
Helal, Ayah, Brookhouse, James and Otero, Fernando E.B. (2018) Archive-Based
Pheromone Model for Discovering Regression Rules with Ant Colony Optimization.
 In: 2018 IEEE Congress on Evolutionary Computation (CEC). . pp. 1-7.
IEEE ISBN 978-1-5090-6018-4. E-ISBN 978-1-5090-6017-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/67178/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/CEC.2018.8477643

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/67178/
https://doi.org/10.1109/CEC.2018.8477643
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Archive-Based Pheromone Model for Discovering
Regression Rules with Ant Colony Optimization

Ayah Helal
School of Computing

University of Kent
Chatham Maritime, UK

Email: amh58@kent.ac.uk

James Brookhouse
School of Computing

University of Kent
Chatham Maritime, UK

Email: jb765@kent.ac.uk

Fernando E. B. Otero
School of Computing

University of Kent
Chatham Maritime, UK

Email: F.E.B.Otero@kent.ac.uk

Abstract—In this paper we introduce a new algorithm, called
Ant-Miner-RegMA to tackle the regression problem using an
archive-based pheromone model. Existing regression algorithms
handle continuous attribute using a discretisation procedure,
either in a preprocessing stage or during rule creation. Using an
archive as a pheromone model, inspired by the ACO for Mixed-
Variable (ACOMV), we eliminate the need for a discretisation
procedure. We compare the proposed Ant-Miner-RegMA against
Ant-Miner-Reg, an ACO-based regression algorithm that uses
a dynamic discretisation procedure, inspired on M5 algorithm,
during rule construction process. Our results show that Ant-
Miner-RegMA achieved a significant improvement in the relative
root mean square error of the models created, overcoming the
limitations of the dynamic discretisation procedure.

I. INTRODUCTION

Data mining is the automated process of extracting useful
and usable patterns from data [1]. The field of data mining
comprises of a number of tasks which can be roughly divided
into descriptive tasks (e.g., association rule mining, clustering)
and predictive tasks (e.g., regression, classification). In this
paper we will focus on the task of discovering regression
rules. The regression task involves the creation of a model
that predicts a continuous dependent attribute based on a
number of independent attributes or regressors. Unlike the
classification task, which aims to predict the value of a nominal
dependent variable (i.e., a variable that has a number of
predefined categories), regression aims to predict a continuous
value with no predefined categories or boundaries. Similarly to
classification rules, regression rules can be represented using
the form IF-THEN, where the antecedent of the rule repre-
sented by IF contains logical tests involving the independent
attributes, while the THEN is the consequent of the rule and
makes the rules prediction if the tests in the antecedent are
satisfied. When combined as a list, regression rules provide a
comprehensible prediction model.

Ant Colony Optimization (ACO) [2] has been adapted to
solve data mining problems such as classification, clustering
and regression. In most cases, these approaches use a graph-
based pheromone model, which is used to guide the ants
in a discrete search space. The solution components of the
problem are represented by nodes of a graph and ants traverse
this graph to produce a solution. Most data mining problems
contains continuous attributes, therefore these approaches have

to be adapted to handle continuous attributes. The majority of
ACO-based algorithms that handle continuous attributes use a
discretisation procedure which take place in a preprocessing
stage or during rule creation.

Recently, Laio et al. [3] proposed a new approach for
ACO-based algorithms to handle mixed variable (continu-
ous, ordinal and discrete) optimisation problems, called Ant
Colony Optimization for Mixed Variable (ACOMV). ACOMV
replaces the graph-based pheromone model with an archive-
based pheromone model to guide ants in mixed variables
search space using different sampling strategies according to
the variable type. Helal and Otero [4], [5] presented the first
data mining approach, to the best of our knowledge, that used
an archive-based pheromone model instead of a graph-based
pheromone model for classification problem.

Brookhouse and Otero [6] have successfully used an ACO-
based algorithm, called Ant-Miner-Reg, to create regression
rules. Ant-Miner-Reg uses a sequential covering strategy to
create a rule list using an ACO rule creation procedure with a
graph-based pheromone model. Ant-Miner-Reg uses a M5 [7]
inspired dynamic discretisation procedure to handle continu-
ous attributes during the rule creation rather than requiring
the discretisation of continuous values as a pre-processing
step. Ant-Miner-Reg significantly outperformed SeCoReg [8],
a greedy sequential covering algorithm, without increasing the
average number of terms required to classify an instance.

In this paper we propose the use of an archive-based
pheromone model to better handle continuous values in regres-
sion problems. By incorporating a similar strategy as ACOMV,
different attributes types (categorical and continuous) can be
handled directly, without requiring a discretisation procedure.
We compared our proposed algorithm against Ant-Miner-Reg
in nineteen publicly available datasets and used the Wilcoxon
signed-rank test to determine the significance between the
difference in performance.

The remainder of this paper is organised as follows. We
begin by reviewing the literature of existing regression algo-
rithms, archive-based ACO algorithms, and Ant-Miner-Reg in
Section II. Section III present our proposed Ant-Miner-RegMA

algorithm. The computational results are presented in Section
IV, and finally conclusion and direction for future work are
discussed in Section V.

II. BACKGROUND

There are three main areas of related work, existing regres-
sion rule learners, the existing archive-based ACO algorithms,
and the existing ACO-based algorithm for regression Ant-
Miner-Reg.

Conventional regression models take the form of linear and
non-parametric equations [9], however, we will be focusing on
regression rule learners. One of the classical regression rule
learners is M5’ Rules [10] which builds on the model tree
learner M5 [7]. M5’ Rules uses sequential covering to build a
list of rules, each iteration of the sequential covering algorithm
produces a complete M5 tree which is then flattened into rules
and the best rule generated is added to the partial rule list. M5
uses an interesting strategy to cope with continuous attributes:
it chooses the split points in its dynamic discretisation step
by trying to maximise the expected error reduction. In this
case the error is considered to be the standard deviation of the
dependent attribute in the generated subsets.

Before Ant-Miner-Reg, the only known swarm intelligence
rule miner was Minnaert and Martens’ PSOminer [11]. Like
M5’ Rules, PSOminer uses a sequential covering strategy to
generate a rule list however instead of using M5 as the rule
generating procedure, a Particle Swarm Optimisation (PSO) is
used. The attributes in a dataset are encoded onto a particle as
the particles position in the attribute space. PSOminer showed
promising initial results however its development was not
continued.

Ant Colony Optimization has been successfully used to
generate classification rules, most notably Ant-Miner [12] and
the suite of algorithms developed as extensions to the original.
While the majority use a graph-based model, an archive-based
model has been successful in creating classification rules.

Ant-MinerMA proposed by Helal and Otero [4] is the first
Ant-Miner classification algorithm to use an archive-based
pheromone model instead of a graph-based pheromone model
to the best of our knowledge. The archive was used to
sample conditions to create rules, instead of ants traversing a
construction graph. This approach showed competitive results
compared to cAnt-Miner, a graph-based ACO classification
algorithm. The archive-based pheromone model significantly
improved the runtime, since it eliminated the need for a dis-
cretisation procedure. cAnt-Miner uses a Minimum Descrip-
tion Length (MDL) procedure as a discretisation procedure,
which is proposed by Otero et al. [13]. The MDL procedure
was used to find the best possible split point, with respect to
the class value of the rule. This process became expensive
in terms of runtime when the number of instances available
increased in a dataset. Ant-MinerMA removed this expensive
process with a faster implementation of the archive, where
the archive would be used to find the split points instead,
improving the runtime in classification problems while not
compromising the accuracy. One limitation of Ant-MinerMA,
was as the number of attributes increased over 50, the runtime
increased compared to cAnt-Miner.

An automatic algorithm design approach for Ant-

MinerMA+G [5] was created to overcome this problem, which
combines the graph-based and archive-based pheromone mod-
els. This automatically configured algorithm outperformed
the original cAnt-Miner algorithm to a significant level, and
solved the problems Ant-MinerMA faced when dealing with a
large number of attributes. The improvement came from the
graph-based pheromone model which allowed the algorithm
to quickly identify irrelevant attributes and ignore them during
the rule creation process.

Brookhouse and Otero introduced the first Ant-Miner algo-
rithm for regression, Ant-Miner-Reg [6]. Ant-Miner-Reg uses
the same sequential covering approach adopted by Ant-Miner
and couples this with the dynamic discretisation procedure
used in Quinlan’s M5 [7].

Ant-Miner-Reg creates a rule list as follows. First n rules
are created by the colony, where each ant traverses a graph of
attribute nodes and values to build the antecedent of a rule.
If the ant discovers a node representing a continuous attribute
a value is generated via a dynamic discretisation method that
attempts to find the optimal split points for that attribute in
the set of uncovered instances. When the antecedent of a rule
is created the prediction is generated by the calculating the
mean value of any instances covered by the new rule. Once
all the rules are created the best rule generated is used to
update the pheromone matrix of the colony. This procedure is
repeated until the maximum number of iterations is reached,
at which point the best rule is then returned and added to the
list of rules under construction removing any newly covered
instances from the dataset. The colony is then reset and the
ACO process repeated on the still uncovered set of instances
until all instances are covered by the rule list.

Ant-Miner-Reg generated comprehensive regression rules
that significantly outperformed SeCoReg [8]. They identified
the need to include a better continuous attribute processing
technique, which would enable the optimisation of the numeric
values chosen by fully integrating them inside the pheromone
matrix [6].

III. ARCHIVE-BASED ANT-MINER-REG

As discussed in Section II, most Ant Colony Optimization
approaches to create rules are based on a graph pheromone
model, which can directly cope with categorical attributes
while continuous attributes require either a pre-processing
or dynamic discretisation step. Liao et al., [3] introduced a
new algorithm, called Ant Colony Optimization for Mixed-
Variable (ACOMV), to deal with mixed-variable optimisation
problems. ACOMV uses an archive-based pheromone model
and sampling procedures to create a new solution, allowing
the algorithm to cope directly with categorical or continuous
(real-valued) attributes. The archive-based pheromone model
is implemented as a solution archive (A), which contains
previously generated k best solutions, to derive a probability
distribution to bias the search. Each ant starts generating a
new candidate solution. During the construction of a solution,
a probabilistic solution construction method is used to sample
new values from the archive according to the type of each

Algorithm 1: High-level pseudo code of Ant-Miner-
RegMA

Data: training data
Result: list of rules

1 RuleList ← {}
2 while |TrainingData| < MaxUncovered do
3 A ← Generate Random Rules
4 while t < MaxIterations and not Restarted do
5 At ← {}
6 while i ¡ number of ants do
7 Ri ← Create New Rule
8 Ri ← Prune(Ri)
9 Ri ← Set Consequent(Ri)

10 i← i+ 1
11 At ← Ri
12 end
13 A ← UpdateArchive(At)
14 t← t+ 1
15 if stagnation() then
16 Restart(A)
17 Restarted ← True
18 end
19 if stagnation() and Restarted then
20 Break
21 end
22 end
23 Rbest ← BestRule(A)
24 RuleList ← RuleList + Rbest
25 TrainingData ← TrainingData − covered(Rbest)
26 end
27 return RuleList

attribute. After m (colony size) solutions are created, they are
added to the archive and the archive is then sorted. At the end
of an iteration, the best k solutions are selected and a new
iteration starts.

The proposed Ant-Miner-RegMA algorithm uses ACOMV
pheromone model and search procedure to sample terms to
create regression rules. The high level pseudo code of Ant-
Miner-RegMA is shown in Algorithm 1. Ant-Miner-RegMA

starts with an empty list of rules (line 1). At each iteration
(lines 3 -25), a single rule is created. The rule creation process
starts by initialising the archive with k randomly generated
rules (line 3). At each iteration m new rules (lines 6-12) are
generated, where m is the number of ants in the colony. Rules
are added to the archive (line 12), and k+m rules are sorted.
The worst m rules are removed from the archive, limiting the
archive to k best rules found so far. The procedure to create
new rules is repeated until the maximum number of iterations
has been reached or stagnation. Stagnation is the failure of
the algorithm to find better rules for a number of iterations.
In the first case of stagnation, a restart procedure is applied;
if the algorithm reaches stagnation for a second time, the rule
creation procedure stops.

A. Rule Structure

A rule R consists of an n-dimensional terms vector, where n
is the number of attributes in the dataset. Each term ti, for i ∈
{1, n} in a R contains a flag to indicate if this term is enable
or not, an operator and value. For continuous attribute terms,
the operator can be either ≤ or >, representing conditions
where the term’s attribute value is ≤ x or > x, where x is a
real value. Categorical attribute terms have a single operator
=, representing conditions where the term’s attribute value is
= y, where y is a value in the domain of the nominal attribute.

The consequent of a rule—the rule’s prediction—is a real
value, calculated as the mean value of the instances covered
by this rule in the training data.

B. Rule Quality

The quality of a regression rule is based on two factors, the
first is the quality of the prediction measured using a Relative
Root Mean Squared Error (RRMSE). The RRMSE of a rule
is defined as

LRRMSE =
LRMSE√
1
mLdefault

(1)

where LRMSE is the root mean square error and LDefault is a
normalising factor that will approximately bound the RRMSE
between 0 and 1. Both LRMSE and LDefault are defined as

LRMSE =

√√√√ 1

m
·
m∑
i=1

(yi − ȳi)2

Ldefault =

m∑
i=1

(yi − y′)2

(2)

m is the total number of instances in the dataset, y is the value
of the current instance, ȳ is the predicted value of the current
instance and y′ is the mean over all instances.

The RRMSE approximately normalises the RMSE of a rule
between 0 and 1, where a value less than 1 corresponds to a
rule making a prediction better than the uncovered instances
mean and a value greater than 1 is worse than the mean.

The second factor is a measure of how generalised the rule
is, i.e., number of instances covered by the rule. Like RRMSE,
the coverage of a rule is normalised so that 0 represents a rule
covering no instances and 1 is a rule that covers all of the
instances in the dataset. The relative coverage of a rule R is
defined as

relCov =
1

m
· coverage(R) (3)

Both the RRMSE and relative coverage are combined into
a single metric Q, which is used as a rule’s quality, defined
as

Q = α · (1− LRRMSE) + (1− α) · relCov (4)

where α sets the weighting between RRSME and relative
coverage. Varying α between 0 and 1 will bias the rule quality
towards either RRMSE or relative coverage.

C. Archive Structure and Initialisation

The archive consist of k rules sorted by their quality Q, so
that Q(R1) ≥ Q(R2) ≥ . . . ≥ Q(Rk). Each rule (solution) j
is associated with a weight ωj that is related to Q(Rj), where
ωj is calculated using a Gaussian function given by

ωj =
1

qk
√

2π
e

−(rank(j)−1)2

2q2k2 (5)

where q is used to control the influence of the top-ranked rules
on the construction of a new rule. When a new rule is created,
it probabilistically samples values around the rules with higher
weights.

The archive is initialised with k random rules. Initialisa-
tion begins by randomly enabling each term in the vector
of allowed terms. These enabled terms are then initialised
according to their types.

If the term is continuous, then an unbiased random probabil-
ity is used to set the operator from the set {≤, >}. The value of
the continuous term is a random value generated in the range
found in the training data for that attribute. For categorical
terms, the only operator = is added and the value set randomly
to one of the values in the domain of the attribute.

Rules are then pruned to disable irrelevant terms that might
be enabled by the stochastic nature of the initialisation. If the
number of instances covered by a rule is greater or equal to a
user-defined minimum limit, the rule is added to the archive,
if it doesn’t a new rule is generated instead. Finally, rules are
sorted according to their quality.

D. Sampling Procedures

There are two types of sampling procedures used in Ant-
Miner-RegMA to select values for rule terms: categorical and
continuous sampling.

1) Categorical sampling: The categorical sampling is im-
plemented using the same approach as ACOMV. Given a cat-
egorical attribute i that has ti possible values, an ant chooses
probabilistically a value vil of the available {vi1, . . . , viti}
values. The probability of selecting a value vil is given by

pil =
αl
ti∑
j=1

αj

(6)

where αl is the weight associated to each value of the
categorical attribute, calculated as

αl =


ωjl

ui
l

+ q
η , if(η > 0, uil > 0)

ωjl

ui
l

, if(η = 0, uil > 0)
q
η , if(η > 0, uil = 0)

(7)

where ωjl is the weight of the highest rule that uses the value
vil for attribute i in the archive, uil is the number of rules
that use the value vil for attribute i in the archive (uil = 0

corresponds to the special case where vil is not used by the
rules in the archive), η is the number of values from ti that are
not used in the archive (η = 0 corresponds to the special case
where all values are used), and q is the same parameter used in
Equation (5). The categorical sampling procedure allow an ant
to consider two components when sampling a new value. The
first component biases the sampling towards values that are
used in high-quality rules, but do not occur very frequently
in the archive. The second component biases the sampling
towards unexplored values in that attribute.

2) Continuous sampling: Continuous sampling imple-
mented using the same approach as ACOR [14], which is
used in ACOMV. First, an ant chooses probabilistically a rule
from the archive, before the rule creation process. This rule is
used to sample continuous values around it for all continuous
attributes. The probability of choosing rule j is given by

pj =
ωj
k∑
l=1

ωl

(8)

where ωj is the weight associated with the j-th rule in the
archive calculated according to Equation (5). Let Ri denote
a new solution sampled by ant i around the chosen solution
Rj for continuous attribute a, the Gaussian probability density
function (PDF) is given by

Ria ∼ N(Rja, σja) (9)

σja = ξ

K∑
l=1,j 6=l

|Rla −Rja|
K − 1

(10)

where Rja is the value of the variable a in the selected rule j
of the archive, σja is the average distance between the value
of the variable a in the rule j and the value of a in all the
other rules in the archive (given by Equation 10), and ξ is a
user-defined value representing the convergence speed of the
algorithm.

E. Rule Creation

Rule creation starts by choosing probabilistically whether
to include each term or not. The decision is handled using a
categorical sampling to choose a {TRUE, FALSE} value. If the
term is enabled (TRUE value), we set the operator according to
the attribute type. If the attribute is categorical, it is set to =.
If it is continuous, the decision is handled using a categorical
sampling to choose an operator from the set {≤, >}, with the
only difference being only the subset of rules that have this
term enabled are considered in Equation (7).

The value of the new rule’s term is then sampled. If the term
is continuous, we use the continuous sampling procedure only
considering the subset of rules that have this term enabled
and use the same operator as the new term. If the attribute is
categorical, we use the categorical sampling procedure only
considering the subset of rules that have this term enabled.

After a term is created and added to the partial rule, we
apply the rule to the training data. If the number of instances

TABLE I
PARAMETERS: ANT-MINER-REGMA USES THE FIRST THREE PARAMETERS

IN TABLE, WHILE REMAINING ARE USED BY BOTH ANT-MINER-REGMA

AND ANT-MINER-REG.

Parameters Value

q 0.025495
ξ 0.6795
R 90
Minimum Covered 10
Max Uncovered 10
Max Iterations 1500
Number of Ants 60
Stagnation Test 10
α 0.59

covered by the rule after the addition of the new term is less
than the minimum covered instances, the term is disabled. This
process is repeated until all terms are considered.

Finally, a local search procedure is applied. The local search
procedure is inspired by the threshold-aware pruner found in
[13]. Firstly, the quality of the rule is calculated according
to Equation (4). Then, the last term is then disabled and
the quality re-calculated. If the quality of the (pruned) rule
decreases, the term is re-enabled and the procedure stops;
otherwise, the procedure is repeated until a decrease in quality
is observed.

IV. RESULTS

We compared our proposed algorithm Ant-Miner-RegMA

against Ant-Miner-Reg. The experiments are conducted using
nineteen regression datasets publicly available from the UCI
Machine Learning Repository [15]—details are shown in Table
II. Ant-Miner-RegMA uses the first three parameters in Table
I for the archive setting, while the remaining parameters are
used by both algorithms. We ran both algorithms for five times
with ten-fold cross-validation for a total of fifty runs each
dataset and reported the average performance of the models
produced by each algorithm—shown in Table III in terms
of relative root mean square error (RRMSE). For statistical
significance testing of the difference in RRMSE, we used
Wilcoxon signed-rank test. The result of the statistical testing
is shown in Table IV.

As shown in Table III, Ant-Miner-RegMA shows an im-
provement in RRMSE compared to Ant-Miner-Reg, outper-
forming Ant-Miner-Reg in sixteen of the nineteen datasets.
Most notably, Ant-Miner-RegMA improved the RRMSE by
80% in the Yacht dataset: Ant-Miner-Reg’s RRMSE is 1.0120
while Ant-Miner-RegMA’s RRMSE is 0.2091. Based on our
results, it is clear that the introduction of archive-based
pheromone model in Ant-Miner-RegMA resulted in an im-
provement in the model creation. Ant-Miner-Reg uses the
M5 dynamic discretisation procedure when creating terms
for continuous attributes, while Ant-Miner-RegMA’s archive-
based pheromone model is responsible for generating and
improving the values chosen for the continuous attributes
terms.

TABLE II
NUMBER OF INSTANCES AND ATTRIBUTE MAKEUP OF THE NINETEEN

DATASETS USED IN THE EXPERIMENTS.

Attributes
Name Instances Categorical Continuous

WPBC r 194 0 33
CPU 209 1 8
Yacht 308 0 7
MPG 410 2 5
Housing 452 1 13
Forest Fire 517 2 11
Istanbul 536 0 8
Efficiency 768 0 9
Stock 950 0 10
Concrete 1030 0 9
Flare 1066 10 1
Airfoil 1503 0 6
Red Wine 1599 0 12
Skill Craft 3338 0 20
Elevator 9517 0 7
CCPP 9568 0 5
Bike Share 17379 0 13
Energy Data 19735 0 25
Pm 25 41757 1 12

TABLE III
AVERAGE RRMSE OF THE MODEL PRODUCED BY EACH ALGORITHM

OVER FIVE RUNS OF TENFOLD CROSS-VALIDATION.

Dataset Ant-Miner-RegMA Ant-Miner-Reg

WPBC r 1.0356 1.0224
CPU 0.5038 0.8233
Yacht 0.2091 1.0120
MPG 0.5374 0.6419
Housing 0.5986 0.9782
Forest Fire 1.5326 1.0334
Istanbul 0.7948 0.8341
Efficiency 0.2348 0.4288
Stock 0.3258 0.7434
Concrete 0.7239 0.9636
Flare 0.9956 0.9987
Airfoil 0.8165 0.9715
Red Wine 0.9898 0.9757
Skill Craft 0.8536 0.8912
Elevator 0.7585 0.7882
CCPP 0.3557 0.4769
Bike Share 0.6412 0.9941
Energy Data 0.9775 0.9971
Pm 25 0.9389 0.9982

In terms of computational time, Ant-Miner-RegMA did not
improve the runtime as seen in Table V. This is different
than what was observed in classification problems, where
the introduction of an archive-based pheromone model did
significantly improve the runtime by eliminating the need for
a discretisation procedure. Looking at the datasets where Ant-
Miner-RegMA runtime was significantly higher—Bike Share
(17379 instance), Energy Data (19735 instances) and Pm 25
(41757 instances)—we noticed that Ant-Miner-Reg produces
very generalised rules with a RRMSE closer to the mean
(0.9941, 0.9971, and 0.9982 respectively), while Ant-Miner-
RegMA produces more specific rules for those dataset with an
improved RRMSE (0.6412, 0.9775, and 0.9389 respectively).

We hypothesise that when the dataset is more complex, Ant-

TABLE IV
WILCOXON SIGNED-RANK TEST (AT THE α = 0.05 LEVEL) ON RRMSE.

STATISTICALLY SIGNIFICANT DIFFERENCES ARE SHOWN IN BOLD.

Size W+ W- Z p

RRMSE 18 23 167 -2.8974 0.00374

TABLE V
AVERAGE RUNTIME IN SECONDS OF THE MODEL PRODUCED BY EACH

ALGORITHM OVER FIVE RUNS OF TENFOLD CROSS-VALIDATION.

Dataset Ant-Miner-RegMA Ant-Miner-Reg

WPBC r 0.51 0.25
CPU 0.23 0.46
Yacht 0.20 0.31
MPG 0.26 0.24
Housing 0.43 0.26
Forest Fire 0.99 0.42
Istanbul 0.39 0.38
Efficiency 0.70 0.39
Stock 0.85 0.40
Concrete 1.29 0.44
Flare 0.84 0.25
Airfoil 0.92 0.57
Red Wine 0.94 0.61
Skill Craft 10.12 0.93
Elevator 4.65 2.28
CCPP 2.29 12.22
Bike Share 223.52 2.13
Energy Data 582.38 4.62
Pm 25 615.24 6.81

Miner-Reg struggles to find good split points and produces
very simple overgeneralised rules that cover large sections
of the search space. This can be seen in the RRMSE of
models produced for large datasets, identifying a potential
limitation of using M5 dynamic discretisation procedure to
create regression rules. The dynamic discretisation procedures
in classification and regression Ant-Miner algorithms operate
differently. In regression, the dynamic discretisation procedure
aims to find the optimal split point for a continuous attribute
in the set of uncovered instances, without considering how
other attributes will alter the final prediction the rule. This
limits the interaction between the creation of condition and
the rule’s final consequent, which is unknown during rule
creation. In classification, the dynamic discretisation procedure
aims to find the optimal split points for an attribute in the set
of uncovered instances taking into account maximisation of a
known target class, which improves the rule prediction. The
archive-based approach overcomes this difficulty as the values
chosen for continuous attributes are optimised in conjunction
with all attributes and not in isolation.

Although Ant-Miner-RegMA did not improve the runtime of
the Ant-Miner-Reg, the improvement in RRMSE shows great
promise for regression problems. This confirms the hypothesis
that the archive-based pheromone model improves the values
chosen for the continuous attributes conditions in regression
problem reaching better rules with overall lower RRMSE—
Table IV shows Ant-Miner-RegMA achieved a statistically

significant improvement with a value of p = 0.00374 with
respect to Ant-Miner-Reg using Wilcoxon signed-rank test (at
the α = 0.05 level) on RRMSE.

V. CONCLUSION

This paper presented an ACO-based regression algo-
rithm, called Ant-Miner-RegMA, which uses an archive-based
pheromone model to handle both categorical and continuous
attributes. The proposed algorithm significantly outperforms
Ant-Miner-Reg, producing models with better relative root
mean square error. The results showed an interesting com-
parison on how the archive-based pheromone model affected
regression problems differently to classification problems.
While Ant-MinerMA improved the runtime of the graph-based
algorithm in classification problems, improvements on the
quality of the rule lists were not observed [4]. The opposite
was observed in Ant-Miner-RegMA, where the archive-based
algorithm improved the relative root mean square error of
the model while increasing the runtime. The results confirm
that the proposed Ant-Miner-RegMA improved the dynamic
discretisation for continuous attributes, reinforcing the signif-
icant benefits of using an archive-based pheromone model in
regression problems.

Future investigation is required to realise the full potential of
adding the archive-based pheromone model to rule discovery
in regression algorithms. Using an archive-based pheromone
improved the quality of the models created in ACO-based
regression algorithm. It would be interesting to further inves-
tigate the effect of incorporating a graph pheromone model
in combination with an archive-based pheromone model,
where the graph pheromone model is responsible for selecting
attributes and the archive pheromone model for optimising
their values. Generating rule lists in each colony iteration,
instead of a single rule, to allow the rule interactions to
be optimised is also an interesting research directions worth
further exploration.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith, “From data mining
to knowledge discovery: an overview,” in Advances in Knowledge
Discovery & Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R. Uthurusamy, Eds. MIT Press, 1996, pp. 1–34.

[2] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, Apr 1997.

[3] T. Liao, K. Socha, M. Montes de Oca, T. Stützle, and M. Dorigo, “Ant
colony optimization for mixed-variable optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503–518,
2014.

[4] A. Helal and F. E. Otero, “A mixed-attribute approach in ant-miner
classification rule discovery algorithm,” in Proceedings of the Genetic
and Evolutionary Computation Conference 2016, ser. GECCO ’16.
New York, NY, USA: ACM, 2016, pp. 13–20. [Online]. Available:
http://doi.acm.org/10.1145/2908812.2908900

[5] A. Helal and F. E. B. Otero, “Automatic design of ant-miner mixed
attributes for classification rule discovery,” in Proceedings of the
Genetic and Evolutionary Computation Conference, ser. GECCO ’17.
New York, NY, USA: ACM, 2017, pp. 433–440. [Online]. Available:
http://doi.acm.org/10.1145/3071178.3071306

[6] J. Brookhouse and F. E. Otero, “Discovering regression rules
with ant colony optimization,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO Companion ’15. New
York, NY, USA: ACM, 2015, pp. 1005–1012. [Online]. Available:
http://doi.acm.org/10.1145/2739482.2768450

[7] J. Quinlan, “Learning with continuous classes,” in Proceedings 5th
Australian Joint Conference on Artificial Intelligence. World Scientific,
1992, pp. 343–348.

[8] F. Janssen and J. Fürnkranz, “Seperate-and-conquer regression,” in
Proceedings of the German Workshop on Lernen, 2010, pp. 81–89.

[9] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regression: Models,
Methods and Applications. Springer, 2013.

[10] G. Holmes, M. Hall, and E. Frank, “Generating rule sets from model
trees,” in Proceedings 12th Australian Joint Conference on Artificial
Intelligence. Springer, 1999, pp. 1–12.

[11] B. Minnaert and D. Martens, “Towards a particle swarm optimization-

based regression rule miner,” in Data Mining Workshops (ICDMW),
2012 IEEE 12th International Conference on, 2012, pp. 961–963.

[12] R. Parpinelli, H. Lopes, and A. Freitas, “Data mining with an ant
colony optimization algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 4, pp. 321–332, Aug 2002.

[13] F. Otero, A. Freitas, and C. Johnson, “Handling continuous attributes
in ant colony classification algorithms,” in IEEE Symposium on Com-
putational Intelligence and Data Mining (CIDM ’09), March 2009, pp.
225–231.

[14] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” European Journal of Operational Research, vol. 185, no. 3,
pp. 1155–1173, 2008. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0377221706006333

[15] M. Lichman, “UCI Machine Learning Repository,” 2013, irvine, CA:
University of California, School of Information and Computer Science.
[http://archive.ics.uci.edu/ml]. [Online]. Available: http://archive.ics.uci.
edu/ml

