe-

riod distribution, the parameters estimated with Gamma(2, 4.1/2) infectious

period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.4 Plots of the estimates from the three models when the epidemic is simulated

with theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infec-

tious period distribution, the parameters estimated with exp(4.1) infectious

period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.5 Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distri-

bution and ε = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.6 Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distri-

bution and ε = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.7 Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distri-

bution and ε = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.8 Plots of the estimates with exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and ε = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.9 Plots of the estimates with exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and ε = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.10 Plots of the estimates with exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and ε = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.11 Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distribution

and εFN = 0.02, εFF = 0.1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xvi



8.12 Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distribution

and εFN = 0.3, εFF = 0.2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.13 Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution

when the epidemic data is simulated with exp(4.1) infectious period distribution

and εFN = 0.2, εFF = 0.2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.14 Plots of the estimates using exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and εFN = 0.02, εFF = 0.1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.15 Plots of the estimates using exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and εFN = 0.3, εFF = 0.2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.16 Plots of the estimates using exp(4.1) infectious period distribution when the

epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution

and εFN = 0.2, εFF = 0.2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

xvii



List of Tables

1.1 Household epidemic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Tecumseh Michigan Influenza A(H3N2) Epidemic Data . . . . . . . . . . . . . 21

4.1 Table of Comparison of Parameter Estimates . . . . . . . . . . . . . . . . . . 64

4.2 Pairs of the local and global infection rates with their corresponding theoretical

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Mean of the parameter estimates for theoretical parameters corresponding to

z = 0.1775 and minimum epidemic size of 10. . . . . . . . . . . . . . . . . . . 67

4.4 Mean of the parameter estimates for theoretical parameters corresponding to

z = 0.1775 with minimum epidemic size of 50. . . . . . . . . . . . . . . . . . . 69

4.5 Mean of the parameter estimates for theoretical paramters corresponding to

z = 0.1775 with minimum epidemic size of 100. . . . . . . . . . . . . . . . . . 71

4.6 Table of comparison of the mean, standard deviation and mean square error of

the estimates using the minimum epidemic size of 1000 and simulation runs of

1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Mean of the parameter estimates from the two dimensional model and theo-

retical parameters in table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Standard deviation of the parameter estimates from the two dimensional model

with theoretical parameters in table 4.2. . . . . . . . . . . . . . . . . . . . . . 79

4.9 Root mean square error of the parameter estimates from the two dimensional

model with theoretical parameters in table 4.2.. . . . . . . . . . . . . . . . . . 79

5.1 Table of the mean of the parameter estimates of the three models. . . . . . . 96

5.2 Table of the standard deviation of the parameter estimates of the three models. 96

xviii



5.3 Table of the root mean square error of the parameter estimates of the three

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Mean of the parameter estimates of the two, three and four dimensional mod-

els where, 2Dim=two dimensional model, 3Dim=three dimensional model and

4Dim=four dimensional model. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Standard deviation of the parameter estimates of the two and three and four

dimensional models where, 2Dim=two dimensional model, 3Dim=three dimen-

sional model and 4Dim=four dimensional model. . . . . . . . . . . . . . . . . 110

5.6 Root mean square error of the parameter estimates of the two and three and

four dimensional models where, 2Dim=two dimensional model, 3Dim=three

dimensional model and 4Dim=four dimensional model. . . . . . . . . . . . . 110

5.7 Table of comparison of optimisations and models on the two, three and four

dimensional simulated final size epidemic data. . . . . . . . . . . . . . . . . . 115

6.1 Table of the expected number of i infected in household of the given sizes . . 118

6.2 Table of mean and standard deviation of the Pearson chi-square of fit statistic

of the models on two dimensional final size epidemic data . . . . . . . . . . . 127

6.3 Table of the proportion of the simulations rejected from the two dimensional

final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points from the two dimensional final size epidemic data. . . . . . . . . . . . . 128

6.5 Summary of the Kolmogorov-Smirnov test for the upper 5% points for the three

dimensional final size epidemic data when ε = 0.1. . . . . . . . . . . . . . . . 131

6.6 Summary of the Kolmogorov-Smirnov test for the upper 5% points for the three

dimensional final size epidemic data when ε = 0.3. . . . . . . . . . . . . . . . 132

6.7 Table of the mean and variance of the Pearson chi-square goodness of fit statis-

tic on the four dimensional final size epidemic data . . . . . . . . . . . . . . . 132

6.8 Table of the proportion of the simulations rejected from the Pearson chi-square

test for the three dimensional final size epidemic data. . . . . . . . . . . . . . 133

xix



6.9 Table of misclassification probabilities 1 to 6. . . . . . . . . . . . . . . . . . . 136

6.10 Summary of the Kolmogorov-Smirnov goodness of fit test with the upper 5%

points for the four dimensional final size epidemic data when εFN = 0, εFP = 0.2.138

6.11 Summary of the Kolmogorov-Smirnov test goodness of fit tests with the up-

per 5% points for the four dimensional final size epidemic data when εFN =

0.2, εFP = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.12 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points for the four dimensional final size epidemic data when εFN =

0.01, εFP = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.13 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points for the four dimensional final size epidemic data when εFN =

0.02, εFP = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.14 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points for the four dimensional final size epidemic data when εFN = 0.2, εFP =

0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.15 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points for the four dimensional final size epidemic data when εFN = 0.3, εFP =

0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.16 Table of mean and variance of the Pearson chi-square goodness of fit statistics

on the four dimensional final size epidemic data . . . . . . . . . . . . . . . . . 149

6.17 Table of the proportion of the simulations rejected from the Pearson chi-square

goodness of fit test on the four dimensional final size epidemic data. . . . . . 149

6.18 Table of the parameter estimates of the models from [1] Final size data . . . . 157

6.19 Influenza B(H1N1) 1975-1976 final size data. . . . . . . . . . . . . . . . . . . 158

6.20 Influenza A(H1N1)1978-1979 final size data. . . . . . . . . . . . . . . . . . . . 158

6.21 Estimates from the 1975-1976 Seattle B(H1N1) influenza epidemic . . . . . . 158

6.22 Estimates from the 1975-1976 Seattle B(H1N1) influenza epidemic . . . . . . 159

xx



6.23 Parameter estimates and Pearson chi-square goodness of fit statistics with

Gamma(1, 4.1) infectious period distribution from the 1975-1976 B(H1N1) in-

fluenza epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.24 Parameter estimates and Pearson chi-square and likelihood ratio chi-squared

goodness of fit statistics with Gamma(2, 4.1/2) infectious period distribution

from the 1975− 1976 B(H1N1) influenza epidemic. . . . . . . . . . . . . . . . 160

6.25 Parameter estimates and Pearson chi-square goodness of fit statistics with

Gamma(5, 4.1/5) infectious period distribution from 1975-1976 B(H1N1) in-

fluenza epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.26 Parameter estimates and Pearson chi-square goodness of fit statistics with

Gamma(1, 4.1) infectious period distribution from 1978-1979 A(H1N1) influenza

epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.27 Parameter estimates and Pearson chi-square goodness of fit statistics with

Gamma(2, 4.1/2) infectious period distribution from 1978-1979 A(H1N1) in-

fluenza epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.28 Parameter estimates and Pearson chi-square goodness of fit statistics with

Gamma(5, 4.1/5) infectious period distribution from 1978-1979 A(H1N1) in-

fluenza epidemic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 Table of mean and variance of the chi-square difference tests on the two dimen-

sional final size epidemic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Proportion of the simulations rejected from the chi-square difference test at 5%

significance from the two dimensional epidemic data . . . . . . . . . . . . . . . 169

7.3 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points from the two dimensional final size epidemic data. . . . . . . . . . . . . 170

7.4 Table of summary of the Kolmogorov-Smirnov goodness of fit tests with the

upper 5% points from the three dimensional final size epidemic data when ε = 0.1.172

7.5 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points from the three dimensional final size epidemic data whenε = 0.3. . . . 174

xxi



7.6 Proportion of the simulations rejected rom the chi-square difference test at 5%

significance from the three dimensional final size epidemic data. . . . . . . . . 174

7.7 The mean and variance of the chi-square difference statistic on the three di-

mensional final size epidemic data with misclassification probabilities, ε =

0.0, 0.1, 0.3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%

points from the four dimensional final size epidemic data when εFN = 0, εFP =

0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.9 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points from the four dimensional final size epidemic data when εFN =

0.2, εFP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.10 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points from the four dimensional final size epidemic data when εFN =

0.01, εFP = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.11 Summary from the Kolmogorov-Smirnov test for the upper 5% points from the

four dimensional final size epidemic data when εFN = 0.02, εFP = 0.01 . . . . 186

7.12 Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points from the four dimensional final size epidemic data when εFN =

0.2, εFP = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.13 Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper

5% points from the four dimensional final size epidemic data when εFN =

0.3, εFP = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.14 The mean and variance of chi-square difference statistic on the four dimensional

final size epidemic data simulated with misclasification probabilities in table 6.9.190

7.15 Table of chi-square difference statistic for the three models and their corre-

sponding P-values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.16 Table of chi-square difference statistic and their corresponding P-values for the

three models from the Seattle 1975 − 1976 B(H1N1) Influenza epidemic with

TI = Gamma(a, b) infectious period distribution. . . . . . . . . . . . . . . . . 195

xxii



7.17 Table of chi-square difference statistic and their corresponding P-values for the

three models from the Seattle 1978 − 1979 A(H1N1) Influenza epidemic with

TI = Gamma(a, b) infectious period distribution. . . . . . . . . . . . . . . . . 195

8.1 Table of mean, standard deviation and root mean square error of the esti-

mates when the epidemic data is simulated with exp(4.1) and estimated with

Gamma(2, 4.1/2) infectious period distributions. . . . . . . . . . . . . . . . . 199

8.2 Table of mean, standard deviation and root mean square error of the estimates

when the epidemic data is simulated with Gamma(2, 4.1/2) and estimated with

exp(4.1) infectious period distributions. . . . . . . . . . . . . . . . . . . . . . 201

8.3 Table of mean of the parameter estimates when the epidemic is simulated with

theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious period dis-

tribution and estimated with Gamma(2, 4.1/2) infectious period distribution. 203

8.4 Table of standard deviation of the parameter estimates when the epidemic is

simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) in-

fectious period distribution, estimated with Gamma(2, 4.1/2) infectious period

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.5 Table of the root mean square error of the parameter estimates when the

epidemic is simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and

exp(4.1) infectious period distribution, estimated with Gamma(2, 4.1/2) infec-

tious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.6 Table of mean of the parameter estimates when the epidemic is simulated with

theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious

period distribution, estimated with exp(4.1) infectious period distribution. . 206

8.7 Table of standard deviation of the parameter estimates when the epidemic is

simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2)

infectious period distribution, estimated with exp(4.1) infectious period distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xxiii



8.8 Table of root mean square error of the parameter estimates when the epi-

demic is simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and

Gamma(2, 4.1/2) infectious period distribution, estimated with exp(4.1) in-

fectious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.9 Mean of the parameter estimates with Gamma(2, 4.1/2) infectious period dis-

tribution when the epidemic data is simulated with exp(4.1) infectious period

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.10 Standard deviation of the parameter estimates with Gamma(2, 4.1/2) infectious

period distribution when the epidemic data is simulated with exp(4.1) infectious

period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.11 Root mean square error of the parameter estimates with Gamma(2, 4.1/2) in-

fectious period distribution when the epidemic data is simulated with exp(4.1)

infectious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.12 Mean of the parameter estimates with exp(4.1) infectious period distribution

when the epidemic data is with simulated with Gamma(2, 4.1/2) infectious

period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.13 Standard deviation of the parameter estimates with exp(4.1) infectious period

distribution when the epidemic data is simulated with Gamma(2, 4.1/2) infec-

tious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.14 Root mean square error of the parameter estimates with exp(4.1) infectious

period distribution when the epidemic data is simulated with Gamma(2, 4.1/2)

infectious period distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.15 Table of mean of the parameter estimates when the epidemic is simulated with

exp(4.1) and estimated and Gamma(2, 4.1/2) infectious period distributions. 220

8.16 Table of the standard deviation of the parameter estimates when the epidemic is

simulated with exp(4.1) and estimated and Gamma(2, 4.1/2) infectious period

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

xxiv



8.17 Table of the root mean square error of the parameter estimates when the epi-

demic is simulated with exp(4.1) and estimated and Gamma(2, 4.1/2) infectious

period distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.18 Table of mean of the parameter estimates when the epidemic is simulated with

Gamma(2, 4.1/2) and estimated and exp(4.1) infectious period distributions. 224

8.19 Table of the standard deviation of the parameter estimates when the epidemic is

simulated with Gamma(2, 4.1/2) and estimated and exp(4.1) infectious period

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.20 Table of the root mean square error of the parameter estimates when the epi-

demic is simulated with Gamma(2, 4.1/2) and estimated and exp(4.1) infectious

period distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xxv



Chapter 1

Introduction.

1.1 Overview.

This work is concerned with the study of stochastic models of infectious diseases in a closed

population partitioned into small groups. These may represent people living together in the

same dwellings and we will call them households. Each household is made up of susceptible,

infective and removed individuals. A susceptible individual is one who can be infected with

the disease, an infective is one who has the disease and a removed individual is one who has

been removed (because it has recovered and is immune from further re-infection of the disease

under discussion or isolated or has died).

Stochastic models are the natural tools for studying infectious diseases, as they can in-

corporate randomness in the transmission pattern of infectious diseases, especially in small

populations. Their usage in modelling infectious diseases has a long history, which is outlined

briefly in section 1.4.

There are many of these models available with applications to transmission of infectious

disease in human and animals. Among them is the deterministic SIR epidemic model of [44],

where the acronym SIR stands for susceptibles, infectives and removed individuals respec-

tively.

The deterministic SIR epidemic model of [44] assumes homogeneous mixing between in-

dividuals in a constant population (no birth/death or migration/immigration) [27, 30]. An
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individual contacted is immediately infectious for a period TI referred to as the infectious

period, after which it recovers and becomes immune or dies from the infection. The SIR epi-

demic model with exponentially distributed infectious period was first studied by [20]. Various

extensions and generalisations have been proposed by other research workers. One of which,

that of [9], forms the basis of this research.

Discussions of the general stochastic epidemic model, its theoretical properties and its

extension by [9] is provided in sections 1.6 and 2.1 respectively.

Most infectious disease data are subject to error during their collection. This may be

caused by incorrect classification of individuals’ health state and hence lead to unreliable

estimates of the parameters and inadequate fit of the model to data. It then becomes necessary

to adjust our inferences to cope with this circumstance by providing suitable methods that

take account of these errors and still give precise estimates of the parameters and hence a

more reliable model fit that mimics our data.

Our focus in this work is fitting data from epidemics of infectious diseases to the stochastic

SIR household epidemic model taking into consideration cases when the epidemic data is

subject to classification error.

We will be estimating the model parameters using the likelihood approach and maximum

likelihood inference in [1]. This likelihood function will be referred to as the approximate

likelihood in our model, as the assumption on which it is based is not consistent with that

of [9]. The precision of the maximum likelihood estimators is assessed from their mean,

standard deviation and root mean square error. Plots of the root mean square error of the

parameter estimates for a range of percentage misclassification errors are studied to give

insights into the behaviours and properties of the model.

We will evaluate the performance of two, three and four dimensional models for small and

large percentage error (misclassification probabilities) in the permissible region 0 ≤ ε < 0.5

and then assess the fitted models to the final size epidemic data using goodness of fit statistics,

by comparing the observed and the expected number infected for discrepancies or otherwise.

In order to achieve this, we have first developed a theoretical framework leading to mis-

classification error in the household epidemic data for the two cases in which it can occur
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namely,

(a) When the misclassification probabilities are the same. That is, the probability of

making false negative classification error is the same as that of making false positive classifi-

cation error. A false negative classification error occurs when a true positive is observed to

be negative, while a false positive occurs when a true negative is observed to be positive. The

theoretical basis leading to this kind of misclassification probability is discussed in section 5.3

of chapter 5.

(b) When the misclassification probabilities errors are different from each other. The

theoretical framework leading to these misclassification probabilities in the final size epidemic

data is developed and discussed in sections 5.2 and 5.5 of chapter 5.

From (a) and (b) we see that the models are nested as follows,

(i) If every infective individual is correctly observed as infective and every susceptible is

observed correctly as susceptible then the probability of making these classification errors is

simply zero. When this happens there will be no error (noise) in the household epidemic data

and the likelihood function will only be a function of two parameters, the local infection rate

and the probability of avoiding infection from outside the household. This is further discussed

and explored in section 4.2 of chapter 4.

(ii) If infectives are wrongly classified as susceptible and susceptibles wrongly classified as

infectives, such that the probability of making these classification errors are the same; then

case (a) is realised.

(iii) If infectives are wrongly classified as susceptibles and susceptibles as infectives with

different probabilities of making these classification errors; then case (b) is realised.

Using simulation studies and the appropriate numerical optimization schemes, we explored

the parameter estimates of these models and examined their precision by computing their

mean, standard deviation, mean square error and root mean square error. These can be

found in chapters 4 and 5 respectively.

In chapters 6 and 7, we employed goodness of fit statistics to test for fitness of the model

to the final size epidemic data also used them to analyse the [1] and [28] epidemic data.

In chapter 8, we studied the effects of misspecification of the infectious period distribution
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on the estimates of the stochastic SIR household epidemic model in the face of no misclassi-

fication and misclassification of the epidemic data.

1.2 Motivation of the study.

Deaths from microorganism-induced epidemics are often in the range of thousands of people

and therefore a threat to the continuous existence of humanity [3]. Sometimes, this large num-

ber of deaths may be attributable to inadequate treatment regimes, intervention strategies,

low level of literacy and poverty especially in the developing world, to stop the epidemic from

spreading when it is started. For example, Plague, otherwise called black death, is known to

have been responsible for a widespread pandemic with high mortality during the fourteenth

century [3].

Europe suffered an estimated 100 million deaths from the so called black death alone [17].

The Aztecs lost half of their population to a smallpox epidemic in 1520 leading to the downfall

of its empire, while Russia suffered from an epidemic of typhus between 1918 and 1921, with

a death rate of about 25% of its population [17]. The 1919 world pandemic of influenza killed

over 20 million people in 12 months alone [17].

Cholera is an acute infection that spreads rapidly where living conditions are crowded,

water sources are unprotected and there is lack of safe disposal of faeces [3]. These are

conditions commonly faced by people living in poor countries of the world and also in refugee

camps. For example, in a refugee camp in the Democratic Republic of Congo, an estimated

58, 000− 80, 000 cases were recorded within one month in 1994 with 23, 800 deaths [3].

In recent times, the epidemics of HIV/AIDS have been the focus of the World Health

Organisation to bring the transmission of the disease in countries with high levels of preva-

lence under control, especially the developing countries where public heath care systems are

inadequate to cope with large numbers of infections of the disease. For example UNAIDS

and World Bank reports indicate that the HIV/ AIDS epidemic was responsible for 8.6% of

death from infectious diseases in the developing world and that in the year 2020 it will be

responsible for 37.1% of such deaths among adults between the ages of 15 and 59 years [51].
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Just as the world is still grappling with the epidemic of HIV/AIDS, an Ebola epidemic

emerged, ravaging the West African subregion. Countries like Guinea, Sierra Leone and

Liberia were most affected with high numbers of cases suspected, probable and confirmed,

including deaths. For example, according to the World Health Organisation situation report

of 28th April 2016 on Ebola virus diseases in the three countries, 29, 616 suspected, probable

and confirmed cases were reported, with 15, 227 laboratory confirmed cases and 11, 310 deaths,

while in other affected countries, 36 suspected, probable and confirmed cases were reported

with 34 laboratory confirmed case and 15 deaths, as at 29th March 2016, when the public

heath emergency of international concern related to the disease in West Africa was lifted [57].

Continuing public heath awareness campaigns by various governments with support from

the World Health Organisation, improvement in the public heath facilities and services and

improvement in the living standard have led to reduction in the spread of some of these

diseases from areas where they were once known to be endemic, especially in the developing

countries where these efforts are needed to counter the high level of superstition owing to the

low level of literacy and high level of poverty, which are contributory factors for endemicity

of diseases [3].

However, the situation in the African continent is an example of the above scenarios. For

example tuberclosis, cholera, smallpox, and other parasitic infections like malaria, schisto-

somiasis, filariasis, hookworm and trachoma are still endemic in some of these areas of the

world [3]. In some of these areas, people are subjected to multiple infections owing to en-

demicity of two or more infections [3]. This could be in tens of millions, such as leprosy or

onchocerciasis, making their total eradication unrealisable at present.

From this discussion, we see that some of these diseases still have high prevalence rate

in some areas of the world and so pose formidable challenges to public health authorities.

Improving our understanding of their transmission patterns in order to design appropriate

intervention therapies that can lead to reduction in their rate of spread in communities where

they are known to be endemic is necessary.
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1.3 Introduction to the thesis.

Chapter 1 contains an overview and so summarises the work done, history of infectious dis-

eases, their spread and impacts on people living in different parts of the world. We relate

our discussions from the past to the present on epidemiology of infectious diseases with fo-

cus on the SIR household epidemic model and also arguing the need for carrying out this

work. The chapter also contains literature on branching processes, final size probabilities,

misclassification of household epidemic data and inference on parameters.

In chapter 2, we examined the SIR household epidemic model, its household structure,

branching process for the SIR household epidemic, the community based SIR household epi-

demic with temporary and permanent immunity of [1], the threshold parameter and its prop-

erties in the face of varying local and global infection rates using simulation studies. We also

discussed the mean final size of household epidemic, global epidemic and maximum likelihood

estimation of the two dimensional model.

In chapter 3, we studied the properties of some functions of the stochastic SIR household

epidemic in the face of increasing and decreasing local infection rate, for example the mean

final size of household epidemic, threshold parameter and proportion of the initial susceptibles

infected.

In chapter 4, we discussed the procedures of fitting the SIR household epidemic model

to two dimensional household epidemic data (data from two dimensional model), using the

assumption of independence of epidemic in the households and maximum likelihood algorithm

in [1]. We compared published results in [1, 9] with those from our program and confirmed

them to be the same. Matlab programs to implement the procedures of estimation of the

model parameters are discussed with examples using simulation studies, for some choices of

theoretical parameters, [1] household structure and minimum epidemic threshold. We also

examined the influence of inappropriate choices of the minimum epidemic threshold on the

number infected in the households and the precision of the estimates of the model.

In chapter 5, we developed the theoretical foundation leading to four dimensional final size

epidemic data and discussed the method of estimation of its parameters. Using simulation
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studies, we explored the estimates of the parameters of the three models along the vertical and

horizontal axes of the misclassification probabilities region [0, 0.5) and also along the diagonals

(slicing through the diagonals of the misclassification probabilities region). We then computed

and plotted the root mean square error of the estimates for the three models and presented

tables showing the performance of each model and regions of precision of their estimates for

given misclassification probabilities.

We also discussed the three dimensional model, which is a particular case of the four

dimensional model. Using simulation studies, we compared their estimates with those of the

two and four dimensional models and explored their root mean square error for a range of

ε ∈ [0, 0.1). Table of precision of the estimates of the three models is presented.

In chapter 6, we discussed the procedures of fitting the models to the final size epidemic

data using the Pearson Chi-square goodness of fit test and the Kolmogorov-Smirnov goodness

of fit test. Using simulation studies and estimation procedures in chapters 5, we fitted the

three models to the final size epidemic data, presented their density histograms, plotted the

empirical cumulative distribution functions and the cumulative of the hypothesized distri-

bution functions. We also presented tables of mean and variance of the Pearson chi-square

test.

We further explored the estimates of three models and their Pearson Chi-square goodness

of fit statistics of the model on the four dimensional final size epidemic data, along the

diagonals, vertical and horizontal axes of the misclassification probabilities region, [0, 0.5)

and plotted the mean and variance of the Pearson Chi-square goodness of fit statistics and

the proportion of the simulations rejected from the Pearson Chi-square goodness of fit test at

the upper 5% point.

In chapter 7, we employed the Chi-square difference and Kolmogorov goodness of fit tests

to examine the model that best fits the final size epidemic data, using simulation studies.

We achieved this by computing the Pearson Chi-square goodness of fit statistics and those

of their difference statistics (Chi-square difference statistic) for the three models. We then

plotted the density histograms of the Chi-square difference statistic with those of their theoret-

ical distributions and the empirical cumulative distributions function with the corresponding
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cumulative of the hypothesized distribution.

Also using chi-square difference test, we analysed [1] influenza data those of [28] and

identified which model fits significantly better to the epidemic data.

In chapter 8, using simulation studies with Gamma(k, 4.1/k), k = 1, 2, 5 infectious period

distribution, we examined the effects of misspecification on the estimate of the parameters in

the presence of both no misclassification and misclassification of the final size epidemic data.

We estimate the epidemic data with a different infectious period distribution from that used

in their simualtions. The estimates of the parameters are plotted and tables of mean standard

deviation and root mean square error are presented.

In chapter 9, we summarised and discussed our results and their limitations and also

provided suggestions for possible extension.

1.4 Background of study.

1.4.1 Empirical Approach to the study of Infectious Disease.

The study of human diseases can be traced to the ancient Greeks e.g. the Epidemics of Hip-

pocrates between 459−377 B.C [17]. John Graunt 1620−1674 and William Petty 1623−1687

made useful contributions through their weekly publication of the London Bills of mortal-

ity [17,30]. These were weekly records of London Parishes listing causes and number of death

from infectious diseases in Parishes [30], without using any mathematical sophistication or

hypothesis on the spread of infections.

Their works set the pace for the development of medical statistics [30]. Fracastorius in

1546 postulated a living principle of contagion, on how disease spreads from person to person,

while Daniel Bernoulli in 1760 published his work on variolation of smallpox, in which he

showed that inoculation with live virus from patients with a mild case of smallpox confers

immunity against the disease [17,30].

It was not until the work of Pasteur 1822−1895 which established the link between germs

and diseases, in which it was found that boiling liquid destroy germs and the work of Koch

between 1843− 1910 who discovered how each type of germ causes a specific disease [2] that
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substantial progress began to be recorded in bacteriology science [17]. These results led to

corresponding progress in mathematical theories of infectious diseases against earlier empirical

descriptions [17].

Definition 1. The infectious Period of an infected individual is the period during which an

infected individual can transmit the disease to susceptible individuals through contacts. It is

denoted by TI ( [9]).

1.4.2 Work on stochastic epidemic modelling.

The first pioneering work on Mathematical epidemic modelling was proposed by [44] as a

continuous time infection model describing spread of an SIR infectious disease in a population

of homogeneous mixing individuals. The chance of new infection in short interval of time

is assumed to be proportional to both the number of susceptibles and infectives and the

length of the interval [2]. An individual is infectious from the moment he receives infectious

particles until the moment he dies, recovers or is isolated [17]. Further mathematical theory of

epidemics was developed by [38]. However, [34] proposed a probabilistic model of transmission

of infectious diseases along the lines of [38, 44] models, in which they assumed that infective

and incubation periods are constants. In this model, starting with a single infective in a closed

group, new cases will occur in a series of generations. The cases occurring have a binomial

distribution, depending on the number of susceptibles and infectives present in the previous

generation.

This leads to a chain of binomial distributions [34] in which the distribution of the total

number of infectives per household is calculated. In 1928 Lowell J. Reed and Wade Hampton

Frost were already discussing and teaching this idea at the Johns Hopkins University in the

United States [17,30].

Also [20] proposed the stochastic version of [38] deterministic epidemic model, referred

to as the general stochastic epidemic, which he solved by constructing partial differential

equations for the probability generating function of the number of susceptible and infective

individuals at any instant [32].

However meaningful explicit solutions could not found because of the non-linear nature of
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the transition probabilities, [56] showed that for general case of [18,20], the probability distri-

bution of the ultimate number of infected individuals in [18] may be obtained from solution of

set of singly recurrent relations and for large population size, an expression equivalent to [38]

threshold theorem is derived. While [33], proposed a Laplace inversion approach which only

gives solution for small population sizes (eg. N = 1, 2, 3) and the method becomes cumber-

some to handle when the population size becomes large, [17,54] proposed various methods to

address the non-linear partial differential equations [26].

In 1968 Becker considered some departure from homogeneous mixing assumptions [17],

while [21] provided classical results and other features of the deterministic and stochastic

models for recurrent epidemics, like the extinction phenomenon which is only peculiar to the

stochastic model. Less recursive solution compared to those of [33,54] for the general stochastic

epidemic was proposed by [26]. Also [5], provided results for convergence of the general

stochastic epidemic to the birth and death process, by constructing a sequence of general

stochastic epidemics indexed by the initial number of susceptibles from a time homogeneous

birth and death process.

Using a two-type version of a model by [21], while [41] studied the effects of type hetero-

geneities on the long time behaviour of the models for endemic diseases.

A unified approach to the distribution of the total size and total area under the trajectory

of infection (total person time units of infection during the course of the epidemic) was pro-

posed by [6], in which the author showed that if the two assumptions of the general stochastic

epidemic which are, (i) Infectious period is exponentially distributed (ii) Population mixes

homogeneously, are relaxed then the spread of the epidemic might not follow the SIR epi-

demic and therefore presented a unified approach to overcome these problems. Results on the

convergence of the general stochastic epidemic by [31] were obtained by [7], using coupling

arguments and with generalisation to multipopulation epidemics.

Many results on general stochastic epidemic models have been presented by different

research workers but the one mostly related to our work is those of [23,55]. They considered a

discrete time epidemic among a population partitioned into households [9,11]. The spread of

infection within each household is independent and follows a specified distribution [11], such
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that infected individuals within the households infect new susceptible households, creating

branching process phenomena [9].

An extension of the general stochastic epidemic is given by [9] by assuming a closed and

finite population structured into households, each made of susceptibles, infectives and removed

individuals, with homogeneous mixing between susceptibles and infectives, independently and

at random at two levels, (locally and globally) within the households and individuals from

different households, at the points of a homogeneous Poisson processes having rates, λL and
λG
N respectively [9], where N is the total population size, λG is the total rate that a given

infective makes global contacts [6, 9].

In this model any susceptible contacted will immediately become infectious (since we

assume that there is no latency for the disease) for period TI , referred to as the infectious

period after which it is removed (died or isolated or immune) at the end of the infectious

period. The infectious period of each infective is assumed to be independent and identically

distributed according to the random variable TI which is arbitrary but must be specified

[6, 9]. The Poisson processes describing contacts and the infectious period are assumed to be

mutually independent.

1.5 Misclassification of household epidemic data.

Measurement error occurs when in an analysis the real variable is unavailable and replaced

by its surrogate. Such analyses are often referred to as naive [35]. For example in a regression

analysis with explanatory variable X and response Y either of the variables can be subject to

mismeasurement. Suppose Y is subject to mismeasurement so that Y ∗ is observed in place of

Y, where Y ∗ is obtained by adding noise to Y, independent of the true explanatory variable X,

where the noise is assumed to be normally distributed with mean 0 and variance 1. Then [35]

showed that adding noise to the response variable Y does not shift the estimated regression

slope of the line, but rather increases the uncertainty (standard error) about the relationship

between the variables.

On the other hand if it is the explanatory variable X that is subject to mismeasurement,

11



then adding noise to the explanatory variable imparts a bias.

Mismeasurement of the explanatory variable is often associated with a flattening or at-

tenuation in the strength of the association between the explanatory and response variables.

This also carries over to categorical variables as in [35].

On categorical data, mismeasurement occurs when the actual and recorded categories for

subjects differ. In that case, the surrogate variable cannot be expressed as sum of the true

variable plus a noise variable, rather they are expressed in terms of classification probabilities

often referred to as misclassification probabilities.

For example, let X be a random variable representing individual health status and X = 1

is the event that individual is observed correctly as having a particular health status with a

corresponding probability P (X = 1) = 1− ε.

Suppose individuals are not observed correctly, instead a surrogate X∗ is observed in

place of the true value X. Then the misclassification error model of X∗ given the true value

of X is written as, Px∗ |x = P (X∗ = x∗ |X = x). Here, P1 | 1 = P (X∗ = 1 |X = 1) and

P0 | 0 = P (X∗ = 0 |X = 0) are the sensitivity and specificity.

The sensitivity and specificity parameters are used to measure the magnitude of the mis-

classification [35] and defined respectively as the probability of correctly classifying an infective

as one with the disease while specificity is the probability of correctly classifying a susceptible

as one without the disease.

The relation between the surrogates and the exact variables can be seen in terms of the

misclassification probabilities, P1 | 0 = (1 − P0 | 0) and P0 | 1 = (1 − P1 | 1). Here P1 | 0 is the

false positive misclassification probability while P0 | 1 is the false negative misclassification

probabilities.

Misclassification of binary variable is represented by a 2× 2 matrix which is a function of

the misclassification probabilities. We denote it by P (εFN , εFP ) and has the form,

P (εFN , εFP ) =

P0 | 0 P0 | 1

P1 | 0 P1 | 1


where P0|1 = εFN and P1|0 = εFP . Hence P0|0 = 1− εFN and P1|1 = 1− εFP are the true
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negative and positive misclassification probabilities. If the misclassification probabilities are

the same, then the epidemic model is three dimensional with the corresponding

misclassification probabilities,

P (ε) =

1− ε ε

ε 1− ε


If the probability of classifying an infective as a susceptive is different from the probability

of classifying a susceptible as an infective then the model will be referred to as four dimensional

having matrix of misclassification probabilities,

P (ε) =

1− εFN εFN

εFP 1− εFP


Here four refers to number of parameters to be estimated which are the two different

misclassification probabilities, the local infection rate and the probability of avoiding infection

from the population. These concepts are further discussed in section 1.10

1.5.1 Epidemic modelling in the presence of misclassification.

Parameter estimation in the presence of noise is often a problem in stochastic model fitting

to epidemic data. Not much work has been done in this area and so limited literature is

currently available. However, ignoring it will lead to biased estimates of the parameters and

hence model that does not fit.

Therefore such models are unreliable for use in projections. Hence there is the need to take

cognisance of these errors in our inferences by using appropriate models that adjust for the

errors in the data and still give precise estimates. This is what this work intends to achieve.

Errors in the data may be due to number of factors, which could include use of defec-

tive measurement devices or inaccurate diagnostic procedures (for disease status), leading to

wrong classification of individuals as positive when not or wrongly classified as negative when

positive.
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1.5.2 Literature on modelling misclassified finite count data.

Many methods have been proposed in the biomedical literature by research workers, especially

on regression modelling, when both the exposure and response variables [35] are categorical

with the classification error expressed in terms of classification probabilities.

Notable among them is the work of [40] who proposed correction methods for misclassified

finite count data in their dental caries research studies. In their work in [40], they assumed Y

to be the true finite count with range {0, 1, . . . ,K} and binary scores {Z1, Z2, . . . , ZK} which

make up the count, i.e. Y =
∑K

k=1 Zk. They assumed the possible observed corrupted counts

to be Y ∗ and Z∗ so that Y ∗ =
∑K

k=1 Z
∗
k , also for (r, s = 0, 1, . . . ,K), let πr s = P (Y ∗ =

r |Y = s) such that
∑K

r=0 πr s = 1, be the misclassification probabilities represented by the

vector πs = (π0 s, π1 s, . . . , πK s)
T .

Assuming that nr s is the number of individuals with Y = s and Y ∗ = r, and the mis-

classification process is non-differential [40], i.e. that the misclassification probabilities are

constant over individuals then we get a (K + 1) × (K + 1) classification table. Also assum-

ing independence of the subjects, the sth column, ns of the misclassification table with nr s

follows a multinomial distribution, ns ∼ Multinomial(ns, πs) with the Multinomial estimates

of π̂r s = πr s/
∑K

r=0 nr s and variance var = πr s(1− πr s)/
∑K

r=0 nr s [35].

The process is such that in order to obtain the count Y, it is required that we score

the binary indicators, Zk, k = 1, . . . ,K which are the gold standard (true values), and Z∗k

(examiner) are available in a validation study. The number of individuals with r examiners

and s gold standards, Z∗k = r and Zk = s, were defined as nk,r,s. The sensitivity αk = P (Z∗k =

1 |Zk = 1) and specificity of the binary indicators βk = P (Z∗K = 0 |Zk = 0) were then obtained

from the corresponding 2× 2 classification table with entries nk r s for k = 1, 2, . . . ,K as,

αk =
nk,1,1

nk,0,1 + nk,1,1
,

βk =
nk,0,0

nk,0,0 + nk,1,0
.

By assuming independence for the binary indicators with scoring behaviour independent

of k such that αk = αZ and βk = βZ for all {k = 1, 2, . . . ,K} and the subject (non-differential
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misclassification), [40] proposed a double binomial approach (DB) which expresses the distri-

bution of (examiner) r given that the true is s (gold standard), as the sum of two independent

binomial distributions Bin(s, αZ) and Bin(K − s, 1− βZ), where the maximum likelihood es-

timates of αZ and βZ are obtained from the corresponding 2 × 2 classification tables given

as,

α̂Z =

∑K
k=1 nk,1,1∑K

k=1{nk,0,1 + nk,1,1}
,

β̂Z =

∑K
k=1 nk,0,0∑K

k=1{nk,0,0 + nk,1,0}
.

The probabilities for the misclassification table for Y are derived from the misclassification

table for Zk, k = 1, 2 . . . ,K as,

πr s =

M1∑
m=M0

(
s

m

)
αmZ (1− αZ)(s−m)

(
K − s
r −m

)
(1− βZ)(r−m)β

(K−s−r+m)
Z . (1.5.1)

Where M0 = max(r − (K − s), 0), M1 = min(r, s) [40].

The first binomial distribution expresses the probability that the examiner scores m teeth

in the caries research as decayed from s teeth that the gold standard was scored decayed [40],

while the second binomial distribution expresses the probability that the examiner scores

(r −m) teeth as decayed from the (K − s) teeth that the gold standard scored not decayed.

As an alternative to α̂Z and β̂Z , [35] observed that one can estimate the sensitivity and

specificity directly from the Multinomial model, where πr s is given by equation (1.5.1). They

observed that such estimates are often close to the Multinomial estimates especially if the size

of the validation studies is large [35].

Since some of the assumptions of the multinomial model might not hold in practice, all

types of extension of the binomial models could be employed. Hence [35] proposed DB model
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extension,

P (Z∗1 , Z
∗
2 , . . . , Z

∗
K |Z1, Z2, . . . , Zk)

=

K∏
k=1

P (Z∗k |Zk),

where αZ = αZ(f(Z1 . . . , ZK)) and βZ = βZ(f(Z1, . . . , ZK)) and that in dental research

when f(Z1, . . . , ZK) =
∑K

k=1 Zk, sensitivity and specificity depends on the number of caries

in the mouth [35].

A method of evaluating the effect of misclassification on the estimation of a disease relative

risk from retrospective studies was proposed by [19]. They assumed a population classified

according to the presence or absence of each of two traits [19] and constructed a 2× 2 matrix

of their joint probabilities and that of their conditional probabilities of misclassification [19].

Then they found that relative risk can be calculated in terms of the entries in the matrix of

the misclassification probabilities, if estimates of the false positive and negative rates for the

method are available.

Using maximum likelihood estimation method, [43] examined the degree of estimation

error of household and community transmission parameters from influenza infection data due

to misclassification of infectives and susceptibles in a stochastic simulation model [43]. The

expected numbers of detected infectives at different levels of sensitivity and specificity were

simulated for the serological tests used. It was found that the maximum likelihood estimator

for the household transmission parameter is precise.

1.6 The stochastic SIR epidemic model.

In this section, we discussed the stochastic version of [38, 44] deterministic SIR epidemic

model. It is a continuous-time stochastic process defined on a closed and finite population

in which the population is partitioned into susceptibles, infectives and removed individuals

denoted by {S(t), I(t), R(t), }, for t ≥ 0. A susceptible individual is one that can be infected

with the disease under discussion, an infective is one that has the disease and can transfer it
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to the susceptibles through contacts, while a removed individual is one that has recovered and

is immune or has died from the disease. Such a person makes no contribution to the disease

transmission process.

The model assumes random mixing (homogeneous mixing) between individuals in the

population which occurs independently and at random at the points of a Poisson process

having rate λ/n [2], where n is the initial number of susceptibles.

The infectious periods of different infectives are independently and identically distributed

according to the random variable TI having arbitrary but specified distribution [2].

All the Poisson processes are assumed to be independent of each other and of the infectious

period of the disease. If a susceptible individual is contacted by an infective during the

infectious period then it will immediately become infected and infectious. The newly infected

individual will also continue the transmission process to other susceptibles in the population.

The epidemic ceases as soon as there are no more infectious individuals in the population.

The case with exponential distributed infectious period, which is referred to as the general

stochastic epidemic was proposed by [20].

However, the SIR epidemic can be made to have multiple types of individuals [12],

K = 1, 2, . . . , k with population of susceptible, infective and removed individuals of types

k as {Sk(t), Ik(t), Rk(t)} at time t ≥ 0. An individual of type k will have infectious period

distributed according to TI,k and also makes contact with an r susceptible at the points of

Poisson process having rate αr,k. The contact rates can then be stored in a K×K matrix A.

If K = 1, the population is made of one type of individual, then we recover the SIR single

type population epidemic discussed earlier.

1.7 Branching process.

Branching processes are stochastic processes used in analysing changes in population over

time, e.g. in approximating the size of epidemics in the early stages. Branching processes

were first proposed by Francis Galton and Reverend H. W. Watson in 1874 in their study of

extinction of family names [30].
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It is based on the assumption that each individual is associated with life-length, often

referred to as generation time or individual life-span [2], and at the end of the generation time

produces a random number of offspring independent of the rest of the population. Several of

these processes have been developed and used in approximating epidemics [22] . Among them

are the one-type and multi-type Galton-Watson branching processes which assume a fixed

length for the generation time and that at the end of the generation time produce random

numbers of offspring in line with the above definition [27]. The Bellman-Harris branching

process assumes that individuals have independent and arbitrary distributed generation time

and produce random numbers of offspring independently only at the end of the generation

time.

The Bienayme-Galton-Watson processes simply called BGW-processes, only takes account

of successive generations of offspring in a discrete formulation [47]. Crump-Mode-Jagers

Processes, simply referred to as CMJ-processes, are generalised age-dependent extensions

of the BGW-process. They were independently proposed by Crump, Mode and Jagers to

accommodate cases of individuals producing offspring at random points throughout their

lifetimes [47].

The CMJ processes assumes that individuals have independent and arbitrarily distributed

generation time. Each individual produces offspring according to a counting process through-

out their generation time. Different individuals follow the same counting process. The gener-

ation time and the counting process are independent.

A Crump-Mode-Jagers process is sometimes used to approximate epidemics in their early

stages because of the similarity of its assumptions with the stochastic SIR epidemic process.

For example the generation time in the CMJ process corresponds to the infectious period in

the epidemic process, the assumption of arbitrary distributed generation time also agrees with

that of the infectious period in an epidemic process. The way in which individuals produce

new offspring at random at points of counting process in the branching process corresponds

to homogeneous contacts at points of Poisson process in the epidemic process.

Finally, the assumption of independence of contact processes and the distribution of the

generation time in the branching process and infectious period in epidemic process agree.
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1.8 Convergence of the general stochastic epidemic.

Let {Yr(t), t ≥ 0}, r = 1, 2 . . . , be the number of infectives in the rth epidemic, and the

sequence {Y (t), t ≥ 0} be the number of individuals alive in the continuous time branching

process denoted Ea(λ, I). Here λ is the birth rate and I, individuals life span in the branching

process assumed independent but identically distributed and a is the number of initial ances-

tors. Then [2] in line with [5] showed that the sequence of the epidemic processes converges

to the associated branching process using the following definitions.

Let (Ω,F,P) be the probability space with individual life histories H(a−1),H(a−2), . . . , where

Hi is list containing the life span of the ith individuals together with the time points at which

this individuals gives birth [2], a is the number of initial infectives.

Also let {Ui, i ≥ 0} be a sequence of independent and identically distributed random

variables defined on the above probability space, each uniformly distributed on (0, 1) and

En,a(λ, TI), n ≥ 1, be a sequence of epidemic processes with a initial infectives, infection rate

of λ and infective period, TI . Now fix the number of susceptibles and label them as 1, 2, . . . , n.

We see that the initial ancestors in the branching process corresponds to the initial infectives

in the epidemic process.

Contact occurs in the epidemic process whenever a birth occurs [2] in the branching process

and the individual who is contacted at the ith contact has label, di = [nUi] + 1 [2]; where [x]

is the largest integer ≤ x. If the contacted individual is still susceptible then she will become

infected in the epidemic process, otherwise she and all of her descendants in the branching

process (often referred to as ghosts) are ignored in the epidemic process [2].

The death of non-ghost individuals in the branching process agrees with removal in the

epidemic process. Thus, the processes Yn and Y agree until time Tn of the first ghost.

The number of births in the branching process during a fixed time interval [0, t0] is finite

almost surely [10]. It is observed by [2] that any finite number of labels di will be distinct

with a probability tending to 1 as n→∞, that

P (Tn > t0) = 1, as n→∞.
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An important threshold theorem which determines the nature of an outbreak of the

stochastic SIR epidemic in large population is provided by [10] and also reported in [2].

We will state the theorem without proof as it is in [2]. The proof can be found in [10].

Theorem 1. Consider a sequence of epidemic processes En,a(λ, TI), n ≥ 1. Also denote by

Yn(t) the number of infectives at time t, t ≥ 0. Then for each fixed t0 Yn(t0)→ Y (t0) almost

surely, where {Y (t); t ≥ 0} is the process describing the number of individuals alive in the

branching process Ea(λ, I).

If λ` ≤ 1 then Y becomes extinct with probability 1. On the other hand , if λ` > 1 then Y

becomes extinct with probability qa, where q is the smallest root of the equation φ(λ(1−θ)) = θ,

or explodes with probability 1−qa, ` = E(TI) is the mean infectious period, while φ(λ(1−θ)) is

the moment generating function of the number of individuals infected whose smallest solution

is q.

In this theorem, λ` is the mean number of individuals infected.

This theorem shows that the threshold parameter R0 = λ` determines the probability of

an epidemic being a minor or a major epidemic.

1.9 Final size household epidemic data.

Final size data are observational data on the size of outbreaks of epidemic in households. It

is a collection of epidemic data classified by size of households and corresponding number

infected. It is often represented in matrix form with rows representing household types and

column entries the infection sizes for the corresponding household type as in tables 1.1 and

1.2.

The entries in table 1.1 are described as the number of households of the given type with

the given infection size. For example, all the column entries corresponding to households of

sizes one can be read as, number of households of size one with zero infectives, and number

of households of size one with one infection respectively.

Also the entries corresponding to household of size two in the second row of the matrix

are read as, number of households with zero infectives, followed by number of households
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Number Infected in Household
Household Size 0 1 2 3 4 5

1 n1,0 n1,1 - - - -
2 n2,0 n2,1 n2,2 - - -
3 n3,0 n3,1 n3,2 n3,3 - -
4 n4,0 n4,1 n4,2 n4,3 n4,4 -
5 n5,0 n5,1 n5,2 n3,3 n5,4 n5,5

Table 1.1: Final size household epidemic data.

with one infective and finally number of households with two infectives, up to the maximum

household size.

An example of final size household epidemic data is that of [1] which was obtained in their

study of transmission of influenza A(H3N2) in Tecumseh, Michigan USA. It is presented in

table 1.2, with entries having the same meaning as that of table 1.1. For example n1,0 = 110,

is the households of size one with zero infectives and n1,1 = 23 is the households of size one

with one infective etc. We will analyse this dataset in section 4.4 of chapters 4, section 6.14

of 6 and section 7.13 of chapter 7 respectively.

Num. Inf. in Houshold.
Household size. 0 1 2 3 4 5

1 110 23 - - - -
2 149 27 13 - - -
3 72 23 6 7 - -
4 60 20 16 8 2 -
5 13 9 5 2 1 1

Table 1.2: Each coefficient represents number of households of a particular size with number
of infectives by the end of the epidemic.

1.10 Dimensionality of household epidemic data.

In this thesis, it is assumed that when individuals are correctly classified; then data from such

classification will be referred to as two dimensional final size epidemic data, the corresponding

dimensional model as two dimensional model while the associated numerical optimisation for
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the estimation of its parameters as two dimensional numerical optimisation. Here, two refers

to the number of parameters to be estimated from the model. Similarly the three dimensional

household epidemic data means three parameters are to be estimated from the model, where

the parameters to be estimated are the misclassification probability (where the false negative

misclassification probability and the false positive misclassification probability are assumed

to be the same), the local infection rate and the probability of avoiding infection from the

households.

Sometimes these misclassification probabilities may be different from each other. If that

occurs, the final size data is referred to as four dimensional final size epidemic data and the

associated numerical optimisation used in the estimation as the four dimensional numerical

optimisation. This means that four parameters are to be estimated from the final size data

and the associated model will be referred to as four dimensional model.

There may be need to fit the three models to the same final size data in order to compare

which of them is significantly better on the final size data, especially when misclassification er-

ror in the final size epidemic is known to have occured. We accomplished this using simulation

studies in chapters 5, 6 and 7 respectively.

1.11 The Gontcharoff polynomial.

The Gontcharoff polynomial was first proposed by Gontcharoff in 1937 but were not exten-

sively utilised by research workers until developments in stochastic modelling [9,16,39]. As it

becomes necessary to explore simpler mathematical methods for solutions to some epidemio-

logical problems, like finding expressions for final size distribution and the total size infection

as demonstrated by [9, 39].

The Gontcharoff polynomial attached to the sequence of real numbers, U = u0, u1, . . . , is

defined in [9, 39] as G0(x |U), G1(x |U), . . . , and obtained recursively as,

i∑
j=0

ui−jj

(i− j)!
Gj(x |U) =

xi

i!
,
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where for i = 1, 2, . . . the polynomial Gi(x |U) satisfies the integral representation.

Gi(x |U) =

∫ x

u0

∫ ξ0

u1

· · ·
∫ ξi−2

ui−1

dξ0dξ1 . . . dξi−1.

Also for 0 ≤ k ≤ j, the kth derivative of the Gontcharoff polynomial, Gki (x |U) is defined

by,

G
(k)
i (x |U) = Gi−k(x |EkU),

where the operator EkU generates the sequence, uk, uk+1, uk+2, . . . and Gki (x |U) = 0 if

k > i [9, 16].

This approach was employed by [39] to derive equations for the final size distribution and

the total size of infection. Further discussion can be found in section 2.8.
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Chapter 2

The stochastic SIR household

epidemic model.

In this chapter, we examined the properties of the SIR household epidemic model. These

include its household structure, contact processes, branching process approximation of the

epidemic, community based version of the SIR household epidemic model, the threshold pa-

rameter, the mean final size, global epidemic and maximum likelihood estimation of the

parameters of the model.

2.1 Introduction.

Early pioneering work on modelling of infectious diseases in populations structured into house-

holds, can be traced to the work of [52], which considered a continuous time deterministic

simple epidemic, without removal of infectives, the so called SI epidemic model, in a large

population. The work of [23, 55], which are relevant to our work, considered a discrete time

epidemic among a population of households in which the spread within households followed

independent and random but specified processes and at each time point infected individu-

als independently and at random infect a number of new susceptible households, creating a

branching process scenario of the epidemic process.
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2.2 Household structure.

The stochastic SIR household epidemic model of [6,9] is based on population of size N ∈ Z+,

partitioned into households sizes n ∈ Z+ with the proportion of households of size n denoted

by [9] as

αn =
Mn

M
, (2.2.1)

where Mn is the number of households of size n and M is the total number of households.

Here, N =
∑∞

n=1 nMn.

Definition 2. Contacts between susceptibles in the households and infectives from other house-

holds are referred to as global contacts, while contacts between susceptibles and infectives within

the households are called local contacts.

Let α̃n be the probability that a global contact is with an individual residing in a household

of size n [9, 11], then

α̃n = nMn/N.

2.3 Two level mixing epidemic model.

The stochastic SIR household epidemic model of [9] sometimes referred to as the two level

mixing model is well discussed in [9,11]. It is a generalisation of the stochastic SIR epidemic,

designed to study disease outbreaks in a population divided into households, identify number

of individuals infected, their distributions and also identify possible vaccination strategies for

their control.

The population is assumed to be closed and finite (without birth, or death), structured

into small groups or households. Each household is made of susceptibles, infectives and

removed individuals, with contacts between susceptible and infective individuals occurring at

two levels, within and between the households (locally and globally) independently and at

random, at points of homogeneous Poisson processes having rates, λL and λG
N respectively

as discussed in [9], where N is the total population of individuals in the households, λG
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is the total rate that a given infective makes global contacts and λL is the local contact

rate (contacts between individuals in the households) as in [9]. Any individual contacted

if susceptible will immediately become infectious, for period (as there is no latency for the

disease) TI , referred to as the infectious period after which the individual is removed (died

or quarantined or immune) at the end of the infectious period, as it no longer plays any part

in the epidemic. We assumed no disease latency, as the distribution of the final size of the

epidemic is invariant to general assumptions concerning the latency period [9]. The infectious

period of each infective is assumed to be independent and identically distributed according

to the random variable TI which is assumed to be arbitrary but must be specified in line

with [9]. The Poisson processes describing contacts and the infectious period are assumed to

be mutually independent [9, 11].

However, [14] proposed a general stochastic model with two levels mixing with household,

overlapping groups and great circle models as special cases, where in the household model,

mixing occur within the households and a much smaller lower rate within the population [14].

Here, an individual i ∈ N (where N is the population size) who is infectious is assumed to

make local contacts with an individual j ∈ N − {i} at the points of a homogeneous Poisson

process with rate λLi,j . Where λLi,j = λL, if i and j individuals are from the same household,

otherwise is 0 [14]. It also makes global contacts with individuals chosen uniformly from the

population at the point of a homogeneous Poisson process with rate, λG/N, where λG is the

individual to individual global contact rate [14].

In the overlapping case, the population is partitioned in several ways with uniform mixing

between individuals within the partition [14] and also global mixing with the population.

While in the case of the great circle model, the population is assumed to be equally spaced

around a circle [14] such that local infection occur between the nearest-neighbour.

Similarly, [50] proposed two levels stochastic SIR model with changing group of contacts

during the day in contrast to [9, 14], where each day is divided into morning and night with

length of the morning period at the start of each day, 0 < τ ≤ 1, and night period, 1− τ, [50].

Where, contacts made by individuals in the population are assumed to depend on the

time of the day, morning and night. That is, during the morning the whole population is
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mixing together and then individuals return to their homes (households) at night [50]. Thus,

infectious individuals make contact with individuals in the population during the morning and

at night can only infect their household members. Under this settings and using branching

process approximation for the epidemic, [50] discussed the epidemic at the initial stages and

the probability of a major epidemic outbreak.

Using Monte Carlo simulations, [15] studied the initial behaviour and the final outcome

of a SIR network model with two level mixing (local and global) under weak constraints on

the prescribed degree distribution and showed that the asymptotic results provide a good

approximation even for moderately small population size, N [15]. Here, contacts are with

individuals in the same network and those in the population [15], where the networks are

represented with unidirected random graphs representing the possible individuals he/she is

connected to in the network and can therefore infect if he/she is infectious.

2.4 Branching process for two level mixing epidemic model.

If the population is large and the number of initial infectives is small then during the early

stages of the epidemic the probability that global contact is with an individual residing in

a previously infected household is small [9]. Then [9] showed that the initial stage of the

epidemic can be approximated by a branching process in which at time t = 0, an initial

infective infects susceptible members of its own household and other households.

Those infected form the first generation of infectives. Individuals infected by the first gen-

eration of infectives also infect other susceptible members of their households and susceptible

individuals in other households. This process of creating new infections locally and globally

follows a branching process until the first contact with an infective or removed individual

(often referred to as a ghost).

During its infectious period an infective makes global contact with distinct individuals in

the households independently and randomly, at the points of a Poisson process having rate

λG. The total number of global contacts from the household epidemic, Rn, follows a Poisson

distribution with random mean, λGTA, where TA is the sum of the infectious periods of the
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infectives, TA is also referred to as the severity of the epidemic [9, 11].

Let R be the number of infected households emanating from the household epidemic in line

with [11], then R is the offspring random variable for the approximating branching process,

in the epidemic process. This is defined as the total number of infected households caused

by an infected household throughout the infectious period [11]. Now let R∗ = E(R), be the

mean number of infected households from an infected household from the household epidemic

and E(θR) = h(θ) be the probability generating function of the offspring variable random R.

Then in line with [9, 47] standard branching process theory, a global epidemic occurs if

in the limit, as the number of households, m → ∞, the epidemic infects infinitely many

households.

2.5 Community based SIR household epidemic model with tem-

porary immunity.

In [42] the dependency assumption of epidemic assumed in [6, 9, 11] was ignored and instead

proposed a community based transmission stochastic SIR transmission model, in which sus-

ceptibles in the households are infected from the community and from infectives within their

households. They assumed that every susceptible in the household has equal probability of

avoiding infection from the community, written as bt = 1−at, where at is the probability that

a susceptible from a household becomes infected from the community, t = 0, . . . , T is the time

period of infection, and a bounded function, B = f(bt) defined as the probability that an infec-

tive is not infected from the community [42]. A particular case is when B = bt. However, [42]

model is limited to cases of infectious diseases which confers temporary immunity.

2.6 Community based SIR household epidemic model with per-

manent immunity.

Another variant of [42] model is that of [1] which is concerned with spread of infectious

diseases that confer permanent immunity. The model allows heterogeneity in contact and
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multiple source of infection. The population is stratified according to different group of

individuals (i = 1, . . . ,m) say, with each individual in exactly one group and susceptible to

the infectious disease of interest [1]. They assumed that an epidemic can be started by one

or more individuals, ai, i = 1, 2, . . . ,m, becoming infected from a specified source outside the

population, similar to the assumption of [6], where ai, i = 1, 2, . . . ,m, are the initial number

of infectives in group i. A similar model, with the same assumptions is given by [36] but

focuses on design of vaccination studies.

The initial number of susceptible individuals are assumed to be, N = (N1, . . . , Nm)
′ with

the total population size of the susceptibles N =
∑m

i=1Ni, i = 1, 2, . . . ,m. The length of

the infectious period of an i infective residing in k = 1, 2, . . . ,m group is assumed to be Ti,k,

with moment generating function, φi(t) = E(exp(−tTi,k)). The progress of the epidemic in

each household is independent [1], contrary to [9] which assumed dependency of epidemic

between households. Given these assumptions, the epidemic is governed by two parameters,

namely extra-population escape probability, defined as the probability that a susceptible of

type i = 1, 2, . . .m escapes infection from outside the population during the course of the

epidemic represented by B = (β1, . . . , βm)
′
, where each βi, i = 1, . . .m is the extra-population

escape probability for susceptibles of type i = 1, . . . ,m. Also the within-population disease

transmission, defined as the rate at which a susceptible from group of type i comes in contact

with an infective from a group of type k is represented by [1] as βi,k.

2.6.1 Calculation of the final size probabilities.

Using the assumptions in section 2.6, the triangular equation for the probability of the final

size household epidemic assuming the value ω given m groups of different types of individuals

is,

1 =

j∑
ω=0

(
j

ω

)
PN
ωi...ωm

/φ(β
′
(N− J))ω+aB(N−J), j ≥ 0,

where ω = (ω1, . . . , ωm), β is an m×m of contact rates, B is a vector of all the extra-escape

population probabilities, while N is the vector of all the initial susceptibles in the m groups

of different types of individuals.
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If the number of households approaches infinity in [9], then each given susceptible in each

group independently avoids infection from outside the population with the same probability

[9]. This is in agreement with the assumption of [1]. Thus under this large population

assumption in [9], the ultimate spread of infection within the group has the same distribution

as that of the extended model of [1].

Thus, for population with single type of individual, m = 1 for which a = 0, the final size

probabilities satisfy the triangular equation,

1 =

j∑
ω=0

(
j

ω

)
Pnω /φ(λL(n− j))ωπn−j , j ≥ 0, (2.6.1)

where λL is the local contact rate, π is the probability of avoiding infection from outside

the household given in [9] and Pnw , are the final size probabilities of the epidemic outcomes

w = 0, 1, 2 . . . , n and n is the household size [6, 9, 11].

Rearranging the triangular equation (2.6.1), the final size probability is given by,

Pnk =

(
1−

k−1∑
w=0

(
k
w

)
Pnw

φ(λL(n− k))wπn−k

)
φ(λL(n− k))kπn−k, k = 0, 1 . . . n, (2.6.2)

where n is the number of the initial susceptibles in the household and φ(λL) = E(exp(−λLTI)).

Taking into account all the possible ways an individual can become infected, the final size

probabilities are given by [6, 9, 11] as,

Pn,i =

(
n

i

)
Pni . (2.6.3)

2.7 Threshold parameter.

Using the branching process theory in section 2.4, a global epidemic can occur for the stochas-

tic SIR household epidemic if the threshold parameter, defined as the mean number of infected

households generated by a single infected household, R∗ > 1.
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Recall that Rn is the total number of global contacts from the single household epidemic,

which is a Poisson distributed random variable, with mean TAλG. The threshold parameter

can be written as,

R∗ = E(R) =

∞∑
n=1

α̃nE(Rn),

=
∞∑
n=1

α̃nλGE(TA),

where the distribution of TA depends on the household size n, α̃n is the probability that global

contact is with an individual residing in a household of size n [9, 11].

We can write E(TA) = E(Tn)E(TI) [11] using the Wald’s identity for epidemic [6], where

Tn is the number of infected individuals, including the initial infectives, by the single household

epidemic, TI is the infectious period of each infective in the single household epidemic. Since

µn = E(Tn), n = 1, 2 . . . , the threshold parameter is simplified in [11] as,

R∗ = λGE(TI)
∞∑
n=1

α̃nµn. (2.7.1)

Since the threshold parameter for single population SIR stochastic model in which the house-

holds are all of size one, is R0 = λGTI , where E(TI) is the mean infectious period of the

household epidemic, we can express the threshold parameter for the household epidemic as,

R∗ = R0µ [9, 11] where µ =
∑n

n=1 α̃nµn is a mean amplification owing to internal spread

within household. The parameter µn = µn−1,1 is the mean final size of the household epi-

demic with n− 1 initial susceptibles and 1 infective.

2.8 Mean final size of single household epidemic.

The mean final size for an epidemic in a single household with single initial infection can be

generalised to the case with a initial infectives and n susceptibles in the household written

as µn,a. One method of computing this function which uses the non-standard family of

polynomials introduced in section 1.11 is provided by [9, 39]. However, [11] provided an
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alternative method without employing the Gontcharoff polynomial, while [9] also obtained the

same result using the joint generating function of the final size and severity of the epidemic.

Where the moment generating function of the infectious period, TI is given by [9, 11] as,

φ(θ) = E(exp(−θTI)), θ ≥ 0,

so that the joint distribution of the final size, T and severity of the epidemic, TA is the written

by [9] as,

φn,a(s, θ) = E(sn−T exp(−θTA)), θ ≥ 0,

where n is the initial number of susceptibles and a that of the infectives.

The joint moment generating function can be written as,

φn,a(s, θ) =
n∑
i=0

n!

(n− i)!
φ(θ + λLi)

n+a−iGi(s |U), (2.8.1)

where the sequence U = φ(θ + λLi), i = 0, 1, . . . ,

From the definition of T, let µn,a = E(T ) be the mean final size of a household epidemic

with n susceptibles and a initial infectives. Then differentiating φn,a(s, θ) with respect to s,

and setting s = 1, θ = 0, [9] shows that the mean final size of the household epidemic can be

written as,

µn,a = n−
n∑
i=1

n!

(n− i)!
pn+a−ii βi, (2.8.2)

where pi = φ(λLi) and βi = Gi−1(1 |U), U = ui = φ(λL(i+ 1)) = pi+1, i = 0, 1, . . . .

Thus, pi = exp(−iλLTI) is the probability that a set of i susceptible individuals who are

exposed to a single infective in the same group all escape infection [9].

Alternatively, the mean final size is given in [11] as,

µn,a = n+ a−
n∑
k=0

(
n

k

)
βkφ(λLk)n+a−k, (2.8.3)
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where β0, β1, . . . , are obtained recursively for k = 0, 1, . . . , in [11] as

k∑
i=0

(
k

i

)
βiφ(λLi)

k−i = k. (2.8.4)

2.9 Numerical simulations.

In order to illustrate the threshold behaviour of SIR household epidemic model, we conducted

1000 simulations of a household epidemic for different values of the local and global infection

rates, (λL, λG), using a modified version of the simhouses simulation package of Dr Owen

Lyne. This is done using [1] household structure [133, 189, 108, 106, 31] × 50, where the

entries represent number of households which size corresponds to its column. For example

133 is the number of households of size 1, 189 is the number of households of size 2, 108 is

the number of households of size 3. The population is made of households of sizes 1 to 5 in

which the number of households of each size is 50 times that of [1] and thus a population size

of 70700. Also, we have assumed Gamma(2, 2.05) infectious period distribution in [1] which

has probability density function, fTI (t) = c2t exp(−ct), c > 0, where c = 2/4.1 and mean

E(TI) = 4.1 [1, 11].

Six pairs of parameter values, (λL, λG) are considered together with their corresponding

threshold parameter in order to study the influence of the infection rates on the occurrence

of a global epidemic in the simulation runs. Two columns of histograms of the number of

individuals infected from the simulations are presented, with the one on the left having fixed

global contact rate and varying local infection rates while those on the right hand side have

fixed local infection rate and varying global infection rates.

Form the histograms of the number infected we see that the threshold behaviours exhibits

the expected theoretical behaviours such that when R∗ > 1, then global epidemic occurs with

probability 1− pa, where a = 1 is the initial number of infectives. The bimodal behaviour of

the histograms when R∗ > 1 further clarify the occurrence a global epidemic in such cases.

Thus, large epidemic only occurs when R∗ > 1 in accordance with [9, 11], also given R∗, the

precise values of λL and λG have little effect on either the number of people infected or the
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probability of large epidemic occurring.

Thus, the first two histograms at the top correspond to the case in which R∗ < 1 and

therefore global epidemic never occurred, while the remaining histograms are made of few

cases in which a global epidemic occur with bimodal behaviours and few cases in which there

is no global epidemic.

In order to disallow the nonglobal epidemic from occurring, we employed a minimum cut-

off of the number infected between the epidemics using rejection sampling in which if the

number infected in the simulation is less than the cut-off then it is rejected and a re-run is

made. This is continued until the simulation run is completed. This is further discussed with

examples in section 4.4.

Figure 2.1: Histogram of 1000 simulations of household epidemic with Gamma(2, 2.05) infec-
tious period distribution, parameter estimates from [1] but fifty times its population size and
minimum epidemic size of 1.
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2.10 Inference on the parameters.

After the model has been chosen, the next stage of the modelling process is estimation of

its parameters. Our approach involves constructing likelihood function for the parameters

based on assumption of independence of epidemics between households along the lines of [1]

independence assumption.

This assumption is contrary to reality and the [9] asumption of dependency of epidemic

between households for which our model is based. We have adopted this independence as-

sumption in order to obtain an approximate likelihood function, which can be maximised.

We then verify numerically that this provides good estimates using simulation studies as

demonstrated in chapters 4.

We have therefore adopted the the maximum likelihood algorithm in [1], using numerical

optimization schemes, depending on the dimension of the final size data. Thus, the likelihood

function has a single error term for cases where the error terms are the same and two error

terms when they are different.

Using the modified version of the simhouses simulation package developed by Dr Owen

Lyne which assumes Gamma(2, 2.05) infectious period distribution and the theoretical param-

eters λL and λG, we simulate single-type household epidemics without misclassification error,

estimate and plot the parameters using the function and subroutines discussed in section 4.2

2.11 Global epidemic.

From section 2.7, the probability of global epidemic for an infection started by a single in-

fectious individual is 1 − q [9, 11]. However for an epidemic started by more than one infec-

tious individual, the probability of a global epidemic occurring depends on their configura-

tion [9, 11, 14].

Three cases of initial number of infectives leading to different probability of global epidemic

are given by [9]. These include the first case already considered in which an epidemic is started

by one infective from a single infectious group, with n−1 susceptible, with probability of global

epidemic (1−q). In the second case, the epidemic is started by one infectious group containing
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i infectives and n− i susceptibles. To obtain the probability of a global epidemic [9] employed

the probability generating function of the offspring random variable, defined as f(s) = E(sR),

for 0 ≤ s ≤ 1 and conditioning the probability generating function of the offspring distribution

on the sum of the infectious periods of the infectives or the severity of the epidemic. We can

write the generating function of the number of infected households emanating from a typical

infected household, R say, as a mixture of R1, R2, . . . , with the respective mixing probabilities

α̃1, α̃2, . . . , denoted by f(s) using the method in [6, 9, 11] which is defined as,

f(s) = E(sR) =

∞∑
n=1

α̃nE(sRn),

where Rn is the total number of global contacts emanating from the household of size n

and follows the Poisson distribution with random mean λGAn, where An is the sum of the

infectious periods of all the infectives and

E(sRn) = E(E(sRn |An)).

= E(exp(−λGAn(1− s))),

= φn−1,1(λG(1− s)), (2.11.1)

where λL and λG are the local and global contact rates. φn,a = E(exp(−θAn,a)) and An,a is

the sum of the infectious periods of the infective individuals in the household epidemic, also

called severity of a single household epidemic with initially n susceptibles and a infectives.

This is defined in [6, 11] as,

φn,a(θ) =

n∑
k=0

(
n

k

)
γk(θ)φ(θ + λLk)n+a−k. (2.11.2)

Here γi(θ) for i = 0, 1, . . . , n are determined recursively by,

k−1∑
i=0

γi(θ)φ(θ + λLi)
k−i +

(
k

k

)
γk(θ) = 1, (k = 0, 1 . . . , n).
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The theoretical properties of the function φn,a are discussed in section 3.11 of chapter 3.

2.12 Maximum likelihood estimation.

If Xn,j is the number of households of size n with j infectives, (total number of cases), and

Pn,j is the final size probabilities, (probability of j cases in a household of size n at the

end of the epidemic), then each household size, has a separate multinomial distribution for

Xn,0, . . . , Xn,j , (j = 0, . . . , n, n = 1, . . . ,max), given by [25] as,

P (Xn,0 = xn,0, . . . , Xn,j = xn,j) =
(Mn)!∏max
j=1 (xn,j)!

n∏
j=0

P
xn,j

n,j , (2.12.1)

where Mn is the number of household of type n among the infected households.

By assuming independence of epidemics in each household in accordance with [1], the

likelihood function is referred to as approximate likelihood function of the parameters λL and

π, [9] given by,

L(λL, π) =
(Mn.)!∏max
i=1 (xn,j)!

max∏
i=1

n∏
j=0

Pn,j(λL, π)xn,j , (2.12.2)

where Pn,j are the final size probabilities, n is the household size, π is the probability of

avoiding infection from outside the household, λL is the local contact rate, xn,j is the final

size data defined as the number of households of size n with j number of infectives, max is the

maximum household size, and Mn is the number of households of size n among the infected

households.

The approximate likelihood function for cases when the final size epidemic data is subject

to misclassification will be discussed in chapter 4.

Using logarithm in equation (2.12.2) for ease of computation and simplification, we can

express the approximate likelihood function in terms of its loglikelihood as,

l(λL, π) = log(Mn.)!−
max∑
i=1

log(xn,j)! +
max∑
i=1

n∑
j=0

xn,j logPn,j . (2.12.3)

The approximate loglikelihood function of the theoretical parameters, λL and π can then
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be computed using appropriate numerical optimization along the lines of the computational

algorithm given in [1].

We have developed Matlab programs using the Nelder-Mead fminsearch simplex numer-

ical algorithm referred to here as two dimensional numerical optimization to estimate the

parameters.

38



Chapter 3

Theoretical properties of the

parameters of the stochastic SIR

household epidemic model.

3.1 Introduction.

In this chapter, we studied the theoretical properties of the parameters and functions of the

stochastic SIR household epidemic model beginning with the mean final size of the household

epidemic and the beta function for small and large local infection rates. In section 3.7,

we discussed the properties of the threshold parameter. In section 3.8, we examined the

proportion of the initial susceptibles infected in a household epidemic, while in section 3.11,

we also examined the Gamma function for the generating function of the number of infected

households from a typical infected household.

These terms are fully explained in the indicated sections of this chapter.

3.2 The mean final size of single household epidemic.

The mean final size of a single household epidemic is given in [9] and is defined as the average

number of initial susceptibles that are ultimately infected, including the initial number of
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infectives, at the end of the disease outbreak expressed as

µn,a = n+ a−
n∑
k=0

(
n

k

)
βkφ(λLk)n+a−k,

where n is the total number of susceptibles, a is the initial number of infectives at the beginning

of disease outbreak, βk are functions of λL and the infectious period distribution, obtained

for k ∈ Z+ from the triangular equation in [6] as,

k∑
i=0

(
k

i

)
βiφ(λLi)

k−i = k, k = 0, 1, 2, . . . ,

where, φ(θ) = E(exp(−θTI)), is the moment generating function of the infective period, TI ,

and λL is the local contact rate. This can be expanded as,

(
k

0

)
β0φ(λL.0)k−0 +

(
k

1

)
β1φ(λL.1)k−1 + · · ·+

(
k

k − 1

)
βk−1φ(λL · (k−1))1 +βkφ(λL.k)0 = k.

Observe that if k = 0, then β0 = 0. Thus we can ignore the first term and express the

equation as,

(
k

1

)
β1φ(λL.1)k−1 +

(
k

2

)
β2φ(λL.2)k−2 + · · ·+

(
k

k − 1

)
βk−1φ(λL · (k − 1))1 + βk = k.

We can also rearrange it as,

βk = k −
k−1∑
i=1

(
k

i

)
βiφ(λLi)

k−i. (3.2.1)

40



3.3 Properties of βk for small and large local infection rates.

If λL → 0, then φ(λL) = E(exp(−λLTI))→ 1, ∀ TI and equation 3.2.1 reduces to

k∑
i=1

(
k

i

)
βi = k.

It follows that, if λL → 0, βk can be expressed as,

βk = k −
k−1∑
i=1

(
k

i

)
βi.

Theorem 2. If λL = 0, then βk = 0, ∀k ∈ Z+ − {1} and β1 = 1 when k = 1.

Proof. Using mathematical induction, we will show that βk = 0, ∀k ∈ Z+ − {1}, whenever

λL = 0.

From the arguments in equation (3.2.1), we know that β0 = 0, when k = 0, also when

k = 1, β1 = 1, however when k = 2, then β2 = 0.

Using mathematical induction, we want to show that βk = 0, ∀k ∈ Z+ − {1}.

We assume the induction hypothesis holds for ∀n ∈ {2, . . . , k} and show that it also holds

for βk+1.

For k + 1, we have,

βk+1 = k + 1−
k∑
i=1

(
k + 1

i

)
βi.

Using
(
k+1
m

)
=
(
k
m

)
+
(

k
m−1

)
, ∀m, k ∈ Z+, reduces the problem to the form,

βk+1 = k + 1−
k−1∑
i=1

(
k

i

)
βi − βk −

k∑
i=1

(
k

i− 1

)
βi.

Replacing the term,
∑k−1

i=1

(
k
i

)
βi with k − βk and simplifying gives,

βk+1 = 1−
k∑
i=1

(
k

i− 1

)
βi.

For example, when k = 2 we get, β3 = 1−
(
2
0

)
β1 +

(
2
1

)
β2. Substituting β0 = 1 and β2 = 0
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gives the required results.

Since by hypothesis, βi = 0, for i = 0, 2, 3 . . . k, and β1 = 1, the result follows that

βk+1 = 1− β1 = 0. Therefore, the result follows by induction.

If λL → ∞, then φ(λL) = E(exp(−λLTI) → 0, for all positive random variables TI and

the expression
∑k−1

i=1

(
k
i

)
βiφ(λLi)

k−i, gives βk = k when λL →∞.

In figures 3.1 (a) and (b), we have plotted the βk, as a function of λL while holding other

parameters as n = 6, Gamma(a)=2, Gamma(b)=2.05 and c = 1 number of initial infective,

for two extreme values of λL, that is when λL →∞ and when λL → 0. We have adopted the

Gamma infectious period distribution to enables us compare our results with those of [1] who

also employed the Gamma(2, 2.05) infectious period distribution.

The behaviour of βk is found to be consistent with our theoretical studies. When λL

becomes very large, βk becomes asymptotic to k, while as λL approaches 0, so also is βk. This

can be seen from figures 3.1.
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Figure 3.1: The beta function with increasing λL.

In figure 3.1, we plotted the beta function as a function of λL, using Gamma(a, b) infectious

period distribution with parameters Gamma(a) = 2, Gamma(b) = 2.05. We see that with

increasing λL, the function βk also increases and tends to k = 1, . . . , 5, where β0 = 0, while

as λL tends to zero, βk also tends to zero except β1 which assumes the value 1.

3.4 The mean final size of the single household epidemic for

small λL.

Using the properties of βk and since φ(λL)→ 1, if λL → 0, the expression for the mean final

size reduces to

µn,a = n+ a−
n∑
k=0

(
n

k

)
βk,
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where n+a is the household size, n and a are the number of initial susceptibles and infectives.

Since βk → 0 ∀k ∈ Z+−{1} with β1 = 1, when λL → 0, the expression for the mean final

size reduces to,

µn,a = n+ a−
(
n

0

)
β0 +

(
n

1

)
β1.

Putting the values of β0 = 0 and β1 = 1 into the expression yields the value of the mean

final size of a single household epidemic, when λL → 0,

µn,a = n+ a− n = a.

This means that if there are no local contacts between susceptible and infective individ-

uals in the household, there will be no new infections and the ultimate number of infected

individuals at the end of the epidemic will be the initial number of infectives.

3.5 The mean final size of the single household epidemic, for

large local infection rates.

If λL → ∞, then φ(λL) = E(exp(−λLTI)) → 0, since TI is a non-negative random variable

and since βk assumes the values k ∈ Z+, we can write the mean final size equation as,

µn,a = n+ a−
((

n

0

)
β0φ(λL.0)n+a−0 +

(
n

1

)
β1φ(λL.1)n+a−1 + · · ·+

(
n

k

)
βkφ(λL.k)n+k−1

)
.

We know that if λL → ∞, then φ(λL) → 0. The question then is, can n + a − k be

zero, since if n+ a− k is zero then the expression φ(λL.k)n+a−k reduces to 1. Since k is only

defined for k = 0, 1, 2, . . . , n and a is not zero, if a is zero then there will be no infection in

the household and so no susceptible individuals will be subjected to any infection pressure

and so k < n+ a, ∀a ∈ Z+ − {0},

However, if k = 0 then βkφ(λL.k)a+n−k reduces to zero, since β0 = 0.

If a 6= 0, k 6= 0, then n+ a > k.
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Under this assumption, βkφ(λL.k)a+n−k → 0 and the summation terms on the right hand

of mean final size will collapse to zero with the mean final size given by the remaining term

as,

µn,a = n+ a.

This means that everybody will be infected at the end of the epidemic outbreak, which

is possible for highly infectious diseases with large local contact rate. The role of these

parameters on household disease transmission is crucial and any effective intervention, and

control strategies must take this into consideration.

3.6 Further properties of the mean final size.

The influence of the local contact rate and other parameters of the mean final size on its

behaviour is further studied using graphs by varying some of the parameters while holding

others constant.

For example λL is considered as an independent variable and plotted with the mean final

size over the range of values [0, 1] as in figure 3.2, with n = 6, Gamma(a) =2, Gamma(b)=2.05,

c = 1.
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Figure 3.2: The mean final size as function of the local infection rate.

In figure 3.2, the mean final size of the household epidemic with n = 6 initial susceptibles

and c = 1 initial infectives µn,c, is plotted as a function of λL by assuming Gamma(a, b) as

the infectious period distribution with the parameters, Gamma(a) = 2, Gamma(b) = 2.05.

We see that the mean final size of the household epidemic increases with increasing λL. The

mean final size therefore reduces to the initial number infected when it is zero in line with the

discussions in section 3.4.
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The mean final size increases rapidly towards the maximum household size in response to

continuous increase in the value of λL, as shown, which is in agreement with its theoretical

properties.

If λL → 0, the mean final size µn,a → a. This shows that the magnitude of local contact

rate for within household infection contributes to the level of disease transmission.

We also examined the behaviour of the mean final size given initial number of infectives

and susceptibles for varying local contact rate for the following cases, λL = 0.001, 0.05, 1

with varying initial number of infectives, c and initial number of susceptible n = 2, while

λL = 0.001, 0.1, 1 with varying initial number of susceptibles, n and initial number, of infective

c = 1 respectively. Identical behaviour as λL becomes large is observed. This can be seen in

figures 3.3 and 3.4.
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Figure 3.3: The Mean final Size as function of the number of initial infectives

In figure 3.3, the mean final size is plotted as a function of the number of initial infectives in

a single household epidemic and varying local infection rate λL = 0.001, 0.05, 1 and Gamma(a,

b) infectious period distribution, having parameters, Gamma(a)=2, Gamma(b)=2.05. As λL

becomes sufficiently large. the mean final size increases and becomes asymptotic to the line,

y = 2 + c, which forms its upper bound, with 2 as the number of initial susceptibles, where c

the initial number of infectives.
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Figure 3.4: The Mean Final Size as function of number of the initial susceptibles.

In figure 3.4, the mean final size is plotted as a function of the initial number of susceptibles,

n and varying values of λL = 0.001, 0.1, 1, Gamma(a,b) infectives period distribution with

parameters, Gamma(a)=2, Gamma(b)=2.05, c = 1. It is found that the mean final size

approaches the line y = n + 1, as λL → ∞, where 1 is the initial number of infectives. The

line y = n+ 1 and y = 1 are its upper and lower bounds.
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The mean final size tends to approach the line y = 2 + c, for large values of λL, where 2

is the number of susceptibles in the household, which is its upper bound, as further increase

in λL makes no contribution to the mean final size. In the case of n, which is the number of

initial susceptibles, the mean final size becomes asymptotic to the line y = n+ 1, forming its

upper bound. Where 1 is the number of initial infectives in the household. This shows that

as λL →∞, these lines are representative of the mean of the final size. These behaviours are

shown in figures 3.3 and 3.4 respectively.

3.7 Properties of the threshold parameter for small and large

local infection rates.

The threshold parameter as defined in section 2.7 is a function of both the local and global

infection rates. If the global infection rate, λG → 0, then the threshold parameter will be

zero, on the contrary if λL → 0, then βk will all be zero except β1 = 1 in accordance with the

properties of βk and the resulting mean final size µn−1,1 of the household with n − 1 initial

susceptibles and 1 initial infective will be the initial infective, which under this definition is

µn−1,1 = 1 with the threshold parameter given by

R∗ = λGE(TI)
∞∑
n=1

α̃n,

Since α̃n are probabilities, their summation will be 1, reducing the threshold parameter to

R∗ = λGE(TI),

= R0.

The household threshold parameter R∗ is expressed in terms of R0 in [6, 9, 11] as,

R∗ = R0µ,
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where R0 = λGE(TI) and µ =
∑∞

n=1 α̃nµn is the mean amplification factor owing to internal

spread within the household as in section 2.7. Where R0 defined in section 2.7, is the basic

reproductive ratio for homogeneous mixing population, in which everyone is assumed to have

similar characteristics without consideration for heterogeneity in infectivity and susceptibility.

It is a threshold parameter for a population in which the household size is one. It can loosely

be defined as the average number of infectives generated by a single infected individual in a

completely susceptible population throughout its infectious period.

The behaviour of the threshold parameter for varying local infection is studied for some

global infection rates, λG = 0.01, 0.02, 0.03, 0.04, and λG = 0.1, 0.2, 0.3, 0.4 respectively,

Gamma(a, b) infectious period distribution with parameters, a = 2, b = 2.05 and assum-

ing single initial infective, c = 1, in the household. We found in each of the cases that large

global infection rate leads to corresponding large threshold parameter. Thus the threshold

parameter is linearly influenced by the level of the global contact rate.
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Figure 3.5: The threshold parameter with varying local infection rate.

In figure 3.5, we have plotted the threshold parameter for varying local infection rate

defined in the region {λL : 0 ≤ λL ≤ 2}, with stepsize of 0.05, for the following global infection

rates λG = 0.01, 0.02, 0.03, 0.04, and λG = 0.1, 0.2, 0.3, 0.4 respectively and Gamma(2, 2.05)

infectious period distribution, and one initial infective, c = 1.

3.8 Proportion of the initial susceptibles that are ultimately

infected.

The proportion of the initial susceptible individuals that are ultimately infected by the epi-

demic, denoted by z, is given in [11] as

z =
∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kµn−k,k. (3.8.1)
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Equation (3.8.1) is the weighted average of the number of infectives in a single household epi-

demic with Binomial distributed number of infectives k, and the remaining n−k susceptibles

avoid infection from outside the household of size n.

In equation (3.8.1), α̃n is the probability that a randomly selected individual resides in a

household of size n, π is the probability that a given individual avoids global infection, which

is approximately given in [9, 11] as,

π = exp(−λG
N
zNE(TI)) = exp(−λGzE(TI)). (3.8.2)

Where NzE(TI) is the total person units of infection present throughout the epidemic, N

is the total number of individuals in the household and z is the proportion of the initial

susceptibles ultimately infected.

Suppose global epidemic has occurred with the proportion of individuals ultimately in-

fected, z ∈ [0, 1], then equations (3.8.1) together with (3.8.2) gives an implicit equation for

z. Here z = 0 is always a solution and the only solution if R∗ ≤ 1. A second solution in

0 < z < 1 exists only if R∗ > 1.

This is better understood by expressing equation (3.8.2) in the form y = z = g(z) where

y = z, y = g(z). Here g(z) is the right hand side of equation (3.8.2) and the unique solution

of the equation is found at the point of intersection of y = z and y = g(z) nearest to the

origin for which R∗ > 1. Now let the generating function of the offspring random variable

R be defined as E(zR) = g(z) and Pk be its distribution. Then g(z) =
∑∞

k=0 Pkz
k with

g′(1) =
∑∞

k=1 kPk which is equal to R∗.

For example, using numerical calculation with [1] final size epidemic data and a range of

values of π = 0.2, 0.4, 0.6, 0.9 and λL ∈ [0, 1], we found that as π increases towards its upper

boundary, the unique root of z = g(z) decay as theoretically expected. Thus z depends on the

magnitude of π such that the more the susceptibles in the households avoid global infection,

the less the proportion ultimately infected at the end of the epidemic as demonstrated in

figure 3.6.
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Figure 3.6: The proportion of the initial susceptible ultimately infected at the end of the
epidemic in the presence of varying π.
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3.9 Proportion of the initial susceptibles that are ultimately

infected at the lower boundary of the local infection rate.

If the local contact rate λL → 0, then the mean final size of a household with k initial infectives

and n− k initial susceptibles is, µn−k,k(0) = k. We can express z as,

z =
∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kk. (3.9.1)

Since,

E(K) =
n∑
k=0

(
n

k

)
(1− π)kπn−kk = n(1− π),

where
(
n
k

)
(1 − π)kπn−k is the probability that k susceptibles individuals are infected with

probability (1− π)k, while the remaining n− k escape infection with probability πn−k.

The number of infectives k, in the household is distributed as a binomial random variable,

with parameters, n and (1 − π). Here E(K) is the mean number of infected susceptibles in

the household. Substitution of the mean number of susceptible individuals infected, E(K) =

n(1− π) into the expression for z gives,

z =
∞∑
n=1

α̃n(1− π) = (1− π).

This can further be simplified as,

z = 1− π = 1− exp(−λGzE(TI)). (3.9.2)

This is the governing equation of z for the single population S-I-R deterministic epidemic

model.
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3.10 Proportion of the initial susceptibles that are ultimately

infected near the upper boundary of the local infection

rate.

If λL → ∞, then the mean final size in equation, µn−k,k for k > 0 reduces to n and the

expression for z becomes,

z =
∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kn. (3.10.1)

Since,
n∑
k=0

(
n

k

)
(1− π)kπn−k = 1,

we will have,
n∑
k=0

(
n

k

)
(1− π)kπn−k = πn +

n∑
k=1

(
n

k

)
(1− π)kπn−k,

where p(K = 0) = πn is the probability that every susceptible in a household of size n avoids

global inflection. We can write

n∑
k=1

(
n

k

)
(1− π)kπn−k = 1− πn.

We can then express z as,

z =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− π)kπn−kn =

∞∑
n=1

α̃n(1− πn),

z =
∞∑
n=1

α̃n(1− exp(−nλGzE(TI))),

where πn = exp(−nλGzE(TI)). Further simplification of z gives,

z = 1−
∞∑
n=1

α̃n exp(−nλGzE(TI)). (3.10.2)
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3.11 Theoretical properties of the Gamma function and global

epidemic.

The expressions for the gamma function from the triangular equation for the generation

function of the number of infected households from a typical infected household R called the

offspring distribution discussed in section 2.11 is further explored. Recall that this generating

function is given by

φn,a(θ) =
n∑
k=0

(
n

k

)
γk(θ)φ(θ + λL.k)n+a−k. (3.11.1)

Where γi(θ) for i = 0, 1, . . . , n are determined recursively by,

k−1∑
i=0

γi(θ)φ(θ + λL.i)
k−i +

(
k

k

)
γk(θ) = 1, (k = 0, 1 . . . n). (3.11.2)

The expression for the gamma function in equation (3.11.2) can be simplified for every

k = 0, 1, . . . n as follows,

k = 0, gives,

(
0

0

)
γ0(θ)φ(θ + λL.0)0−0 = 1,

γ0(θ) = 1, ∀θ ≥ 0. (3.11.3)

Thus, we can write gamma γk(θ) as,

γk(θ) = 1−
k−1∑
i=0

(
k

i

)
γi(θ)φ(θ + λLi)

k−i, k = 1, 2 . . . n, ∀θ ≥ 0, (3.11.4)

where φ(θ) = exp(−θTI), TI is the infectious period of an infected individual, whose choice is

arbitrary but must be specified with known moment generating function. We have assumed

TI to follow the Gamma(a, b) distribution as in [1].

If λL and θ approach zero simultaneously then we can derive an expression for γ(θ), for
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θ = 0. Since under this assumption φ(0) goes to 1, and we will have,

γk(0) = 1−
k−1∑
i=0

(
k

i

)
γi(0), k = 1, 2 . . . n,

Theorem 3. If λL = 0, and θ = 0, then γk(0) = 0 ∀k ∈ Z+.

Proof. We prove by induction that γk(0) = 0 ∀k ∈ Z+.

When k = 1, equation (3.11.5), reduces to, γ1(0) = 1−
(
1
0

)
γ0(0) = 0.

When k = 2, γ2(0) reduces to,

γ2(0) = 1−
((

2

0

)
γ0(0) +

(
2

1

)
γ1(0)

)
,

using γ0(0) = 1 and γ1(0) = 0, we get γ2(0) = 1− 1 = 0.

We assume, this expression holds for any k ∈ Z+ and show that it holds for k + 1.

For k + 1, we will have,

γk+1(0) = 1−
k∑
i=0

(
k + 1

i

)
γi(0).

Since, we can express
(
k+1
i

)
as
(
k
i

)
+
(
k
i−1
)
, we can write

γk+1(0) = −
k∑
i=1

(
k

i− 1

)
γi(0).

Thus, γk+1(0) = 0.

The hypothesis, holds for k + 1, and in general, γk(0) = 0, ∀k ∈ Z+.

If θ → ∞, then it is obvious that γk(θ) = 1 since φ(θ + λL.i)
k−i → 0, where k − i ≥ 1.

Similarly, φ(θ+λL.k)n+a−k will be zero, since n+a−k ≥ a and a ≥ 1. Hence, the generating

function reduces to 0. It follows that f(s) = 0, and s = 0. There will a global epidemic with

probability 1.

Using the representation of θ = λG(1− s) in these studies, in line with [6, 9] and [11], we

see that γk(θ) is a function of both λL and λG respectively. If θ → 0, then either λG → 0, for

58



s ∈ (0, 1], or s = 0, for λG > 0.

If λG → 0, for some s ∈ [0, 1), and λL → 0, then γk(0) = 0, for ∀k ∈ Z+−{0}, φn,a(0) = 1,

f(s) = 1. There will be nonglobal epidemic with probability 1. The probability of a global

epidemic is 0.
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Chapter 4

Fitting the SIR household model to

final size epidemic data.

4.1 Introduction.

Having specified the model and explored the behaviour of its parameters, it is then necessary

to fit it to the final size epidemic data in section 1.9, using maximum likelihood estimation

along the lines of [1] for which the epidemic in each household is assumed independent of the

epidemic in other households.

This chapter is concerned with fitting the stochastic SIR household epidemic model to

two dimensional final size data made of true infectives in the households.

Using simulation studies, we present plots of the estimates and table of mean, standard

deviation and the root mean square to give further insights into their precision.

These are accomplished using fifty times population size in [1] and minimum epidemic size

of 1000.

4.2 Model fitting to the two dimensional final size data.

Sometimes individuals are observed correctly as true positives and negatives in the households.

The final size data is then made of the number of households with true outbreak sizes, as
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discussed in section 1.9. Fitting the two dimensional model to such final size data employs [1]

maximum likelihood algorithm discussed in section 2.12.

Using simulation studies we implement the estimation with the function csimhouses.m as

follows.

1. Run the function csimhouses to simulate two dimensional household epidemic data,

denoted here as mat with Gamma(a, b) infectious period distribution, theoretical parameters,

λL, and λG, minimum epidemic size and number of repetitions required. The parameters are

then estimated and plotted. Their mean, standard deviation, root mean square error are also

computed and using the following subroutines.

a.) fminsearch2(n, a, b,max) which maximizes the loglikelihood function using starting

value according to [24].

b.) LampaiD(mat), provides starting values for the estimates according to [24].

b.) negloglik2(y, n, a, b,mat) computes the negative loglikelihood using starting values of

the parameters according to [24], the parameters of Gamma(a, b) infectious period distribution

and the final size epidemic data.

c.) final_sizep(a, b, π, n, λL) calculates the final size probabilities required by the subrou-

tine negloglik2(y, n, a, b,mat) from π, λL, and Gamma(a, b) infectious period distribution.

e.) pinf2(a, b, π, λLhouses), calculates z and λG, from π, λL, maximum household size n

and parameters of Gamma(a, b) infectious period distribution.

f.) RSTER2(a, b, c, λL, λG, houses) calculates the threshold parameter, R∗ from the theo-

retical parameters, λL, λG and the parameters of Gamma(a, b) infectious period distribution.

The likelihood function in equation (2.12.2) is referred to as the approximate likelihood

because of the assumption of independence of the epidemics in each household in [1] which

is not consistent with the assumption in [9]. The assumption is not true but it is adopted to

allow the use of the maximum likelihood algorithm in line with [1] for the estimation of the

parameters.

The process is such that the starting values for π and λL are obtained according to [24]

from equations (4.2.1) and (4.2.2).

For example estimating π, requires equation (4.2.1) to be used in evaluating the starting
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value given as

π̂ = 1/n
max∑
s=1

ns

(
n0,s
ns

)1/s

, (4.2.1)

where n is the total number of households, max is the maximum household size, ns is the

number of households of sizes s and nj,s is the number of households of size s in which the size

of the outbreak is j = 0, 1, . . . , s. i.e. number infectives in the household of size s. Observe

that
∑s

j=0 nj,s = ns and
∑max

s=1 ns = n respectively.

Here, n0,s/ns is an unbiased estimate of P0(s) = πs, where P0(s) is the probability of zero

infectives in the household of size s, which can also be read as the probability that all the

susceptibles in the household of size s avoid global infection.

Then (n0,s/ns)
1/s provides estimates of π for the household sizes s = 1, 2, . . . ,max. Pooling

the estimates together [24] gave the initial estimates in equation (4.2.1).

For the local infection rate, a reasonable estimate for λL for the household size s is given

by [24] as, (n1,s/(ns − n0,s))
1/(s− 1) and is unity when n0,s = ns.

Pooling the estimates together as in [24], the estimate of λL is started using,

λ̂L =
1∑max

s=2 (ns − n0,s)

max∑
s=2

(ns − n0,s)(
n1,s

ns − n0,s
). (4.2.2)

Consider an alternative estimation techniques for the theoeretical parameters. For example

if we know the pair of parameters, (λL, λG), then by defining a new functional denoted by D,

which is the sum of square difference between the old and new values of π and between the

old and new values of z defined as,

D = (πold − πnew)2 + (zold − znew)2,

πNew = exp(−λ̂GzoldE(TI),

zNew =

∞∑
n=1

α̃nn
−1

n∑
k=1

(
n

k

)
(1− πold)kπn−kold µn−k,kλ̂L.

We can then adopt the Nelder-Mead fminsearch simplex numerical algorithm on D to find

the values of z and π. The parameters are estimated as follows.
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2. Run the function zpfun(x, a, b, λL, λG,houses), which uses fminsearch algorithm to

calculate π and z from the theoretical parameters, λL, λG, vector of the household sizes and the

parameters of Gamma(a, b) infectious period distribution. It uses the following subroutines.

a.) zp_old(x, a, b, λL, λG, houses), calculates the the function D, which is the sum of the

square difference between the old and new value of z and between the old and new value

of π and maximized by fminsearch simplex algorithm using vector of starting values for the

parameters.

b.) RSTER2(a, b, c, λL, λG, houses) calculates the threshold parameter R∗ from the the-

oretical parameters, λL, λG, and those of Gamma(a, b) infectious period distribution and the

initial number infected c.

4.3 Replication of published results.

It is necessary to examine the performance of our program functions by assessing and com-

paring the parameter estimates from them with those of published results in [1, 9].

If they are the same, then it will mean that our program functions are working well and can

be employed to fit the stochastic SIR household epidemic model to two dimensional household

final size epidemic data.

We do this by fitting the stochastic SIR epidemic model to [1] final size epidemic data in

table 1.2 using the first method in section 4.2 and the same household structure and size in [1],

and assuming Gamma(a, b) infectious period distribution as in [1, 9], where a = 2, b = 2.05,

and density function f(t) = c2t exp(−ct), t > 0, c = 2/4.1, single initial infective, we then

estimated the parameters, λL and π in [1, 9].

We know that the parameters are estimated by [1] as λL = 0.0446 and π = 0.8674 with

population size of 1414 wih maximum household size n = 5.While [9] estimated λG = 0.1955,

z = 0.1775 and R∗ = 1.1303 with the same population size and assuming Gamma(2, 2.05) in-

fectious period distribution. Using the first method in section 4.2 , we replicated the estimates

of λL and π as follow,
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Published results. Calculated results
Parameter [1] [9] from the codes.

λ̂L 0.0446 0.0446 0.0446
λ̂G N/A 0.1955 0.1955
π̂ 0.8674 0.8674 0.8674
ẑ N/A 0.1775 0.1775
R̂∗ N/A 1.1303 1.1304

Table 4.1: We compared estimates from published results in [1,9] with those from our Matlab
programs discussed in section 4.2. The notation N/A means estimate of the parameter not
provided by the author.

The observed proportion infected is computed as,

1(23 + 27 + 23 + 20 + 9) + 2(13 + 6 + 16 + 5) + 3(7 + 8 + 2) + 4(2 + 1) + 5(1)

1(133) + 2(189) + 3(108) + 4(106) + 5(31)

=
250

1414
= 0.1768.

We have seen that our program functions give estimates which are the same in the nu-

merical accuracy used to those in [1, 9] respectively. Our program functions are working well

and can therefore be used to fit the stochastic SIR household epidemic model to the two

dimensional household final size epidemic data.

4.4 Simulation and inference.

We have adopted the likelihood function for the non misclassified final size data in equation

(2.12.2), which we have referred to as approximate likelihood function as discussed in section

4.2.

Using the assumption of independence of epidemic between households in [1] and since

each household size (number of cases) has separate multinomial distribution given in equation

(2.12.1), we can express the approximate likelihood function as in equation (2.12.2).

The parameters of the approximate likelihood function which are the local infection rate

and the probability of avoiding infection from outside the households, λL and π are then
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estimated using the program function and subroutines in section 4.2.

We present our studies in section 4.9 for the theoretical parameters in table 4.2.

Corresponding theoretical parameter
(λL, λG) π z R∗
(0.3, 0.12) 0.84487 0.3426 1.2902
(0.13, 0.17) 0.74223 0.4275 1.1432
(0.1, 0.29) 0.4199 0.7298 2.2166
(0.25, 0.39) 0.2302 0.9185 4.0229

Table 4.2: Pairs of the local and global infection rates with their corresponding theoretical
parameters.

With household structure and population size fifty times that of [1] given as [133, 189, 108, 106, 31]×

50, minimum epidemic size of 1000, discussed in section 4.2 and simulation runs of 1000, in

comparison with our studies in sections 4.5, 4.6 and 4.8 for theoretical parameters corre-

sponding to z = 0.1775 and population size in [1] given in table 1.2, for different choice of the

minimum epidemic size and simulation runs of 1000.

This is done in order to study the influence of the minimum epidemic size and the popu-

lation size on the occurrence of a global infection in the households and hence the estimates

of the parameters.

These are implemented using program function and subroutines in section 4.2. with the

theoretical parameters in [1,9] and household structure in [1] with the population size of 1414,

simulation runs of 1000 for the following minimum epidemic sizes 10, 50, 100 respectively.

The scatter plots of the estimates and the histogram of the number infected are then

presented to provide insights into their behaviours.
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4.5 Plots of the estimates with minimum epidemic size of 10.

Figure 4.1: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters corresponding to z = 0.1775 and minimum epidemic size
of 10.

In figure 4.1, we see positive and negative linear correlation between some of the parameter

estimates for example increasing λL leads to decreasing λG. Generally, in most of the simu-

lations few number of infections occurred, many suceptibles avoid global infection. Hence a

global epidemic has not taken place.
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4.5.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 10.

Parameter Estimates.
Mean, SD, MSE, RMSE. λ̂L λ̂G π̂ ẑ R̂∗
Theoretical Parameters 0.0446 0.1955 0.8674 0.1775 1.0596

Mean 0.038025 0.19346 0.94022 0.07902 1.0661
Standard Deviation 0.01582 0.020356 0.075164 0.098512 0.081201
Mean Square Error 0.00029238 0.00041811 0.010968 0.019431 0.011596

Root Mean Square Error 0.017125 0.020448 0.10473 0.1394 0.10769

Table 4.3: Mean of the parameter estimates for theoretical parameters corresponding to z =
0.1775, household structure and size in [1, 9] and minimum epidemic size of 10.

In table 4.3, we see small difference between the mean of the estimates of λL, λG and their

theoretical values. While those of π, z and R∗ are significantly different from their theoretical

mean and possess large standard deviation, which are the standard error of the estimates.

These later three parameter estimates are biased owing to the choice of 10 as the minimum

epidemic size with the small population size in [1].

The choice of the minimum epidemic size is further explored in section 4.6 and 4.8 to

provide clarity on its effect on the parameters and the occurrence of a global infection in the

households.
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4.6 Plots of the estimates and table of mean, standard devia-

tion, mean square error and root mean square error with

minimum epidemic size of 50.

Figure 4.2: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters corresponding to z = 0.1775 and Minimum Epidemic
size of 50.

In figures 4.2 (a)-(d), we see that the estimates are densely scattered around the true

parameter values compared to the earlier case with minimum epidemic size of 10. Only few

simulations resulted in large infections.

Most of the simulations yielded small number of infections, as many susceptibes avoided

global infection.
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4.6.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 50.

Parameter Estimates.
Mean, SD, MSE, RMSE. λ̂L λ̂G π̂ ẑ R̂∗
Theoretical Parameters 0.0446 0.1955 0.8674 0.1775 1.1303

Mean 0.043008 0.19459 0.88938 0.14652 1.1112
Standard Deviation 0.0083475 0.013859 0.073506 0.095575 0.082287
Mean Square Error 7.21E-05 0.0001927 0.0058872 0.010097 0.007133

Root Mean Square Error 0.008494 0.013882 0.076728 0.10048 0.084457

Table 4.4: Mean of the parameter estimates for theoretical parameters corresponding to z =
0.1775 and household structure and size in [1, 9] and minimum epidemic size of 50.

In table 4.4, we see that the mean of the estimates of λL, and λG are approximately equal

to their theoretical counterparts with the increase in the minimum epidemic size compared to

those in table 4.3. The standard deviations and the mean square error are reasonably small.

The estimates are less biased compared to those in table 4.3. This indicates that ap-

propriate choice of the minimum epidemic size leads to the realisation of a global infection

in the households and hence the occurrence of a global epidemic in which there is enough

information for the estimation of the parameters.
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4.7 Plots of the estimates and table of mean, standard devia-

tion, mean square error and root mean square error with

minimum epidemic size of 100.

Figure 4.3: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters corresponding to z = 0.1775 and Minimum Epidemic
size of 100.

In figures 4.3 (a)-(d), we see that the estimates are densely scattered around their true

parameter values as in figures 4.2 (a)-(d) but with better precision and less bias as in table

4.5 compared to the earlier cases with minimum epidemic sizes of 10 and 50 respectively.

Also large number of simulations yielded few number infected with only small number of

simulations with large number infected as shown by the bimodal behaviour of the histogram

of the distribution of the number infected associated with simluations with small population

size.
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4.7.1 Table of parameter estimates and other statistics when the minimum

epidemic size is 100.

Parameter Estimates.
Mean, SD, MSE, RMSE. λ̂L λ̂G π̂ ẑ R̂∗
Theoretical Parameters 0.0446 0.1955 0.8674 0.1775 1.1303

Mean 0.043791 0.19786 0.86498 0.17851 1.1362
Standard Deviation 0.0074468 0.012422 0.063977 0.082632 0.07399
Mean Square Error 5.61E-05 0.00015973 0.0040941 0.0068219 0.0055032

Root Mean Square Error 0.0074869 0.012638 0.063985 0.082595 0.074183

Table 4.5: Mean of the parameter estimates for theoretical paramters corresponding to z =
0.1775 and household structure and size in [1, 9] and minimum epidemic size of 100.

In table 4.5, the estimates of the parameters are precise compared to those in tables 4.3

and 4.4. For example, λL, and λG are less biased with improved estimate.

4.8 Plots of the estimates and table of mean, standard devia-

tion, mean square error and root mean square error with

minimum epidemic size of 1000.

The behaviour of the estimates are further examined in table 4.6 as continuation of our studies

with minimum epidemic sizes of 10, 50, and 100 in figures 4.1, 4.2, 4.3 with corresponding

tables of statistics, 4.3, 4.4 and 4.5 respectively.

From table 4.5, we see that the estimates are unbiased given the population size in [1] and

minimum epidemic size of 100 compared to the choice of minimum epidemic size less than

100. However, the question then is how precise are the estimates if the minimum epidemic size

is extremely larger than 100, given the small population size of 1414 in [1] and also population

size larger than 1414.

We explored these questions by assuming minimum epidemic sizes of 1000 for the small

population size of 1414, which is far greater than 100, adopted in figures 4.5 (a)-(d). We

employed the same minimum epidemic size of 1000 for the population of size of 70700, which

71



is fifty times greater than the population size considered in [1] as in table 4.6.

In the case of the small population size of 1414, a minimum epidemic size of 1000, give

estimates that are biased and imprecise compared to the choice of 100 as the minimum

epidemic size in table 4.5 with the same population size. Unlike in table 4.5, we see significant

difference between the mean of the parameter estimates and their true values.

The mean square error of the estimates does not satisfy the minimum mean square error

criterion required of good estimates. With large population size of, 70700, and choice of

minimum epidemic size 1000, the estimates are unbiased with insignificant difference from

their true mean values compared to the former as shown in table 4.6.

The choice of minimum epidemic size below and above its threshold given small and large

population sizes affects the precision and other properties of the estimates of the parameters.

Hence, there is the need to apply our discussion on the strategy of choosing this parameter in

section 2.9. This involves, firstly simulating the household epidemic with minimum epidemic

size of 1 to understand the bimodal behaviour of the distribution of the epidemic and hence

locate the minimum cut-off of the number infected between the epidemics. Then use rejection

sampling discussed in section 2.9.

From the bimodal behaviours of the distribution of the number infected in figure 4.4, for

the small and large population sizes, 1414 and 70700, the cut-off of 100 and 1000 respectively

are reasonable.

Choice of extremely large value above the minimum epidemic size leads to loss of informa-

tion in the final size epidemic data. This is because simulations with large number infected

will be rejected and hence may result in estimates that are biased and imprecise as shown

in table 4.6, with minimum epidemic size of, 1000, for population sizes, 1414, and, 70700,

respectively. The choice of, 1000, for the small population size of 1414, is far above the re-

quired cut-off between the epidemics as shown in figure 4.4 for small and large population

sizes and hence some of the large epidemics will be wrongly rejected. This then leads to loss of

information required for inference from the final size epidemic data. Hence biased estimates

are obtained unlike the case with 100, in table 4.6.
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Pop. size=1414 Pop. size=70700
Par. Estim. mean std MSE mean std MSE
λ̂L 0.0446 0.053486 0.0089206 0.00015846 0.0445 0.0010809 1.18E-06
λ̂G 0.1955 0.33199 0.012481 0.018786 0.19525 0.0028492 8.17E-06
π̂ 0.86725 0.38183 0.013799 0.23583 0.86946 0.018014 0.00032903
ẑ 0.1777 0.70781 0.0013614 0.28103 0.17469 0.023642 0.00056745
R̂∗ 1.1304 2.0239 0.033412 0.7995 1.1282 0.019158 0.00037142

Table 4.6: Table of comparison of the mean, standard deviation and mean square error of the
estimates using the minimum epidemic size of 1000 and simulation runs of 1000.

Figure 4.4: Histogram of number infected from simulations of household epidemic with pop-
ulation sizes of 1414 and 70700 respectively, minimum epidemic size of 1 and simulation runs
of 1000.

4.9 Parameter estimates with minimum epidemic size of 1000.

In section 4.5 and 4.6, we considered in our simulation studies, small population size in [1] and

minimum epidemic sizes of 10, 50 and 100 with the theoretical parameters in [1]. We found

that in the face of varying minimum epidemic size, global infection failed to occur. Hence π,

z and R∗ are biased with imprecise estimates owing to lack of enough information in the final
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size data. With increasing minimum epidemic size, these estimates become less biased with

improved estimates.

In order to overcome this estimation problem, we considered large population size with

appropriate minimum epidemic size of 1000 and a range of theoretical parameters in table 4.2

to allow global epidemic and hence provide sufficient information for parameter estimation.

We considered pair of theoretical parameters (λL, λG) corresponding to 0 < z < 0.5 and

0.5 < z < 1 away from its boundaries. We then studied the behaviour of the estimates and

the distribution of the number infected for these sets of theoretical parameters corresponding

to z in the given sets.

Starting with λL = 0.0446, λG = 0.1955 and corresponding theoretical parameters, π =

0.8674, z = 0.1775, R∗ = 1.1303, minimum epidemic size of 1000, to allow global epidemic

to take off in each of the simulation runs. We simulate 1000 times household epidemic in a

population of size 70700 which is fifty times that of [1] given as 1414.

We then estimate and plot the parameters, (λL, λG), (λL, π), (λG, π) and histogram of the

distribution of number infected.

Table of mean, standard deviation and root mean square error of the estimates are pre-

sented.

4.9.1 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.0446 and λG = 0.1955 with minimum epidemic size of 1000.

In figures 4.5 (a)-(d), the estimates are unbiased and scattered around their true parameter

values. The unimodal pattern of the distribution of the number infected by the histogram is

indicative of the occurrence of a global epidemics.

74



Figure 4.5: Plots of the Estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters λL = 0.0446, λG = 0.1955 and minimum epidemic size
of 1000.
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4.9.2 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.13 and λG = 0.17 with minimum epidemic size of 1000.

Now taking λL = 0.13, λG = 0.17, with corresponding theoretical parameters, π = 0.7423,

z = 0.4275, R∗ = 1.1432. We then estimate and plot (λL, λG), (λL, π), (λG, π) and the

histogram of the distribution of number infected. Table of mean, standard deviation and root

mean square error of the estimates are also presented.

Figure 4.6: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters λL = 0.13, λG = 0.17 and minimum epidemic size of
1000.

In figures 4.6 (a)-(d), similar behaviour to figures 4.5 (a)-(d) are seen, with linear correla-

tion between λG and π and good precision and more number of susceptibles are infected.
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4.9.3 Plots of the estimates of λL, λG and π when the theoretical parameters

are λL = 0.1 and λG = 0.29 with minimum epidemic size of 1000.

Similarly, we simulated household epidemic with λL = 0.1, λG = 0.29 and corresponding

theoretical parameters, π = 0.4199, z = 0.7298, R∗ = 2.2166 and plotted (λL, λG), (λL, π),

(λG, π) and the histogram of the distribution of number infected in figures 4.7 (a)-(d). Table

of mean, standard deviation and root mean square error of the estimates also provided.

Figure 4.7: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters λL = 0.1, λG = 0.29 and minimum epidemic size of 1000.

In figures 4.7 (a)-(b), similar behaviours of the estimates in figures 4.6 and 4.5 are shown

with the scatter points around their true value. Large number of susceptibles are infected.
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4.9.4 Plots of the estimate of λL, λG and π when the theoretical parameters

are λL = 0.25 and λG = 0.39 with minimum epidemic size of 1000.

Also with λL = 0.25, λG = 0.39 and corresponding theoretical parameters, π = 0.2302,

z = 0.9185, R∗ = 4.0229. We plotted (λL, λG), (λL, π), (λG, π) and the histogram of the

distribution of number infected. Table of mean, standard deviation and root mean square

error are presented.

Figure 4.8: Plots of the estimates of (λL, λG), (λL, π), (λG, π) and histogram of number
infected with theoretical parameters λL = 0.25, λG = 0.39 and minimum epidemic size of
1000.

In figures 4.8 (a)-(d), the estimates are precise and centred around the true parameter

values. Also large number of susceptibles are infected.
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Proportion Infected.
Par. z=0.1775 Theor. z=0.42757 Theor. z=0.7298 Theor. z=0.9185 Theor.

Par. Par. Par. Par.
λ̂L 0.044578 0.0446 0.13004 0.13 0.099901 0.1 0.24987 0.25
λ̂G 0.19515 0.1955 0.16997 0.17 0.28997 0.29 0.38983 0.39
π̂ 0.86956 0.8674 0.74247 0.7423 0.42011 0.4199 0.23046 0.23021
ẑ 0.17461 0.1775 0.42728 0.42757 0.72949 0.7298 0.91833 0.9185
R̂∗ 1.1282 1.1303 1.4315 1.4316 2.2154 2.2166 4.0203 4.0229

Table 4.7: Table of mean of the estimates from the two dimensional model and theoretical
parameters in table 4.2.

Proportion Infected.
Par. z=0.1775 z=0.42757 z=0.7298 z=0.9185
λ̂L 0.0010624 0.0015197 0.0015715 0.0047053
λ̂G 0.0030219 0.0016325 0.0023247 0.0036795
π̂ 0.018571 0.006892 0.0045573 0.0036487
ẑ 0.024377 0.0094885 0.0037947 0.0014917
R∗ 0.019749 0.014713 0.017152 0.033281

Table 4.8: Table of the standard deviation of the estimates from the two dimensional model
with theoretical parameters in table 4.2

Proportion Infected.
Parameter. z=0.1775 z=0.42757 z=0.7298 z=0.9185

λ̂L 0.0010621 0.0015196 0.0015738 0.0047048
λ̂G 0.0030408 0.001632 0.0023238 0.0036814
π̂ 0.018705 0.0068906 0.004558 0.0036554
ẑ 0.024559 0.009487 0.0037996 0.0015001
R̂∗ 0.019861 0.014707 0.017183 0.033367

Table 4.9: Table of the root mean square error of the estimates from the two dimensional
model with theoretical parameters in table 4.2. The estimates are precise.
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Chapter 5

Stochastic SIR household model for

misclassified data.

5.1 Introduction

Mismeasurement of individual health state can be expressed in terms of misclassification

probabilities, defined as the probability of classifying a subject into group i while its true

status is in j. This leads to imprecise records of the number of individuals infected in each

household and therefore unreliable results of inferences from such data. It then becomes

necessary to adjust our inferences to such errors to get the appropriate parameter estimates

and model that represents our data.

In this chapter, we present the theoretical basis leading to identification and estimation

of classification error probability of the SIR household epidemic model. Its influence on the

maximum likelihood estimates of the parameters is studied using simulations.

Mismeasurement occur when infectives are wrongly classified as susceptibles or suscepti-

bles classified as infectives. Here we have assumed these misclassification probabilities to be

independent and different from each and also examined the particular case when they are the

same in section 5.3.

In section 5.2, we developed the theoretical basis leading to the four dimensional model

with different misclassification probabilities and then extended it to the case with the same
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misclassification probabilities. We discussed its estimation procedures using [1] maximum

likelihood algorithm. Parameter estimations are implemented in section 5.5, using codes

developed during this research. It computes the mean, standard deviation, root mean square

error of the estimates and plots the estimates.

In section 5.6, we explored the parameter estimates of the four dimensional model along

the vertical, horizontal axes and along the diagonals of the misclassification probabilities

region, ε ∈ [0, 0.2), with step size of 0.005 and theoretical parameters, λL = 0.13, λG = 0.17,

π = 0.7423, z = 0.4275, R∗ = 1.1432 and those for λL = 0.1, λG = 0.29, π = 0.4199,

z = 0.7298, with R∗ = 2.2166 for the three models using simulation studies.

Plots of the root mean square error of the estimates of the three models are presented in

order to provide insight into their precision over the misclassification probability region.

We also presented table of comparison of the model estimates for misclassification prob-

abilities in [0, 0.2]. In section 5.7, we discussed the behaviours of the three models on data

from the four dimensional model for misclassification probabilities in the permissible region,

[0, 0.5].

In section 5.4 we explored the estimates of the two and three dimensional models for

a range of misclassification probabilities in the permissible region, [0, 0.5]. We compute the

mean, standard deviation, root mean square error for the two models and also plot their root

mean square error for ε ∈ [0, 0.5].

5.2 The SIR household epidemic model with two different mis-

classification probabilities.

We have assumed that the stochastic SIR household final size data is subject to misclassifica-

tion error; which may be caused by susceptibles wrongly classified as infectives or infectives

wrongly classified as susceptibles. The probability of making these classification errors are

referred to as false negative and positive probabilities denoted here by εFN and εFP respec-

tively.

The probability of observing i infectives in a household of size n given that the true number
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of infectives is j and that of the susceptibles is n − j takes cognisance of the true and false

positives with their classification probabilities 1− εFN and εFP .

Let x and y be the observed false and true positives in a household of size n. Then the

probability of observing x+ y = i positives, given that the true number of positives is j can

be written as,

Pi,j(n) = P (x+ y = i |True infect = j, household size = n). (5.2.1)

Using the false positive and false negative probabilities, we can express, the probability

of making correct and precise observation of an infective when it is a true infective, and a

susceptible, when it is a true susceptible, independently as, 1− εFN and 1− εFP . The distri-

bution of observing i number of infectives correctly and incorrectly is Binomial distributed,

Bin(j, 1 − εFN ), and Bin(n− j, εFP ). Equally the probability of observing the susceptibles

correctly and incorrectly are Binomial distributed, Bin(n− j, 1 − εFP ) and Bin(j, εFN ) re-

spectively.

The number of infectives observed is the sum of the true and false positives and has the

sum of the Binomial distributions,

Bin(j, 1− εFN ) +Bin(n− j, εFP ). (5.2.2)

Equally, the number of susceptibles observed is the sum of the true and false negatives and

has the sum of the Binomial distributions,

Bin(n− j, 1− εFP ) +Bin(j, εFN ). (5.2.3)

The probability of observing i infectives in a household of size of n can then be written as,

qn,i =

n∑
j=0

P (Obs = i, True infect = j, household size = n). (5.2.4)
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Since,

P (Obs = i, True = j, household size = n)

= P (Obs = i |True = j, household size = n)P (True = j). (5.2.5)

qn,i =

n∑
j=0

P (x+ y = i |True infect = j, household size = n)P (True = j), (5.2.6)

where P(True=j), j = 0, 1, . . . , n are the final size probabilities described in equations

(2.6.2) and (2.6.3). We can then write,

qn,i =
n∑
j=0

Pi,j(n)Pj(n), i = 0, 1, · · · , n. (5.2.7)

Where

Pi,j(n) = P (x+ y = i |True = j, household size = n). (5.2.8)
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For example, we can evaluate the terms of Pi,j(n) starting with i = 0 as,

P0,0(n) = P (x+ y = 0 | j = 0,household size = n)

= P (x = 0 | j = 0)P (y = 0 | j = 0) = (1− εFP )n

P0,1(n) = P (x+ y = 0 | j = 1) = P (x = 0 | j = 0)P (y = 0 | j = 1)

= εFN (1− εFP )n−1

P0,2(n) = p(x+ y = 0 | j = 2, household size = n)

= P (x = 0 | j = 2, household size = n)P (y = 0 | j = 2, household size = n)

= ε2FN (1− εFP )n−2

P0,3(n) = ε3FN (1− εFP )n−3

· · · = · · ·

P0,j(n) = εjFN (1− εFP )n−j , j = 0, 1, · · · , n. (5.2.9)

Also the probability of observing i = 1 infective in a household of size n, given that the true

84



number of infectives is j = 0, 1, · · · , n can be evaluated as follows,

P1,0(n) = P (x+ y = 1 | j = 0, household size = n)

= P (x = 1 | j = 0)P (y = 0 | j = 0) + P (x = 0 | j = 0)P (y = 1 | j = 0) = nεFP (1− εFP )n−1

P1,1(n) = P (x+ y = 1 | j = 1, household size = n)

= P (x = 1 | j = 1, household size = n)P (y = 0 | j = 1, household size = n)

+P (x = 0 | j = 1, household size = n)P (y = 1 | j = 1, household size = n)

= (n− 1)εFP εFN (1− εFP )n−2 + (1− εFN )(1− εFP )n−1

P1,2(n) = P (x+ y = 1 | j = 2, household size = n) =

P (x = 0 | j = 2, household size = n)P (y = 1 | j = 2, household size = n)

+P (x = 1 | j = 2, household size = n)P (y = 0 | j = 2, household size = n)

= (n− 2)ε2FNεFP (1− εFP )n−3 + 2εFN (1− εFN )(1− εFP )n−2

· · · = · · ·

P1,j(n) = P (x+ y = 1 |Truth = j, household size = n) =

(n− j)εjFNεFP (1− εFP )n−j−1 + jεj−1FN (1− εFN )(1− εFP )n−j , j = 0, 1, · · · , n.

Thus,

P2,j(n) = j(n− j)εFP (1− εFP )n−j−1(1− εFN )εj−1FN +
(n− 1)(n− j − 1)

2!
εjFN

+ε2FP (1− εFP )n−j−2 +
j(j − 1)

2!
(1− εFN )2εj−2FN (1− εFP )n−j , j = 0, 1, · · · , n
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P3,j(n) =
(n− j)(n− j − 1)(n− j − 2)

3!
ε3FP ε

j
FN (1− εFP )n−j−3

+
j(j − 1)(j − 2)

3!
(1− εFN )3εj−3FN (1− εFP )n−j

+
j(n− j)(n− j − 1)

2!
(1− εFN )εj−1FN ε

2
FP (1− εFP )n−j−2

+
j(j − 1)(n− j)

2!
(1− εFN )2εj−2FN εFP (1− εFP )n−j−1

When j = n which is the household size then,

P3,n(n) =
n(n− 1)(n− 2)

3!
(1− εFN )3εn−3FN , n ≥ 3

It is more useful to generalise the expression, Pi,j(n) for i, j = 0, 1, 2 · · · , n and any r ∈ Z+ ≤ n

using the results of P0,j(n), P1,j(n) · · · , Pi,j(n) as follows,

Pi,j(n) = P (x+ y = i |Truth = j, household size = n)

= P (x = 0 |Truth = j, household size = n)P (y = i |Truth = j, household size = n)

+P (x = 1 |Truth = j, household size = n)P (y = i− 1 |Truth = j, household size = n)

+P (x = 2 |Truth = j, household size = n)P (y = i− 2 |Truth = j, household size = n)

+ · · ·+ P (x = i− 1 |Truth = j, household size = n)P (y = 1 |Truth = j, household size = n)

P (x = i |Truth = j, household size = n)P (y = 0 |Truth = j, household size = n)

Pi,j(n) =
j(j − 1)(j − 2) · · · (j − i+ 1)

r!
εj−iFN (1− εFN )r(1− εFP )n−j

+
j(j − 1) · · · (j − i+ 2)

(i− 1)!
(n− j)εFP (1− εFP )n−j−1εj−i+1

FN (1− εFN )i−1

+
j(j − 1)(j − 2) · · · (j − i+ 3)

(i− 2)!

(n− j)(n− j − 1)

2!
ε2FP (1− εFP )n−j−2εj−i+2

FN (1− εFN )i−2

+
(j(j − 1)(j − 2) · · · (j − i+ 4)

(r − 3)!

(n− j − 1)(n− j − 2)

3!
ε3FP (1− εFP )n−j−3(1− εFN )i−3εj−i+3

FN

+ · · ·+
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(n− j)(n− j − 1) · · · (n− j − i+ 2)

(r − 1)!
εi−1FP (1− εFP )n−j−i+1j(1− εFN )εj−1FN

+
(n− j)(n− j − 1) · · · (n− j − i+ 1)

r!
εiFP (1− εFP )n−j−iεjFN (5.2.10)

Knowing the terms of Pi,j(n), i, j = 0, 1, · · · , n, the expression for qn,i, i = 0, 1, · · · , n can be

evaluated. For example the probability of observing i = 0 infectives in a household of size n

can be evaluated using equation(5.2.7) as,

qn,0 =
n∑
j=0

P0,j(n)Pj(n), j = 0, 1, · · · , n.

Where Pj(n) are the final size probabilities, defined as the probabilitity of observing j in-

fectives in a household of size n. We can then evaluate P0,j(n) from equation (5.2.9) for all

j = 0, 1, · · · , n.

Similarly, the chance of observing i = 1 infectives in a household of size n can be obtained

using the terms of P1,j(n) ∀j ∈ Z+ ≤ n. This probability reduces to,

qn,1 =
n∑
j=0

P1,j(n)Pj(n)

In general, the probability of observing i ∈ Z+ ≤ n infectives in a household of size n, is

similarly obtained as,

Pr,j(n) =

r∑
k=0

(
j

r − k

)(
n− j
k

)
εj−r+kFN (1− εFN )r−kεkFP (1− εFP )n−j−k (5.2.11)

Equations (5.2.11) is the sum of two Binomial distributions, Bin(j, (1 − εFN )) and Bin(n −

j, εFP ) defined as the probabilities of observing r−k true positives from the true j number of

infectives and k false positives from the remaining n−j number of susceptibles in a household

of size n.
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Alternatively, Pr,j(n) has the form,

Pr,j(n) =

r∑
k=0

(
j

k

)(
n− j
r − k

)
εj−kFN (1− εFN )kεr−kFP (1− εFP )n−j−r+k. (5.2.12)

Equation (5.2.12) is also the sum of two Binomial distributions in equation (5.2.11) and

defined as the probability of observing k true positives from the true j infectives and r − k

false positives from the remaining n− j susceptibles in a household of size n.

Here, both equations (5.2.11) and (5.2.12) for Pr,j(n) satisfy,

n∑
i=0

Pi,j(n) = 1, ∀j ∈ Z+ ≤ n.

5.3 The three dimensional final size epidemic model.

If the false positive and false negative misclassification probabilities are the same then equa-

tions (5.2.2) and (5.2.3) for the distribution of the number of infected individuals observed

and those of the susceptible individuals observed only depend on the common misclassification

probability denoted here as ε. In these equations, εFN and εFP are replaced by ε same as in

the expressions for Pi,j(n), i, j = 0, 1, . . . , n and simplified as,

Pi,j(n) =
i∑

k=0

(
j

i− k

)(
n− j
k

)
εj−i+2k(1− ε)n−j+i−2k, i, j = 0, 1, . . . , n. (5.3.1)

Alternatively, we can employ

Pi,j(n) =
i∑

k=0

(
j

k

)(
n− j
i− k

)
εj+i−2k(1− ε)n−j−i+2k, i, j = 0, 1, . . . , n. (5.3.2)

Equations (5.3.1) and (5.3.2) for Pi,j(n) which are particular cases of equations (5.2.11)

and (5.2.12) when the misclassification probabilities are the same are made of two Binomial

distributions. While equation (5.3.1) expresses the probability of observing i−k infectives from
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the true j infectives and k infectives from the remaining n− j susceptibles in the household

of size n, equation (5.3.2) expresses the probability of observing k infectives from the true j

infectives and i− k infectives from the remaining n− j susceptibles in the household of size

n.

Since they are probabilities, both equations Pi,j(n), must satisfy,

n∑
i=0

Pi,j(n) = 1, ∀j ∈ {0, 1, . . . , n}.

5.3.1 Maximum likelihood estimation.

In section 2.12, we see that the distribution of the final size epidemic data xn,i is multinomial,

where xn,i are the number of households of size n in which i infectives are observed and qn,i are

the probabilities of observing i infectives in a household of size n. The approximate likelihood

function of the model parameters is then a function of qn,i and dependent on the parameters

to be estimated from the four dimensional model. These parameters are the local infection

rate λL, the probability of avoiding infection from outside the household π, the false positive

misclassification probability, εFP and the false negative misclassification probability, εFN and

hence qn,i has the form qn,i(λL, π, εFP , εFN ). The approximate likelihood function discussed

in section 4.2 then has the form,

L(λL, π, εFP , εFN ) ∝
max∏
n=1

n∏
i=0

qn,i(λL, π, εFP , εFN )xn,i . (5.3.3)

where max is the maximum household size.

Since the estimates that maximize the approximate likelihood function also maximize the

approximate loglikelihood function, we can write,

`(λL, π, εFP , εFN ) =
max∑
n=1

n∑
i=0

xn,i loge

 n∑
j=0

Pi,j(n)Pj(n)

 , i, j = 0, 1, · · · , n. (5.3.4)

Where log(L(λL, π, εFP , εFN )) = `(λL, π, εFP , εFN )

The approximate likelihood function for the three dimensional model also has similar rep-
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resentation to that of the four dimensional model with differences in the number of parameters

to be estimated.

5.4 Numerical simulations and inferences on the three and four

dimensional final size epidemic data.

How precise are the maximum likelihood estimates from the numerical optimizations, given

the minimum epidemic and population sizes, the proportion of the initial susceptibles infected

and the magnitude of the misclassification probabilities? Which of these parameters are

intractable to estimate in the face of large misclassification probabilities? Which model best

fits the final size epidemic data in the face of varying misclassification probabilities in the

permissible region, [0, 0.5)? These are some of the questions to be explored in this section

using simulation studies. The term minimum epidemic size has been discussed in sections 4.2,

while two, three and four dimensional final size epidemic data can also be found in section

1.10.

5.4.1 Fitting the three models to data from the four dimensional model.

Here, we have demonstrated the computational procedures of fitting the three models to four

dimensional epidemic data from simulation studies and then studied the behaviours of the

estimates using the following function and subroutines.

Run the function FourDimThreeATwoSNsimhousesScatterPlotsMisspec to simulate four

dimensional household epidmemic data with Gamma(a, b) infectious period distribution, the-

oretical parametes, λL, λG and εFN , εFP ∈ [0, 0.5). It then calculate the corresponding pa-

rameters of the three models with Gamma(a, b) infectious period distribution computes, their

mean, standard deviation and root mean square error of the estimates and plot the estimates

using the following subroutines.

a.) LampaiD(mat), provides starting values for the two dimensional model parameters,

λL and π according to [24].

b.) Enegloglik4(y, n, a, b,mat), computes the negative of the loglikelihood function as-
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sociated with the three dimensional model using the parameters of Gamma(a, b) infectious

period distribution, the final size epidemic data and the starting parameters values obtained

by inverse transformation of the parameter space.

c.) negloglik2(x, n, a, b,mat), computes the negative loglikelihood function associated with

the two dimensional model from the parameters of Gamma(a, b) infectious period distribution,

the final size epidemic data and the starting values according to [24].

d.) Misclass2(ε, n), computes the misclassification Probabilities asssociated with the three

dimensional model from the misclassification probability parameter ε and maximum household

size n

e.) final_sizep(a, b, π, n, λL) computes the final size probabilities associated with the two

dimensional model from the parameters of Gamma(a, b) infectious period distribution, π, λL

and maximum household size n.

f.) Misclass3(a, b, n, π, λL, ε), computes the sum of the product of the misclassification

probabilities and the final size probabilities associated with the three dimensional model for

the computation of the negative loglikelihood function.

g.) falseMisclass2(εFN , εFP , n), computes the misclassification probabilities asssociated

with the four dimensional model.

h.) SIRfalsePmisclass(a, b, n, π, λL, fneg, fpos), computes the products of the misclassifi-

cation probabilities and the final size probabilities associated with the loglikelihood function

of the four dimensional model.

i.) pinf2(a, b, π, λLhouses), calculates z and λG, from the parameters of Gamma(a, b)

infectious period distribution, model parameters π, λL and vector of household sizes, where

houses is the vector of household sizes.

j.) RSTER2(a, b, c, λL, λG, houses) calculates the threshold parameter, R∗ from the pa-

rameters of Gamma(a, b) infectious period distribution, theoretical parameters λL, λG and

vector of household sizes, houses.

Using the theoretical parameters, z = 0.7298, λL = 0.1, λG = 0.29, π = 0.4199, R∗ =

2.2166, household structure in [1] but fifty times its population size given by 70700, minimum

epidemic size of 1000 and simulation runs of 1000. The estimates of the parameters of the
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three models were obtained for the following pairs of the misclassification probabilities (εFN =

0.02, εFP = 0.1), (εFN = 0.3, εFP = 0.2) and (εFN = 0.2, ε = 0.2) respectively shown in

figures 5.1, 5.2 and 5.3 and analysed in tables 5.1, 5.2 and 5.3 respectively.

We observed that with large misclassification probabilities, εFN , εFP in the permissible

region, the estimates of the two dimensional model are imprecise and biased, while those of

the three dimensional models are less precise. Better precision of the estimates can be seen

from those of the four dimensional model in table 5.1 and figures 5.1 (a), (b) and (c). In

figures 5.2 (a), (b) and (c), the estimates from the two and three dimensional models are

biased and imprecise while those from the four dimensional model are unbiased and precise.

With the false negative and false positive misclassification probabilities assumed to be the

same in figures 5.3 (a), (b) and (c), we see that both the three and four dimensional models

have unbiased and precise estimates compared to those from the two dimensional model in

figure 5.3 (c).

In general, the estimates of the four dimensional model have higher level of precision than

those of the three dimensional models when the misclassification probabilities are large and

far apart while those of the two dimensional are biased and imprecise.

Thus the four dimensional model outperforms the two and three dimensional models on

the four dimensional final size epidemic data.

These model estimates are further explored in section 5.6 for varying values of the mis-

classification probabilities in the region, [0, 0.2).
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5.4.2 Fitting the two, three and four dimensional models to the four di-

mensional final size epidemic data when εFN = 0.02, εFP = 0.1.

Figure 5.1: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =
0.02, εFP = 0.1 .

In figures 5.1 (a), (b) and (c), we see that the estimates of the local and global infection

rates from the two and three dimensional models are biased, while those of the four dimensional

models have more variability around the true values.
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5.4.3 Fitting the two, three and four dimensional models to the four di-

mensional final size epidemic data when εFN = 0.3, εFP = 0.2.

Figure 5.2: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =
0.3, εFP = 0.2 .

In figures 5.2 (b) and (c), the estimates of the two and three dimensional models are biased

and imprecise when the misclassification probabilities are large and far apart from each other

as theoretically expected.
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5.4.4 Fitting the two, three and four dimensional models to the four di-

mensional final size epidemic data when εFN = 0.2, εFP = 0.2.

Figure 5.3: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when εFN =
0.2, εFP = 0.2.

In figures 5.3 (a) and (b), the scatter points of the estimates from the three and four

dimensional models are centered at their true value with less variability for the three dimen-

sional model, while those of the two dimensional model in 5.3 (c) are biased. The estimates

of the three dimensional model are more precise than those of the two and four dimensional

models.
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εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2. Theo.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. Param.

λ̂L 0.084899 0.090811 0.10138 0.018974 0.14651 0.13265 0.03056 0.10032 0.117 0.1
λ̂G 0.3129 0.31015 0.28961 0.32242 0.23107 0.2744 0.33117 0.29025 0.28441 0.29
π̂ 0.38599 0.3865 0.4211 0.47438 0.52772 0.45322 0.42115 0.41985 0.4338 0.4199
ẑ 0.74206 0.74761 0.72958 0.56414 0.67592 0.71616 0.6369 0.72953 0.72469 0.7298
ˆεFN N/A N/A 0.020239 N/A N/A 0.30444 N/A N/A 0.20185 N/A
ˆεFP N/A N/A 0.097445 N/A N/A 0.20979 N/A N/A 0.19559 N/A
ε̂ N/A 0.01074 N/A N/A 0.31411 N/A N/A 0.19921 N/A N/A
R̂∗ 2.2495 2.2857 2.2164 1.5467 2.0074 2.1721 1.7365 2.2151 2.2004 2.2166

Table 5.1: Table of the mean of the parameter estimates of the three models.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0015409 0.0044091 0.011434 0.00088506 0.056186 0.074851 0.0010531 0.012306 0.060019
λ̂G 0.0024536 0.0030933 0.017684 0.0018842 0.014262 0.05958 0.002174 0.0063406 0.047968
π̂ 0.0042913 0.0043876 0.029889 0.0031843 0.015945 0.10611 0.0035712 0.006532 0.084542
ẑ 0.0034378 0.0051624 0.015988 0.0024631 0.016208 0.057152 0.0027625 0.011531 0.044632
ˆεFN N/A N/A 0.011379 N/A N/A 0.019208 N/A N/A 0.019286
ˆεFP N/A N/A 0.06998 N/A N/A 0.12818 N/A N/A 0.12458
ε̂ N/A 0.0072381 N/A N/A 0.015834 N/A N/A 0.01398 N/A
R̂∗ 0.016441 0.030185 0.064045 0.0050586 0.049663 0.23955 0.0075251 0.062329 0.18484

Table 5.2: Table of the standard deviation of the parameter estimates of the three models.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.015179 0.01019 0.011506 0.081031 0.072919 0.081593 0.069448 0.012298 0.062322
λ̂G 0.023027 0.020387 0.017671 0.032475 0.060628 0.061531 0.041225 0.006339 0.048246
π̂ 0.034178 0.033682 0.029883 0.054578 0.10899 0.11112 0.0037814 0.0065256 0.085593
ẑ 0.012745 0.018553 0.015974 0.16567 0.056251 0.058699 0.092928 0.011522 0.044879
ˆεFN N/A N/A 0.01137 N/A N/A 0.019695 N/A N/A 0.019355
ˆεFP N/A N/A 0.069956 N/A N/A 0.12842 N/A N/A 0.12454
ε̂ N/A 0.049788 N/A N/A 0.066036 N/A N/A 0.013988 N/A
R̂∗ 0.036808 0.075438 0.063981 0.66988 0.21497 0.24341 0.48018 0.062283 0.18536

Table 5.3: Table of the root mean square error of the parameter estimates of the three models.
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5.5 Numerical simulations and inferences.

In this section, we studied the properties of the maximum likelihood estimates of the model

parameters by exploring them along the diagonals of the misclassification probabilities per-

missible region {(εFN , εFP ) : 0 ≤ εFN ≤ 0.2, 0 ≤ εFP ≤ 0.2} in order to provide further

insights into their behaviour.

We explored the estimates of the parameters along the diagonals of the misclassification

probability region, [0, 0.2], where εFN = 0.2 − εFP , for εFP ∈ [0, 0.2) using the following

functions and subroutines described in the following.

Run the function FourThreeTwoDonFourfpos to simulate four dimensional final size epi-

demic data for misclassification probabilities, {(εFN , εFP ) : 0 ≤ εFP ≤ α}, εFN = α −

εFP , α < 0.5 with Gamma(a, b) infectious period distribution. It then calculates other cor-

responding parameters of the three models from Gamma(a, b) infectious period distribution

function and theoretical parameters λL, λG. It also calculates and plot the root mean square

error of the estimates for misclassification probabilities εFP ∈ [0, 0.5) with the subroutines in

subsection 5.4.1.

While the function FourThreeTwoDonFourGraphSNsimhouses explores the estimates of

the parameters along the vertical and horizontal axes of the misclassification Probabilities

region using the following function and subroutines.

Run the function, FourThreeTwoDonFourGraphSNsimhouses to simulate four dimensional

household epidemic data with Gamma(a, b) infectious period distribution function and msclas-

sification probabilities εFN , εFP ∈ [0, 0.5). It then explores the estimates of the three models

along the vertical axis of the misclassification probabilities region with Gamma(a, b) infectious

period distribution by holding εFP fixed while varying εFN ∈ [0, 0.5). It also explores the es-

timates of the models along the horizontal by holding εFN fixed while varying εFP ∈ [0, 0.5).

It computes and plot the root mean square error of the estimates for the three model using

subroutines in subsection 5.4.1.

The estimation of the three models parameters employ similar subroutines with differences

in the form of the function qi(n), where qi(n) is defined in equation (5.2.7). For the two dimen-
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sional model, this function simply reduces to the final size probabilities, qi(n, λL, π, εFN , εFP ) =

Pi(n, λL, π), while for three dimensional model, it takes the form, qi(n, λL, π, εFN , εFP ) =

Pi(n, λL, π, ε), where we have assumed that εFN = εFP = ε.

This is a special case of the four dimensional model in which the misclassification proba-

bilities are the same. If εFN = εFP = 0, then the three and four dimensional models reduce

to the two dimensional model, having the final size probabilities in equation (2.6.3). These

models are nested in each other.

5.6 Comparison of the models.

We have estimated the parameters of the three models using the associated functions and sub-

routines discussed in section 5.5, along the diagonals of the two dimensional misclassification

probabilities region, [0, 0.5) with step size of 0.005 and presented results for misclassification

probabilities in [0, 0.2] owing to the repeated behaviour of the estimates in the remaining part

of the misclassification region, 0.2 ≤ εFN < 0.5, 0.2 ≤ εFP < 0.5.

The mean, standard deviation, mean square error, root mean square error of the estimates

are computed and the root mean square error are plotted in order to give insights on the fitness

of the three models to the four dimensional final size epidemic data for theoretical parameters

corresponding to small and large value of z away from its lower and upper boundaries.

These are accomplished by simulating household epidemic along the diagonal of the two

dimensional misclassification probabilities region, [0, 0.2] with theoretical parameters corre-

sponding to z = 0.4275, given as λL = 0.13, λG = 0.17, π = 0.7423, R∗ = 1.4316 and

those corresponding to z = 0.7298 given as λL = 0.1, λG = 0.29, π = 04199, R∗ = 2.2166

respectively.

We then explored the estimates along the line, εFN = 0.2 − εFP , for each set of these

parameter values. Where {εFP : 0 ≤ εFP ≤ 0.2} with step size of 0.005.

We presented the plots of the root mean error of the estimates for the three models and

tables of comparison, identifying regions where the estimates of the parameters of the models

are precise on the four dimensional final size epidemic data.
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5.6.1 Simulations with the theoretical parameter, λL = 0.13, λG = 0.17, π =

0.7423, z = 0.4275, R∗ = 1.4316.

We simulated household epidemic, with the following theoretical parameters, λL = 0.13,

λG = 0.17, π = 0.7423, R∗ = 1.4316 and misclassification probabilities, εFN = 0.2 − εFP ,

εFP ∈ [0, 0.2] with step size of = 0.005.

With theoretical parameters corresponding to z = 0.42755, we found the estimates of λL

for the two dimensional model to be imprecise and biased especially when the misclassification

probabilities increase from zero as in figure 5.4 (a). The two dimensional model is not a

sufficient fit to the four dimensional final epidemic data. These behaviours can be observed

for other parameters for the two dimensional model as in figures 5.4 (b)-(g).

The three dimensional model has precise estimates of λL for misclassification probability in

0.08 ≤ εFP ≤ 0.12, while the four dimensional model is best if 0 ≤ εFP ≤ 0.08 and εFP ≥ 0.17.

This shows that the four dimensional model has precise estimates of λL compared to those of

the two and three dimensional models, if the misclassification probabilities are large and far

apart from each other.

In the case of λG, the two dimensional model has imprecise and biased estimates, while

those of the three dimensional model are precise if 0.08 ≤ εFP ≤ 0.01, those of the four

dimensional model are precise if, 0 ≤ εFP ≤ 0.075 and εFP ≥ 0.115.

In the case of π, the two dimensional model has precise estimates if, 0.02 ≤ εFP ≤ 0.025,

while the three dimensional model has precise estimates, if 0.03 ≤ εFP ≤ 0.105, the four

dimensional model is best if, 0 ≤ εFP ≤ 0.015 and εFP ≥ 0.111.

In the case of z, we found that the two dimensional model is best if, 0.085 ≤ εFP ≤ 0.095,

while the three dimensional model is best if 0.1 ≤ εFP ≤ 0.11. The estimates of the four

dimensional model are precise if, 0 ≤ εFP ≤ 0.08 and εFP ≥ 0.115.

In the case of the false positive misclassification probability estimates, the three dimen-

sional model is best, if 0.09 ≤ εFP ≤ 0.115, while the four dimensional model is best if

0 ≤ εFP ≤ 0.085 and εFP ≥ 0.120 respectively.

In the case of the false negative misclassification probability, the three dimensional model

is best if, 0.09 ≤ εFP ≤ 0.115, while the four dimensional model is best if, 0 ≤ εFP ≤ 0.085
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and εFP ≥ 0.120.

Similarly in the case of the threshold parameter, the two dimensional model is best if

0.09 ≤ εFP ≤ 0.1, the three dimensional model is best, if 0.1 ≤ εFP ≤ 0.105, while the four

dimensional model is best, if 0 ≤ εFP ≤ 0.085 and εFP ≥ 0.110.

In summary, we see in figures 5.4 (a)-(g) that the estimates from the four dimensional

model are more precise than those from the two and three dimensional models when the

misclassification probabilities are large and far apart from each other.

However if εFP = 0.1 then those of the three dimensional models are precise since the false

negative misclassification probability, εFN = 0.1 reduces to the false positive misclassification

probability, which is a particular case of the four dimensional model.

The estimates from the three dimensional model are precise if the two misclassification

probabilities are close to each other while those of the two dimensional model are best if the

misclassification probabilities are zero or close to it.
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Figure 5.4: Plots of the root mean square error of the maximum likelihood estimates of the
parameters for the three models when λL = 0.13, λG = 0.17, π = 0.7423, z = 0.4275, R∗ =
1.4316.

Figures 5.4 (a)-(g) are plots of the root mean square error of the maximum likelihood

estimates of the parameters of the three models with regions of precision when the theoretical

parameters corresponds z = 0.4275. We see that the root mean square error of the estimates

from the four dimensional model are consistently stable throughout the misclassification prob-

abilities region.

5.6.2 Simulations with theoretical parameters, λL = 0.1, λG = 0.29, π =

0.4199, z = 0.7298, R∗ = 2.2166.

We simulated household epidemic with the following theoretical parameters along the line

εFN = 0.2 − εFP , εFP ∈ [0, 0.2], step size = 0.005, λL = 0.1, λG = 0.29, π = 0.4199,

R∗ = 2.2166.

We then obtained the estimates of the parameters of the three models and presented
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plots of their root mean square error in figures 5.5 (a)-(g) for a range of misclassification

probabilities in [0, 0.2].

From the simulation plots in figure 5.5 (a), we see that the estimates of λL from the two

dimensional model are driven by bias and are precise if, εFP ≤ 0.02, while the estimates

of λL from three dimensional model are precise if, 0.050 ≤ εFP ≤ 0.165. Those of the four

dimensional model are precise if, 0 ≤ εFP ≤ 0.045 and εFP ≥ 0.175.

In the case of λG in figure 5.5 (b), the estimates of the two dimensional model are best if,

0 ≤ 0 ≤ εFP ≤ 0.07, those of the three dimensional model are best if, 0.075 ≤ εFP ≤ 0.145,

while those of the four dimensional model are best if εFP ≥ 0.150.

Also, in the case of π in figure 5.5 (c), the estimates of the two dimensional are best if,

0.125 ≤ εFP ≤ 0.175, those of the three dimensional model are best if, 0.07 ≤ εFP ≤ 0.120,

while those of the four dimensional model are best if, 0 ≤ εFP ≤ 0.065, and εFP ≥ 0.18.

In the case of z, the estimates of the two dimensional model are best if, 0.13 ≤ εFP ≤ 0.165,

those of the three dimensional model are best if, 0.065 ≤ εFP ≤ 0.125, while those of the four

dimensional model are best if, 0 ≤ εFP ≤ 0.06, and εFP ≥ 0.17.

In case of the false postive misclassification probability, εFN , the three dimensional model

has precise estimates if, 0.05 ≤ εFP ≤ 0.165, while the four dimensional has precise estimates

if, 0 ≤ εFP ≤ 0.045 and εFP ≥ 0.165.

On the other hand, the estimates of the false negative misclassification probability from the

three dimensional model are precise if 0.09 ≤ εFP ≤ 0.105, while from the four dimensional

model the estimates are precise if, 0 ≤ εFP ≤ 0.085 and εFP ≥ 0.110.

The threshold parameter, R∗ has best estimates from the two dimensional model if, 0.14 ≤

εFP ≤ 0.165, while it has best from the three dimensional model if, 0.065 ≤ εFP ≤ 0.135. It

has best estimates from the four dimensional model if, 0 ≤ εFP ≤ 0.060 and εFP ≥ 0.170.

In summary, with large misclassification probabilities, the estimates of the four dimen-

sional model are more precise than those from the two and three dimensional models in

agreement with the discussion in subsection 5.6.1.
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Figure 5.5: Plots of the root mean square error of the maximum likelihood estimates of the
parameters for the three models when λL = 0.1, λG = 0.29, π = 0.4199, R∗ = 2.2166.

5.7 Summary of behaviour of the models.

From the statistical analyses of the models fitness to the four dimensional final size epidemic

data, we see that precision of the estimates of the three models differs from parameter to pa-

rameter. For some parameters, the two dimensional model has precise estimate for εFN , εFP

in the two dimensional misclassification parameter space, {(εFN , εFP ) : εFN ∈ [0, 0.2], εFP ∈

[0, 0.2]}. While for some either the estimates of the three or four dimensional models are the

best for misclassification probability in the permissible region.

However, figures 5.4 (a)-(g) and 5.5 (a)-(g) provide general summary of the properties of

the estimates of the models on four dimensional final size epidemic data. Their behaviours

along the diagonal of the misclassification probabilities region [0, 0.2] are similar to those

explored along the vertical and horizontal axes of the misclassification probabilities region

[0, 0.2] but have only chosen to present those of the former to avoid repetition.
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5.8 Simulations and inferences of the three models.

Here, we studied the properties of the estimates of the three models on three dimensional

epidemic data in the face of ε ∈ [0, 0.5) using simulations with Gamma(a, b) infectious period

distribution and pair of theoretical parameters (λL, λG) and the function, ThreefourTwoDim-

plotsEstimates with subroutines as follows.

1.) Run the function, ThreefourTwoDimplotsEstimates to simulate three dimensional final

size epidemic data with Gamma(a, b) infectious period distribution, theoretical parameters λL,

and λG, ε ∈ [0, 0.5). It then calculates the other corresponding parameter of the three models

and plot them. It also calculates the mean, standard deviation and root mean square error of

the parameters estimates for the two, three and four dimensional models with Gamma(a, b)

infectious period distribution and the following subroutines.

a.) LampaiD(mat), provides starting values for the two dimensional model parameters,

λL and π according to [24].

b.) Enegloglik4(y, n, a, b,mat), computes the negative of the loglikelihood function as-

sociated with the three dimensional model with Gamma(a, b) infectious period distribution,

the final size epidemic data and the starting parameters using inverse transformation of the

parameter space.

c.) negloglik2(x, n, a, b,mat), computes the negative loglikelihood function associated with

the two dimensional model using the parameters of Gamma(a, b) infectious period distribution,

the final size epidemic data and the starting values of the parameter.

d) Misclass2(ε, n), computes the misclassification probabilites asssociated with the three

dimensional model from the theoretical parameter ε and maximum household size n

e.) final_sizep(a, b, π, n, λL) computes the final size probabilities associated with the two

dimensional model from the parameters of Gamma(a, b) infectious period distribution, π, λL

and maximum household size n.

f.) Misclass3(a, b, n, π, λL, ε), computes the sum of the product of the misclassification

probabilities and the final size probabilities associated with the three dimensional model.

g.) falseMisclass2(εFN , εFP , n), computes the misclassification probabilities asssociated
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with the four dimensional model.

h.) SIRfalsePmisclass(a, b, n, π, λL, fneg, fpos), computes the products of the misclassifi-

cation probabilities and the final size probabilities associated with the loglikelihood function

of the four dimensional model.

i.) pinf2(a, b, π, λLhouses), calculates z and λG, where houses is the vector of household

sizes from the parameters of Gamma(a, b) infectious period distribution, model parameters

π, λL and vector of household sizes.

j.) RSTER2(a, b, c, λL, λG,houses) calculates the threshold parameter, R∗ from Gamma(a, b)

infectious period distribution, theoretical parameters λL, λG and vector of household sizes.

For a range of misclassification probabilities in the permissible region ε ∈ [0, 0.5), we

explored the estimates of the models with the function, TwoDonThreeSNsimhouses2 and

subroutines as follows.

2. Run the function ThreefourTwoDimplotsRMSE, to simulate three dimensional final size

epidemic data with Gamma(a, b) infectious period distribution, theoretical parameters λL, and

λG, ε ∈ [0, 0.5). It then calculates other parameters of the three models with Gamma(a, b)

infectious period distribution, computes the mean, standard deviation and root mean square

error of the parameters of the three models and plot their root mean square error of the

estimates using the program function, ThreefourTwoDimplotsEstimates and subroutines as

follows,

Using the program functions in (1) and (2), we present plots of the estimates, tables of

mean, standard deviation and the root mean square error in section 5.9 and in section 5.10,

we explored the estimates further with theoretical parameters away from their boundarires

and then examined the precision of the estimates for ε ∈ [0, 0.1].

Finally in section 5.11, we present table of summary of performance for the three models

on final size epidemic data.
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5.8.1 Fitting the two, three and four dimensional models to the three

dimensional final size epidemic data.

Using the function, ThreefourTwoDimplotsEstimates we simulate three dimensional household

epidemic with Gamma(2, 2.05) infectious period distribution, theoretical parameters, λL =

0.1, λG = 0.29, π = 0.4199, z = 0.7298, R∗ = 2.2166, misclassification probabilities, ε ∈

[0.01, 0.0.2] and ε = 0.2, household structure in [1] but fifty times its population size, minimum

epidemic size of 1000.We then estimate and plot the parameters of the three models as follows,

5.8.2 Fitting the two, three and four dimensional models to the three

dimensional simulated final size epidemic data, when ε = 0.01.

Figure 5.6: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.01.

From figure 5.6, (c) the two dimensional models is beginning to struggle fitting to the

three and four dimensional data when ε = 0.01, while those of the three and four dimensional
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models are unbiased and precisely estimated as in figures 5.6 (a) and (b).

5.8.3 Fitting the two, three and four dimensional models to the three

dimensional simulated final size epidemic data, when ε = 0.02.

Figure 5.7: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.02.

From figures 5.7 (a), (b) and (c), we see that when ε = 0.02, the parameter estimates

from the two dimensional model become biased and imprecise, while those of the three and

four dimensional models are unbiased and precise.

5.8.4 Fitting the two, three and four dimensional models to three dimen-

sional simulated final size epidemic data, when ε = 0.2.

From figure 5.8 (c), we see that estimates from the two dimensional model are biased and

imprecise while those from the three and four dimensional models in figures 5.8 (a) and (b)
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Figure 5.8: Plots of the estimates of (λL, λG), (εFN , εFP ) and histogram of ε when ε = 0.2

are precise and unbiased as expected.

Thus, with large misclassification probability ε = 0.2 the three and four dimensional

models are the apropriate fit to three dimensional epidemic data. The three dimensional

model with less number of parameters is often chosen in line with the principle of parsimony.
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5.9 Table of mean, standard deviation and root mean square

error of the estimates for the two, three and four dimen-

sional models, when ε = 0.01, 0.02 and ε = 0.2.

We see from Table 5.4 that the maximum likelihood estimates of the two dimensional models

are precise only when the misclassification probability is close to 0 and hence outperforms the

three and four dimensional models, otherwise those of the three and four dimensional models

have better precision.

In general, the three and four dimensional models outperforms the two dimensional model

when the misclassification probability is far from 0.

Misclassification probability and model.
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theo

Par.
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 N/A
λ̂L 0.094069 0.10023 0.10309 0.088669 0.099995 0.10278 0.030611 0.099752 0.11092 0.1000
λ̂G 0.29291 0.28987 0.28513 0.29577 0.29005 0.28576 0.33108 0.29038 0.28831 0.29
π̂ 0.41882 0.42013 0.42827 0.41765 0.41995 0.42737 0.42125 0.41992 0.4268 0.4199
ẑ 0.72472 0.72974 0.72572 0.72004 0.72962 0.72606 0.6369 0.72901 0.72763 0.7298
ˆεFN N/A N/A 0.013024 N/A N/A 0.022364 N/A N/A 0.20014 N/A
ˆεFP N/A N/A 0.030605 N/A N/A 0.037319 N/A N/A 0.18729 N/A
ε̂ N/A 0.010366 N/A N/A 0.019881 N/A N/A 0.19867 N/A N/A
R̂∗ 2.188 2.2167 2.2018 2.161 2.2159 .2029 1.7367 2.2124 2.2105 2.2166

Table 5.4: Mean of the parameter estimates of the two, three and four dimensional mod-
els where, 2Dim=two dimensional model, 3Dim=three dimensional model and 4Dim=four
dimensional model.
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Misclassification probability and model.
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.0014753 0.0042391 0.0066601 0.0014404 0.0050092 0.0081937 0.0010274 0.01126 0.047973
λ̂G 0.0024073 0.0031445 0.0090772 0.0023992 0.0032744 0.010904 0.0022198 0.0060073 0.044444
π̂ 0.0046921 0.0048705 0.015706 0.0046184 0.0048262 0.018881 0.0037478 0.0067691 0.077563
ẑ 0.0038545 0.0049281 0.0093312 0.0037818 0.0056181 0.011074 0.0029132 0.010631 0.040697
ˆεFN N/A N/A 0.0079028 N/A N/A 0.0091772 N/A N/A 0.017635
ˆεFP N/A N/A 0.037529 N/A N/A 0.043826 N/A N/A 0.11707
ε̂ N/A 0.0064795 N/A N/A 0.0077986 N/A N/A 0.012364 N/A
R̂∗ 0.01685 0.024641 0.039134 0.016008 0.028788 0.046484 0.0076039 0.057059 0.16838

Table 5.5: Standard deviation of the parameter estimates of the two, three and four di-
mensional models where, 2Dim=two dimensional model, 3Dim=three dimensional model and
4Dim=four dimensional model.

Misclassification probability and model.
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim

ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.006111 0.0042409 0.0073379 0.011422 0.0050042 0.0086443 0.069397 0.011252 0.049154
λ̂G 0.0037761 0.0031442 0.0073379 0.0062438 0.0032715 0.0086443 0.041142 0.0060135 0.049154
π̂ 0.0048073 0.0048714 0.017787 0.0051303 0.0048218 0.02029 0.0039827 0.0067624 0.077793
ẑ 0.0063716 0.0049235 0.010172 0.010457 0.0056151 0.011675 0.092936 0.010648 0.040714
ˆεFN N/A N/A 0.0084544 N/A N/A 0.0095477 N/A N/A 0.017617
ˆεFP N/A N/A 0.04278 N/A N/A 0.0094679 N/A N/A 0.11764
ε̂ N/A 0.0064833 N/A N/A 0.0077917 N/A N/A 0.012423 N/A
R̂∗ 0.033136 0.024617 0.041799 0.057782 0.028766 0.048413 0.47997 0.057153 0.16832

Table 5.6: Root mean square error of the parameter estimates of the two, three and four
dimensional models where, 2Dim=two dimensional model, 3Dim=three dimensional model
and 4Dim=four dimensional model.

5.10 Simulations and inferences of the two and three dimen-

sional models for z ∈ [0, 1].

To enhance our understanding of the properties of the estimates in the face of misclassification

probabilities in the permissible region, [0, 0.5), we explored the estimates of the three models

with two different sets of theoretical parameters with corresponding z = 0.2144 and z = 0.7298

away from their boundaries, simulation runs of 500, misclassification probabilities ε ∈ [0, 0.1],

with stepsize of 0.01, household structure in [1] and 50 times its population size, minimum
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epidemic size of 1000, discussed in sections 4.2. We then simulate and estimate the models

parameters, compute and plot the root mean square of the estimates using the function,

ThreefourTwoDimplotsRMSE and subroutines in section 5.8.

Beginning with the theoretical parameters, λL = 0.2, λG = 0.12, π = 0.8999, z = 0.2144,

R∗ = 1.1653, we simulate household epidemic, estimate the parameters of the models and

examined their precision from the plots of the root mean square error for misclassification

probabilities region ε ∈ [0, 0.1).
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5.10.1 Plots of the RMSE of the Parameter estimates when, λL = 0.2,

λG = 0.12, π = 0.8999, z = 0.2144, R∗ = 1.1653.

Figure 5.9: Plots of the RMSE estimates of λL for three and two dimensional optimization
when λL = 0.2, λG = 0.12, π = 0.8999, z = 0.2144, R∗ = 1.1653.

In figures 5.9 (a)-(f), we see that the estimates of the two dimensional model are precise

compared to those of the three dimensional model if the misclassification probabilities are

close to zero otherwise those of the three and four dimensional models are better.
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5.10.2 Plots of the RMSE of the parameter estimates when λL = 0.1, λG =

0.29, π = 0.4199, z = 0.7298, R∗ = 2.2166.

Figure 5.10: Plots of the RMSE estimates of λL for three and two dimensional optimization
when λL = 0.1, λG = 0.29, π = 0.4199, z = 0.7298, R∗ = 2.2166.

In Figures 5.10 (a)-(f), similar pattern of behaviour are observed except that the estimates

of λG in figure 5.10 (c) for the four dimensional are less precise than those of the two dimen-

sional model. This may be attributable to the size of the proportion infected z as compared

to its behaviour with z = 0.2144 in figure 5.9(c).
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5.11 Summary of performance of the two, three and four di-

mensional models on final size epidemic data.

Here, we examined regions where the models outperform each other on the three dimensional

final size household epidemic data for the set of theoretical parameters and misclassification

probabilities ε ∈ [0, 0.1]. For example, the two dimensional model is found to be sufficient

on the three dimensional final size epidemic data if ε is close to 0, while the three and four

dimensional model are sufficient model fit if the misclassification probability is large. These

properties are summarised in table 5.7.

The estimates of the two dimensional model are initialised according to [24] with minimum

computational cost. For example from the [1] A(H3N2) Tercumseh Michigan epidemic the

computational time for the estimates is 1.2 seconds, while those of the Seattle 1975-1976

B(H1N1) epidemic is 9 seconds, those of 1978-1979 A(H1N1) epidemic is 4.2 seconds.

In summary, the computational time required for convergence of the maximum likelihood

estimates depends on the choice of the starting values and population size. With appropriate

choice of the starting values away from the boundaries and large population size the compu-

tational time is large compared to small population size. However inadequate population size

leads to lack of information and hence makes convergence of the estimates impossible.
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Truth Simulated Data
Estimation Method. Two Dimensional Three Dimensional Four Dimensional

Simulated Data Simulated Data Simulated Data.
ε = 0, No Noise. ε 6= 0 εFN 6= εFP 6= 0

Input Parameters, λL, λG Input Parameters, λL, λG, ε Input Parameters, λL, λG, εFN , εFP
Two Dimensional Optimisation Works well, with Does not work well Does not work well.

precise estimates for ε closer to 0, It give imprecise It gives imprecise and biased
than three Dimensional Optimization and biased estimates estimates

Parameters Estimates, Average computational time=1 seconds
with Population size in [1]and [28] B(H1N1)
epidemic data and initial estimates according
[24] and 0.35 seconds for [28] Seattle A(H1N1)

λ̂L, π̂, ε = 0

Three Dimensional Optimisation Works well but Works well but with better precision ∀ε ≥ 0.005. Works well only
with less precision than two even for z close to the boundaries. if the misclassification probabilities

Parameters Estimates, Dimensional Optimization. Here λL and λG are initialised according are close to each
to [24], while ε values are chosen away from its boundary

as starting value. With the [1] and Seattle B(H1N1) epidemic data.
the average computation time =9 seconds, while it is 0.42 seconds
for the Seattle A(H1N1) epidemic data. Convergece of the estimates

depends on the choice ε within the permissible region.

λ̂L, π̂, ε̂, ε 6= 0. Otherwise does not work well

Four Dimensional Optimisation Works well Works well Works well with better precision
with less precision than two with approximately same precision ∀εFP , εFN ∈ [0, 0.5) if the misclassification

Parameter Estimates but better precision as the three dimensional model probabilities are far apart, where εFN and εFP
λ̂L, π̂, ˆεFN , ˆεFP . if the misclassification probabilities are chosen away from the boundary of the misclassification
εFN 6= εFP 6= 0 are close probabilities permissible region and other parameters

of the model are initialised according to [24]
Convergence of the estimates depends on the choice

of the starting values of εFN and εFP .

Table 5.7: Table of comparison of optimisations and models on the two, three and four
dimensional simulated final size epidemic data.
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Chapter 6

Chi-square goodness of fit test.

6.1 Introduction.

In this section, we fitted the three models to the final size epidemic data using the Pearson

chi-square goodness of fit statistic with chi-square distribution function χ2
v under the null

hypothesis.

The Pearson chi-square goodness of fit test is meant to compare differences between the

observed frequencies of the data with the expected frequencies, which are obtained according

to a specific hypothesis. It compares the sample obtained with the hypothesized distribution

to see if it fits the data. Here, v is the degrees of freedom of the test.

We also employed the Kolmogorov-Smirnov goodness of fit test to provide further insights

on which sample data from the three models is from the hypothesized distribution.

These are accomplished by plotting the density histograms of the chi-square goodness of

fit statistics for the three models each superimposed with their corresponding theoretical chi-

square distribution functions. Their mean, variance are computed including the proportion

of the simulations rejected from the Pearson chi-square goodness of fit test at the upper 5%

point. Plots of the mean and variance of the Pearson chi-square goodness of fit statistics of

the models are studied. Including the estimate of the models parameters, their Pearson chi-

square goodness of fit statistics for ε ∈ [0, 0.1], which corresponds to the three dimensional

final size epidemic data and for εFN , εFP ∈ [0, 0.5) corresponding to the four dimensional

116



epidemic data.

In the case of the four dimensional model, we explored the estimates along the diagonals

(slicing through the two dimensional misclassification probabilities region) and along the ver-

tical axes of the misclassification probabilities region for εFN , εFP ∈ [0, 0.2). The Pearson

chi-square goodness of fit statistics of the three models are then computed together with their

mean and variance.

Plots of the mean and variance of the Pearson chi-square goodness of fit statistics are

obtained including those of the proportion of the simulations rejected from the Pearson chi-

square goodness of fit test with the upper 5% point.

The empirical cumulative distribution function of the Pearson chi-square statistics of the

three models together with the cumulative of the hypothesized chi-square distribution func-

tions are also plotted.

This chapter is organised as follows:

In section 6.2, we discussed the degrees of freedom of the chi-square goodness of fit test

with examples from [1] household epidemic data in section 6.3. In section 6.4, we discussed

the likelihood ratio chi-squared goodness of fit test, while in section 6.5, we discussed the

Kolmogorov-Smirnov goodness of fit test.

In section 6.8, we fitted the models to the two dimensional final size epidemic data and

plotted the density histograms of the Pearson chi-square goodness of fit statistics. We also

plotted the empirical cumulative distribution functions of the Pearson chi-squared statistics

for the three models and those of cumulative of the chi-square distribution functions. We

computed the mean and variance of the Pearson chi-square goodness of fit statistic.

In sections 6.9 and 6.10, we fitted the three models to the three dimensional final size

epidemic data, plotted the density histograms of the Pearson chi-square statistics, those of

the empirical cumulative distribution function of the Pearson chi-squared statistics and the

cumulative of the hypothesized chi-square distribution functions for the three models.

We plotted the mean and variance of the Pearson chi-square goodness of fit statistics.

for the three models for simulated epidemic data including also plot of the proportion of

the simulations rejected from the Pearson chi-square goodness of fit test with theoretical
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parameters corresponding to z = 0.2144 and z = 0.7298 respectively over a range ε ∈ [0, 0.1],

with step size of 0.005.

In sections 6.11, 6.12 and 6.13, we fitted the models to the four dimensional final size

epidemic data using the Pearson chi-square goodness of fit test and the Kolmogorov-Smirnov

goodness of fit. We plotted the density histograms of the Pearson chi-square and those of the

empirical cumulative distribution function of the Pearson chi-squared statistic superimposed

with their theoretical chi-square distribution functions.

We also plotted the mean and variance of the Pearson chi-square goodness of statistic and

the proportion of the simulations rejected from the Pearson chi-square goodness of fit test for

theoretical parameters corresponding to z = 0.2144 and z = 0.7298, over ε ∈ [0, 0.2].

In section 6.14, we analysed and fitted the [1] Tecumseh Michigan epidemic data and in

section 6.17 and discussed the properties of the models on the final size epidemic data.

6.2 Computation method of the Pearson chi-square goodness

of fit statistic.

The expression Ei,j is described as the expected number of j infectives from the household

of size i when the null hypothesis is true and are computed from qj(i). Using [1] household

structure in table 1.2, we present Ei,j in table 6.1.

Expected Number Infected in Household.
Household Size Ei,0 Ei,1 Ei,2 Ei,3 Ei,4 Ei,5

1 N1P̂0(1) N1P̂1(1) 0 0 0 0
2 N2P̂0(2) N2P̂1(2) N2P̂2(2) 0 0 0
3 N3P̂0(3) N3P̂1(3) N3P̂2(3) N3P̂3(3) 0 0
4 N4P̂0(4) N4P̂1(4) N4P̂2(4) N4P̂3(4) N4P̂4(4) 0
5 N5P̂0(5) N5P̂1(5) N5P̂2(5) N5P̂3(5) N5P̂4(5) N5P̂5(5)

Table 6.1: Using [1] household structure and for qj(i), we have the expression for Ei,j , i =
1, . . . , n, j = 0, . . . , i. Where the final size probabilities are computed using the estimates of
the model parameters for the corresponding dimensional model.
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The Pearson chi-square statistic is given by,

χ2 =
maxh∑
i=1

i∑
j=0

(Oi,j − Ei,j)2

Ei,j
(6.2.1)

where Oi,j are the observed number of households of size i with j infectives in the final size

epidemic data. These values can be identified from the [1] final size epidemic data in table

1.2. For example, O1,0 = 110, O1,1 = 23, O2,0 = 149, O2,1 = 27, O2,2 = 13 etc.

Each row of table 1.2 has one constraint, the total number of households of that size. The

degrees of freedom of the test are obtained by subtracting one from the total number of cells,

then summing them all together and subtracting the number of parameter estimates of the

model, r from it.

If ci is the total number of cells corresponding to the households of size i, then we can

evaluate the degrees of freedom of the test as,

ci − 1 =
i∑

j=0

ci,j − 1, i = 1, 2 . . . ,maxh, (6.2.2)

where maxh is the maximum household size, ci,j is the cell with j observed number of

infectives in the household of size i defined by

ci,j =


1, if i = 1, 2, . . . ,maxh, j = 0, 1, . . . , i

0, otherwise.

Adding the degrees of freedom together c− 1 gives,

c− 1 =

maxh∑
i=1

(ci − 1)

=

maxh∑
i=1

(

i∑
j=0

ci,j − 1). (6.2.3)

Then the chi-square statistic, χ2
c−maxh−r is said to have c − maxh − r degrees of freedom.

Where r is the number of parameters in the model and c − maxh = maxh(maxh+ 1)/2. For
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example, χ2
k, where k = c − maxh − r, has mean k and variance 2k. These properties are

further discussed in section 6.3, using [1] Tecumseh Michigan Influenza A(H3N2) epidemic

data in table 1.2.

6.3 Degrees of freedom of the Pearson chi-square goodness of

fit test.

From table 1.2 and equation (6.2.2), the first row corresponds to households of size one and

has two nonempty cells. We subtract one from it (2 − 1 = 1). Also the second row, which

corresponds to households of size two and has 3 nonempty cells, we subtract one (3− 1 = 2).

The third row has 4 nonempty cells, and corresponds to households of size three, we subtract

one, (4 − 1 = 3), the fourth row has 5 nonempty cells and corresponds to households of

size four, we subtract one (5 − 1 = 4) and finally the fifth row has 6 non empty cells and

corresponds to households of size five, we subtract one (6 − 1 = 5). Adding these values

together as in equation (6.2.3) gives the total c− 1 = 15.

The degrees of freedom of the test depends on the number of parameters estimated in the

model.

If we employed the two dimensional model, the number of parameters estimated is r = 2,

namely λL and π and the degrees of freedom of the test is then

c− 1− r = 15− 2 = 13.

If the three dimensional model is employed, then the number of parameters estimated is

r = 3 and the degrees of freedom of the test is c− 1− 3 = 15− 3 = 12.

Also, if it is the four dimensional model, the number of parameters estimated is r = 4,

the degrees of freedom is c− 1− 4 = 15− 4 = 11.

6.4 Likelihood ratio chi-squared goodness of fit test.

A similar test to the Pearson chi-square goodness of fit test with the same degrees of freedom

is the likelihood ratio chi-squared test proposed by [29]. The likelihood ratio chi-squared test
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has the same asymptotic distribution as the Pearson chi-square goodness of fit statistic with

the test statistic given by,

χ2 =

maxh∑
i=1

i∑
j=0

Oi,j

(
ln
Oi,j
Ei,j

)
. (6.4.1)

Here Oi,j and Ei,j are the observed and expected frequencies of the final size data from the

optimisations and ln is the natural logarithm.

These statistics may sometimes differ by large amount for some dataset, however the choice

on which of the test to use depends on individual preference [29]. In this thesis, we found

no such wide discrepancies between the two tests and therefore ignored it and presented the

inference with the Pearson chi-square goodness of fit test.

6.5 Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov goodness of fit test is employed to verify whether a random sample

is from a particular distribution, F (x). It compares the hypothesized distribution function

F (x) under the null hypothesis and the empirical distribution function of the sample, S(x)

defined as the fraction of Xis that are less than or equal to x, where −∞ < x < ∞, are the

sample data.

The test statistic T, is the vertical distance between the hypothesized distribution func-

tion F (x) and the empirical distribution function of the sample S(x) [29]. It have different

representations depending on the type of hypothesis been tested, namely the two sided test,

and the other two one sided tests.

The two sided test with the Null and alternative hypotheses, H0 : F (x) = S(x), H1 :

F (x) 6= S(x), has the test statistic, T = sup
x
|F (x)− S(x)|, while the one sided test with the

Null and alternative hypotheses, H0 : F (x) ≤ S(x), H1 : F (x) > S(x) has the test statistic,

T+ = sup
x

(F (x)−S(x)). The one sided test with the Null hypotheses, H0 : F (x) ≥ S(x), H1 :

F (x) < S(x) has the test statistic, T− = sup
x

(S(x)− F (x)) [29].

We have adopted the notation of the alternative hypotheses for the tail hypotheses in the

Mathworks documentations [46] given as, 0, for the alternative of the two sided hypothesis test,

H1 : F (x) 6= S(x), 1, for the alternative of the one sided hypothesis test, H1 : F (x) > S(x)
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and −1, for the alternative of the one sided hypothesis test, H1 : F (x) < S(x) respectively.

The function, kstest(Dataset,CDF,Alpha,Tail) in the Mathworks documentation [46] is

employed to compute the critical value of the test using approximate formula or by inter-

polation in a table [46], valid for the range of 0.01 ≤ α ≤ 0.2 for the two-sided test and

0.05 ≤ α ≤ 0.1 for the one-sided tests respectively. Here, CDF is a two column matrix,

having as its first column the sample data, the second column is made of the cumulative dis-

tribution function of the hypothesized distribution, Alpha is the chosen level of significance,

while the tail represents the alternative hypotheses of the two and the one-sided hypotheses

been tested.

Since the critical value is approximate, comparing it with the test statistic will give a

different decision [46] and hence the comparison adopted is such that if there is good agreement

between the empirical distribution S(x) and hypothesised distribution F (x), the P-values will

be large compared to the level of significance of the test and the null hypothesis is then

accepted. Small value of p cast doubt on the validity of the test [46]. We have employed

these procedures to test the three models fitness to the final size epidemic data, at the default

upper 5% level of significance with the decision rules, h = 1 and h = 0 for rejecting and not

rejecting the null hypothesis respectively.

6.6 Proportion of the simulations rejected from the Pearson

chi-square goodness of fit test.

Having computed the Pearson chi-square statistics corresponding to the three models as dis-

cussed in sections 6.7 and 6.3 respectively, we can test the null hypothesis at the default upper

α = 5% significance and reject the models or not depending on the value of the Pearson chi-

squares statistics at the 1− α quantile of the chi-square distribution.

In a simulation experiment, we can also compute the proportion rejected which is the

numerical approximation of the power function. It tells us how often we reject the null

hypothesis when it is false. For example, if the two dimensional model is sufficient on the two

dimensional final size epidemic data then we expect that X2 ≈ χ2
13, where X2 is the Pearson
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chi-square goodness of fit statistic from the two dimensional final size data and we do not

reject the two dimensional model. If the two dimensional model is not sufficient on the two

dimensional final size epidemic data then X2 � χ2
13.

Similarly, if the three dimensional model is sufficient on the three dimensional final size

epidemic data then we expect X3 ≈ χ2
12, where X3 is the Pearson chi-square goodness of fit

statistic from the three dimensional final size epidemic data and we do not reject the three

dimensional model. If the three dimensional model is not sufficient on the three dimensional

final size epidemic data then X3 � χ2
12.

Also if the four dimensional model is sufficient on the four dimensional model then X4 ≈

χ2
11, whereX4 is the Pearson chi-square goodness of fit statistic from the four dimensional final

size epidemic data and we do not reject the four dimensional model. If the four dimensional

model is not sufficient on the four dimensional final size epidemic data then X4 � χ2
11.

Using the upper α = 5% points which corresponds to the 1−α quantiles of the chi-square

distribution given as 22.36, 21.03 and 19.68 respectively, these scenarios are better understood

as follows.

We reject the two dimensional model, if X2 > 22.36 when the two dimensional model is

true. Also we reject the three dimensional model, if X3 > 21.03, when the three dimensional

model is true. In the same way, we reject the four dimensional model, if X4 > 19.68 when

the four dimensional model is true.

We compute the proportions of the simulation rejected at α level of significance obtained

as follows.

If the Pearson chi-square statistic from the two dimensional model areX2 = 47, 12, 53, 57, 31

then using the upper 5% point we sum the number of the simulations rejected as, sum(X >

22.36) and determine the proportion rejected or the power of the test as, sum(X2 > 22.36)/length(X),

which in this case is 0.800.

If the model fits well to the final size epidemic data, then we expect the proportion rejected

or the power of the test to be close to 0.05, while if it doesn’t fit well, then we expect the

proportion rejected or the power function to be close to 1.

Using this approach with ε = 0, 0.1, 0.3, we presented in figure 6.5 the proportion infected
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for simulated epidemic data over a range of ε ∈ [0, 0.1] with step size of 0.005 for the three

models.

We have also extended this method to the four dimensional epidemic data in table 6.17

for a range of misclassification probabilities in [0, 0.2], in table 6.9 and presented plots of

the proportion rejected for the three models in figure 6.13 for misclassification probabilities

in εFP ∈ [0, 0.2] and theoretical parameters corresponding to z = 0.2144 and z = 0.7298

respectively.

In general, the usual behaviour of the models in the face of varying misclassification proba-

bilities in the permissible region [0, 0.5) are observed. We found that without misclassification

probabilities in the final size epidemic data, the proportion of the simulations rejected for the

two dimensional model in 7.2 is small but with increasing misclassification probabilities the

proportion of the simulations rejected for the two dimensional model increases towards 1 as

theoretically expected. While the three dimensional model has a small proportion rejected

when ε = 0.1 but with increasing misclassification probabilities towards its upper boundary,

the four dimensional model has small proportion of the simulations rejected compared to the

two and three dimensional model. This demonstrates the strength of the four dimensional

model over the two and three dimensional models when the misclassification is large.

6.7 Pearson chi-square goodness of fit test on two dimensional

final size epidemic data.

We fitted the three models to the two dimensional final size epidemic data as follows.

Run the function, TwoThreeandfourandTwoSNsimhouseschsqlik to simulate two dimen-

sional final size household epidemic data having Gamma(a, b) infectious period distribution,

with the theoretical parameters, λL and λG. It then calculates the parameters of the three

models with Gamma(a, b) infectious period distribution, computes their pearson chi-square

square statistics and plot their density histogram superimposed with their theoretical chi-

square distribution. It also computes the mean and variance of the Pearson chi-square statistic

from the three models.
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It computes the proportion of the simulations rejected from the Pearson chi-square good-

ness of fit test, the empirical cumulative distribution from the three models and plot the em-

pirical cumulative distribution function with the cumulative of the hypothesized chi-square

square distribution function for the three models using the following subroutines.

a.) LampaiD(mat), provides starting values for the two dimensional model parameters,

λL and π according to [24].

b.) Enegloglik4(y, n, a, b,mat), computes the negative of the loglikelihood function asso-

ciated with the three dimensional model with Gamma(a, b) infectious period distribution, the

final size epidemic data and the starting parameters.

c.) negloglik2(x, n, a, b,mat), computes the negative loglikelihood function associated with

the two dimensional model with Gamma(a, b) infectious period distribution, the final size

epidemic data and the starting values of the parameter.

d) Misclass2(ε, n), computes the misclassification Probabilities asssociated with the three

dimensional model from the misclassification probability parameter ε and maximum household

size n.

e.) final_sizep(a, b, π, n, λL) computes the final size probabilities from the parameters

associated with the two dimensional model using Gamma(a, b) infectious period distribution,

estimates of π, λL and maximum household size n. It also computes the Pearson chi-square

statistics from the two dimensional model.

f.) Misclass3(a, b, n, π, λL, ε), computes the sum of the product of the misclassification

probabilities and the final size probabilities associated with the three dimensional model for

the computation of the negative loglikelihood function. It also computes the Pearson chi-

square statistic from the three dimensional model.

g.) falseMisclass2(εFN , εFP , n), computes the misclassification probabilities asssociated

with the four dimensional model.

h.) SIRfalsePmisclass(a, b, n, π, λL, fneg, fpos), computes the sum of the products of the

misclassification probabilities and the final size probabilities associated with the four dimen-

sional model and the Pearson chi-square statistics of three models.

i.) pinf2(a, b, π, λLhouses), calculates z and λG, from the parameters of Gamma(a, b)

125



infectious period distribution, model parameters π, λL and vector of household sizes.

j.) RSTER2(a, b, c, λL, λG, houses) calculates the threshold parameter, R∗ from the pa-

rameters of Gamma(a, b) infectious period distribution, theoretical parameters, λL, λG and

vector of household sizes, houses.

The expected frequencies are computed as Ei,j = p̂i(j)Ni, where p̂i(j) are the final size

probabilities and computed from the subroutine,

final_sizep(a, b, π, λL), Ni is the number of households of size i = 1, 2, . . . , n, j =

0, 1, . . . , i.

6.8 Numerical simulations on two dimensional final size epi-

demic data.

Using the procedures in 6.7, we simulate household epidemics with Gamma(a, b) infectious

period distribution, theoretical parameters, λL = 0.1, λG = 0.29, π = 0.4199, z = 0.7298,

R∗ = 2.2166, minimum epidemic size of 1000, fifty times household size in [1], simulation runs

of 1000 and plotted the density histograms of the Pearson chi-square goodness of fit statistic

superimposed with their theoretical chi-square distribution. Also, we plotted the empirical

cumulative distribution functions superimposed with the cumulative of the hypothesized chi-

squared distribution function. The mean and variance of the Pearson chi-square goodness

of fit statistic and the proportion of the simulations rejected from the Pearson chi-square

goodness of fit test with the upper 5% points are also computed.

6.8.1 The Pearson chi-square and the Kolmogorov-Smirnov goodness of fit

tests on two dimensional final size epidemic data.

From figures 6.1 (a), (c), (e), we found that the three models are not good enough on the two

dimensional data. This clarity can be seen from plots of the empirical cumulative distribution

function and hypothesized cumulative distribution in figures 6.1 (b), (d) and (f).

In this case the model with the smallest number of parameters is often chosen in line with

the principle of parsimony.
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Figure 6.1: Density histograms of the Pearson chi-square goodness of fit and the Kolmogorov-
Smirnov goodness of fit tests on the two dimensional final size epidemic data.

6.8.2 Table of mean and variance of the Pearson chi-square test on the

two dimensional final size epidemic data.

Two Dim. Model Three Dim. Model Four Dim. Model.
Statistic Sim. chi Theo. Sim. chi. Theo. Sim. chi. Theo.

value value value value value value
Mean 13.308 13 12.823 12 11.932 11

Variance 28.952 26 28.099 24 26.044 22

Table 6.2: Table of the mean and variance of the Pearson chi-square statistic of the models
to two dimensional final size epidemic data. Where Sim. is the simulated values, chi. is the
Pearson chi-square goodness of fit statistic, Theo. is the Theoretical mean and variance of
the chi-square statistic.

The Mean and variance of the Pearson chi-square statistic for the three models, defined
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here as the simulated mean and variance, are all approximately equal to their theoretical values

in table 6.2 and are therefore approximately equal to the theoretical chi-square distribution

function.

The two dimensional model is the simplest of the three models and therefore the preferred

model fit to the two dimensional final size epidemic data as seen from figures 6.1 (a) and (b).

Also from table 6.3 we see that the proportion of the simulations rejected is not close to 1, for

the three models, as this will mean their misfit to the final size epidemic data. This provides

further evidence that the three models fit fairly well to the two dimensional final size epidemic

data.

Pearson chi-square statistic. Upper 5% point Proportion Rejected
χ2
13 22.36 0.0940
χ2
12 21.03 0.0960
χ2
11 19.68 0.1400

Table 6.3: Table showing the proportion of the simulations rejected from the two dimensional
final size epidemic data in figures 6.1 (a), (c) and (e).

From table 6.4, the null hypothesis from the two sided test is rejected from the two dimen-

sional model owing to significant discrepancy between the empirical cumulative distribution

function and the cumulative of the chi-square distribution function in one direction, while

Tail (F>S F<S) Tail ( F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.0000010 h=0, p=0.220801 h=1, p=0.000005

T=0.109964 T= 0.038535 T=0.109964
3Dim. h=1, p=0.00008, h=1, p=0.000040 h=1, p=0.00100

T=0.100172 T=0.100172 T=0.082736
4Dim. h=1, p=0.000029 h=1, p=0.000144 h = 1, p=0.000015,

T=0.105015 T=0.093661 T=0.105015

Table 6.4: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the two dimensional final size epidemic data in figure 6.1 (b), (d), (f).
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those of the three and four dimensional models were rejected because of the significance dis-

crepancies in both directions.

6.9 The Pearson chi-square and the Kolmogorov-Smirnov good-

ness of fit tests on the three dimensional final size epidemic

data.

Here, we explored the the parameter estimates of the three models with ε = 0.0, 0.1, 0.3 using

the following function and subroutines.

Run the function ThreeandTwoDimoptonThreesimhousesChsqlik to simulate three dimen-

sional epidemic data having Gamma(a, b) infectious period distribution, for ε ∈ [0, 0.5) and

theoretical parameters, λL and λG. It then calculates the parameters of the three models with

Gamma(a, b) infectious period distribution. It computes the Pearson chi-square square statis-

tic its mean and variance, the empirical cumulative distribution of the chi-square statistics of

the three models and the proportion of the simulations rejected from the chi-square goodness

of fit statistic at 5% significance. These are accomplished with the subroutines in subsection

6.7.

We extended our studies for a range of misclassification probabilities, ε ∈ [0, 0.1] with step

size of 0.005 for theoretical parameters corresponding to z = 0.2144 and z = 0.7298 presented

in section 6.10. These are achieved using the following function and subroutines.

Run the function, ThreefourTwoDimplotschsqlik to simulate household epidemic with

Gamma(a, b) infectious period distribution for a range of ε ∈ [0, 0.5), theoretical parameters,

λL and λG. It then calculates the other parameters of the three models with Gamma(a, b)

infectious period distribution over ε ∈ [0, 0.5) and computes the Pearson chi-square goodness

of fit and the chi-square difference goodnes of fit statistics of the three models. It plots their

mean and variance including the proportion of the simulation rejected by the Pearson chi-

square and chi-square difference test at 5% significance using the subroutines in subsection

6.7.
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6.9.1 When the misclassification probability ε = 0.1.

Figure 6.2: Density histograms of the Pearson chi-square and the Kolmogorov-Smirnov good-
ness of fit tests of the three models on the three dimensional final size epidemic data when
ε = 0.1.

In figure 6.2 (a), we see that when the misclassification probability is large away from

the lower boundary of the misclassification probability permissible region [0, 0.5), the two

dimensional model struggled fitting the final size epidemic data as shown by the density

histograms and the Kolmogorov-Smirnov goodness of fit test. The three and four dimensional

models sufficiently fit the three dimensional final size epidemic data.

From table 6.5, we see that with misclassification probability ε = 0.1, the null hypothesis

is rejected for the two sided test at 0.05 significance level from the three models because of

the significant discrepancies between the empirical cumulative distribution functions and the

hypothesized chi-square distribution functions in one direction. However, the empirical cu-

mulative distributions from the three and four dimensional models are better approximations

of the cumulative of the chi-square distribution.
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Tail (F>S and F<S) Tail ( F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.0000 h=0, p=1.00000, h=1, p=0.0000,

T=1.0000 T=0.0000 T=1.0000
3Dim. h=1,p=0.03691, h=0, p=0.106755, h=1, p=0.001845,

T=0.078971 T=0.046966 T=0.078971
4Dim. h=1, p=0.00004, h=0, p=0.133589, h=1, p=0.00002,

T=0.114159 T=0.044534 T=0.114159

Table 6.5: Summary of the Kolmogorov-Smirnov test for the upper 5% points for the three
dimensional final size epidemic data when ε = 0.1 in figures 6.2( b), (d) and (f).

6.9.2 When the misclassification probability ε = 0.3.

Figure 6.3: Density histograms of the Pearson chi-square and the Kolmogorov-Smirnov good-
ness of fit tests of the three models on the three dimensional final size epidemic data when
ε = 0.3.
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Tail ( F>S and F<S) Tail ( F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.0000 h=0, p= 1.00000, h=1, p=0.0000,

T=0.999924 T=0.0000 T=0.999924
3Dim. h=0,p=0.107050, h=0, p=0.120041, h=0, p=0.053533

T=0.053768 T=0.045710 T=0.053768
4Dim. h=0, p=0.102531, h=0, p=0.059711 h=0, p=0.051272

T=0.054165 T=0.052750 T=0.054165

Table 6.6: Summary of the Kolmogorov-Smirnov test for the upper 5% points for the three
dimensional final size epidemic data when ε = 0.3 in figures 6.3 (a), (d) and (f).

Same scenario as in figures 6.2 (a)-(f) is observed. The three and four dimensional models

are sufficient fit on the three dimensional final size epidemic data when the misclassification

probability is large.

From table 6.6, with the misclassification probability ε = 0.3 we see that the null hypoth-

esis is not rejected from the two sided test at 0.05 for the three and four dimensional models

owing to insignificant differences between the empirical cumulative distribution functions and

the cumulative of the chi-square idistribution function in both directions. They are good

approximations.

6.9.3 Table of mean and variance of the Pearson chi-square goodness of fit

statistic on the three dimensional final size epidemic data.

2Dim. Model. 3Dim. Model 4Dim. Model
Misc. Prob. Sim. Chi. Sim. Chi. Sim. Chi. Sim. Chi. Sim. Chi. Sim. Chi.

mean var. mean var. mean var.
ε = 0.0 12.85 25.875 12.383 24.172 11.562 22.615
ε = 0.1 82.009 288.79 11.853 24.67 11.013 22.714
ε = 0.3 104.9 376.23 11.89 22.162 10.936 20.793

.

Table 6.7: Table of the mean and variance of the Pearson chi-square goodness of fit statistic
on the four dimensional final size epidemic data
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From table 6.7, we see that the mean and variance of the two dimensional model increases

with increasing misclassification probability and therefore not a sufficient fit to the three

dimensional final size epidemic data when the misclassification probability is large, which

agrees with figures 6.2 (a)-(f) and 6.3 (a)-(f) respectively. Here, 2Dim. is the two dimensional

model, 3Dim. is the three dimensional model, 4Dim. is the four dimensional model, Sim.

is the simulated mean and variance of the goodness of fit statistics, Misc. Prob. are the

misclassification probabilities.

At 5% significance, we see that if ε 6= 0 then the proportion of the simulations rejected for

the two dimensional model increases towards 1, as expected in contrast to the behaviour of

the three dimensional model in table 7.6. The three and four dimensional models are sufficient

on the three dimensional final size epidemic data.

Proportion Rejected.
Pearson Chi-square Statistic. Upper 5% point ε = 0 ε = 0.1 ε = 0.3

χ2
13 22.36 0.0480 1 1
χ2
12 21.03 0.0800 0.0640 0.110
χ2
11 19.68 0.0640 0.0960 0.0940

Table 6.8: Table of the proportion of the simulations rejected from the Pearson chi-square
test on the final size epidemic data.

6.10 Plots of the mean and variance of the Pearson chi-square

goodness of fit statistic on the three dimensional final size

data.

In this section, we employed the function and subroutines in section 6.9 to compute and

plot the mean and variance of the Pearson chi-square goodness of fit statistic, including

the proportion of the simulations rejected at 5% siginficance for a range of ε ∈ [0, 0.1] and

theoretical parameters corresponding to z = 0.7298 and z = 0.2144 respectively. We employed

the household structure in [1] but fifty times population size and minimum epidemic size of

1000 to allow the occurrence of large infections in our simulations and hence global epidemic
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in the population.

Figure 6.4: Plots of the mean and variance of the Pearson chi-square goodness of fit statistics
for the models when λL = 0.1, λG = 0.29 and λL = 0.2, λG = 0.12, ε ∈ [0, 0.1], step size of
0.005.

In figures 6.4 (a)-(d), we found that with increasing ε, the mean and variance of the

Pearson chi-square goodness of fit statistic from the two dimensional model increases further

away from their theoretical counterparts, while those from three and four dimensional models

are close to their theoretical counterparts.
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Figure 6.5: Plots of the proportion of the simulations rejected at 5% significance from the
Pearson chi-square goodness of fit tests for ε ∈ [0, 0.1], step size of 0.005.

In figures 6.5 (a) and (b), we fitted the three models to three dimensional epidemic data

using the Pearson chi-square goodness of fit test at the default upper 5% siginficance given

by, 22.36, 21.03, and 19.68.

We see that with increasing ε ∈ [0, 0.1], the proportion of the simulations rejected from

the chi-square goodness of fit test for the two dimensional model increases toward 1 in line

with the behaviours of the models in figures 6.4 (a)-(d). The three and four dimensional

models have small proportion infected compared to those of the two dimensional model as

the misclassification probability increases from zero.

These behaviours agree with our earlier studies, that the three and four dimensional models

are the sufficient fit on the three dimensional final size epidemic data.

135



6.11 The Pearson chi-square goodness of fit tests on the four

dimensional final size epidemic data.

We fit the three models to four dimensional final size epidemic data for εFN , εFP ∈ [0, 0.5)

in table 6.9 using the following function.

Run the function FourDimThreeATwoSNsimhousesChsqlik to simulate four dimensional

final size household epidemic data with Gamma(a, b) infectious period distribution, theoretical

parameters, λL, λG, vector of household sizes, minimum epidemic size and misclassification

probabilities εFN , εFP ∈ [0, 0.5). It then calculates the other corresponding parameters of

the three models with Gamma(a, b) infectious period distribution, computes their chi-square

statistics, their mean and variance and the porportion of the simulation rejected at 5% sig-

nificance.

It plots the density histogram of the Pearson chi-square statistics superimposed with

their theoretical chi-square distribution function. It also computes and plot the empirical

cumulative distribution function of the Pearson chi-square statistic and the cumulative of the

hypothesized chi-square distribution function.

These are accomplished with the functions in 5.4.1 and the following subroutines.

a.) final_sizep(a, b, π, n, λL) also computes the Pearson chi-square statistics, associated

with the two dimensional model

b.) falseMisclass2a(fneg, fpos, n), computes the Pearson chi-square statistic associated

with three dimensional model.

c.) SIRfalsePmisclass(a, b, n, π, λL, fneg, fpos) also computes the Pearson chi-square statis-

tic associated with the four dimensional model

Serial Number.
Misclassification Probability. 1 2 3 4 5 6

εFN 0.0 0.2 0.01 0.02 0.2 0.3
εFP 0.2 0.0 0.02 0.01 0.3 0.2

Table 6.9: Table of misclassification probabilities 1 to 6.
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6.11.1 When the misclassification probabilities are εFN = 0 and εFP = 0.2.

Figure 6.6: Density histograms of the Pearson chi-square goodness of fit statistics superim-
posed with their theoretical chi-square distributions and plots of the empirical cumulative
distribution function of the Pearson chi-square goodness of fit statistic with their hypothe-
sized distributions for the three models on the four dimensional final size epidemic data when
εFN = 0 and εFP = 0.2.

In figures 6.6 (a), (b), (c) and (d), the two and three dimensional models are struggling

fitting to the four dimensional final size epidemic data when the misclassification probabilities

are far apart from each in line with the discussion in section 5.7. Only the four dimensional

model sufficiently fits the four dimensional final size epidemic data under this circumstance

as shown by the plots in figures 6.6 (e) and (f).
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Tail ( F>S and F<S) Tail (F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.00000, h=0, p=1.00000 h=1, p=0.00000

T=0.749446 T=0.00000 T=0.749446
3Dim. h=1, p=0.00000, h=0, p=1.00000 h=1, p=0.00000,

T=0.784782 T=0.00000 T=0.78472
4Dim. h=1, p=0.000005, h=0, p=0.794406, h=1, p=0.000003

T=0.112961 T=0.014844 T=0.112961

Table 6.10: Summary of the Kolmogorov-Smirnov goodness of fit test with the upper 5%
points for the four dimensional final size epidemic data when εFN = 0, εFP = 0.2 in figures
6.6 (a)-(f).

In table 6.10, we see similar behaviour in table 6.5.

6.11.2 When the misclassification probabilities are εFN = 0.2 and εFP = 0.

In figures 6.7 (a) and (c), the two and three dimensional model failed to fit the final size

epidemic data. Only the four dimensional model sufficiently fits the four dimensional final

size epidemic data given this scenario.
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Figure 6.7: Density histogram of the Pearson chi-square, the likelihood ratio chi-squared
goodness of fit statistics superimposed with their theoretical chi-square distributions and
plots of the empirical cumulative distribution functions with their theoretical counterparts
of the three models on the four dimensional final size epidemic data when εFN = 0.2 and
εFP = 0.
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Tail (F>S and F<S) Tail (F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.00000, h=0, p=1.00000 h=1, p=0.00000

T=1.00000 T=0.00000 T=1.00000
3Dim. h=1, p=0.00000, h=0, p=0.999802 h=1, p=0.00000

T=0.591303 T=0.000181 T=0.591303
4Dim. h=1, p=0.000011 h=0, p=0.105348 h=1, p=0.000006

T=0.109522 T=0.047106 T=0.109522

Table 6.11: Summary of the Kolmogorov-Smirnov goodness of fit tests wit the upper 5%
points for the four dimensional final size epidemic data when εFN = 0.2, εFP = 0 in figures
6.7(b), (d) and (f).

In table 6.11, similar behaviour in table 6.5 are observed.

6.11.3 When the misclassification probabilities are εFN = 0.01 and εFP =

0.02

In figures 6.8 (a)-(f), the three model are sufficient fit on the four dimensional final size

epidemic data, since the misclassification probabilities are small and close to each other as

theoretically expected. Clarity of the models behaviours can be seen from figures 6.8 (b),

(d) and (f) with small distances between the empirical cumulative distribution function and

their theoretical counterparts. In general, the two, three and four dimensional models are

sufficiently fit to the four dimensional final size epidemic data.
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Figure 6.8: Density histograms of the Pearson chi-square goodness of fit statistics superim-
posed with their theoretical counterparts and plot of the empirical cumulative distribution
functions of the Pearson chi-square goodness of fit statistics with their theoretical counter-
parts of the three models on the four dimensional final size epidemic data when εFN = 0.01
and εFP = 0.02.
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Tail (F>S and F<S) Tail ( F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.00000 h=0, p=0.991673 h=1, p=0.00000

T=0.230967 T=0.002579 T=0.250967
3Dim. h=1, p=0.00000 h=0, p=0.754431 h=1, p=0.00000

T=0.169782 T=0.016460 T=0.169782
4Dim. h=1, p=0.00000 h=0, p=0.059114 h=1, p=0.00000

T=0.125768 T=0.052845 T=0.125768

Table 6.12: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points for the four dimensional final size epidemic data when εFN = 0.01, εFP = 0.02 in
figures 6.8 (b), (d) and (f).

Similar behaviours in table 6.5 are repeated in Table 6.12.

6.11.4 When the misclassification probabilities are εFN = 0.02 and εFP =

0.01

In figures 6.9 (a)-(f), similar behaviours of the three models in 6.8 (a)-(f) can be seen. However

with the false negative misclassification probability larger than the false positive misclassifi-

cation probability the two dimensional model struggled fitting to the four dimensional final

size epidemic data while the three and four dimensional models are sufficient fit to the final

size epidemic data. This clarity is shown by the distance between the empirical cumulative

distribution function and the cumulative of the hypothesized distribution in figures 6.9 (b),

(d) and (f).
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Figure 6.9: Density histograms of the Pearson chi-square goodness of fit statistics superim-
posed with their theoretical counterparts and plots of the empirical cumulative distribution
functions of the Pearson chi-square goodness of fit statistics with their theoretical counter-
parts of the three models on the four dimensional final size epidemic data when εFN = 0.02
and εFP = 0.01.
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Tail (F>S and F<S) Tail (F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, 0.00000 h=0, p=0.998864 h=1, p=0.00000

T=0.494793 T=0.000772 T=0.494793
3Dim. h=0, p=0.089320 h=1, p=0.044664 h=0, p=0.278133

T=0.055416 T=0.055416 T=0.035443
4Dim. h=1, p=0.000002 h=0, p=0.962047 h=1, p=0.000002

T=0.118042 T=0.005897 T=0.118042

Table 6.13: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points for the four dimensional final size epidemic data when εFN = 0.02, εFP = 0.01 in
figures 6.9 (b), (d) and (f).

In table 6.13 the null hypothesis for the two sided test is rejected from the two and four

dimensional models owing to significant discrepancies between their cumulative distribution

functions in one direction, while that of the three dimensional model which is small compared

to those of the two and four dimensional models is not rejected. This behaviour is associ-

ated with the small difference between the misclassification probabilities and makes the four

dimensional model approximately equal to the three dimensional model.

6.11.5 When the misclassification probabilities are εFN = 0.2 and εFP = 0.3

In figures 6.10 (c), (d), (e) and (f), in line with our discussion, the three and four dimensional

are sufficient fit on the four dimensional final size epidemic data, while the two dimensional

model failed to fit the final size epidemic data as in figures 6.10 (a) and (b).
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Figure 6.10: Density histograms of Pearson chi-square goodness of fit statistics superimposed
with their theoretical counterparts and plots of the empirical cumulative distribution functions
of the Pearson chi-square goodness of fit statistics with their theoretical counterparts of the
three models on the four dimensional final size epidemic data, when εFN = 0.2 and εFP = 0.3.
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Tail (F>S and F<S) Tail ( F>S) Tail ( F<S)
Model 0 1 -1
2Dim. h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000

T=0.999998 T=0.00000 T=0.999998
3Dim. h=1, p=0.000038 h=1, p=0.000019 h=0, p=0.304117

T=0.103784 T=0.103784 T=0.034173
4Dim. h=1, p=0.000004 h=1, p=0.000002 h=0, p=0.306216

T=0.114439 T=0.114439 T=0.034073

Table 6.14: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points for the four dimensional final size epidemic data when εFN = 0.2, εFP = 0.3 in figures
6.10 (b), (d) and (f).

From table 6.14, the null hypothesis is rejected for the two sided test similar to earlier

cases. The empirical cumulative distribution functions from the three and four dimensional

models are good approximations.

6.11.6 When the misclassification probabilities are εFN = 0.3 and εFP = 0.2

In figures 6.11 (a)-(f), we see similar behaviour in figures 6.10 (a)-(f), in which the two

dimensional model struggled fitting the four dimensional final size epidemic data when the

misclassification probabilities are not close to 0 as expected.
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Figure 6.11: Density histograms of Pearson chi-square goodness of fit statistics superimposed
with their theoretical counterparts and plots of the empirical cumulative distribution functions
of the Pearson chi-square goodness of fit statistics with their theoretical counterparts of the
three models on the four dimensional final size epidemic, when εFN = 0.3 and εFP = 0.2.
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Tail (F>S and F<S) Tail (F>S) Tail (F<S)
Model 0 1 -1
2Dim. h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000

T=1.00000 T=0.00000 T=1.00000
3Dim. h=1, p=0.00000 h=0, p=0.563241 h=1, p=0.000005

T=0.109797 T=0.023632 T=0.109797
4Dim. h=0, p=0.072178 h=0, p=0.381282 h=1, p=0.036091

T=0.057294 T=0.030724 T=0.057294

Table 6.15: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points for the four dimensional final size epidemic data when εFN = 0.3, εFP = 0.2 in figures
6.11 (b), (d) and (f).

In table 6.15, the null hypothesis of the two sided test from the four dimensional model

is not rejected at 0.05 significance because of the small discrepancy between the cumulative

distribution functions in one direction. The empirical cumulative distribution function from

the four dimensional model is a better approximation of the cumulative of the chi-square

distribution function.

6.12 Table of mean and variance of the Pearson chi-square

goodness of fit statistics of the three models on the four

dimensional final size epidemic data.

In table 6.16, we presented the mean and variance of the Pearson chi-square goodness of fit

statistic for the three models. We see that the four dimensional model is the best fit to four

dimensional final size epidemic data especially when the misclassification probabilities are

significantly large and far apart from each other.

Here, 2Dim=two dimensional model, 3Dim=three dimensional model, 4Dim=four dimen-

sional model, Misc. Prob.=misclassification probabilities, Sim. chi. mean=simulated mean

of the Pearson chi-square statistic, while Sim. chi. var is the corresponding variance. These

values are compared with their theoretical counterparts in table 6.2.
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2Dim. Model. 3Dim. model. 4Dim. model.
Misc. Prob. Sim. chi. Sim. chi. Sim. chi. Sim. chi. Sim. chi Sim. chi.

mean var mean var mean var
εFN = 0.0, εFP = 0.2 26.82 85.458 26.82 85.458 11.714 25.028
εFN = 0.2, εFP = 0.0 2004.54 802.49 20.413 54.791 11.695 23.091
εFN = 0.01, εFP = 0.02 14.331 33.625 12.046 25.41 11.315 24.251
εFN = 0.02, εFP = 0.01 20.641 61.088 11.808 25.394 11.16 24.055
εFN = 0.2, εFP = 0.3 95.526 324.01 12.401 24.165 11.113 21.21
εFN = 0.3, εFP = 0.2 140.3 455.53 12.763 22.885 11.359 20.475

Table 6.16: Table of mean and variance of the Pearson chi-square goodness of fit statistics on
the four dimensional final size epidemic data.

Proportion Rejected.
Pear. Chi. Stat. Upper 5% point εFN = 0. εFN = 0.2 εFN = 0.2 εFN = 0.3

εFP = 0.2 εFP = 0 εFP = 0.3 εFP = 0.2

χ2
13 22.36 0.604 1 1 1
χ2
12 21.03 0.698 0.502 0.064 0.042
χ2
11 19.68 0.060 0.064 0.032 0.078

Table 6.17: Table of the proportion of the simulations rejected from the Pearson chi-square
goodness of fit test for misclassification probabilities in [0, 0.5).

Table 6.17 provides further insight into the misfit of the two dimensional model when

the misclassification probabilities are not close to 0. In such situations, the proportion of

the simulations rejected is exactly 1 and theoretically signifies the model misfit to the four

dimensional final size epidemic data. While the three dimensional model sufficiently fits the

four dimensional final size epidemic if the misclassification probabilities are close to each other,

otherwise it struggles fitting to the four dimensional final size epidemic data as in table 6.17

for εFN = 0, εFP = 0.2 and vice versa and also has high proportion of the simulations rejected

compared to those of the four dimensional model.
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6.13 Plots of the mean and variance of the Pearson chi-square

goodness of fit statistic.

Using simulation studies we explored the parameter estimates along the diagonals of the

misclassification probabilities region, [0, 0.5), with the line εFN = 0.2 − εFP , εFP ∈ [0, 0.2],

step size of 0.01 and compute the Pearson chi-square goodness of fit statistics of three model,

their mean, variance and the proportion of the simulation rejected at 5% significance.

We present results of the studies for εFN , εFP ∈ [0, 0.2], as the behaviour of the mean and

variance of the Pearson chi-square goodness of fit statistic are repeated over the remaining

part of the permissible region, εFN , εFP (0.2, 0.5] for theoretical parameters corresponding to

z = 0.2144 and z = 0.7298 respectively.

These computations are implemented using the following function and subroutines.

Run the function, FourThreeTwoDonFourfposChsqlik to simulate four dimensional house-

hold epidemic with Gamma(a, b) infectious period distribution, theoretical parameters, λL,

λG, misclassification probabilities εFP ∈ [0, 0.5). It explores the parameter estimates of the

three models along the line εFN = α− εFP of the misclassification probabilities region, where

α is defined as εFP ∈ [0, α], α < 0.5. It then plot the mean and variance of the Pearson

chi-square statistics and those of the chi-square difference statistic for the three models.

It also computes and plot the proportion of the simulations rejected from the Pearson

chi-square and the chi-square difference statistics at 5% significance. These are accomplished

using the subroutines in section 6.7.

6.13.1 Exploring the estimates along the diagonals, εFN = 0.2− εFP , εFP ∈

[0, 0.2], theoretical parameters corresponding to z = 0.7298, 0.2144

respectively.

We implement the function and subroutines in section 6.13 with minimum epidemic threshold

of 1000 and household structure [133, 189, 108, 106, 31] ∗ 50 in figures 6.12 (a)-(d) and figures

6.13 (a) and (b) respectively.

In figures 6.12 (a)-(d), the mean and variance of the Pearson chi-square goodness of fit
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Figure 6.12: Plots of the mean and variance of the chi-square goodness of fit statistics of the
models, when the estimates are explored along the diagonals of the misclassification region
[0, 0.2], with step size of 0.01 for theoretical parameters corresponding to z = 0.7298 and
z = 0.2144 respectively.

statistics for the three models are computed by exploring the estimates along the diagonal of

the misclassification probabilities, εFP ∈ [0, 0.2] for z = 0.2144, 0.7298.

We see that with theoretical parameters corresponding to z = 0.7298, the mean and

variance of the Pearson chi-square goodness of fit statistics of the three and four dimensional

models are consistent and are approximately equal to their theoretical counterparts, while

those of the two dimensional model tends toward their theoretical mean and variance. Also,

inconsistent behaviour of the mean and variance of the two and three dimensional models can

be seen for εFP ∈ [0, 0.2] when λL = 0.2 and λG = 0.12.

When εFP = 0.1, the false negative probability, εFN = 0.1 and hence the four dimen-

sional model reduces to the three dimensional model with the mean and variance close to the

theoretical counterpart for the two set of theoretical parameters.
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Thus no matter the choice of theoretical parameters corresponding to z, the mean and

variance of the four dimensional model are consistently stable and close to their theoretical

counterpart, while those of the three dimensional model are stable for εFP = 0.1 and theo-

retical parameters corresponding to large values of z ∈ [0, 1]. Those of the two dimensional

model are not reliable.

Figure 6.13: Plots of the proportion of the simulations rejected from the Pearson chi-square
goodness of fit test to our dimensional final size epidemic data for theoretical parameters
corresponding to z = 0.2144. and z = 0.7298 respectively.

Further clarity on the behaviours of the models in 6.12 are provided in figures 6.13 (a) and

(b). For the two dimensional model, the proportion of the simulations rejected are influenced

by the magnitude of the theoretical parameters corresponding to z.

For example when the theoretical parameters corresponds to z = 0.2144, the proportion

of the simulation rejected is consistently 1 so also are those of the three dimensional model

except when εFP = 0.1 with the proportion rejected approximately equal to 0.05 as expected.

Those of the four dimensional model are stable and close to the required proportion rejected
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at 5% significance.

Thus when the theoretical parameters corresponds to z = 0.2144, the three dimensional

model is sufficient on the four dimensional final size epidemic data, while the two dimensional

model is not.

Also when εFP ∈ [0, 0.2] and theoretical parameters corresponds to z = 0.7298, the

proportion of the simulations rejected from the Pearson chi-square goodness of fit test for the

two dimensional model is approximately 1, while those from the three and four dimensional

models are less than 1 as theoretically expected.

6.13.2 Exploring the estimates along the vertical axis of the misclassifi-

cation probability region.

We implement the procedures with the function, FourThreeTwoDonFourNonGraphSNsim-

housesSIRchiqlik2 and subroutines as follows.

Run the function, FourThreeTwoDonFourNonGraphSNsimhousesSIRchiqlik2 to simulate

four dimensional household epidemic data with Gamma(a, b) infectious period distribution,

theoretical parameters, λL, λG and misclassification probabilities εFN , εFP ∈ [0, 0.5).

Here one of the misclassification probability is held fixed, while the other is varied in

[0, 0.5).

The function then estimate the parameters, computes and plot the root mean square error.

It also computes the Pearson chi-square statistic and the chi-square difference statistic for the

three models and also plot their mean and variance and the proportion of the simulation

rejected from the Pearson chi-square goodness of fit test and those of the the chi-square

difference tests at 5% significance using the subroutines in sections 6.7

We implement these procedures with theoretical parameters, corresponding to z = 0.7298, 0.2144

and then other corresponding parameters are estimated along the vertical, where εFP = 0.01

and εFN in [0, 0.2] with step size of 0.01 as in figures 6.14 (a)-(d).
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Figure 6.14: Plots of the mean and variance of the chi-square goodness of fit statistics for
the three models with εFP = 0.01 while varying εFN ∈ [0, 0.2] with step size of 0.01 and
theoretical parameters corresponding to z = 0.7298 and z=0.2144.

In Figures 6.14 (a)-(d), we explored the estimates of the model parameters along the

vertical axis of the misclassification probabilities with εFP = 0.01 and εFN ∈ [0, 0.2] for

theoretical parameters corresponding to z = 0.2144, 0.7298 as follow.

Firstly, with theoretical parameters corresponding to z = 0.7298, the mean and variance

of the Pearson chi-square statistics of the three and four dimensional models are consistently

stable and approximately equal to their theoretical counterparts as the misclassification prob-

abilities are varied in [0, 0.2], while those of the two dimensional model are unstable.

For example the mean and variance of the Pearson chi-square goodness of fit statistics

of the two and three dimensional models with theoretical parameters corresponding to z =

0.2144, are approximately equal to each other and unstable for εFN ∈ [0, 0.2], while those

of the four dimensional model remains consistently stable and approximate its theoretical
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counterpart.

Also, those of the three and four dimensional models with theoretical parameters corre-

sponding z = 0.7298, are stable and are approximately equal to their theoretical counterparts,

while those of the two dimensional model are unstable with increasing εFN ∈ [0, 0.2].

In line with our studies in section 5.4.1, 5.6.1 and 5.7 and those in figures 6.12 (a)-(d),

we see that no matter the choice of the theoretical parameters with corresponding z ∈ [0, 1],

the estimates of the four dimensional model are more precise than those of the two and three

dimensional models when the misclassification probabilities are far apart from each other and

therefore outperforms them on the four dimensional epidemic data.

6.13.3 Exploring the estimates along the horizontal axis of the misclassi-

fication probability region.

Using the same theoretical parameters in subsection 6.13.2, we simulated four dimensional

epidemic data and explored the estimates along the horizontal axis of the misclassification

proabbilities with [εFP ∈ 0, 0.2]. Here we fixed εFN = 0.01 and vary εFP ∈ [0, 0.2].

The Pearson chi-square goodness of fit, their mean and variance are then computed and

ploltted for the three three models in figures 6.15 (a)-(d).

Similar behaviours to figures 6.14 (a)-(d) are observed.
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Figure 6.15: Plots of the mean and variance of the chi-square goodness of fit statistics for
the three models with εFN = 0.01 while varying εFP ∈ [0, 0.2] with step size of 0.01 and
theoretical parameters corresponding to z = 0.7298 and z=0.2144.

6.14 Fitting the three models to [1] Tecumseh Michigan In-

fluenza A(H3N2) epidemic data.

We analysed [1] Tecumseh Michigan final epidemic data with Gamma(2, 2.05) infectious period

distribution using the Pearson chi-square goodness of fit test and the function, Addy as follows.

Run the function Addy to estimate the parameters of the three models and compute the

Pearson chi-square statistic using subroutines in section 6.7.

These are implemented with [1] household epidemic data in table 6.18.
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2Dim. Model 3Dim. model 4Dim. model
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.044638 0.044638 0.044638
π̂ 0.86738 0.86738 0.86738

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0, εFP = 0

Pearson Ch-sq Stat. 14.435 14.435 14.435
P-values P = 0.3439 P = 0.2738 P = 0.2099

Table 6.18: Table of the parameter estimates from [1] final size epidemic data for the three
models, the Pearson chi-square goodness of fit statistic and the corresponding P-values for
the tests.

6.15 Analyses of the Seattle influenza datasets.

The observed distributions of the 1975-1976 B(H1N1) and 1978-1979 A(H1N1) Seattle in-

fluenza epidemic in [28] also discussed in [49] given in tables 6.19 and 6.20 respectively are

analysed in two ways. Namely by assuming no misclassification error in the data and hence

considering them as two dimensional final size data. The two dimensional model is then fitted

to the two datasets by assuming Gamma(k, 4.1/k), k = 1, 2, 5 infectious period distributions

and analysed in tables 6.22 and 6.21 respectively.

Secondly, fitting the three models to the epidemic datasets for Gamma(k, 4.1/k), k = 1, 2, 5

infectious period distributions and compute their Pearson chi-square goodness of fit statistics.

In this way the misclassification probabilities are estimated if they are nonzero and hence

provides clarity about the true dimension of the datasets and the model that fits significantly

better to the final size epidemic datasets.
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Number Infected in Household
Household Size 0 1 2 3 4 5

1 9 1 - - - -
2 12 6 2 - - -
3 18 6 3 1 - -
4 9 3 4 3 0 -
5 4 3 0 2 0 0

Table 6.19: Influenza B(H1N1) 1975-1976 final size data.

Number infected in household
Household Size 0 1 2 3

1 15 11 - -
2 12 17 21 -
3 4 4 4 5

Table 6.20: Influenza A(H1N1) 1978-1979 final size data.

6.15.1 Analyses of the epidemic datasets.

If we assume no misclassification of the final size data, then for Gamma(k, 4.1/k), k = 1, 2, 5

infectious period distributions, the estimates from the two dimensional models are obtained

in tables 6.19 and 6.20,

Gamma infectious period distribution
Parameters Gamma(1, 4.1) Gamma(2, 4.1/2) Gamma(5, 4.1/5)

λ̂L 0.035083 0.035228 0.035216
λ̂G 0.207147 0.204628 0.2031089
π̂ 0.83305 0.83449 0.83536
ẑ 0.215073 0.215662 0.216028
R̂∗ 1.1591 1.1613 1.1628

Table 6.21: Estimates from the 1975-1976 Seattle B(H1N1) influenza epidemic.
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Gamma infectious period distribution
Parameters Gamma(1, 4.1) Gamma(2, 4.1/2) Gamma(5, 4.1/5)

λ̂L 0.10876 0.098711 0.092883
λ̂G 0.274861 0.274462 0.274388
π̂ 0.53779 0.53828 0.5384
ẑ 0.550417 0.550412 0.550362
R̂∗ 1.5562 1.5582 1.5594

Table 6.22: Estimates from the 1978-1979 Seattle A(H1N1) influenza epidemic.

6.16 Fitting the three models to the Seattle household epidemic

data.

Having analysed the epidemic datasets with Gamma(k, 4.1/k), k = 1, 2, 5 infectious period

distributions and assuming no misclassification error in the datasets, which may not be the

case, we then explored them for misclassification errors in order to get the appropriate model

fit on each of the epidemic dataset. This is achieved using the Pearson chi-square goodness

of fit statistics in subsections 6.16.1 and 6.16.2 respectively.

6.16.1 The 1975-1976 Seattle B(H1N1) influenza epidemic.

2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.035083 0.035083 0.0992
π̂ 0.83305 0.83305 0.7827

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0.3828, εFP = 0.000

Pear. ch-sq. statistic and P-value X2 = 6.7457, P=0.9148 X3 = 6.7457, P=0.8740 X4 = 4.8383, P=0.9387

Table 6.23: Parameter estimates and Pearson chi-suare goodness of fit statistics with
Gamma(1, 4.1) infectious period distribution from the 1975-1976 B(H1N1) influenza epidemic.

159



2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.035228 0.035228 0.0750
π̂ 0.83449 0.83449 0.7911

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0.3324, εFP = 0.0001

Pear. ch-sq. Statistic and P-value X2 = 6.1456, P=0.9407 X3 = 6.1456, P= 0.9086 X4 = 4.89758, P= 0.9360

Table 6.24: Parameter estimates and Pearson chi-square goodness of fit statistics with
Gamma(2, 4.1/2) infectious period distribution from the 1975-1976 B(H1N1) influenza epi-
demic.

2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.035216 0.035216 0.0629
π̂ 0.83536 0.83536 0.7982

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0.2875, εFP = 0

Pear. ch-sq. statistic and P-value X2 = 5.797, P=0.9532 X3 = 5.797, P=0.9260 X4 = 4.932282, P=0.9344

Table 6.25: Parameter estimates and Pearson chi-square goodness of fit statistics with
Gamma(5, 4.1/5) infectious period distribution from the 1975-1976 B(H1N1) influenza epi-
demic.

6.16.2 The 1978-1979 Seattle A(H1N1) influenza epidemic.

2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.10876 0.10876 0.1088
π̂ 0.53779 0.53779 0.5378

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0, εFP = 0

Pear. ch-sq. statistic and P-value X2 =2.0409, P=0.7282 X3=2.0409, P=0.5640 X4=2.0409, P=0.3604

Table 6.26: Parameter estimates and Pearson chi-square goodness of fit statistics with
Gamma(1, 4.1) infectious period distribution from the 1978-1979 A(H1N1) influenza epidemic.
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2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.098711 0.098711 0.1023
π̂ 0.53828 0.53828 0.5523

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0, εFP = 0.0258

Pear. ch-sq. statistic and P-value X2=2.0988, P= 0.7176 X3=2.0988, P=0.5522 X4=2.0978, P= 0.3503

Table 6.27: Parameter estimates andPearson chi-square goodness of fit statistics with
Gamma(2, 4.1/2) infectious period distribution from the 1978-1979 A(H1N1) influenza epi-
demic.

2Dim. Model. 3Dim. model. 4Dim. model.
Estim., Stat. and P-values. Parameter Parameter Parameter

Estimate Estimate Estimate
λ̂L, 0.092883 0.092883 0.1031
π̂ 0.5384 0.5384 0.5794

Misclass. Prob. Estim. 0 εFN = εFP = ε = 0 εFN = 0 εFP = 0.0717

Pear. ch-sq. statistic and P-value X2=2.1629, P= 0.7058 X3=2.1629, P= 0.5393 X4=2.15002, P= 0.3413

Table 6.28: Parameter estimates and Pearson chi-square goodness of fit statistics with
Gamma(5, 4.1/5) infectious period distribution from the 1978-1979 A(H1N1) influenza epi-
demic.

6.17 Discussion and Comments.

Once there is no misclassification error in the final size epidemic data, then the best model

fit to the two dimensional final size data is the two dimensional model. This property is

demonstrated in figures 6.1 and table 6.2. The Pearson chi-square and the likelihood chi-

squared goodness of fit statistics from the models, are well fitted to their theoretical chi-square

distributions, their mean and variance are approximately close to those of its theoretical

counterparts. Therefore, a model with smaller number of parameters is preferred, making the

two dimensional model the appropriate model fit to two dimensional final size epidemic data

if ε = 0.

However, if ε is far from 0 then the two dimensional model begins to struggle fitting to

three dimensional final size data as shown in figure 6.2 and 6.3 when ε = 0.1 and ε = 0.3

respectively.

Hence, with increasing ε it becomes unreliable to use the two dimensional model aas the

161



estimates are known to be biased. The Pearson chi-square statistics have disproportionate

mean and variance and hence does not fit its theoretical counterpart as shown in figures 6.2, 6.3

and table 6.7. The three and four dimensional models still provide good fit to the theoretical

chi-square distribution in the face of increasing values of the misclassification probabilities as

seen in figures 6.2 and 6.3.

However, with large and different misclassification probabilities far apart from each other,

the four dimensional model have precise estimates and therefore outperforms the two and

three dimensional models on the four dimensional final size epidemic data as demonstrated

in tables, 6.2, 6.7 and 6.16 respectively, showing the appproximate mean and variance of the

chi-square goodness of fit statistic to their theoretical counterparts of three models.

In general, we have seen that given any choice of z ∈ [0, 1], the mean and variance of the

Pearson chi-square goodness of fit statistics of the four dimensional model are approximately

equal to their theoretical mean and variance.

Thus, with increasing misclassification probabilities, the two and three dimensional models

will begin to struggle fitting to the four dimensional final size data, with disproportionate

parameter estimates and hence poorly fitted density histograms of the Pearson chi-square

and likelihood ratio chi-squared goodness of fit statistics of the two models to its theoretical

counterparts. These behaviours are exhibited in section 6.11.

Also in table 6.18, the Pearson chi-square goodness of fit statistic of the three models on

the [1] final size epidemic data are the same, so also are those of the likelihood ratio chi-

squared statistics, with corresponding P-values, given their degrees of freedom 13, 12, and

11, as P = P(χ2 ≥ χ2
13) > 0.25, P = P(χ2 ≥ χ2

12) > 0.25 and P = P(χ2 ≥ χ2
11) > 0.100

respectively, which are the same as those of the likelihood ratio Chi-squared statistic test with

the same degrees of freedom.

The observed chi-square goodness of fit statistic are smaller than the critical values at P

equal to the P-values for the given degrees of freedom and hence the tests are insignificant.

The models fitted are sufficient to the final size epidemic data. In conclusion, the two dimen-

sional model, which is the simplest of the three models is the appropriate model fit to the

two dimensional final size epidemic data from the Tecumseh Michigan influenza A(H3 N2)
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epidemic data.

Also, from the analyses of the Seattle 1975 − 1976 B(H1N1) and 1978 − 1979 A(H1N1)

influenza epidemics in subsections 6.16.1 and 6.16.2, we see that the misclassification proba-

bilities are estimated as 0 by the three dimensional model contrary to their nonzero estimates

given by the four dimensional model. However from their Pearson chi-square goodness of fit

statistics, we see that at 5% significance the three models fit sufficiently to the epidemic data.
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Chapter 7

Hypothesis test between the models.

7.1 Introduction.

The three models discussed so far are nested within each other, such that each simpler model

is obtained by fixing or eliminating parameter in the more complex models. That is, fixing the

misclassification probabilities in the four dimensional model to be equal, leads to the three

dimensional model, while fixing the misclassification probability in the three dimensional

model to be zero leads to the two dimensional model.

The three models can then be compared with regards to their fitness to the final size

epidemic data, using chi-square difference test, in which the difference between the Pearson

chi-square goodness of fit statistic from the models are evaluated and analysed. If the differ-

ence is significant then the model with more estimated parameters fits the final size epidemic

data better than the smaller model with less parameters.

These procedures provide information as to the need to estimate the additional parameter

and to employ the model with larger number of parameters. However, if the chi-square

difference statistic is insignificant, then the more complicated model does not offer significant

improvement over the one with smaller number of parameters. The parameter in question

is then ignored by putting it equal to zero. In any case, this procedure allows us to decide

whether a given model fits significantly better than the other competing models.

Sometimes, there may be a need to employ more than one goodness of fit test in order
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to provide clarity on the fitness of the models to the final size epidemic data. We have also

employed the Kolmogorov-Smirnov goodness of fit test discussed in section 6.5 to look at the

quality of the Pearson chi-square approximations.

7.2 Chi-square difference test.

Using simulation studies, we fitted the three models to final size epidemic data and computed

their Pearson chi-square goodness of fit statistic, X2, X3, X4 respectively, where X2, is the

chi-square goodness of fit statistic observed from fitting two dimensional model, X3, is the

chi-square goodness of fit statistic observed from fitting three dimensional model, while X4,

is the chi-square goodness of fit statistic observed from fitting four dimensional model.

From [1] final size epidemic data in table 1.2 and our discussion in section 6.3 on the

computation of the degrees of freedom of the Pearson chi-square statistic, we know that if

the two dimensional model is true then X2 ≈ χ2
13, if the three dimensional model is true then

X3 ≈ χ2
12, while if the four dimensional model is true then X4 ≈ χ2

11.

Also, since the models are nested within each other, we can express their relationships in

the form,

two dimensional model ⊆ three dimensional model ⊆ four dimensional model, such that the

smaller model with fewer parameters has more degrees of freedom, while the larger models with

more parameters has fewer degrees of freedom. Observe that we will have, X2 ≥ X3 ≥ X4.

We now construct differences between the chi-square goodness of fit statistics from the

two, three and four dimensional models, respectively as,

D2,3 = X2 −X3 ≥ 0, D2,4 = X2 −X4 ≥ 0 and D3,4 = X3 −X4 ≥ 0.

If the two dimensional model is the sufficient fit to the final size epidemic data then,

D2,3 = X2 − X3 ≈ χ2
1. If the two dimensional model is not the better fit then, D2,3 =

X2−X3 � χ2
1 and the three dimensional model is a better fit on the final size epidemic data.

Similarly, if the two dimensional model is a sufficient fit on the final size epidemic data then,

D2,4 = X2 −X4 ≈ χ2
2. If two dimensional model is not a sufficient fit on it on the final size

epidemic data then, X2 −X4 � χ2
2 and four dimensional provides better fit to the final size
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epidemic data. Also, if the three dimensional model is the sufficient model fit to the final

size epidemic data then, D3,4 = X3 − X4 ≈ χ2
1, if it is not the better model fit to the final

size epidemic data then, D3,4 = X3 −X4 � χ2
1 and the four dimensional model provides the

better model fit to the final size epidemic data.

7.3 Kolmogorov-Smirnov test.

Using the chi-square difference statistics D2,3, D2,4, and D3,4, we plotted their empirical

cumulative distribution functions with the corresponding cumulative distribution function of

the hypothesized theoretical chi-square distribution and evaluated their test statistics for the

three alternative hypotheses for the Kolmogorov-Smirnov test in [46], namely the two-sided

test and the other two one-sided tests in section 6.5 conducted at the upper 1% and 5%

significance.

Here, we have also adopted the notations of tail for the alternative hypotheses as in

Mathworks documentation in section 6.5. The critical value is obtained from the Matlab

function, kstest(dataset, ’CDF’, cdf, ’Alpha’,alpha, ’Tail’, tail ) in [46] at the given level of

significance. Here, CDF, Alpha and tail are as defined in section 6.5. The test statistic T, the

p and the critical values, the decision rules of the test h = 0 and h = 1 for not rejecting and

for rejecting the null hypothesis for the three models are presented in sections 7.5, 7.7 and

7.10 respectively.

7.4 Proportion of the simulations rejected from the chi-square

difference test.

Using the procedures in section 7.2, we investigated the properties of the models for the upper

α = 5% point of the chi-square distribution with 1 and 2 degree of freedoms given by the

1− α quantiles of the chi-square distributions, 3.841 and 5.991 respectively.

We reject the two dimensional model in favour of the three dimensional model, if D2,3 >

3.841, when the true model is the two dimensional model. Also, we reject the two dimensional
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in favour of the three dimensional model if D2,4 > 5.991 when the two dimensional model

is true. We reject the three dimensional model in favour of the four dimensional model if

D3,4 > 3.841 when the true model is the three dimensional model.

7.5 Chi-square difference and the Kolmogorov-Smirnov tests

on the two dimensional final size epidemic data.

In order to implement the procedures discussed in section 7.2, we simulate two dimensional

household final size epidemic data with Gamma(a, b) infectious period distribution, theoretical

parameters, λL, λG, and large population size using the function, ThreeandfourandTwoSNsim-

housesDifftwo and some subroutines as follow.

Run ThreeandfourandTwoSNsimhousesDifftwoks simulate household epidemic with Gamma(a, b)

infectious period distribution, theoretical parameters, λL, λG. It calculates other correspond-

ing parameters, computes the chi-square difference statistics, their mean and variance. It also

computes the proportion of the simulations rejected from the chi-square difference test at 5%

significance. These are accomplished using the subroutines in section 6.7

We implement these procedures with theoretical parameters corresponding to z = 0.7298

given by λL = 0.1, λG = 0.29, π = 0.4199, R∗ = 2.2166, household structure in [1] but fifty

times its population size, which is 70700 population size, minimum epidemic size of 1000 and

simulation runs of 500 and obtained the following density histograms.
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Figure 7.1: Density histograms of chi-square difference statistic to two dimensional final size
epidemic data and plots of the empirical distribution of the chi-square difference statistic.

From figures 7.1 (b), (d) and (f), we see that the vertical distances between the theoret-

ical and empirical distribution functions of D3,4 is small compared to those of the D2,3 and

D2,4. However the three models are sufficient fit to the final size epidemic data with the two

dimensional model with two parameters most preferred model fit to the final size epidemic

data.
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7.6 Table of mean and variance of the chi-square difference

tests on the two dimensional final size epidemic Data.

Simulated value Theoretical Value.
Chi-square difference statistic. mean variance mean variance

D2,3 0.5047 1.6876 1 2
D2,4 1.3944 3.6819 2 4
D3,4 0.8897 2.188 1 2

Table 7.1: Table of mean and variance of the chi-square difference tests on two dimensional
final size epidemic data.

From table 7.1, we see that the mean and variance of the simulated chi-square difference

statistic are approximately close to their theoretical counterparts having one or two degrees

of freedom. For example D2,3 have the mean 0.5047 and variance 1.6876, which is χ2
1, D2,4

have the mean 1.3944 and variance 3.6819 which is approximately χ2
2, while D3,4 have the

mean 0.8897 and variance 2.188, which is approximately χ2
1.

Difference Chi-square Statistic. Upper 5% point Proportion Rejected
D2,3 3.841 0.0320
D2,4 5.991 0.0160
D3,4 3.841 0.0320

Table 7.2: Proportion of the simulations rejected from the chi-square difference test at 5%
significance from the two dimensional epidemic data.

In table 7.2, the proportion of the simulations rejected are close to 0.05 as theoretically

expected. This signifies that the three models fit well to the final size data.
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Tail ( F>S and F<S) Tail (F>S) Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, P=0.00000 h=1, p=0.00000 h=0, p=0.775693
T=0.347450 T=0.347450 T=0.015611

D2,4 h=1, p=0.00000 h=1, p=0.00000 h=1, p=0.00000
T=0.162424 T=0.162424 T=0.020768

D3,4 h=1, p=0.00000 h=1, p=0.00000 h=0, p=0.283982
T=0.137251 T=0.137251 T=0.035151

Table 7.3: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the two dimensional final size epidemic data in figure 7.1

In table 7.3, the null hypothesis for the two sided test from D2,3 and D3,4 are rejected

owing the significant discrepancies between their cumulative distribution functions in one

direction, while that of D2,4 is rejected owing the significant discrepancies in both directions.

Thus D2,3 with smaller difference in one direction between the cumulative distribution

function is a better approximation. The three and four dimensional models are not signifi-

cantly better that the two dimensional model.

7.7 Chi-square difference and the Kolmogorov-Smirnov tests

on the three dimensional final size epidemic data.

We simulate household epidemics with Gamma(a, b) infectious period distribution, theoretical

parameters, λL, λG, and large population size using the function, ThreeandTwoDimopton-

ThreesimhousesDchsq as follows.

Run the function, ThreeandTwoDimoptonThreesimhousesDchsq with Gamma(a, b) infec-

tious period distribution and theoretical parameters, λL, λG. It then calculates other cor-

responding parameters of the models, using Gamma(a, b) infectious period distribution. It

computes the chi-square difference statistics, their mean, variance and the proportion of the

simulations rejected from the chi-square difference test at 5% significance using the subrou-

tines in section 7.5.
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We implemented these procedures using the theoretical parameters in section 7.2 for ε =

0.1, 0.3 and plotted the density histograms of the chi-square difference statistics superimposed

with their theoretical chi-square distribution. Including those of the empirical distribution

functions with the cumulative distribution function of the hypothesized distribution function.

Figure 7.2: Density histograms of the chi-square difference statistic on the three dimensional
final size epidemic data and those of the empirical and cumulative distribution functions when
the misclassification probability, ε = 0.1.
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Tail (F>S and F<S) Tail (F>S) Tail ( F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, P=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D3,4 h=1, p=0.000316, h=1, p=0.000158 h=0, p=0.697474
T=0.093149 T=0.093149 T=0.018654

Table 7.4: Table of summary of the Kolmogorov-Smirnov goodness of fit tests with the upper
5% points from the three dimensional final size epidemic data when ε = 0.1 in figures 7.2 (b),
(d) and (f).

In table 7.4, we see that the null hypothesis for the two sided test is rejected from the three

statistics owing to the significant differences between their empirical cumulative functions and

the cumulative of the chi-square distribution functions.

The difference between the empirical cumulative of D3,4 and the cumulative of the hy-

pothesized distribution functions in one direction is small. The three and four dimensional

models are the significantly better than the two dimensional model. The four dimensional

model is not significantly better than the three dimensional model.
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Figure 7.3: Density histograms of the chi-square difference statistic on the three dimensional
final size epidemic data and those of the empirical and cumulative distribution functions,
when the misclassification probability, ε = 0.3.
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Tail (F>S and F<S) Tail (F>S) Tail ( F<S)
Ch. Diff. Stat. 0 1 -1

D2,3. h=1, P=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D3,4 h=1, p=0.00000 h=1, p=0.00000 h=0, p=0.148752
T=0.179102 T=0.179102 T=0.043320

Table 7.5: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the three dimensional final size epidemic data when ε = 0.3 in figures 7.3 (b), (d)
and (f).

In tables 7.5 and 7.4 present similar behaviours. The three and four dimensional models

are appropriate fit to the data.

Proportion Rejected.
Difference Chi-square Statistic. Upper 5% point ε = 0 ε = 0.1 ε = 0.3

D2,3 3.841 0.0160 1 1
D2,4 5.991 0.0480 1 1
D3,4 3.841 0.0780 0.0540 0

Table 7.6: Proportion of the simulations rejected from the chi-square difference test at 5%
significance from the three dimensional final size epidemic data.

In table 7.6, we see that with increasing misclassification probabilities in the permissible

region the three and four dimensional models fit significantly better than the two dimensional

model.

7.8 Table of mean and variance of the chi-square difference

statistic on the three dimensional final size epidemic Data.

From table 7.7, we see that, the mean and variance of the simulated chi-square difference

statistic, D2,3, D2,4, D3,4 are approximated close to their theoretical counterparts with 1, 2

and 1 degrees of freedom respectively and with large values of the misclassification proba-
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ε = 0.0 ε = 0.1 ε = 0.3 Theor. Value
Chi-sq. diff. stat. mean var mean var mean var mean var

D2,3 0.4340 1.0322 69.07 284.6 93.005 356.71 1 2
D2,4 1.3136 3.4747 70.086 287.41 93.945 354.59 2 4
D3,4 0.8795 2.3852 1.0162 2.5045 0.9400 1.3059 1 2

Table 7.7: The mean and variance of the chi-square difference statistic on the three dimen-
sional final size epidemic data simulated with misclassification probabilities, ε = 0.0, 0.1, 0.3.
Here, Theor., is the theoretical mean or variance.

bilities, only those of D3,4 remains consistent, while those of D2,3 and D2,4 increases with

increasing misclassification probabilities in the final size epidemic data.

7.9 Plots of the mean and variance of the chi-square difference

statistic on the three dimensional final size epidemic data.

We complement our studies in section 7.7 by simulating household epidemic with Gamma(a, b)

infectious period distribution and theoretical parameters, λL and λG using the function,

ThreefourTwoDimplotschsqlik in section 6.9 with subroutines in subsection 6.7.

Employing these procedures with theoretical parameters corresponding to z = 0.7298 and

z = 0.2144 for a range of ε ∈ [0, 0.5) we simulate household epidemic, estimate the parameters

of the three models and compute their chi-square difference statistics, their mean and variance

and also plot the mean of the chi-square difference statistic for ε[0, 0.1] those of the proportion

of the simulations rejected from the Pearson chi-square test, at 5% significance.
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Figure 7.4: The mean and variance of the chi-square difference statistic on the three dimen-
sional final size epidemic data for ε ∈ [0, 0.1], step size of 0.005.
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Figure 7.5: Proportion of the simulations rejected at 5% significance from the chi-square
difference test for z = 0.7298 and z = 0.2144 when it is the three dimensional final size
epidemic data.

We see from figure 7.5 that the proportion of the simulations rejected from the chi-

square difference tests for D2,3 and D2,4 when the theoretical parameters corresponds to

z = 0.7298, 0.2144, increases towards 1, while those of D3,4 reduces to 0 at the upper 5%

points. These values are significantly different from the required proportion of the simula-

tions rejected at 5% significance when the null hypothesis is true.

The three dimensional model is significantly better than the two dimensional model, while

the four dimensional model is better than the three dimensional model when the misclassifi-

cation probability is large.
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7.10 The chi-square difference and Kolmogorov-Smirnov tests

on the four dimensional final size epidemic data.

Using the misclassification probabilities in table 6.9, we simulate household epidemic with

Gamma(a, b) infectious period distribution, theoretical parameters, λL, λG with the function

FourDimThreeATwoSNsimhousesDchsq and as follows.

Run FourDimThreeATwoSNsimhousesDchsq to simulate two dimensional household epi-

demic with Gamma(a, b) infectious period distribution, theoretical parameters, λL, λG. It

then calculates corresponding parameters. It computes the chi-square difference statistics

and plot their density histogram for the three model. It compute the mean and variance

of the chi-square difference statistic and the proportion of the simulations rejected from the

chi-square difference test at 5% significance.

We implement these procedures with the theoretical parameters λL = 0.1, λG = 0.29,

π = 0.4199, R∗ = 2.2166, household structure in [1] and population size of 70700, minimum

epidemic size of 1000. The chi-square difference statitsics of the three models, their empirical

cumulative distribution function superimposed with their theoretical counterparts are then

obtained as follows.
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Figure 7.6: Density histograms of chi-square difference statistic on the four dimensional final
size epidemic data superimposed with their theoretical counterparts and those of the empirical
cumulative distribution functions with their theoretical counterparts when εFN = 0 and
εFP = 0.2.

In figure 7.6 (a)-(f) we see wide discrepancies between the empirical cumulative of D2,3,

D2,4 and D3,4 and the cumulative of the hypothesized chi-square distributions.

The two and three dimensional models failed to fit the four dimensional final size epidemic

data when the misclassification probability is large and far apart from each other. The four

dimensional model is significantly better than the two and three dimensional models.
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Tail (F>S and F<S) Tail ( F>S) Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, P=0.00000 h=1, p=0.00000 h=0, p=1.00000
T=0.998626 T=0.998626 T=0.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=0.893736 T=0.00000 T=0.893736

D3,4 h=1, p=0.00000 =0, p=1.00000 h=1, p=0.00000
T=0.946715 T=0.00000 T=0.946715

Table 7.8: Summary of the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0, εFP = 0.2 in figure
7.6(b), (d) and (f).

From table 7.8, the null hypothesis from the two sided test in the three cases ofD2,3, D2,4, D3,4

are rejected at the 0.05 significance. The empirical cumulative distribution functions from the

three cases are not sufficient approximations to the cumulative of the hypothesized chi-square

distribution functions.
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Figure 7.7: Density histograms of chi-square difference statistic on the four dimensional final
size epidemic data superimposed with their theoretical counterparts and those of the empirical
cumulative distribution functions with their theoretical counterparts when, εFN = 0.2 and
εFP = 0.

In figure 7.7 (a)-(f), similar behaviours in figure 7.6 (a)-(f) are presented. The four di-

mensional model is significantly better than the two and three dimensional models.
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Tail (F>S and F<S) Tail (F>S) Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D3,4 h=1, p=0.00000 h=0, p=0.999998 h=1, p=0.00000
T=0.840152 T=0.000002 T=0.840152

Table 7.9: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0.2, εFP = 0 in figure
7.7 (b), (d) and (f).

In table 7.9, similar behaviours in table 7.8 are observed. The four dimensional model is

significantly better than the two and three dimensional models.

In figures 7.8 (a)-(f), we see significant vertical distances between the theoretical and

empirical distribution functions of the chi-square different statistic from the two and three

dimensional models are observed, while the vertical distance between the two cumulative

distribution functions from the four dimensional model is small.

This shows that the four dimensional model is significantly better then the two and three

dimensional models.
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Figure 7.8: Density histograms of the chi-square difference statistic on the four dimensional
final size epidemic data superimposed with their theoretical counterparts and those of the
empirical cumulative distribution functions with their theoretical counterparts when, εFN =
0.01 and εFP = 0.02.
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Tail (F>S and F<S) Tail ( F>S) Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, P=0.00000 h=1, p=0.00000 h=1, p=0.00000
T=0.318170 T=0.159023 T=0.318170

D2,4 h=1, p=0.00000 h=1, p=0.005298 h=1, p=0.00000
T=0.236886 T=0.072033 T=0.236886

D3,4 h=1, p=0.00000 h=1, p=0.00000 h=0, p=0.980825
T=0.172568 T=0.172568 T=0.004079

Table 7.10: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0.01, εFP = 0.02 in
figure 7.8 (b), (d) and (f).

In table 7.10, the null hypothesis is rejected for the two sided test from D2,3, D2,4 owing to

the significant differences between their empirical cumulative distribution functions and the

cumulative of the chi-square distribution in both directions, while the difference in the case

of D3,4 occurred in one direction.

The empirical cumulative distribution function from D3,4 is a better approximation of the

cumulative of the chi-square distribution function. The three and four dimensional models

are significantly better than the two dimensional model.
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Figure 7.9: Density histograms of the chi-square difference statistic on the four dimensional
final size epidemic data superimposed with their theoretical counterparts and those of the
empirical cumulative distribution functions with their theoretical counterparts when, εFN =
0.02 and εFP = 0.01.

From figures 7.9 (a)-(f) , we see similar behaviours to figure 7.8 (a)-(f).
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Tail (F>S and F<S) Tail (F>S) Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, p=0.00000 h=0, p=0.00000 h=1, p=0.00000
T=0.800637 T=1.00000 T=0.800637

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=0.730849 T=0.00000 T=0.730849

D3,4 h=1, p=0.000001 h=1, p=0.00000 h=1, p=0.045004
T=0.120286 T=0.120286 T=0.055348

Table 7.11: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0.02, εFP = 0.01 in
figures 7.9 (b), (d) and (f).

In table 7.11, while the null hypothesis for the two sided test from D2,3 and D2,4 are

rejected owing to the significant differences between their empirical cumulative distribution

functions and the cumulative of the chi-square distribution function in one direction, that

from D3,4 is rejected owing the significant differences in both directions. We see that the four

dimensional model is significantly better than the two and three dimensional models.
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Figure 7.10: Density histograms of the chi-square difference statistic on the four dimensional
final size epidemic data superimposed with their theoretical counterparts and those of the
empirical cumulative distribution functions with their theoretical counterparts when, εFN =
0.2 and εFP = 0.3.

In figures 7.10 (a), (d) and (f), we see that the empirical cumulative distribution functions

from D2,3 and D2,4 are not good approximations of the cumulative of the hypothesized chi-

square distribution functions unlike that of D3,4 which is close to the cumulative of the

hypothesized chi-square distribution function.

The three and four dimensional model are significantly better than the two dimensional

model.
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Tail (F>S and F<S) Tail (F>S Tail (F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D3,4 h=1, p=0.000016 h=1, p=0.002281 h=1, p=0.000008
T=0.107749 T=0.077626 T=0.107749

Table 7.12: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0.2, εFP = 0.3 in
figures 7.10 (b), (d) and (f).

In table 7.12, the two sided test rejects the null hypothesis at 0.05 significance level, for

the three cases. These decision outcomes are in agreement with the significant differences

between the empirical cumulative distribution functions and the cumulative of the chi-square

distribution functions in figures 7.10 (b), (d) and (f). The three and four dimensional model

are significantly better than the two dimensional model.

188



Figure 7.11: Density histograms of the chi-square difference statistic on the four dimensional
final size epidemic data superimposed with their theoretical counterparts and those of the
empirical cumulative distribution functions with their theoretical counterparts when, εFN =
0.3 and εFP = 0.2.

In figures 7.11 (a)-(f), similar behaviour in figures 7.10 (a)-(f) are observed.
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Tail (F>S and F<S) Tail (F>S) Tail ( F<S)
Ch. Diff. Stat. 0 1 -1

D2,3 h = 1, P=0.00000 h=0, p= 1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D2,4 h=1, p=0.00000 h=0, p=1.00000 h=1, p=0.00000
T=1.00000 T=0.00000 T=1.00000

D3,4 h=1, p=0.00000 h=1, p=0.004513 h=1, p=0.000000
T=0.120183 T=0.073130 T=0.120183

Table 7.13: Summary from the Kolmogorov-Smirnov goodness of fit tests with the upper 5%
points from the four dimensional final size epidemic data when εFN = 0.3, εFP = 0.2 in
figures 7.11 (b), (d) and (f).

In table 7.11, we see similar decision outcomes in table 7.12. The four dimensional model

is significantly better than the two and three dimensional models.

7.11 Table of mean and variance of the chi-square difference

statistic.

D2,3 D2,4 D3,4

Miscl. Prob. mean variance mean variance mean variance
εFN = 0.0, εFP = 0.0 0.46581 1.0916 1.2936 2.8806 0.82778 1.8794
εFN = 0, εFP = 0.2 1.54E-08 3.89E-13 14.986 59.37 14.986 59.37
εFN = 0.2, εFP = 0 181.27 851.5 189.87 800.57 8.5973 24.226

εFN = 0.01, εFP = 0.02 2.4539 8.7633 3.277 10.781 0.82313 2.2408
εFN = 0.02, εFP = 0.01, 8.8483 34.703 9.4906 36.606 0.64231 0.71849
εFN = 0.2, εFP = 0.3 85.34 311.93 86.774 321.26 1.4343 2.9258
εFN = 0.3, εFP = 0.2 130.47 461.77 131.77 451.15 1.2955 2.6945

Table 7.14: The mean and variance of the chi-square difference statistic on the four dimen-
sional final size epidemic data simulated with misclassification probabilities in table 6.9. Here
miscl. Prob. are the misclassification probabilities. The theoretical mean and variance of the
chi-square difference statistics are as defined in table 7.7.

In table 7.14 the effects of the misclassification probabilities on the mean and variance

of the chi-square difference statistics is studied. Here, we see that if the misclassification
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probabilities are close to 0, then the mean and variance of the chi-square difference statistics

sufficiently approximate the theoretical mean and variance of the hypothesized chi-square

distribution for the three cases on four dimensional final size data. If the misclassification

probabilities are far apart from each other then disproportionate mean and variance of the

chi-square difference statistics are obtained as shown in table 7.14.

7.12 Plots of the mean and variance of the chi-square difference

statistic on the four dimensional final size epidemic data.

We explored the estimates of the parameters along the diagonal of the the misclassification

probabilities region with theoretical parameters corresponding to z = 0.2144 and z = 0.7298

and εFP ∈ [0, 0.2].

This involves simulating four dimensional household epidemic along the line εFN =

0.2 − εFP with Gamma(a, b) infectious period distribution using the function, FourThree-

TwoDonFourfposChsqlik in section 6.13.

It calculates other corresponding parameters of the three models and computes the chi-

square difference statistics from the three models. It plot the mean and variance and the

proportion of the simulations rejected from the chi-square difference test at 5% significance.

These are accomplished using the subroutines in section 7.10 and demonstrated in the

figures 7.12 (a)-(d) and figures 7.13 (a) and (b).

191



Figure 7.12: Plots of the mean and variance of the chi-square difference statistic for the three
models, explored along the diagonal, εFN = 0.2 − εFP , εFP ∈ [0, 0.2], with step size of 0.01
and theoretical parameters corresponding to z = 0.7298 and z = 0.2144 respectively.
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Figure 7.13: Proportion of the simulations rejected at 5% significance from the chi-square
difference test with theoretical parameters corresponding to z = 0.7298 and z = 0.2144 when
the true data is four dimensional final size epidemic data.

From figure 7.13 (a), we see that when εFP ≥ 0.15 and the theoretical parameters corre-

sponds to z = 0.7298, the proportion of the simulations rejected from the chi-square difference

tests for D2,3 and D2,4 is consistently 1 and decreases when εFP ≥ 0.15. While that of D3,4

decreases for εFP < 0.1 and then gradually increases when εFP > 0.1.

In figure 7.13 (b) D3,4 has the best proportion rejected especially when ε = 0.1, since the

four dimensional model reduces to the three dimensional for this value of ε. Thus, the three

dimensional model has the best proportion rejected at ε = 0.1, while the two dimensional

model failed fitting the four dimensional final size epidemic data as expected.

In general, the three and four dimensional models sufficiently fit the final size epidemic

data.
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7.13 Fitting the three models to [1] Tecumseh Michigan In-

fluenza A(H3N2) epidemic data using chi-square differ-

ence statistic.

We fitted the three models to [1] Tecumseh Michigan Influenza A(H3N2) epidemic data, the

1975−1976 B(H1N1) and 1978−1979 A(H1N1) Seattle influenza datasets with the chi-square

difference test using the function, Addychsdiff with Gamma(a, b) infectious period distribution

and theoretical parameters, λL, and λG describe as follows.

Run the function, Addychsdiff to estimate the parameters of the three models with TI =

Gamma(2, 2.05) infectious period distribution and compute the chi-square difference statistic

for the three models using subroutines in section 7.10 as in table 7.15 as follow.

D2,3 D2,4 D3,4

Chi-sq. Diff. and P-values. value value value
Ch-sq. Diff. 0 0 0
P-values P ≈ 1 P ≈ 1 P ≈ 1

Table 7.15: Table of the chi-square difference statistic for the three models with their corre-
sponding P-values for the tests.
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7.14 Fitting the three models to [28] Seattle Influenza epidemic

data using chi-square difference statistic.

D2,3 D2,4 D3,4

Par. of the infect. Per. dist. value value value
a=1, b=4.1 0 0.2619 0.2619
P-value P≈ 1 P =0.8773 P=0.6088

a=2, b=4.1/2 0 2.2480 2.2480
P-value P≈ 1 P=0.3250 P=0.1338

a=5, b=4.1/5 0 0.8627 0.8627
P-value P≈ 1 P= 0.6496 P= 0.3530

Table 7.16: Table of chi-square difference statistic for the three models from the Seattle 1975−
1976 B(H1N1) influenza epidemic with TI = Gamma(a, b) infectious period distribution.

D2,3 D2,4 D3,4

Par. of the infect. Per. dist. value value value
a=1, b=4.1 0 0 0
P-value P≈ 1 P≈ 1 P≈ 1

a=2, b=4.1/2 0 0.001 0.001
P-value P≈ 1 P= 0.9995 P= 0.9748

a=5, b=4.1/5 0 0.0129 0.0129
P-value P≈ 1 P= 0.9936 P=0.9096

Table 7.17: Table of chi-square difference statistic for the three models from the Seattle
1978−1979 A(H1N1) influenza epidemic with TI = Gamma(a, b) infectious period distribution
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7.15 Discussion

We found that with misclassification error in the final size data, it becomes difficult to use the

two dimensional model to fit the final size data as discussed in sections 5.8.1, 5.6, and 6.11.

The preferred model fit is that whose estimates are obtained taking these percentage errors

into consideration. These behaviours are captured in section 7.7, in which only the three and

four dimensional models fit the three dimensional final size data sufficiently well, when the

misclassification probabilities are not close to 0.

These behaviours are further corroborated in table 7.7, in which only the mean and vari-

ance of the chi-square difference statistics D3,4 are asymptotic to χ2
1 as the misclassification

probabilities is varied. We see that the mean and variance of D2,3 and D2,4 increase with

increasing misclassification probabilities as shown in table 7.7.

This signifies that D2,3 � χ2
1 and D2,4 � χ2

2 and therefore the three and four dimensional

models are significantly better than the two dimensional model. These behaviours are observed

in figures, 7.2, 7.3 and 7.4.

With sufficiently large values of the misclassification probabilities away from 0 only D3,4

is approximately χ2
1, while D2,3 � χ2

1 and D2,4 � χ2
2. In other words only the three and four

dimensional models are significantly better than the two dimensional model. From figures 6.6

and 6.7, we see that the four dimensional model is significantly better under this circumstance

as the three dimensional model struggled fitting to the final size data as discussed in table

7.14.

Also, from table 7.15, 7.16 and 7.17, the observed chi-square difference test statistics are

insignificant for the [1] Tecumseh Michigan influenza epidemic data and [28] Seattle influenza

epidemic data respectively. The tests are therefore insignificant and the three and four di-

mensional models are not better than the two dimensional model.
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Chapter 8

Estimation in the presence of model

misspecification.

8.1 Introduction

If the model is estimated using a different infectious period distribution from that used for

the simulations, then how does this affect the precision of the estimates? This is the focus of

our studies in this section.

This is a misspecification problem which may sometimes be taken for misclassification of

the epidemic data. It is therefore necessary to study these scenarios using simulations in order

to understand their effects on the estimates of the parameters and be able to differentiate it

from misclassification of the epidemic data.

We do this with large population size and theoretical parameters which give global infection

in our simulations. We have therefore employed the theoretical parameters λL = 0.1, λG =

0.29 used in our previous studies to achieve this.

This chapter is organised in the following form.

In section 8.2, we simulate two dimensional household epidemic with exp(4.1) infectious pe-

riod distribution and estimated the model with Gamma(2, 4.1/2) infectious period distribution

while in section 8.3 we simulate two dimensional household epidemic with Gamma(2, 4.1/2)

infectious period distribution and estimate the model with exp(4.1) infectious period distri-
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bution. In section 8.4 we discussed the results of our studies from sections 8.2 and 8.3.

In section 8.5, we studied the effects of model misspecification on the estimates of the three

models by simulating two dimensional household epidemic with exp(4.1) infectious period

distribution and estimating the models with Gamma(2, 4.1/2) infectious period distribution.

While in section 8.6, we simulate two dimensional household epidemic with Gamma(2, 4.1/2)

infectious period distribution and estimate the models with exp(4.1) infectious period distri-

bution. In section 8.7, we discussed the behaviours of the three models on the two dimensional

epidemic data in the face of misspecification.

In section 8.9, we studied the effects of misspecification on the model estimates in the face

of misclassification by simulating three dimensional household epidemic with exp(4.1) infec-

tious period distribution and estimating the three models with Gamma(2, 4.1/2) infectious

period distribution, while in section 8.10, we simulate three dimensional household epidemic

with Gamma(2, 4.1/2) infectious period distribution and estimate the three models parame-

ters with exp(4.1) infectious period distribution. We discussed our results in section 8.11.

In section 8.13, we studied the effects of misspecification on the estimates of the three

model parameters in the face of misclassification error in the epidemic data with different mis-

classification probabilities. We simulate four dimensional household epidemic with exp(4.1)

infectious period distribution and estimate the three model parameters with Gamma(2, 4.1/2)

infectious period distribution. While in section 8.14, we discussed the results.

8.2 Simulating epidemic data with exp(4.1) and estimating model

parameters with Gamma(2, 4.1/2) infectious period distribu-

tions.

We simulate two dimensional model epidemic data with exp(4.1) infectious period distribution

and estimated the model parameters with the Gamma(2, 4.1/2) infectious period distribution.

Plots of the estimates and tables of mean, standard deviation and root mean square errors

are presented.

From figures 8.1 (a)-(d), we see that the estimates are biased and imprecise.

198



Figure 8.1: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when
the epidemic data is simulated with exp(1.4) infectious period distribution.

Gamma(2, 4.1/2) infectious period distribution
Par. Mean SD, RMSE λL λG π z R∗
Theoretical parameter 0.1 0.29 0.4199 0.7298 2.2166

Mean 0.092993 0.2869 0.43285 0.7119 2.1339
Standard deviation 0.0015132 0.0026017 0.005495 0.0048041 0.019735

Root mean square error 0.0071679 0.0040445 0.014025 0.018455 0.084961

Table 8.1: Table of mean, standard deviation and root mean square error of the estimates
when the epidemic data is simulated with exp(4.1) and estimated with Gamma(2, 4.1/2)
infectious period distributions.
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8.3 Simulating epidemic data with Gamma(2, 4.1/2) and esti-

mating model parameters with exp(4.1) infectious period

distributions.

Here, we estimate the model parameters with exp(4.1) infectious period distribution when

the epidemic data is simulated with Gamma(2, 4.1) infectious period distribution.

Plots of the parameter estimates, table of mean, standard and root mean square of the

estimates are presented as follows.

Figure 8.2: Plots of the estimates with exp(4.1) infectious period distribution when the epi-
demic data is simulated with Gamma(2, 4.1/2) infectious period distribution.

In figures 8.2 (a)-(d), the estimates are biased and imprecise.
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exp(4.1) infectious period distribution
Par. Mean SD, RMSE. λL λG π z R∗
Theoretical parameter. 0.1 0.29 0.4291 0.7117 2.1106

Mean 0.10761 0.29351 0.41595 0.72898 2.1878
Standard deviation 0.0019244 0.0023979 0.0047063 0.0039479 0.017285

Root mean square error 0.0078474 0.0042457 0.013884 0.017705 0.079101

Table 8.2: Table of mean, standard deviation and root mean square error of the estimates
when the epidemic data is simulated with Gamma(2, 4.1/2) and estimated with exp(4.1)
infectious period distributions.

8.4 Discussion and comments.

From figures 8.1 (a)-(d) and figures 8.2 (a)-(d), we see that the estimates from both scenarios

are not scattered about their true parameters values as expected but are biased and imprecise.

8.5 Effects of misspecification on the estimates of the three

models from two dimensional epidemic data.

We examined the precision of the estimates from the three models in the face of misspecifi-

cation when the number of infectives and susceptibles are the true number of positives and

true number of negatives using pair of theoretical parameters (λL, λG) = (0.0446, 0.1955) and

(λL, λG) = (0.1, 0.29) and large population size to allow global infection in our simulations.

We plot the estimates of the parameters and compute their mean, standard deviation,

root mean square error.

Starting with theoretical parameters (λL, λG) = (0.1, 0.29) we simulate two dimensional

household epidemic data with exp(4.1) infectious period distribution and estimate the model

parameters with Gamma(2, 4.1/2) infectious period distribution.

Also from figures 8.3 (a)-(e), we see that the estimates from the three models are biased

and imprecise with large variability from the four dimensional model. The three and four

dimensional models are not significantly better than the two dimensional model.
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Figure 8.3: Plots of the estimates from the three models when the epidemic is simulated with
theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious period distribution, the
parameters estimated with Gamma(2, 4.1/2) infectious period distribution.
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Mean of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim. Theoret. Param.

λ̂L 0.09297 0.09297 0.10036 0.1
λ̂G 0.28692 0.28692 0.26082 0.29
π̂ 0.43282 0.43282 0.4873 0.4199
ẑ 0.7119 0.7119 0.67244 0.7298
ˆεFN N/A N/A 0.00024992 N/A
ˆεFP N/A N/A 0.11889 N/A
ε̂ N/A 2.28E-14 N/A N/A
R̂∗ 2.1339 2.1339 1.9955 2.266

Table 8.3: Table of mean of the parameter estimates when the epidemic is simulated with
theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious period distribution and
estimated with Gamma(2, 4.1/2) infectious period distribution.

Standard deviation of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0014247 0.0014247 0.0029347
λ̂G 0.0024752 0.0024752 0.0075469
π̂ 0.0053002 0.0053002 0.016486
ẑ 0.7119 0.0047022 0.012503
ˆεFN N/A N/A 0.0016047
ˆεFP N/A N/A 0.0016047
ε̂ N/A 2.36E-14 N/A
R̂∗ 0.019347 0.019347 0.041717

Table 8.4: Table of standard deviation of the parameter estimates when the epidemic is
simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious period
distribution, estimated with Gamma(2, 4.1/2) infectious period distribution.
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Root mean square error of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0071728 0.0071728 0.0029538
λ̂G 0.0039488 0.0039488 0.030139
π̂ 0.013967 0.013967 0.069384
ẑ 0.018502 0.018502 0.058698
ˆεFN N/A N/A 0.0016225
ˆεFP N/A N/A 0.12282
ε̂ N/A 3.28E-14 N/A
R̂∗ 0.084906 0.084906 0.22497

Table 8.5: Table of the root mean square error of the parameter estimates when the epidemic
is simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and exp(4.1) infectious period
distribution, estimated with Gamma(2, 4.1/2) infectious period distribution.

8.6 When the epidemic is simulated with theoretical parame-

ters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious pe-

riod distribution, estimated with exp(4.1) infectious period

distribution.

From figures 8.4 (a)-(e), the estimates of the three models are biased and imprecise with large

variability from the four dimensional model.
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Figure 8.4: Plots of the estimates from the three models when the epidemic is simulated
with theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious period
distribution, the parameters estimated with exp(4.1) infectious period distribution.
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Mean of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim. Theoret. Param.

λ̂L 0.21548 0.16046 0.48041 0.1
λ̂G 0.58692 0.2954 0.44415 0.29
π̂ 0.41596 0.99995 0.54458 0.4291
ẑ 0.72908 8.25E-05 0.67212 0.7117
ˆεFN N/A N/A 0.048296 N/A
ˆεFP N/A N/A 0.25923 N/A
ε̂ N/A 0.5 N/A N/A
R̂∗ 2.1883 1.0001 1.9747 2.1106

Table 8.6: Table of mean of the parameter estimates when the epidemic is simulated with the-
oretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious period distribution,
estimated with exp(4.1) infectious period distribution.

Standard deviation of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0035179 0.007419 0.32168
λ̂G 0.0047777 0.004534 0.072247
π̂ 0.0047436 4.27E-05 0.070432
ẑ 0.72908 6.83E-05 0.049919
ˆεFN N/A N/A 0.025196
ˆεFP N/A N/A 0.025196
ε̂ N/A 1.33E-15 N/A
R̂∗ 0.017345 4.47E-05 0.15808

Table 8.7: Table of standard deviation of the parameter estimates when the epidemic is
simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious
period distribution, estimated with exp(4.1) infectious period distribution.
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Root mean square error of the estimates.
Par. Estim. 2Dim. 3Dim. 4Dim.

λ̂L 0.11553 0.060908 0.49798
λ̂G 0.29695 0.0070472 0.17021
π̂ 0.58404 5.17E-05 0.46081
ẑ 0.72906 8.58E-05 0.67394
ˆεFN N/A N/A 0.054461
ˆεFP N/A N/A 0.28756
ε̂ N/A 0.5 N/A
R̂∗ 1.3379 0.14952 1.1352

Table 8.8: Table of root mean square error of the parameter estimates when the epidemic is
simulated with theoretical parameters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious
period distribution, estimated with exp(4.1) infectious period distribution.

8.7 Discussion and comments.

From the plots of the estimates and table of mean, standard deviation and the root mean

square error, we see that the estimates from the three models are dispproportionate in values

when compared to their true parameter values. Those of the three and four dimensional

models are less precise than those of the two dimensional model.

In general, with only misspecification of the model, the two dimensional model is better

than the three and four dimensional models on two dimensional epidemic data.

8.8 Misspecification in the face of misclassification.

If the epidemic data is misclassified having the same misclassification probabilities and the

model is also misspecified such that the infectious period distribution used in estimation

is different from that used in simulating the epidemic data, then how does this affect the

precision of the parameters?

We studied this problem using the large population size and theoretical parameters to

allow global infection in our simulations. We therefore considered the pair of theoretical

parameters, (λL, λG) = (0.1, 0.29).

We present plots of the estimates under the two scenarios, in which the epidemic data is
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estimated with a different infectious period from that used in simulating the data.

8.9 When the epidemic data is simulated with exp(4.1) and esti-

mated with Gamma(2, 4.1/2) infectious period distributions.

Here we simulate the epidemic data with exp(4.1) infectious period distribution and estimate

the model parameters with Gamma(2, 4.1/2) infectious period distribution as follow.

Figure 8.5: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when
the epidemic data is simulated with exp(4.1) infectious period distribution and ε = 0.01.

In figures 8.5 (a)-(e), the estimates are biased and imprecise with less variability from the

two and three dimensional models as shown in figures 8.5 (b) and (c) owing to misspecification.

The three dimensional model is better than the two and four dimensional models.
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Figure 8.6: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when
the epidemic data is simulated with exp(4.1) infectious period distribution and ε = 0.02.

Similar pattern of behaviours in figures 8.5 (a)-(c) can be seen in figures 8.6 (a)-(c). The

three dimensional model is better than the two and four dimensional models.
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Figure 8.7: Plots of the estimates with Gamma(2, 4.1/2) infectious period distribution when
the epidemic data is simulated with exp(4.1) infectious period distribution and ε = 0.2.

In figures 8.7 (a)-(e), we see large variability of the estimates of the four dimensional model

around their true values compared to those of the three dimensional model. While those of

the two dimensional model are biased and imprecise. In general the three dimensional model

is better than the two and four dimensional models.
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Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theor.
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 Par.
λ̂L 0.087924 0.087965 0.093676 0.083014 0.083485 0.089956 0.029568 0.082831 0.10262 0.1
λ̂G 0.28989 0.28987 0.26986 0.29261 0.29234 0.27534 0.32819 0.29288 0.27823 0.29
π̂ 0.43114 0.43115 0.4721 0.43014 0.43025 0.46311 0.43059 0.4303 0.46004 0.4199
ẑ 0.70788 0.70792 0.67864 0.70323 0.70367 0.6823 0.62622 0.70248 0.68729 0.7298
ˆεFN N/A N/A 0.0014387 N/A N/A 0.0062863 N/A N/A 0.19136 N/A
ˆεFP N/A N/A 0.092036 N/A N/A 0.077538 N/A N/A 0.2094 N/A
ε̂ N/A 8.33E-05 N/A N/A 0.0010209 N/A N/A 0.18576 N/A N/A
R̂∗ 2.1115 2.1117 2.0115 2.0863 2.0887 2.0198 1.7083 2.0823 2.0392 2.2166

Table 8.9: Mean of the parameter estimates with Gamma(2, 4.1/2) infectious period distri-
bution when the data is simulated with exp(4.1) infectious period distribution.

Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.0014051 0.0014386 0.0040913 0.001363 0.0018231 0.0066354 0.00093879 0.0097516 0.065447
λ̂G 0.0025843 0.0026028 0.0086708 0.0024284 0.002515 0.010904 0.0020427 0.0061165 0.045795
π̂ 0.005432 0.0054391 0.017883 0.0049548 0.0049653 0.020602 0.0036992 0.0063326 0.084384
ẑ 0.0047356 0.0047228 0.012985 0.0042594 0.0044268 0.013337 0.0031339 0.010575 0.047823
ˆεFN N/A N/A 0.0039525 N/A N/A 0.008371 N/A N/A 0.02099
ˆεFP N/A N/A 0.036955 N/A N/A 0.044611 N/A N/A 0.1174
ε̂ N/A 0.00062226 N/A N/A 0.0026397 N/A N/A 0.014962 N/A
R̂∗ 0.018951 0.018903 0.043454 0.016555 0.017794 0.043505 0.0079267 0.053799 0.16304

Table 8.10: Standard deviation of the parameter estimates with Gamma(2, 4.1/2) infectious
period distribution when the data is simulated with exp(4.1) infectious period distribution.

Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.012157 0.012121 0.0075297 0.01704 0.016615 0.012035 0.070438 0.01974 0.065434
λ̂G 0.002584 0.0026035 0.0075297 0.0035642 0.0034355 0.012035 0.038244 0.0067555 0.065434
π̂ 0.012492 0.012504 0.055177 0.011382 0.011484 0.047868 0.011316 0.012178 0.093372
ẑ 0.022415 0.022377 0.052767 0.026896 0.02649 0.049329 0.10362 0.029289 0.063947
ˆεFN N/A N/A 0.0094462 N/A N/A 0.016062 N/A N/A 0.022678
ˆεFP N/A N/A 0.009428 N/A N/A 0.072779 N/A N/A 0.11766
ε̂ N/A 0.0099362 N/A N/A 0.019161 N/A N/A 0.020643 N/A
R̂∗ 0.10678 0.10658 0.20961 0.13136 0.12914 0.20151 0.50835 0.14461 0.24079

Table 8.11: Root mean square error of the parameter estimates with Gamma(2, 4.1/2) infec-
tious period distribution when the epidemic data is simulated with exp(4.1) infectious period
distribution.
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8.10 Plots of the estimates and table of mean, standard devi-

ation, root mean square error when the epidemic data is

simulated with Gamma(2, 4.1/2) and estimated with exp(4.1)

infectious period distributions.

We examined the properties of the estimates under these scenarios, presented their plots and

tables of mean standard deviation and root mean square error.

Figure 8.8: Plots of the estimates with exp(4.1) infectious period distribution when the epi-
demic data is simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.01.

In figure 8.12 (c), the estimates of the two dimensional model are more precise with less

variability than the three and four dimensional models in figures 8.12 (a) and (b) owing to

misspecification.
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Figure 8.9: Plots of the estimates with exp(4.1) infectious period distribution when the epi-
demic data is simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.02.

Similar behaviours in figures 8.12 (a)-(e) can be seen in figures 8.13 (a)-(e).
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Figure 8.10: Plots of the estimates with exp(4.1) infectious period distribution when the
epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution and ε = 0.2.

In figures 8.10 (a)-(e), the estimates of the three and four dimensional models are centered

at their true values with more variability for the four dimensional model than those of the

three dimensional model. While those of the two dimensional model are imprecise and biased.

In general the three dimensional model is better than the two and four dimensional models
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Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theor.
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 Par.
λ̂L 0.10058 0.1274 0.12439 0.094141 0.12782 0.12418 0.030468 0.12778 0.14371 0.1
λ̂G 0.29647 0.28606 0.29078 0.29931 0.28595 0.29154 0.333 0.28622 0.28769 0.29
π̂ 0.41465 0.41957 0.41156 0.41355 0.41959 0.41022 0.41912 0.41963 0.42183 0.4291
ẑ 0.72426 0.74059 0.74488 0.71956 0.74085 0.74575 0.63694 0.74022 0.74092 0.7117
ˆεFN N/A N/A 0.030553 N/A N/A 0.040032 N/A N/A 0.21275 N/A
ˆεFP N/A N/A 0.010832 N/A N/A 0.01722 N/A N/A 0.18887 N/A
ε̂ N/A 0.032266 N/A N/A 0.042179 N/A N/A 0.21254 N/A N/A
R̂∗ 2.1617 2.2509 2.2698 2.1356 2.2522 2.2738 1.73 2.2486 2.2593 2.1106

Table 8.12: Mean of the parameter estimates with exp(4.1) infectious period distribution
when the epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution.

Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.0017218 0.0064309 0.0076548 0.0016489 0.0068501 0.0087742 0.00098638 0.016316 0.070344
λ̂G 0.0024134 0.0033416 0.0069713 0.0023772 0.0033419 0.0082493 0.0019164 0.0061721 0.04847
π̂ 0.0047786 0.0052086 0.012119 0.004571 0.0050424 0.014044 0.0033002 0.0065439 0.083907
ẑ 0.0040338 0.0051911 0.007914 0.0037568 0.0053171 0.008631 0.0027658 0.010044 0.044281
ˆεFN N/A N/A 0.0064402 N/A N/A 0.0069957 N/A N/A 0.015604
ˆεFP N/A N/A 0.027343 N/A N/A 0.031997 N/A N/A 0.12798
ε̂ N/A 0.0063887 N/A N/A 0.0065142 N/A N/A 0.011181 N/A
R̂∗ 0.017093 0.025695 0.037354 0.01539 0.026481 0.040686 0.0074831 0.052057 0.19753

Table 8.13: Standard deviation of the parameter estimates with exp(4.1) infectious period
distribution when the epidemic data is simulated with Gamma(2, 4.1/2) infectious period
distribution.

215



Model
Par. 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim
ε 0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2
λ̂L 0.0018158 0.028146 0.025563 0.0060862 0.028645 0.025722 0.069539 0.032211 0.082761
λ̂G 0.006906 0.0051639 0.025563 0.009607 0.0052508 0.025722 0.043042 0.0072334 0.082761
π̂ 0.015189 0.010833 0.021286 0.016179 0.010735 0.023495 0.01048 0.011482 0.084135
ẑ 0.013232 0.0294 0.034151 0.008749 0.02967 0.035171 0.074762 0.030281 0.053042
ˆεFN N/A N/A 0.021537 N/A N/A 0.021216 N/A N/A 0.020137
ˆεFP N/A N/A 0.027328 N/A N/A 0.032086 N/A N/A 0.12833
ε̂ N/A 0.023163 N/A N/A 0.023114 N/A N/A 0.016796 N/A
R̂∗ 0.053869 0.14262 0.16354 0.02936 0.14404 0.16818 0.38065 0.14746 0.24705

Table 8.14: Root mean square error of the parameter estimates with exp(4.1) infectious
period distribution when the epidemic data is simulated with Gamma(2, 4.1/2) infectious
period distribution.

8.11 Conclusion and comments.

With misclassification error in the data and misspecification, the estimates of the three di-

mensional model are biased with less variability around their true values than those of the

four dimensional model. Those of the two dimensional model are biased and imprecise.

In general, the three dimensional model is better than the two and four dimensional models

on three dimensional epidemic data with model misspecification.

8.12 Misspecification in the face of different misclassification

Probabilities.

Here, we studied the effect of misspecification on the estimate of the model parameters, when

the epidemic data is misclassified with different misclassification probabilities, such that the

infectious period distribution used in estimation is different from that used in simulating the

epidemic data.

We examined this problem by simulating epidemic data with the pair of theoretical param-

eters (λL, λG) = (0.1, 0.29) and Gamma(2, 4.1/2) infectious period distribution and estimating

the models with exp(4.1) infectious period distributions and vice versa.
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8.13 Plots of the estimates and table of mean, standard devi-

ation, root mean square error when the epidemic data is

simulated with exp(4.1) and estimated with Gamma(2, 4.1/2)

infectious period distributions.

We simulate epidemic data with exp(4.1) infectious period distribution and estimate the model

with Gamma(2, 4.1/2) infectious period distribution. We present plots of the estimates and

table of the mean, standard deviation and root mean square error.

Figure 8.11: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution
when the epidemic data is simulated with exp(4.1) infectious period distribution and εFN =
0.02, εFP = 0.1.

In figures 8.11 (a)-(c), the estimates of the three models are biased and imprecise.
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Figure 8.12: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution
when the epidemic data is simulated with exp(4.1) infectious period distribution and εFN =
0.3, εFF = 0.2.

In figures 8.12 (a) and (b), we see large variability of the estimates of the three and four

dimensional models around their true values. While those of the two dimensional model

are biased and imprecise. The three and four dimensional models are better than the two

dimensional model.
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Figure 8.13: Plots of the estimates using Gamma(2, 4.1/2) infectious period distribution
when the epidemic data is simulated with exp(4.1) infectious period distribution and εFN =
0.2, εFF = 0.2.

In figures 8.13 (a) and (b), the scatter plots of the estimates of the four and three dimen-

sional models are centered around their true values but with more variability from those of the

four dimensional model. While those of the two dimensional model are biased and imprecise.

Given this scenario, the three dimensional model is significantly better than the two and four

dimensional models as theoretically expected.
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εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. Theo.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. Param.

λ̂L 0.077163 0.077248 0.087328 0.018492 0.12408 0.11088 0.1
λ̂G 0.30254 0.3025 0.27016 0.32022 0.23888 0.28331 0.29
π̂ 0.39733 0.39734 0.46066 0.48234 0.53371 0.45364 0.4199
ẑ 0.7264 0.7265 0.68375 0.55535 0.64279 0.69246 0.7298
ˆεFN N/A N/A 0.0068771 N/A N/A 0.29176 N/A
ˆεFP N/A N/A 0.14662 N/A N/A 0.18414 N/A
ε̂ N/A 0.00019064 N/A N/A 0.30141 N/A N/A
R̂∗ 2.1701 2.1707 2.0246 1.5303 1.8966 2.0626 2.2166

Table 8.15: Table of mean of the parameter estimates when the epidemic is simulated with
exp(4.1) and estimated with Gamma(2, 4.1/2) infectious period distributions.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0013641 0.0014384 0.0075362 0.00083274 0.098363 0.085154
λ̂G 0.0025697 0.0025712 0.0025712 0.0018798 0.017461 0.06154
π̂ 0.0050036 0.005004 0.026227 0.003523 0.019542 0.11398
ẑ 0.0042381 0.0042876 0.017032 0.0029415 0.017353 0.06668
ˆεFN N/A N/A 0.0089027 N/A N/A 0.022678
ˆεFP N/A N/A 0.0089027 N/A N/A 0.022678
ε̂ N/A 0.0010166 N/A N/A 0.02093 N/A
R̂∗ 0.018388 0.018763 0.055725 0.0054852 0.051097 0.23005

Table 8.16: Table of standard deviation the parameter estimates when the epidemic is simu-
lated with exp(4.1) and estimated withGamma(2, 4.1/2) infectious period distributions.

8.13.1 Plots of the estimates and table of mean, standard deviation, root

mean square error when the epidemic data is simulated with Gamma(2, 4.1/2)

and estimated with exp(4.1) infectious period distributions.

We simulate epidemic data with Gamma(2, 4.1/2) infectious period distribution and estimate

the model with exp(4.1) infectious period distribution. We then present plots of the estimates

and table of mean, standard deviation and root mean square error.

In figures 8.14 (a)-(c), the scatter plots of the estimates of λL and λG from the three and

four dimensional models are close to their true values with more variability from those of the
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εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.022877 0.022797 0.014742 0.081513 0.10122 0.085804
λ̂G 0.012802 0.01276 0.023996 0.030277 0.054021 0.085804
π̂ 0.0077887 0.0077836 0.063068 0.062538 0.11547 0.11881
ẑ 0.019558 0.019481 0.064056 0.17446 0.088712 0.076388
ˆεFN N/A N/A 0.015855 N/A N/A 0.024118
ˆεFP N/A N/A 0.070549 N/A N/A 0.13442
ε̂ N/A 0.059818 N/A N/A 0.0555 N/A
R̂∗ 0.1225 0.12201 0.27237 0.68633 0.32402 0.27674

Table 8.17: Table of root mean square error of the parameter estimates when the epidemic is
simulated with exp(4.1) and estimated with Gamma(2, 4.1/2) infectious period distributions.

Figure 8.14: Plots of the estimates using exp(4.1) infectious period distribution when the
epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution and εFN =
0.02, εFP = 0.1.

four dimensional model. While those of the two dimensional model are biased.
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Figure 8.15: Plots of the estimates using exp(4.1) infectious period distribution when the
epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution and εFN =
0.3, εFP = 0.2.

In figures 8.15, (a)-(e), similar behaviours in figures 8.14 (a)-(c) are shown with less vari-

ability.
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Figure 8.16: Plots of the estimates using exp(4.1) infectious period distribution when the
epidemic data is simulated with Gamma(2, 4.1/2) infectious period distribution and εFN =
0.2, εFP = 0.2.

Also, similar behaviours in figures 8.13 (a)-(d) are repeated in figures 8.16 (a)-(d)
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εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2. Theo.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. Param.

λ̂L 0.0899 0.11325 0.12146 0.018857 0.20678 0.17525 0.030476 0.12636 0.14328 0.1
λ̂G 0.31604 0.3072 0.29637 0.32328 0.22549 0.28042 0.33295 0.28666 0.28834 0.29
π̂ 0.38268 0.38487 0.403 0.47353 0.53291 0.43831 0.41922 0.41955 0.42131 0.4291
ẑ 0.74134 0.75816 0.74916 0.564 0.68191 0.7314 0.63686 0.73928 0.74019 0.7117
ˆεFN N/A N/A 0.035793 N/A N/A 0.31001 N/A N/A 0.21176 N/A
ˆεFP N/A N/A 0.073987 N/A N/A 0.19614 N/A N/A 0.18777 N/A
ε̂ N/A 0.031352 N/A N/A 0.32081 N/A N/A 0.21156 N/A N/A
R̂∗ 2.2213 2.3271 2.2885 1.5441 2.0035 2.221 1.7299 2.2436 2.2554 2.1106

Table 8.18: Table of mean of the parameter estimates when the epidemic is simulated with
Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions..

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.0016924 0.0066428 0.01531 0.00088043 0.10474 0.33149 0.0010178 0.016721 0.079516
λ̂G 0.0025711 0.0033824 0.017484 0.0018071 0.013616 0.060984 0.0020738 0.0064708 0.048072
π̂ 0.0044885 0.0047762 0.029084 0.0031539 0.016093 0.10675 0.0035174 0.0069734 0.083025
ẑ 0.0034881 0.0055627 0.015519 0.0025597 0.014854 0.057308 0.0027811 0.010356 0.043984
ˆεFN N/A N/A 0.0096162 N/A N/A 0.017639 N/A N/A 0.01552
ˆεFP N/A N/A 0.0096162 N/A N/A 0.013944 N/A N/A 0.01552
ε̂ N/A 0.0070962 N/A N/A 0.32081 N/A N/A 0.19768 N/A
R̂∗ 0.015789 0.032068 0.070022 0.0051863 0.042476 0.24985 0.0071748 0.05349 0.19768

Table 8.19: Table of standard deviation the parameter estimates when the epidemic is simu-
lated with Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions.

εFN = 0.02, εFP = 0.1. εFN = 0.3, εFP = 0.2. εFN = 0.2, εFP = 0.2.
Par. Estim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim.

λ̂L 0.01024 0.014822 0.026358 0.081148 0.14954 0.33976 0.069531 0.031216 0.090497
λ̂G 0.026164 0.01753 0.018601 0.033325 0.065926 0.061702 0.043003 0.00728 0.048076
π̂ 0.046586 0.044434 0.01860 0.044594 0.1051 0.1071 0.010441 0.011785 0.083343
ẑ 0.029886 0.046832 0.04058 0.14768 0.033251 0.060585 0.07485 0.029491 0.052406
ˆεFN N/A N/A 0.018487 N/A N/A 0.0202759 N/A N/A 0.019465
ˆεFP N/A N/A 0.073775 N/A N/A 0.13298 N/A N/A 0.12738
ε̂ N/A 0.029513 N/A N/A 0.072166 N/A N/A 0.016198 N/A
R̂∗ 0.11175 0.21884 0.19116 0.56651 0.11525 0.27301 0.3808 0.14333 0.24492

Table 8.20: Table of root mean square error of the parameter estimates when the epidemic is
simulated with Gamma(2, 4.1/2) and estimated with exp(4.1) infectious period distributions.

8.14 Conclusion and comments.

From the scatter plots (a)-(e) in figures 8.11 , 8.12 and 8.13 and tables 8.15, 8.16 and 8.17,

we see that estimates of the four dimensional model are more precise than those of the two
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and three dimensional models in the face of misspecification when the epidemic data is four

dimensional data. Also, we see in figures 8.14-8.16, (a)-(e), that with misspecification the

three and four dimensional models are better than the two dimensional models, when the

data are both misclassified and misspecified.
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Chapter 9

Summary, Conclusion and Extensions.

9.1 Introduction.

In this chapter, we summarised the work done and discussed the results. We also provided

inferential procedures for analysing the stochastic SIR household model when the final data

epidemic data is misclassified and highlighted aspects that may require further extension.

This chapter is organised as follows.

In section 9.2, we summarised the work done, while in section 9.3 we discussed the results.

In section 9.4, we examined some of the extensions of the stochastic household epidemic model

of [9] and explored the need to adjust our inference in face of misclassification error in the

final size epidemic data.

In section 9.5, we discussed the conclusion from the results of our studies, in section

9.6, we discussed the limitations of our studies and finally in section 9.7, we outlined the

procedures of analysing the stochastic SIR household epidemic when the final size epidemic

data is misclassified.

9.2 Summary of Work.

In chapter 2, we studied [9], the stochastic SIR household epidemic model, its household

structure, mixing assumptions, branching process approximation of epidemic in the early

stages, the threshold theorem of epidemic, the mean final size of the epidemic and the final
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size probabilities.

We examined other extension by [1], which assumed independence of epidemics in each

household contrary to [9] assumption of dependency of epidemic between households. Using

this assumption in [1], we developed a maximum likelihood estimation algorithm for the

estimation of the parameters. We constructed the approximate likelihood function of the

parameters and developed Matlab programs to estimate the parameters.

Using these procedures in our simulation studies, we examined the threshold behaviour of

the model and found that large epidemics only occur when R∗ > 1, in accordance with [11]

and given R∗, the precise values of λL and λG have little effect on either the number of people

infected or the probability of a large epidemic occurring.

In chapter 3, we studied the theoretical properties of some of the functions of the model

and their behaviours near the boundaries of the local infection rate. We see that, without

local contacts in the households, everybody avoids local infection and the final size of the

epidemic is only the initial infective in the household, while with very large local infection

rate, everybody in the household is infected.

The threshold parameter reduces to R0 = λGE(TI), whenever λL → 0. This is the thresh-

old parameter for a population in which every household has one member, the so called general

stochastic epidemic model.

We discussed the distribution of the number of individuals infected in the households, its

mean, the proportion of the initial susceptibles ultimately infected z, its governing equation for

the single population deterministic SIR epidemic model and its behaviours near the boundaries

of the local infection rate.

In chapter 4, we fitted the data from the two dimensional model to the two dimensional

final size epidemic model using the modified version of the simhouses simulation package which

is embedded with Matlab codes, which are based on the maximum likelihood algorithm of [1]

and employed the Nelder-Mead fminsearch numerical optimisation. The modified version

of the simhouses simulation package computes the estimate of the parameters of the model

using [24] method of obtaining the initial values for the estimates. It also computes the means,

standard deviation, mean square error, and root mean square error of the estimates.
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Comparison of our estimates with those of [1,9], showed that the estimates are the same to

the numerical accuracy used and hence our Matlab programs that are used to estimate them

are working well. Also, we explored the choice of the minimum epidemic size in simulations

with small and large population sizes, 1414 and 70700 respectively and also examined the

effects of an overly large minimum epidemic size.

The estimates of the parameters of the model are further explored for a range of values of

z with large population size to provide clarity on their properties.

In chapter 5, we developed the theoretical framework leading to misclassification of epi-

demic data, where the misclassification probabilities are assumed different from each other

Here, the probabilities of making precise observation of an infective when it is true and a

susceptible when it is true have the form, 1− εFN and 1− εFP , respectively.

The distribution of observing j infectives correctly and incorrectly and that of susceptibles

correctly and incorrectly are shown to be Binomial distributed in section 5.2. The distribution

of the number of infectives and those of the susceptibles observed are given in equations (5.2.2)

and (5.2.3) respectively.

The expressions for Pi,j(n) and hence qn,i can accommodate cases in which the misclassi-

fication probabilities are the same which we have referred to as the three dimensional model.

We examined the precision of the estimates under this scenario, using simulation studies and

compared them with those of the two and four dimensional models on the final size epidemic

data.

In chapter 6, we analysed further the properties of these models, using the Pearson chi-

square goodness of fit and the Kolmogorov-Smirnov goodness of fit tests. We fitted these

models to the final size epidemic data and plotted the density histograms of the Pearson

chi-square. The density histograms are superimposed with theoretical chi-square distribution

function. Also, we plotted the empirical cumulative distribution function and the hypothesized

chi-squared distribution function. We computed the mean, variance of the Pearson chi-square

statistics for the three models.

We explored the parameter estimates of the models along the diagonal of the misclassifica-

tion probabilities region {(εFN , εFP ) : εFN = 0.2− εFP , εFP ∈ [0, 0.2]} and along the vertical
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axes by holding εFP constant while varying εFN ∈ [0, 0.2]. We then computed their corre-

sponding Pearson chi-square statistics, their mean and variance and plotted these statistics

for varying misclassification probabilities in [0, 0.2], and theoretical parameters corresponding

to z = 0.2144, 0.7298.

We computed the proportion of the simulations rejected from the Pearson chi-square

goodness of fit test and explored them for the three and four dimensional final size epidemic

data and theoretical parameters corresponding to z = 0.2144 and z = 0.7298 respectively for

misclassification probabilities in [0, 0.2).

In summary, our studies show that the density histograms of Pearson chi-square statistics

from the models sufficiently approximate the theoretical chi-square distribution for the three

models on the two dimensional final size epidemic data. Since less complex model fits well to

the final size epidemic data and in line with the principle of parsimony, the two dimensional

model is the preferred model fit to the final size data.

On the three dimensional final size epidemic data, we see that the Pearson chi-square

statistics from the two dimensional model failed to approximate their theoretical counterparts

when the misclassification becomes large including the mean and variance of the Pearson

chi-square statistics in contrast to the Pearson chi-square statistics from the three and four

dimensional models, which remain consistently stable under these scenarios. The plot of the

cumulative distribution function provided more clarity on these behaviours.

The Pearson chi-square statistics from the three and four dimensional models sufficiently

approximate the theoretical chi-square distribution. Plots of the cumulative distribution func-

tion of the chi-square goodness of fit statistics and those of their theoretical chi-square dis-

tributions from the models are presented. Hence the three and four dimensional models

sufficiently fit the three dimensional final size epidemic data while the two dimensional model

failed to fit especially when the misclassification probability is not close to 0.

On the data from the four dimensional epidemic model, the Pearson chi-square statistics

from the two and three dimensional models failed to approximate the theoretical chi-square

distribution, when the misclassification probabilities are large and far apart from each other

as shown in figures 6.6 and 6.7 respectively. We see significantly large values of the mean and
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variance in contrast to their theoretical values. Under this scenario, the preferred model fit

to the four dimensional final size epidemic data is the four dimensional model.

In chapter 7, we continued our studies of the properties of the three models using simu-

lation studies by employing the chi-square difference statistic and the Kolmogorov-Smirnov

goodness of fit tests to check the adequacy of the chi-square approximations of the three model.

Also, we studied the mean and variance of the chi-square difference statistic from the three

models including the proportion of the simulations rejected from the difference chi-square test.

This is done by exploring the estimates of the three models, for a range of misclassification

probabilities in the permissible region [0, 0.5).

We see that on the two dimensional final size data, the density histograms of the chi-

square difference statistic and the cumulative distribution function of the chi-square difference

statistics, D2,3, D2,4, and D3,4 approximate the theoretical chi-square distribution χ2
1, χ

2
2 and

χ2
1 respectively. These behaviours are in line with the discussion in chapter 6. On the three

dimensional final size epidemic data, we found that only D3,4 is approximately χ2
1 in the face

of large misclassification probabilities in its permissible region, [0, 0.5), while D2,3 � χ2
1 and

D2,4 � χ2
2. This means that only the three and four dimensional models are sufficient on the

three dimensional final size epidemic data for misclassification probabilities in the permissible

region, [0, 0.5).

These results are consistent and in agreement with those of our previous studies in chapter

6, in which the three and four dimensional models are found to be sufficient on the three

dimensional final size epidemic data if the misclassification probability is not close to 0.

On the four dimensional final size data, we see that if the misclassification probabilities

are far apart from each other, then D2,3 � χ2
1, D3,4 � χ2

1 and D2,4 � χ2
2. This means

that the four dimensional model fits data from the four dimensional final size epidemic model

significantly better than the two and three dimensional models.

The four dimensional model outperforms the two and three dimensional models on the

final size epidemic data and hence most adequate model fit on the final size data in the face

of varying misclassification probabilities in the permissible region [0, 0.5) especially when the

misclassification probabilities are non zero and far apart from each other.
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In chapter 8, we studied the effects of misspecification on the estimates of the stochastic

SIR household epidemic model in which the epidemic model is estimated with a different

infectious period distribution from the true infective period distribution of the epidemic data.

9.3 Discussion.

This work is concerned with inference for the stochastic SIR household epidemic model of [9]

and [1], which are generalisations of the simple stochastic SIR epidemic model. Here, we are

concerned with inference of the final size epidemic data, which may sometimes be subject to

misclassification error discussed in chapters 5. These misclassification errors if ignored in our

inference will lead to incorrect results of our analysis and incorrect model fit to the final size

epidemic data.

It therefore means that an alternative approach to inference adopted in [1] is required

in order to accommodate this scenario, by incorporating the misclassification probabilities in

the modelling process. Three ways in which these errors can be handled in the modelling

process were highlighted at the beginning of this thesis namely, when the misclassification

probability assumed equal to zero, ε = 0 as in [1,9], when they are the same, simply denoted

by ε and lastly, when they are different from each other as discussed in the preamble to this

work. The question then is; can the estimate of the parameters be precisely obtained under

this circumstance, especially when such errors are substantially large and how do we handle

the estimation problem such that precise estimates are obtained and the appropriate model

fit to the final size epidemic data is identified?

The studies of the parameters and functions of the stochastic SIR household epidemic

model provided insights into their properties and enhanced our understanding of their be-

haviours. For example the threshold parameter discussed in section 2.7 plays an important

role in the occurrence of a global epidemic in the population discussed in sections 2.9, 3.7 and

4.4.

If λL = 0, the household structure is destroyed and the model simply reduces to the

general stochastic epidemic model with household of size n = 1, and threshold parameter
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R0 = λGE(TI). If λL 6= 0 then we have the expression in equation (2.7.1).

Increasing local infection rate towards infinity, leads to increase in the threshold parameter

and if the household size n is sufficiently large and λG 6= 0 then a global epidemic will occur

in agreement with [9] and discussion in sections 3.7 and 3.11 respectively.

Reducing R∗ through vaccination or otherwise also reduces the proportion of the initial

susceptibles ultimately infected at the end of the epidemic, z.

Another useful community based extension of the stochastic household epidemic is that

of [1] discussed in section 2.6. The [1] model extension provides computational method for

the estimation of the parameters. It uses maximum likelihood algorithm derived from the

assumption of independence of epidemics in each household [1], which contravenes the depen-

dency assumption of [9]. We know this is not true as in [9] but has been employed to allow

for the estimation of the parameters as in [1]. Also as observed in [9], that the event of a

global epidemic in a household that did not have initial infective is distributed as that of the

extended model of [1] with, π = exp(−λGE(TI)z) [9].

In line with the assumption in [1] and discussion in section 2.12, we obtained the approx-

imate likelihood function of the parameters of the final size probabilities in equation (2.12.2)

and its loglikelihood function in equation (2.12.3) respectively.

The pair of the parameters (λL, π) and other corresponding parameters are estimated

using [24] methods of generating starting values for the two dimensional model as discussed

in section 4.2. The point estimates of the parameters from the Matlab programs and those

of [1] discussed in section 4.3 are the same to numerical accuracy used and since the approx-

imate likelihood function is not the true likelihood, the standard error of the estimates and

their confidence intervals are inaccurate. To overcome this problem, we simulated household

epidemic using the same household structure and point estimate of the parameters and then

computed the mean, standard deviation and mean square error of the estimates and hence

the confidence intervals. Here the standard deviation of the simulated estimates is a measure

of how close the estimates are to their true parameter values.

Matlab programs to implement the estimation of the parameters are embedded in the mod-

ified version of the simhouses simulation package with subroutines which uses [24] method to
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generate starting values for the estimates as discussed in section 4.2. The mean, standard

deviation and mean square error are also obtained from the program function, modified sim-

houses simulation package. The population size should be large with adequate choice of the

minimum epidemic size for the simulations as discussed and explored in sections 4.4, 4.8 and

4.9. The estimate of the model parameters are found to be unbiased with acceptable mean,

small standard deviation (standard error of the estimates) and with minimum mean square

error.

Appropriate choice of minimum epidemic size in simulations studies are required to allow

large infections leading to unbiased estimates of the parameters as discussed in section 4.8,

with illustrations in figure 4.4. The behaviour of the estimates given different minimum

epidemic sizes and population sizes are explored in table 4.6 in order to provide further

insights into the properties of the estimates in the face of inappropriate choice of the minimum

epidemic size.

We see that it is often important to first experiment with the choice of 1, minimum

epidemic size and then study the bimodal behaviour of the histogram of the number infected

before choosing an appropriate cut-off between non-global and global epidemics from the

simulations. The minimum epidemic size is discussed in section 4.8 and shown in figure 4.4.

From our previous studies of the two and three dimensional model estimates in sections

5.8.1, 5.9, 5.10, 5.11, 6.9 and 6.10, we found that the three dimensional model has precise

and unbiased estimates and therefore the best model fit to the three dimensional final size

epidemic data than the two dimensional model if the misclassification probability is not close

to 0.

Programs to estimate the parameters, compute the mean, standard deviation, mean square

error and plot the root mean square error of the estimates are discussed in section 5.5.

From our studies in sections 5.6 and 5.7, we found that the precision of the estimates

differs for the parameter estimates, for ε ∈ [0, 0.5). For some parameter estimates the two

dimensional model outperforms the three and four dimensional models with better precision

in the estimates, while for some either the three or four dimensional model is the best on the

final size epidemic data. These behaviours are explored and discussed in section 5.7.
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Also, the plots of the root mean square error of the estimates of the four dimensional

model, are consistently stable over the misclassification probabilities region [0, 0.2], compared

to those of the two and the three dimensional models. These behaviours agree with those of the

density histograms of the Pearson chi-square test in section 6.11 and the density histograms

of the chi-square difference statistic, their empirical distribution function in section 7.10.

Here, we found that the two and three dimensional models are unable to sufficiently fit

the four dimensional final size epidemic data when the misclassification probabilities are large

and far apart from each other.

If the misclassification probabilities are close to each other and not 0, then the estimates of

the three dimensional model are precise and unbiased including those of the four dimensional

model, while those of the two dimensional model are biased, imprecise and struggled fitting

the final size epidemic data. If the misclassification probabilities are close to zero, then the

estimates of the two dimensional model are unbiased and precise in line with our discussion

in section 5.6 including those of the three and four dimensional models. The two dimensional

model is most preferred model fit to the four dimensional final size epidemic data in line with

the principle of parsimony.

Considering these properties, we found the estimates from the four dimensional model to

be more precise than those of two and three dimensional models on the final size epidemic

data and therefore most preferred model fit when misclassification errors are known to have

occur in the final size epidemic data.

If the models are misspecified on the two dimensional epidemic data, then the estimates of

the three models are found to be biased with more variability around the true values from the

estimates of the three and four dimensional models compared to those of the two dimensional

model.

Thus, without misclassification, the more complex models are not significantly better than

the two dimensional model in the presence of misspecification.
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9.4 Possible Extension.

The stochastic SIR household epidemic model has been extended by different authors in var-

ious directions such as the work of [12] which extended the single type individual in [9] to

multiple types (several types of individuals) in a constant population with heterogeneity in

infectivity and susceptibility such that the infection rate between two individuals are depen-

dent on the type of the transmitting and receiving individuals [12]. An Infective in class

i = 1, 2, . . . , J is assumed to make independent and random contacts with susceptibles in

class j = 1, 2, . . . , J in the population at the points of a homogeneous Poisson process hav-

ing rate, λG
i,j/Nj, while they make contacts with susceptibles in class j within their household

at the points of a homogeneous Poisson Process having rate, λLi,j , similar to the community

based stochastic multitype SIR household epidemic model of [1] having no global infection

rate discussed in section 2.6.

The susceptibles infected from class j are infectious for period T (j)
I [12], after which they

recover and become immune. The epidemic ceases as soon as there are no infectious individuals

in the population [12].

The multitype SIR household epidemic can further be extended by introducing misclas-

sification error in the final size epidemic data similar to this work with modification to the

final size probabilities obtained from the triangular equation (2.6.1) of [1]. The likelihood

function similar to that of the single type individual is the obtained by assuming indepen-

dence of the epidemics in each households [1]. Hence using the maximum likelihood algorithm

in [1], the local infection rates λLi,j , and the vector of the escape probabilities defined as the

probabilities that susceptibles of type i = 1, . . . ,m, avoids infection from the population,

π = (π1, π2, . . . , πm), using [1] notation are estimated including other epidemiological param-

eters similar to the single type case.

The parameter estimates of the multitype stochastic SIR household epidemic model can

further be explored with different misclassification probabilities in order to provide more

insights into the properties of the estimates in the face of increasing percentage noise in the

final epidemic data.
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If the infectious period distribution is unknown, then it is necessary to estimate the shape

parameter of the Gamma infectious period distribution. For example if Gamma(a, k/a) is

the assumed infectious period distribution, where k is known then the shape parameter a can

then estimated from the final size epidemic data.

9.5 Overall Conclusion.

We have seen from the analyses of the [1] final size epidemic data and discussion in sections

4.4, 4.8 and 4.9 respectively that the population size is required to be sufficiently large. Also

required is an adequate choice of the minimum epidemic size in the simulations using the

approach in figure 4.4, for the epidemic to take off.

Getting these accomplished firstly involves, simulating household epidemic with 1 as the

minimum epidemic size and choosing the appropriate cut-off between the epidemics from the

bimodal pattern of the histogram of the distribution of the number infected as discussed in

section 4.8 and shown in figure 4.4. Simulations can then be carried out with the new choice of

the minimum epidemic size after satisfactory outcome with experimenting with the minimum

epidemic size of 1.

Also the level of precision of the estimates, their bias and otherwise of the three models

are interpreted from the properties of their mean, standard deviation and mean square er-

ror. For example the estimates of the three models are precise and unbiased when the true

final epidemic data is the two dimensional final size epidemic data, while those of the two

dimensional model are biased and imprecise if the true final size epidemic data is the three

and four dimensional final size data. Also if the misclassification probabilities are large and

different from each other then only the estimates of the four dimensional model are precise

and unbiased and therefore the preferred model fit to the final size epidemic data.

The properties of the three models are further explored using the Pearson chi-square

goodness of fit test, the likelihood ratio chi-squared goodness of fit tests, the Kolmogorov-

Smirnov goodness of fit test and the chi-square difference test in chapters 4, 6 and 7, in which

we found that the three models sufficiently fit the two dimensional final size epidemic data, the
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choice of which to use rests on the principle of parsimony which requires the use of the simplest

of the three models to the final size epidemic data. Thus, the two dimensional model which

requires only two parameters to be estimated is the preferred choice compared to the three

and four dimensional models with three and four parameters to be estimated respectively. In

general, it is often preferred fitting the two dimensional model to two dimensional final size

epidemic data.

If the final size epidemic is misclassified such that the misclassification probabilities are

the same then the estimates of the three and four dimensional models have precise estimates

which satisfies the minimum mean square error criterion required of good estimates. The mean

square error of the estimates for the three and four dimensional models tend to approximate

each other for varying misclassification probabilities in the permissible region [0, 0.5). The

fitness of the two models is better understood from the plots of the empirical distribution

of the chi-square difference statistic of the three models and their corresponding theoretical

distribution, for which only three and four dimensional models are sufficient fits to three

dimensional final size epidemic data.

Finally, when the misclassification probabilities are different and far apart from each other

then from chapters 6 and 7, we found that only the four dimensional model is adequate on

the final size epidemic data. In such situations the models tends to struggle fitting to the four

dimensional model with biased estimates.

We have seen that the four dimensional model is a sufficient model fit to the four di-

mensional final size epidemic and the two and three dimensional final size epidemic data and

therefore outperforms the two and three dimensional models. It is often useful in situation

where the final size epidemic data is in doubt.

Also, with model misspecification on two dimensional epidemic data, the estimates of the

three models are biased with less precision from the three and four dimensional models and

more variability around the true values from the estimates of the four dimensional model.

From the chi-square difference test, we found that the three and four dimensional models

are not significantly better than the two dimensional model when the epidemic data are not

misclassified. If the epidemic data are misclassified then in the face of model misspecification,
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the three and four dimensional models are better than the two dimensional model.

9.6 Limitation of the Study.

This work is limited to the stochastic SIR household epidemic model of [9, 11] discussed

in section 2.3 and extended [1] maximum likelihood algorithm for inference to handle cases

with misclassification error in the final size epidemic data. It is therefore not applicable to

epidemics with different demographic settings from that of the SIR epidemic life circle and

transmission pattern. For example, it cannot be applied to the SIS epidemic, which has

common demographic settings with the SIR epidemic in which infectious individual recovered

and immediately becomes susceptible other similar type epidemics. We have not considered

infectious diseases that require birth and death demographic settings for the replenishment of

the susceptibles population in order to keep the epidemic going, associated with the SI and

SEI epidemics used in the study of endemic diseases.

These studies are therefore limited to the demographic settings and mixing assumptions

in [9] to enable comparison of our results with those of [1] and other assumptions leading to

its inference in [1] discussed in 2.6.

9.7 Recommendation.

There is the need to adjust our inference to accommodate misclassification error in the final

size data, especially when they are known to have occurred, since ignoring them leads to

biased estimates and choice of the wrong model. In situations when the source and methods

of data collection are suspect, it may be necessary to check the level of the percentage noise

if any in the final size data before embarking on inference. This is implemented using the

Matlab program, falsefminsearch3(n, a, b,mat), where a = 2, b = 2.05 are the parameters

of Gamma(a, b) infectious period distribution, n is the maximum household size, and mat is

the matrix of the final size epidemic data. The program outputs are the maximum likelihood

estimates of model parameters, λL, π, εFN , and εFP . If the model is two dimensional then

the two misclassification probabilities will be zero or approximately zero. If it is the three
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dimensional model, then the misclassification probabilities will not be zero but approximately

the same. If it is the four dimensional model, then the misclassification probabilities will be

different from each other. Thus, knowing the level of noise in the final size epidemic data will

help determine the right model fit to the final size epidemic data.

The following are suggested procedures to follow in analysing the stochastic SIR household

epidemic model, when the final size epidemic dataset is known.

1.) Run the program, falsefminsearch3(n, a, b,mat), to determine the appropriate di-

mension of the model and the final size epidemic data. Here the program estimates the

parameters of the model including the misclassification probabilities.

2.) Calculate the Pearson chi-square and the likelihood ratio chi-square statistics, X2, X3,

and X4 corresponding to the three models, determine the p-values and compare the observed

chi-square goodness of fit statistics for the three models with their critical values at the p-

values and take decision whether to reject or not to reject the null hypothesis at the given

p-values.

3.) Calculate the chi-square difference statistic, D2,3, D2,4, and D3,4 using results in serial

number 2.

4.) Choose the two, three or four dimensional model using the results of the analysis from

1− 3.

5.) Simulate household epidemic with 1000 repetitions using the parameter estimates and

minimum epidemic size of 1 to see the bimodal behaviour of the distribution of the number

infected and hence choose the appropriate minimum epidemic size which gives large infection

in each simulation. Now repeat the simulations with the chosen minimum epidemic size and

compute the mean, standard deviation (standard error) and the mean square error of the

estimates. Also compute and examine the mean and variance of the chi-square statistics from

the simulations.
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