Post-Processing Methods to Enforce Monotonic
Constraints in Ant Colony Classification Algorithms

James Brookhouse
School of Computing
University of Kent
Chatham Maritime, UK
Email: jb765 @kent.ac.uk

Abstract—Most classification algorithms ignore existing do-
main knowledge during model construction, which can decrease
the model’s comprehensibility and increase the likelihood of
model rejection due to users losing trust in the models they
use. One approach to encapsulate this domain knowledge is
monotonic constraints. This paper proposes new monotonic
pruners to enforce monotonic constraints on models created by an
existing ACO algorithm in a post-processing stage. We compare
the effectiveness of the new pruners against an existing post-
processing approach that also enforce constraints. Additionally,
we also compare the effectiveness of both these post-processing
procedures in isolation and in conjunction with favouring con-
straints in the learning phase. Our results show that our pro-
posed pruners outperform the existing post-processing approach
and the combination of favouring and enforcing constraints at
different stages of the model construction process is the most
effective solution.

I. INTRODUCTION

Data mining focuses on the automated search for useful
patterns in data [1]. Classification is the most studied task in
data mining, where the problem involves a set of instances—
each instance is described by a set of predictor attribute
values with an associated target class value. The goal of
a classification algorithm is to find the best classifier that
accurately represents the relationships between predictor and
class attribute values, and therefore classification problems can
be viewed as optimisation problems. There are many classifi-
cation algorithms in the literature, in many of these algorithms
they concentrate on producing accurate models at the expense
of other goals. Accuracy is an important goal, however, there
are other goals that exist. These other goals can be just as
important or more important depending on the application.
Alternative goals can include a model’s comprehensibility,
or its ability to preserve existing domain knowledge. These
features can contribute towards model acceptance by domain
experts.

Model rejection by domain experts is a possibility if a
model does not preserve existing patterns as it would seem
counter intuitive. Hoover and Perez [2] state that the economic
field scepticism towards data mining as a technique to search
for models is due to the discovery of accidental correlations:
“Data mining is considered reprehensible largely because the
world is full of accidental correlations, so that what a search
turns up is thought to be more a reflection of what we want to

Fernando E. B. Otero
School of Computing
University of Kent
Chatham Maritime, UK
Email: F.E.B.Otero@kent.ac.uk

find than what is true about the world.” [2, p. 197]. Semantic
constraints allow model construction to be guided by providing
information on real correlations present within the data. While
there are a number of different semantic constraint types, we
explore the implementation of monotonic constraints in the
discovery of classification rules.

In this paper we have focused on one particular encapsula-
tion of domain knowledge, monotonic constraints. Monotonic
constraints are simple relationships that guide the creation of
models. We compared an existing post-processing additive
monotonic approach, which enforces monotonic constraints
by adding conditions to the model, against a new set of
post-processing pruners that remove conditions from a model
to enforce constraints. We also investigate the reliance on
purely post-processing steps to enforce these constraints, or if
constraints should be incorporated into the learning phase as
soft constraints. This is achieved with the use of an ACO-based
rule learner, which is able to favour monotonic constraints
during the model construction.

The rest of this paper is structured as follows. Firstly,
Section II summarises the existing work from the literature.
Section III describes the existing ACO algorithm that favours
monotonic constraints in the learning phase along with the
suite of monotonic pruners that can be applied in the post-
processing phase. Section IV presents our results on thir-
teen UCI Machine Learning datasets, including a comparison
between four monotonic ACO-based algorithms. Finally, we
discuss our results and present our conclusions and possible
future research directions in Section V.

II. BACKGROUND
A. Ant Colony Classification Algorithms

The first ACO classification algorithm, called Ant-Miner,
was proposed in [3]. Ant-Miner follows a sequential covering
strategy, where individual rules are created by an ACO pro-
cedure, then data instances that are covered by the rule are
removed from the training data. The main idea is to search
for the best classification rule given the current training data
at each iteration of the sequential covering. Ants traverse a
construction graph selecting terms to create a rule in the form
IF term; AND AND term, THEN class, where
the IF-part represents the antecedent and the THEN-part is

TABLE I
SIMPLE HOUSE RENTAL DATA SET. THE DEPENDENT ATTRIBUTE IS THE
RENTAL VALUE WHILE FLOOR AREA AND LOCATION ARE INDEPENDENT
ATTRIBUTES

Target Attribute Predictor Attributes

Rental Value Floor Area Location
Medium 45 2
High 80 1
Low 33 3
Medium 65 2
High 100 2

the class prediction. Each ant starts with an empty rule and
iteratively selects terms to add to its partial rule based on
their values of the amount of pheromone 7 and a problem-
dependent heuristic information 7, similarly to Ant System
(AS) [4]. Following on Ant-Miner’s success, many extensions
have been proposed in the literature [S]: they involve different
rule pruning and pheromone update procedures, new rule
quality measures and heuristic information.

One potential drawback of using sequential covering to cre-
ate a list of rules is that there is no guarantee that the best list of
rules is created. Ant-Miner (and the majority of its extensions)
perform a greedy search for the list of best rules, using an
ACO procedure to search for the best rule given a set of data
instances, and it is highly dependant on the order that rules are
created. Therefore, they are limited to creating the list of best
rules, which does not necessarily corresponds to the best list
of rules. cAnt-Minerpp is an ACO classification algorithm that
employs an improved sequential covering strategy to search for
the best list of classification rules [6]. While Ant-Miner uses
an ACO procedure to create individual rules in a one-at-a-
time (sequential covering) fashion, cAnt-Minerpg employs an
ACO procedure to create a complete list of rules. Therefore,
it can search and optimise the quality of a complete list of
rules instead of individual rules—i.e., it is not concerned by
the quality of the individual rules as long as the quality of the
entire list of rules is improving.

B. Monotonic Constraints

When existing domain knowledge is available, monotonic
constraints can incorporate this knowledge into the construc-
tion of new models. For example, if you consider house rent
the price can/will depend on the location and floor area. Table
I shows a simple hypothetical rental dataset. One relationship
in this data set is that houses in better locations (lower values
of attribute Location) increase their rental price. This is the
case for all possible pairs in the data set.

Monotonicity is found in many different fields including
house/rental prices, medicine, finance and law. Looking at
the first example of rental prices, it can be expected that
as the location of a property becomes better (lower value
of Location) its rental value will also increase—this can be
seen in the example data shown in Table I. The majority of
classification algorithms are not monotonically aware and do
not enforce this relationship during model construction, yet

still produce good models. However, if models violate these
constraints they may not be accepted by experts as valid, and
therefore, conforming to monotonicity constraints may help
improve model acceptance [7], [8].

Monotonicity can be defined formally in the following
manner. Let X = &} x X5 x --- x X; be the instance space of
1 attributes,) be the target space, and function f : X —). It
is also assumed that both the instance space and target space
have an ordering. A function can then be considered monotone
if:

vx,x' € X :x<x = f(x)< f(x), (1

where x and x’ are two vectors in instance space, X =
(z1,22, -+ ,x;) [9]. In other words, f(x) is monotonic if and
only if all the pairs of examples x, x' are monotonic with
respect to each other.

C. Enforcing Monotonicity Constrains

Monotonicity can be enforced in a number of different
stages in the data mining process. In the model construc-
tion stage the algorithm creates monotonic models, possibly
constraining the search. Also, constraints can be enforced in
a post-processing stage via the modification of constructed
models to enforce monotonic constraints.

Constraints also appear in two different forms hard or
soft. Hard constraints are enforced rigidly and will reject
any new model or change to an existing model that would
cause a violation. Good models can be rejected due to small
violations in their monotonicity when this hard constraint
method is used. The second method, soft constraints, balances
the monotonicity of a model against its quality, allowing small
violations to exist if they sufficiently increase the quality—i.e.,
monotonic constraints are favoured.

1) Model Construction: Soft constraints have been imple-
mented in the model construction stage by Ben-David [10].
Ben-David assigns a non-monotonicity index to each tree
produced. This index is the ratio between the number of non-
monotonic leaf node pairs and the maximum number of pairs
that could have been non-monotonic.

First, a non-monotonic n-dimensional matrix constructed
where n is the number of branches in the tree. This matrix
is used to find the number of violations in the current tree,
and used to find the tree’s non-monotonicity index. The
non-monotonicity index can be converted to an ambiguity
score and then incorporated with the tree’s accuracy score.
The accuracy of the models produced were not significantly
degraded compared to the original algorithm, however the
combined metric did produce fewer models that breached the
monotonicity constraints [10].

Ben-David has also investigated monotonic ordinal clas-
sifiers, proposing the hypothesis that adding monotonicity
constraints to learning algorithms will impair their accuracy
against those that do not. Ordinal classifiers are classifiers that
allow discrete categories to have an order, for example credit
rating has an obvious order if the categories are poor, ac-
ceptable and good. There were two unexpected results. It was

found that ordinal classifiers did not significantly improve their
accuracy over non-ordinal classifiers. Secondly, the monotonic
algorithms were not able to significantly outperform a simple
majority-based classifier. It is theorised that these results were
due to noisy data sets: the monotonic classifiers enforced hard
constraints, in the presence of noisy data a softer approach
may lead to better results [11].

Brookhouse and Otero have introduced two ACO-based
algorithms cAnt-Minerpginc [12] and Ant-Miner-Regyic
[13] that enforce monotonicity constraints for the classification
and regression task, respectively. Both algorithms enforced
soft constraints during rule construction by incorporating a
measure of monotonicity into a rule’s quality, which is then
incorporated into the pheromone matrix of the ant colony. In
cAnt-Minerpg4 e, a naive pruner is used to enforce hard
constraints in a post processing step—cAnt-Minerpgyc 1S
discussed in more detail in Section III-A.

2) Post-Processing: Feelders [8] has suggested that using
non-monotonic criteria in tree construction is not beneficial
as splits later in the construction process can transform a tree
from a state of non-monotonicity to one that is. Therefore,
Feelders has suggested several pruning methods to make the
minimal number of changes to make a tree monotonic in a
post-processing phase [8].

The first proposed pruner is the Most Non-monotone Parent
(MNP) method, which aims to prune the node that gives
the most number of monotone pairs. This method has the
disadvantage of possibly creating more non-monotonic pairs
than it removes leading to a net increase in non-monotonicity.
The second method proposed is the Best Fix (BF) method,
which prunes the node that gives the biggest reduction in
non-monotonicity. While it solves the problem with the first
pruner, it is more computationally expensive. The authors have
also combined these pruning methods with existing complexity
pruning methods and found that the monotonic trees produced
no significant difference in performance compared to trees
produced without monotonic pruning. However, it was ob-
served that the trees produced were smaller, which aids the
comprehensibility of the models produced further [8].

3) Additive monotonic post-processing with RULEM: Ver-
beke et al. introduced a new algorithm, RULEM [14], that
tackles the monotonic problem in a different way. While still
a post-processing technique, RULEM adds additional new
rules to the list of rules to force monotonic behaviour. One
advantage of RULEM is any learning algorithm that can
produce a model that can be transformed into a list of rules
can be fixed and made monotonic.

RULEM fixes a list of rules by adding new rules to
fix any non-monotonic features. RULEM first creates an n-
dimensional matrix, where n is the number of attributes in the
solution space. Rules from the original list of rules are then
added to this solution space, claiming the regions that they
cover. Any non-monotonic region can then be identified and
rules iteratively generated to fix these regions with respect
to the existing rules. Finally these rules are compacted to
reduce the number of rules added. The new compacted rules

are then added to the top of the rule list to ensure they create
a monotonic list of rules.

III. DISCOVERING MONOTONIC CLASSIFICATION RULES

This section provides an overview of cAnt-Minerpg and
the soft constraints found in cAnt-Minerpg+nc. Finally, an
overview of the proposed hard pruning strategy found in cAnt-
Minerpgmcp- A high-level pseudocode of these algorithms
is shown in Algorithm 1, where the differences among them
are highlighted.

A. cAnt-Minerpp with monotonicity constraints

As we discussed in Section II-A, cAnt-Minerpg is an ACO
classification algorithm that employs an improved sequential
covering strategy to search for the best list of classification
rules. In summary, cAnt-Minerpg works as follows. Each ant
starts with an empty list of rules and iteratively adds a new
rule to this list. In order to create a rule, an ant adds one term
at a time to the rule antecedent by choosing terms to be added
to the current partial rule based on the amount of pheromone
(7) and a problem-dependent heuristic information (7). Once
a rule is created, it undergoes a pruning procedure. Pruning
aims at removing irrelevant terms that might be added to a
rule due to the stochastic nature of the construction process: it
starts by removing the last term that was added to the rule and
the removal process is repeated until the rule quality decreases
when the last term is removed or the rule has only one term
left. Finally, the rule it is added to current list of rules and the
training examples covered by the rule are removed.! An ant
creates rules until the number of uncovered examples is below
a pre-defined threshold.

At the end of an iteration, when all ants have created a list
of rules, the best list of rules (determined by an error-based
list quality function) is used to update pheromone values,
providing a positive feedback on the terms present in the
rules—the higher the pheromone value of a term, the more
likely it will be chosen to create a rule. This iterative process
is repeated until a maximum number of iterations is reached
or until the search stagnates.

cAnt-Minerpp4c is an extension of cAnt-Minerpg which
incorporates monotonic constraints into the model construc-
tion phase and post processing. It takes advantage of cAnt-
Minerpg’s global list construction when optimising for both
accuracy and monotonicity. This is achieved by modifying the
quality function to include a monotonic correctness function
along with the conventional accuracy based measure (line
16)—this is the same function that is used in the soft pruner
and shown by equations 2 and 3. Line 12 shows the addition of
a soft pruner that uses a modified quality function to prune the
rules during the construction phase, which will be discussed in
detail in Section III-B. This soft rule pruner replaces the rule
pruner present in cAnt-Minerpg. cAnt-Minerpgycp also
adds a hard monotonic pruner (line 26) to enforce monotonic

' An example is covered by a rule when it satisfies all terms (attribute-value
conditions) in the antecedent of the rule.

Algorithm 1: High-level pseudocode of the cAnt-
Minerppmc(p) algorithm. The main differences com-
pared to cAnt-Minerpp [6] are found on lines 12, 16 and
26.
Input: training instances
Output: best discovered list of rules
1. InitialisePheromones(),
2. listgy < {}

3. t+0;
4. while ¢ < maximum iterations and not stagnation do
5 list;p <+ {},
6 for n < 1 to colony_size do
7. instances <— all training instances,
8 list, < {};
9 while |instances| > maximum uncovered do
10. ComputeHeuristicInformation(instances);
11. rule < CreateRule(instances);
12. SoftPruner(rule, list,);
13. instances <—
instances — Covered(rule, instances),
14. list,, < list,, + rule;
15. end while
16. if Quality(list,) > Quality(list;,) then
17. list;, < listy;
18. end if
19. end for
20. Update Pheromones(list;p);
21. if Quality(list;y) > Quality(listy,) then
22. listgy < listy;
23. end if
24. t+—t+1;

25. end while
26. HardPruner(listgp);
27. return listg;

constraints rigidly ensuring the final model will always be
monotonic.

In ACO terms, a pruner is a local search operator. Dur-
ing rule construction a soft pruner is used to influence
the pheromone matrix and therefore the decisions of the
colony towards good monotonic solutions. By softly enforcing
monotonic constraints globally within the ACO stage, the
optimisation of monotonicity should reduce the need to rely
on the more aggressive and potentially more damaging hard
pruners later on.

B. Soft Rule Pruning

A soft monotonic prune allows violations in the monotonic
constraint if the consequent improvement in accuracy is large
enough. The pruner operates on an individual rule and iter-
atively removes the last term until no improvement in the
rule quality is observed. Applying a soft pruner during model
creation allows the search to be guided towards monotonic
models while still allowing exploration of the search space.

As monotonicity is a global property of the model, the rule
being pruned is temporarily added to the current partial list of
rules, its non-monotonicity index (NMI) can then be used as
a metric to assess the rules monotonicity and it is given by:

k k
>ict Zj:l Myj

NMI =
k2 —k ’

2
where m;; is 1 if the pair of rules rule; and rule; violate
the constraint and 0 otherwise; k is the number of rules in
the model. The NMI of a model is constrained between zero
and one: it calculates the ratio of monotonic violating pairs
over the total possible number of prediction pairs present in
the model being tested, the lower a NMI is the better a model
is considered. If this is the first rule in the partial model it
will be automatically designated monotonic and be assigned a
non-monotonicity index of zero. The NMI is then incorporated
into the quality metric by:

Q=(01-w) Accuracy +w- (1 — NMI) , 3)
where @) is the quality of a model and w is an adjustable
weighting that sets the importance of monotonicity and ac-
curacy to the overall rule quality. Note that Equation 3 can
be used to calculate the quality of either a single rule (used
during the soft pruner, line 12 of Algorithm 1) or a complete
list of rules (line 16 and 26 of Algorithm 1).

C. Hard List Pruning

Monotonicity is a global property of a model as it requires
at least two rules to create a violation. Therefore, pruners that
operate on a global rule list are preferential to those operating
on an individual rule which can only modify a single rule
to fix the violations present in the model [15]. The original
cAnt-Minerpg4\c algorithm contained a single monotonic
backtrack pruner, now referred to as the Naive Pruner (NP).
The Naive Pruner can be very destructive if the violating rule
occurs towards the top of a rule list as the bottom section of
the list is discarded. To counteract these affect we propose
two new pruners: the Most Violations Pruner (MVP) and the
Best Fix Pruner (BFP). The three list pruners now work in
conjunction to increase the accuracy of the model returned
by cAnt-Minerppc: all three pruners are applied in turn to
the constructed list and the pruner that achieves the highest
accuracy on the training set is used for the final prune.

1) Naive Pruner: The hard monotonic pruner enforces the
monotonic constraints rigidly. It operates on a list of rules as
follows: (1) the NMI of a list is first calculated (Equation 2);
(2) if it is non zero, the last term of the final rule is removed
or, if the rule contains no terms, the rule is removed; (3) the
NMI is then recalculated for the modified list of rules. This
is repeated until the NMI of the rule list is zero. Finally the
default rule is added to the end of the list if it has been removed
and the new monotonic rule list is returned. The pseudocode
for the naive pruner is shown in Algorithm 2.

Algorithm 2: Pseudocode for the Naive Pruner, where a
term is removed from the list until the NMI is zero.

Input: [ist
Output: [ist
1: while NMI(list) > 0 do

2: PruneLastTerm(list);

3. if LastRuleLength(list) == 0 then
4: RemoveLastRule(list);

5 end if

6: end while
7: return [ist;

Algorithm 3: Pseudocode for the Most Violations Pruner,
in each iteration the rule with the worst NMI has its last
term removed.

Input: /ist
Output: [ist
while NMI(list) > 0 do

1:
20 ruleworst < {};
3: for n < 1 to list size do
4: if NMI(rule,,) > NMI(ruleyorst) then
5: ruleyorst < ruley;
6: end if
7. end for
8: PruneFinalTerm(ruleyorst);
9: if RuleLength(ruleyorst) == 0 then
10: RemoveRule(list, ruleyorst);

11: end if
12: end while
13: return [ist;

2) Most Violations Pruner (MVP): This pruner prunes the
worst rule in terms of NMI in the list of rules. It calculates
the NMI of each rule using Equation 2 and the rule with the
highest NMI has its final term removed. The NMI of each
rule is then recalculated and the procedure continues until the
model’s NMI is 0. In the case of a draw—e.g., with a single
pair of rules violating each other—the rule appearing lower in
the list is preferentially pruned. This decision is made as rules
towards the top of the list were generated on the full training
set and therefore likely to be more powerful than those towards
the end which are classifying fewer remaining instances. The
pseudocode for the MVP pruner is shown in Algorithm 3.

3) Best Fix Pruner (BFP): The third global pruner attempts
to fix the rule that would give the greatest reduction in the
model’s NMI. The pseudocode for the best fix pruner is shown
in Algorithm 4. Each non-monotonic rule in the complete
model is pruned backwards from the last term until a change
in the model’s NMI is detected. The pruned rule that led to
the largest decrease in NMI is kept, the remaining rules are
restored to their original state. This process is repeated until
the model becomes monotonic. For the same reasons explained
in the MVP approach, draws are solved by pruning the rule
lower in the list.

Algorithm 4: Pseudocode for the Best Fix Pruner, in each
iteration the rule that will decrease the NMI by the largest
amount will be pruned.

Input: /ist
Output: [ist
while NMI(list) > 0 do
ruley; < {};
best_improvement < 0;
for n < 1 to list size do
ruleprune <— PruneRule(ruley,);
improvement < NMI(list) — NMI(listypryne)s
if improvement > best_improvement then
ruley; < ruley,;
best_improvement < improvement;
10: end if
11: end for
12: ruley; < PruneRule(ruley;);
13: end while
14: return list;

R A A e

D. Monotonic Pruning Walkthrough

While the global optimisation of monotonicity when the
ant colony generates a list of rules should reduce the need
for additional aggressive pruning, the two new pruners aim
to reduce the potential destructive affects further. Consider
the following example, using a car efficiency dataset with a
constraint that more powerful cars will have a lower efficiency.
An execution of cAnt-Minerppyc would possibly produce
the list of rules below:

IF Power > 250 THEN High

IF Cylinders = 6 AND Power < 200 THEN Low
IF Doors = 2 THEN Medium

IF Power < 200 THEN High

IF <empty> THEN Medium

g w N

We can see that there is a monotonic violation between rules
1 and 2 as a car with a lower power can have a worse
fuel efficiency (rule 2) than one with more power (rule 1).
To ensure monotonicity, the Naive pruner would produce the
following monotonic rule list (with the default rule being
automatically re-added to ensure full coverage):

1) IF Power > 250 THEN High
2) IF Cylinders = 6 THEN Low
3) IF <empty> THEN Medium

while the more sophisticated monotonic pruners MVP and
BFP would produce the following monotonic rule list:

IF Power > 250 THEN High
IF Cylinders = 6 THEN Low
IF Doors = 2 THEN Medium
IF Power < 200 THEN High
IF <empty> THEN Medium

g W N

As can be seen, this is a far less destructive change than
the Naive pruner, which would potentially induce a smaller
change in the rule lists predictive accuracy.

TABLE II
DATA SETS FROM THE UCI [16] USED IN EXPERIMENTS, INCLUDING ATTRIBUTE AND CONSTRAINTS INFORMATION. THE CONSTRAINTS INFORMATION
CONTAIN THE ATTRIBUTE NAME, DIRECTION OF CONSTRAINT, EITHER T (INCREASING) OR | (DECREASING), AND ITS CORRESPONDING NMI.

Attributes Constraint

Name Size Nominal Continuous Attribute Direction NMI

Abalone 4176 1 7 Shell Weight T 0.8062
Australian Credit 689 9 6 A8 1 0.9925
Bank Marketing 4520 9 7 Loan 1 0.9859
Cancer 698 0 10 USize T 0.0059
Car 1727 6 0 Safety T 0.0460
Credit Screen 689 9 6 A4 T 0.9444
German Credit 689 9 6 Credit History i\ 0.9189
Haberman 305 0 3 PosNode 1 0.0861
MPG 397 0 7 Horsepower 1 0.0566
Pima 767 0 8 PGC T 0.0947
User Knowledge 402 0 5 PEG T 0.9764
Wine 177 0 13 Flavanoids 1 0.964
Wine Quality 1598 0 11 Alcohol T 0.8373

TABLE III

ACCURACY OF THE FIVE MONOTONIC RULE LEARNERS. OLM IS AN EXISTING MONOTONIC LEARNER, THE OTHER FOUR ALGORITHMS ARE ACO-BASED
ALGORITHMS USING A COMBINATION OF SOFT CONSTRAINTS AND HARD CONSTRAINTS AT DIFFERENT STAGES OF THE CONSTRUCTION PROCESS. THE
BEST RESULT FOR EACH DATA SET IS SHOWN IN BOLD.

Data set OLM cAnt-Minerppg +Pruners

cAnt-Minerpg +RULEM

cAnt-Minerpg 4+ McpP CAnt—MinerpB+1\10 +RULEM

Abalone
Australian Credit
Bank Marketing
Cancer

Car

Credit Screen

German Credit

0.1609 [0.0164]
0.6449 [0.0646]
0.8828 [0.0482]
0.8355 [0.0149]
0.9055 [0.0187]
0.5681 [0.0654]
0.6700 [0.0153]

0.2500 [0.0152]
0.8501 [0.0562]
0.7954 [0.0242]
0.9465 [0.0214]
0.8452 [0.0274]
0.8546 [0.0546]
0.7465 [0.0674]

Haberman 0.6993 [0.0781] 0.7405 [0.0791]
MPG 0.7663 [0.0367] 0.7641 [0.0641]
Pima 0.7161 [0.0589] 0.7456 [0.0665]

User Knowledge
Wine
Wine Quality

0.4839 [0.0398]
0.3202 [0.0201]
0.2808 [0.0276]

0.9242 [0.0157]
0.9875 [0.0264]
0.5412 [0.0447]

0.1354 [0.0065]
0.8345 [0.0097]
0.8717 [0.0097]
0.7241 [0.0158]
0.7958 [0.0096]
0.8645 [0.0564]
0.7000 [0.6874]
0.7097 [0.6741]
0.7555 [0.0664]
0.6623 [0.0695]
0.8987 [0.0678]
0.8889 [0.0345]
0.3183 [0.0248]

0.2583 [0.0083]
0.8554 [0.0402]
0.8949 [0.0131]
0.9574 [0.0166]
0.8964 [0.0149]
0.8612 [0.0385]
0.7416 [0.0369]
0.7417 [0.0917]
0.9256 [0.0274]
0.7494 [0.0707]
0.9271 [0.0355]
0.9605 [0.0377]
0.5743 [0.0391]

0.1294 [0.0056]
0.8554 [0.0402]
0.8746 [0.0343]
0.7743 [0.0354]
0.8179 [0.0356]
0.8356 [0.2565]
0.6946 [0.0645]
0.7419 [0.0654]
0.7587 [0.0124]
0.7013 [0.0963]
0.9346 [0.0646]
0.5555 [0.0564]
0.3178 [0.0641]

The three pruners are computationally inexpensive in com-
parison to the main ACO optimisation stage, therefore a viable
approach to rule list pruning is to combine all three pruners
into a pruning suite where all pruners are evaluated on the
training data and the rule list with the highest predictive
accuracy on the training set is selected. At this point we
can focus only on accuracy since all rule lists at this stage
are guaranteed to be monotonic. This modified algorithm is
called cAnt-Minerpp4ncp, using the soft constraints found
in cAnt-Minerpg+nmc and the proposed pruning suite for hard
constraints.

IV. RESULTS

Our results have been split into two sections, first we
will present the monotonic algorithms and then compare the

best monotonic algorithm to traditional non-monotonic rule
learners. As we are concentrating on rule induction and the
comprehensible models that they produce, we will only be
considering the performance of our algorithms against other
rule induction methods. This allows a fair comparison remov-
ing any biases that may be present due to model representation.

In all experiments, cAnt-Miner variations were configured
with a colony size of 5 ants, 500 iterations, minimum cases
covered by an individual rule of 10, uncovered instance ratio
of 0.01, and constraint weighting (w) of 0.5 (only used by
cAnt-Minerpg4nc). The eight chosen algorithms were tested
on thirteen data sets taken from the UCI Machine Learning
Repository [16]. Table II present the details of the chosen
data sets, including a summary of the constraints used. All
independent attributes had their NMI calculated to discover

TABLE IV
AVERAGE RANKINGS AND p VALUES OF THE MONOTONIC ALGORITHMS
TESTED. RESULTS THAT SHOWED A STATISTICALLY SIGNIFICANT
DIFFERENCE ACCORDING TO THE HOLM TEST FOR o = 0.05 ARE SHOWN

IN BOLD.
Algorithm Ranking P Holm
CAnt—MinCrpB+1\,Icp 1.4910
cAnt-Minerpp +Pruners 2.5385 0.0940 0.05
cAnt-Minerpg 4+ vc+RULEM 3.2692 4.3336E-3 0.025
OLM 3.7692 2.5318E-4 0.0167
cAnt-Minerpg +RULEM 3.9231 9.3412E-5 0.0125

good monotonic relationships—the NMI results guided the
choice of constrained attribute reported in the table.

A. Monotonic Experimental Results

To test the effectiveness of both additive and subtractive
monotonic post-processing methods, four algorithms have
been created: the first two use cAnt-Minerpg as the base with
both the monotonic pruners and RULEM as post-processing
steps; the other two algorithms use cAnt-Minerpppc as the
base, which incorporates the soft constraints into the model
construction and then uses either the monotonic pruners or
RULEM to enforce the constraints rigidly.

These four algorithms have also been compared against
OLM [11], a monotonic rule learner from the literature. Table
IIT shows the predictive accuracy of all the algorithms on
the thirteen data sets, with the standard deviation shown in
brackets. All results are the average of tenfold cross-validation,
with the stochastic ACO-based algorithms running five times
on each fold and the average taken to even out random
differences in performance. The highest accuracy achieved on
each data set is shown in bold. In summary, the two algo-
rithms that incorporate soft constraints cAnt-Minerppmcp
and cAnt-Minerpgyc+RULEM achieve the best result of
all the algorithms in seven and three of the thirteen datasets,
respectively. cAnt-Minerpg+Pruners achieves the best result
in two datasets and cAnt-Minerpg+RULEM achieves one win.

Table IV shows the results of the statistical testing done on
the RRMSE results obtained in Table III, where we can see
that cAnt-Minerppvcp achieves the lowest (best) average
rank and significantly outperforms the monotonic learner OLM
and both ant colony variants that use RULEM post-processing
procedure.

Our results show that the algorithms that used subtractive
pruners performed better than RULEM, which uses an additive
approach. RULEM adds additional rules to a rule list, which
could lead to over-fitting of the data—if the rules added by
RULEM are good rules and therefore increase predictive accu-
racy, it would be reasonable to expect the learning algorithms
to discover them. These additionally created rules that are
added to the top of a list reduce the effectiveness of the
previously generated rules, as rules at the top of the list will
preferentially make predictions over those lower in the list.
Subtractive pruners, instead, can only generalise a rule and

allow it to cover more instances. While overly generalised
rules will hurt a models predictive accuracy, the monotonic
pruners here aim to minimise changes to the model.

Previous experiments involving RULEM have been focused
on algorithms that employ the sequential covering technique,
which generally ignores rule interactions when constructing
a model. In fact this is one of the reasons RULEM authors
focused on post-processing, as monotonicity is a global prop-
erty [14]. However, cAnt-Minerpp and its derivatives generate
an entire rule list in each iteration of the algorithm. This
allows for rule interactions to be optimised and, therefore,
the additional rules generated by RULEM may disrupt these
rule interactions present in the models, negatively affecting the
accuracy.

Due to the global optimisation of models by cAnt-Minerpg,
a logical step is to introduce monotonic constraints to the
learning phase. The decision to implement a soft constraint
regime at this stage is to nudge (bias) ants towards good
monotonic solutions while not restricting the search space they
operate in. Our experiments show that incorporating those
constraints into the learning phase minimises the changes
required in a potentially destructive post-processing step to
fix the model. Embedding constraints into the learning phase
allows the ant colony to optimise the rule list based on all
the features we required and not to enforce new requirements
after the model has been optimised.

B. Non-Monotonic Comparison Results

The best monotonic algorithm cAnt-Minerpg yvcp Was also
compared to three traditional non-monotonic algorithms, JRip
[17], Quinlan’s C5.0 Rules?, and the original ACO-based algo-
rithm cAnt-Minerpp to show if any loss of predictive accuracy
has occurred due to the addition of monotonic constraints. The
results of these experiments are shown in Table V, with the
statistical analysis shown in Table VI. To summarise, while
no statistical significance was observed, cAnt-Minerppncp
achieved the lowest (best) average rank and managed to out-
perform the other algorithms in six of the thirteen datasets. The
results also show that cAnt-Minerpg4ncp has not suffered a
drop in predictive accuracy compared to the original algorithm
cAnt-Minerpg with the inclusion of additional constraints
into the learning process. This is particular interesting as
Ben-David has previously suggested that enforcing monotonic
constraints may harm predictive accuracy [11]. However, we
hypothesise that if constraints are correctly identified, this
additional knowledge should allow the construction of more
accurate and generalised models, helping algorithms ignore
some of the noise present in real world data sets.

V. CONCLUSION

In conclusion, we have shown that monotonic constraints
should not be confined to a post-processing stage, but should
also be incorporated into the learning phase. The most suc-
cessful algorithm in our experiments, cAnt-Minerpgncps,

Zhttps://www.rulequest.com/see5-unix.html

TABLE V
COMPARISON OF THE MODEL ACCURACY OF THE BEST MONOTONIC RULE LEARNER CANT—MINERPB_'_MCP TO TRADITIONAL NON-MONOTONIC RULE
LEARNERS, INCLUDING THE ORIGINAL cANT-MINERpgE. THE BEST RESULT FOR EACH DATA SET IS SHOWN IN BOLD.

Data set

cAnt-Minerpg +MCP

JRip

C5.0 Rules

cAnt-Minerpg

Abalone
Australian Credit
Bank Marketing
Cancer

Car

Credit Screen
German Credit
Haberman

MPG

Pima

User Knowledge
Wine

Wine Quality

0.2583 [0.0083]
0.8554 [0.0402]
0.8949 [0.0131]
0.9574 [0.0166]
0.8964 [0.0149]
0.8612 [0.0385]
0.7416 [0.0369]
0.7417 [0.0917]
0.9256 [0.0274]
0.7494 [0.0707]
0.9271 [0.0355]
0.9605 [0.0377]
0.5743 [0.0391]

0.1906 [0.0284]
0.8507 [0.0315]
0.8936 [0.0146]
0.9542 [0.0256]
0.8646 [0.0134]
0.8936 [0.0485]
0.7350 [0.0468]
0.7222 [0.0387]
0.9095 [0.0856]
0.7513 [0.0715]
0.9280 [0.0269]
0.9494 [0.0156]
0.5860 [0.0212]

0.2303 [0.0310]
0.8639 [0.0363]
0.8919 [0.0125]
0.9527 [0.0223]
0.9543 [0.0137]
0.8612 [0.0393]
0.7120 [0.0444]
0.7288 [0.0764]
0.9247 [0.0353]
0.7377 [0.0698]
0.9281 [0.0473]
0.9436 [0.0594]
0.6128 [0.0543]

0.2562 [0.0215]
0.8580 [0.0501]

0.8938 [0.014]
0.9566 [0.0181]
0.8929 [0.0151]
0.8493 [0.0479]
0.7490 [0.0509]
0.7405 [0.0791]
0.9200 [0.0293]
0.7493 [0.0564]
0.9254 [0.0486]
0.9444 [0.0586]
0.5523 [0.0477]

TABLE VI
AVERAGE RANKINGS AND p VALUES OF THE BEST MONOTONIC
ALGORITHM CANT—MINERPB_H\/[CP AND THREE NON-MONOTONIC RULE
LEARNERS. THE HOLM TEST WAS USED TO CHECK FOR SIGNIFICANCE AT

[3]

[4]

a = 0.05.
Algorithm Ranking p Holm (5]
cAnt-MinerpB+Mcp 1.8077
C5.0 Rules 2.6538 0.0947 0.05 [6]
cAnt-Minerpp 2.6923 0.0806 0.025
JRip 2.8462 0.0403 0.0167

combined soft constraints in the learning phase with a suite of
new pruners that aimed to minimise any destructive changes
on the rule list while fixing any non-monotonic features.
Enforcing monotonic constraints in cAnt-Minerppyvcp did
not have a negative effect on the accuracy of the algorithm
when compared to the original cAnt-Minerpp and classical
rule induction algorithms C5.0 Rules and JRip, which do not
enforce these constraints.

We have identified a number of possible ideas and improve-
ments for future work. Currently, cAnt-Minerppypmcp can
cope with a single constrained attribute and, while we believe
that it is more realistic to constrain one attribute compared to
all attributes, it is common to have a number of attributes
that have some form of monotonic relationship. Another
future improvement could be the introduction of piecewise
constraints, enabling the algorithm to model more complex
relationships than simple always monotonically increasing or
decreasing ones.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith, “From data mining
to knowledge discovery: an overview,” in Advances in Knowledge
Discovery & Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R. Uthurusamy, Eds. MIT Press, 1996, pp. 1-34.

[2] K. Hoover and S. Perez, “Three attitudes towards data mining,” Journal
of Economic Methodology, vol. 7, no. 2, pp. 195-210, 2000.

[7]

[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

R. Parpinelli, H. Lopes, and A. Freitas, “Data mining with an ant
colony optimization algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 4, pp. 321-332, August 2002.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics — Part B, vol. 26, pp. 29—41, 1996.

D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: swarm
intelligence for data mining,” Machine Learning, vol. 82, no. 1, pp.
1-42, 2011.

F. Otero, A. Freitas, and C. Johnson, “A New Sequential Covering Strat-
egy for Inducing Classification Rules With Ant Colony Algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 17, no. 1, pp.
64-76, 2013.

W. Duivesteijn and A. Feelders, “Nearest neighbour classification with
monotonicity constraints,” in Machine Learning and Knowledge Discov-
ery in Databases. Springer Berlin Heidelberg, 2008, vol. 5211 5211,
pp. 301-316.

A. Feelders and M. Pardoel, “Pruning for monotone classification trees,”
in Advances in intelligent data analysis V. Springer, 2003, pp. 1-12.
R. Potharst, A. Ben-David, and M. van Wezel, “Two algorithms for
generating structured and unstructured monotone ordinal data sets,”
Engineering Applications of Artificial Intelligence, vol. 22, no. 4, pp.
491-496, 2009.

A. Ben-David, “Monotonicity maintenance in information-theoretic ma-
chine learning algorithms,” Machine Learning, vol. 19, pp. 2943, 1995.
A. Ben-David, L. Sterling, and T. Tran, “Adding monotonicity to
learning algorithms may impair their accuracy,” Expert Systems with
Applications, vol. 36, pp. 6627-6634, 2009.

J. Brookhouse and F. E. B. Otero, “Monotonicity in ant colony classifica-
tion algorithms,” in 10th International Conference on Swarm Intelligence
(ANTS 2016). Springer, May 2016.

, “Using an ant colony optimization algorithm for monotonic
regression rule discovery,” in Genetic and Evolutionary Computation
Conference (GECCO 2016). ACM Press, April 2016.

W. Verbeke, D. Martens, and B. Baesens, “Rulem: A novel heuristic
rule learning approach for ordinal classification with monotonicity
constraints,” Applied Soft Computing, 2017.

A. Feelders, “Prior knowledge in economic applications of data mining,”
in Principles of Data Mining and Knowledge Discovery, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, vol.
1910, pp. 395-400.

M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

W. W. Cohen, “Fast effective rule induction,” in Twelfth International
Conference on Machine Learning. Morgan Kaufmann, 1995, pp. 115—
123.

