
Rodgers, P. and Mutton, P. (2003) Visualizing Weighted Edges in Graphs.
 In: Seventh International Conference On Information Visualization, Proceedings.
IEEE International Conference on Information Visualisation . pp. 258-263.
IEEE ISBN 0-7695-1988-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13954/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/IV.2003.1217988

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13954/
https://doi.org/10.1109/IV.2003.1217988
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Visualizing Weighted Edges in Graphs

Peter Rodgers and Paul Mutton
University of Kent, UK

P.J.Rodgers@kent.ac.uk, pjm2@kent.ac.uk

Abstract
This paper introduces a new edge length heuristic

that finds a graph layout where the edge lengths are
proportional to the weights on the graph edges. The
heuristic can be used in combination with the spring
embedder to produce a compromise between a drawing
with an accurate presentation of edge length and a
drawing with good general comprehensibility. We
describe our preliminary investigations in combining the
two methods so that a user can tune their preference and
demonstrate the effectiveness of the system on both
randomly generated graphs and graphs representing web
page similarity data.

Keywords: graph drawing, metric embedding.

1: Introduction

The automatic layout of interconnected data, termed
graph drawing, is widespread in information visualization.
In many application areas, the graphs being visualized are
weighted, where the weights on the edges represent a
measure between connected nodes. Examples of such data
are web page similarity graphs or the graphs depicting the
closeness of bibliography entries. For visualizing this sort
of information, an important requirement is that the
displayed edge length should be proportional to the
weight. However, a good solution for edge weights is
often at the cost of making the overall graph drawing less
comprehensible, so the user finds that examining the data
is difficult.

A widely used method for drawing graphs with
proportional edge lengths is to apply a metric spring
embedder to the graph. This applies the spring embedder,
first developed by Eades [1], with modifications made to
ensure that the attractive forces acting on edges are
inversely proportional to the edge weight. Many
applications use this approach, such as visualizations for
biological data [3] or showing the similarity between
news stories [2]. Tools to support this form of graph
drawing have been developed, including NetVis ViStA
[5], and some force directed approaches are easily
modified to optimize on edge length [4]. The result of
using these methods is that the graph is often nicely
drawn for comprehensibility and that the edge weights
and edge lengths have some relationship. However, the
resultant edge lengths are usually far from their ideal
values, even when the graph has a possibly exact solution.

Metric embedding techniques, which attempt to
optimise laying out edge lengths proportional to their
weights have been widely applied. Finding an optimal
solution for this problem is NP-Complete and so such
techniques are approximative. They include
multidimensional scaling methods and hierarchical
decomposition [7]. The result of such techniques is good
for edge lengths, but the layout is also usually a jumbled
graph that is difficult to analyse visually.

In this paper, we introduce a new edge length method
that can be closely integrated with the metric spring
embedder to produce a compromise between a
comprehensible graph and a metric embedding.

As with the spring embedder, the system iterates a
number of times until a reasonable drawing has been
found. On every iteration, the metric spring embedder
method is first applied to the nodes in the graph, and then
the edge length heuristic is applied to the nodes in the
graph. No modification is required to the calculation of
the forces in the spring embedder. On any iteration, it is
possible to apply either or both methods, so providing a
tuning mechanism where the user can decide how much
spring embedding or edge length method they require for
their final drawing depending on their emphasis on
comprehensibility or edge length proportionality. The
edge length method is more powerful than the spring
embedder and produces an equilibrium faster. Hence, to
produce a more understandable graph it can be left out for
several iterations whilst the spring embedder is applied on
every iteration. This means the tuning is defined as how
frequently the edge length method is applied.

To apply an iteration of the edge length heuristic, the
method iterates through the nodes in the graph. For each
node, the edge length heuristic takes each connecting
edge and finds the ideal length based on multiplying the
weight of the edge by a constant. The position of the node
to create that ideal length is then calculated. Once all the
positions for the connecting edges are calculated, the node
is then moved to the average of the positions.

The heuristic can be implemented with O(|E|) time
complexity for each iteration, where |E| is the number of
edges in the graph. This compares well with the spring
embedder which is O(|N|2) for each iteration of the
classical embedder [1], where |N| is the number of nodes
in the graph, although O(|N| log |N|) can be achieved with
optimisations. Hence, the scalability of our method is
largely dependent on the spring embedder rather than the
heuristic. The spring embedder has been applied to graphs
of over a hundred thousand nodes [8].

The edge length heuristic in pseudocode: A version of the edge length heuristic was first
developed as a preprocessor for the standard spring
embedder [6]. Rather than making edge lengths
proportional to weight, it was designed to make edge
lengths equal. In this form it was combined with a grid
allocation method in a two phase system. It has the effect
of evening out edge lengths and giving nodes a minimum
separation, so approximating the goal of the spring
embedder. This was shown to significantly reduce the
time taken for subsequent spring embedding. This
investigation also indicated that graph drawings produced
by using the heuristic alone were often unclear and that
good results for edge length are at the expense of
providing users with a generally comprehensible diagram.

APPLY_EDGE_LENGTH(G)
 FOREACH n IN G
 F = setOfConnectingEdges(n)
 P = {}
 FOREACH ei IN F
 Calculate location of pi
 Add p to P i

 Move node to mean location in P

The metric spring embedder method operates like a
standard classic spring embedder, see [1] except that on
each iteration, the repulsive force calculation for each
edge ei is multiplied by the inverse of wi.

The two methods are then combined in the graph
drawing system, which iterates a user defined number of
times. On each iteration, both, or just one of the methods
can be applied. In general, the spring embedder is always
applied, except in the case where the edge length method
only is required. The edge length method can be applied
on every iteration, or less frequently, such as every 5
iterations. Where the spring embedder only is required,
the edge length method is not applied at all.

The remainder of this paper is organized as follows:
Section 2 describes the edge length heuristic in more
detail; Section 3 gives the results of using the method in
various combinations with the metric spring embedder on
test data; and finally, Section 4 gives our conclusions and
directions for further research.

2: Description of the Method

This section describes the edge length method in
detail and discusses how it is integrated with the spring
embedder to produce a tuneable graph drawing system.

The graph drawing method in pseudocode:

DRAW(G) For our experiments, we consider connected graphs
in two-dimensional space. We define a graph G = (N,E),
where N is the set of nodes and E is the set of edges that
connect nodes together. We also define a weight function,
W, assigning a real number to all the edges in E.

FOREACH iteration, i
 if(USE_SPRING_EMBEDDER(i))
 APPLY_SPRING_EMBEDDER(G)
 if(USE_EDGE_LENGTH(i))
 APPLY_EDGE_LENGTH(G)

m1

m2

n

kw1

p1

p2

kw2

3: Results

In order to gauge the effect of applying the edge
length heuristic, we performed four graph drawing
variations on a set of test graphs. The variations were
various ways of combining the edge length method with
the metric spring embedder. The idea was to apply a
different emphasis on the two conflicting goals of
producing comprehensible graphs and making the edge
lengths in the graph as proportional to the edge weights as
possible. The four variations were: spring embedding only
(SE); spring embedding every iteration and edge length
every five iterations (SE5EL1); both spring embedding
and edge length on each iteration (SE1EL1); and edge
length method alone (EL).

Figure 1
A diagrammatic representation of the effect of the edge

length heuristic on Node n.

The edge length heuristic places a node n at the
average of the ideal positions for each connecting edge. It
repeats this for each node in the graph. For each edge ei
with weight wi that connects node n to node mi, we
calculate the position of point pi such that the vector mipi
= kwi(ui), where ui is the unit vector of min, see Figure 1.
This can be considered the ideal location of the node n if
it connected to only the node mi. k is a constant that
adjusts the final edge length according to the desired edge
length and the values of the weights, so that k can be
reduced if the weights in a particular graph are large. The
node is then moved to the average of all the locations pi.

The test graphs, listed in Figure 2, are a combination
of randomly generated graphs (those graph names starting
with ‘random’) and graphs generated from web pages
(those graph names starting with ‘www.’), with similarity
data where nodes represent web pages, edges represent
hyperlinks between pages, and edge weights are values
representing the number of shared links of the two pages.
In addition there are a few hand created graphs to explore
specific possible issues (those graphs named ‘metric’,
‘nonmetric’, ‘general’, ‘simple’ and ‘clustered’) and a
graph derived from real world data (the graph named
‘bibliography’, see [2]).

Graph Number of Nodes Number of Edges

metric 3 3
nonmetric 3 3
random10-20 10 18
thing 17 30
simple 18 30
www.web-bits.net 18 51
clustered 19 30
random20-40 20 38
www.brettmeyers.com 23 60
www.counter-strike.net 25 26
random30-60 28 58
www.a-spotted-dog.com 31 129
random40-80 40 77
random50-50 43 49
random50-75 47 72
random50-100 49 97
random50-150 50 149
random50-200 50 195
random50-300 50 297
random60-120 60 115
random80-160 80 156
random100-200 98 196
www.bersirc.com 104 803
www.ivarjohnson.com 111 225
random150-300 150 297
random200-400 194 399
www.peacenikjive.com 226 669
random300-600 296 598
random400-800 390 799
random500-1000 496 998
bibliography 504 754

Graph SE SE5EL1 SE1EL1 EL

metric 2069.17 1.06 0.16 0.18
nonmetric 29821.14 20023.50 20025.33 20022.71
random10-20 526.00 184.82 190.89 195.22
thing 195.39 210.86 33.29 4.25
simple 79.30 56.25 17.78 0.13
www.web-bits.net 24.44 12.75 11.06 11.34
clustered 179.27 17.50 8.14 8.50
random20-40 115.49 90.10 53.37 27.47
www.brettmeyers.com 13.06 3.31 1.53 1.12
www.counter-strike.net 59.66 0.18 0.03 0.00
random30-60 42.81 35.50 15.26 7.75
www.a-spotted-dog.com 8.92 1.93 1.54 1.49
random40-80 25.54 3.62 1.26 1.01
random50-50 63.14 35.52 8.23 3.62
random50-75 29.14 3.37 1.78 1.53
random50-100 18.63 3.32 2.08 1.97
random50-150 9.55 2.83 2.13 2.25
random50-200 5.42 1.88 1.63 1.68
random50-300 2.70 1.09 1.02 1.00
random60-120 14.06 3.10 1.54 1.46
random80-160 7.58 1.49 0.59 0.51
random100-200 4.65 1.10 0.38 0.25
www.bersirc.com 0.39 0.04 0.02 0.02
www.ivarjohnson.com 3.29 1.75 0.36 0.07
random150-300 1.84 0.58 0.21 0.11
random200-400 1.08 0.42 0.11 0.03
www.peacenikjive.com 0.63 0.25 0.10 0.07
random300-600 0.49 0.24 0.06 0.01
random400-800 0.29 0.15 0.05 0.01
random500-1000 0.18 0.11 0.03 0.00
bibliography 0.47 0.39 0.17 0.01

Figure 2 Figure 3
The test graphs. The amount of distortion. The values with a grey

background are those which are higher than the value in
the column to the immediate left.

Our criteria of success for the edge length accuracy

was a calculation of distortion, a measure of how close
the edge lengths in the graph are to their ideal. The
distortion we used is given by:

Each graph drawing variation was applied to each

graph with approximately 1000 iterations used. Before
each application, the positions of the nodes were
randomized before the variation was applied. The number
of iterations was set so that the SE5EL1 variation finished
on 4 spring embedding iterations, rather than the iteration
that included both methods. Some modifications to values
for the edge length and spring embedder methods were
made to ensure reasonable results. The measures were
then applied to the resultant layouts. This was repeated 10
times. The average distortion of these experiments is
shown in Figure 3.

 () 22

)(
||

)()()(60. 






×− ∑∑
eedgeeedge

el
E

eulewelE1

where l(e) is the length edge e, w(e) is the weight of

edge e, ul(e) is the desired unit length if edge e, i.e. the
sum of edge length in the graph divided by the number of
edges. This allows us to multiply ul(e) by the weight of an
edge w(e) to give us the ideal weight for e. We divide by
the total edge length squared to make the measure
dimensionless, that is, the measure does not vary on the
physical size of the graph, only on the relative differences
of the edge lengths. The constant 1.0E6 has been factored
in so that the numbers are of a magnitude that makes for
easier comparisons.

From Figure 3, it can be seen that EL variation is by
far the most effective in reducing distortion. The SE1EL1
variation is consistently the next most effective. Using the
spring embedder every iteration and the edge length
method every 5 iterations is more effective than using the
spring embedder alone. The data points that do not bear
out these conclusions are shown with a grey background,

and are particularly prevalent in smaller graphs. Most of
these points have very small differences Some of these
figures are because the node coordinates have integer
values, and so some rounding occurs. This is certainly
true in the case of “metric” and “nonmetric”. The only
significant case where the negative case does not involve
the EL variation is in “thing”, where the SE1EL1 is
surprisingly worse than the SE alone. Its not clear why
this should be so, particularly as the other variants give
much lower distortion than both SE and SE1EL1. In six
cases the EL variation gives a slightly worse result than
the SE1EL1 variation. One of these cases is due to
rounding, however we conjecture that in some graphs,
particularly small ones, applying the spring embedder
allows the edges to settle slightly more effectively than
using the edge length alone.

Figure 4c

Graph ‘clustered’ drawn with the SE1EL1 variation.

It is difficult to accurately measure the aesthetics in
the graph, so we justify the tuning of the graph from a
comprehensibility perspective by giving some example
layouts. In some cases the graphs displayed have been
chosen from amongst the 10 alternatives to best illustrate
the concepts discussed.

Figure 4d
Graph ‘clustered’ drawn with the EL variation.

To illustrate the output from the drawing variations,
figures 4a, 4b, 4c and 4d show example layouts of the
four variations applied to the graph ‘clustered’. This
graph is a good demonstration, by visual inspection, of
the notion that as the edge lengths become closer to the
edge weights, the comprehensibility of the graph reduces.
Its clear that the layout in Figure 4a, produced by the
spring embedder only, variation SE, is very easy to
analyse, so that discovering paths between nodes, finding
neighbouring nodes and other common graph
investigations are relatively unproblematic, but the
distortion is 179.27, which is poor compared to the other
drawings of the same graph. The first compromise
drawing method, shown in Figure 4b, is the SE5EL1
variation, which emphasises the spring embedder. Here,
an edge crossing and a certain amount of reduced
evenness can be seen. However, the distortion is much
better with a value of 17.50. Figure 4c is the compromise
variation SE1EL1, emphasising the edge length method.
Certainly compared to SE it has worse comprehensibility,
and it has more edge crossings than SE5EL1, making
manual investigation of the graph harder, but it has a
better distortion than both, with a measure of 8.14. Figure
4d is the edge length method only variation, EL. This is a
rare example where the edge length only method has a
worse distortion, at 8.50, than the SE5EL1 compromise
method. This is a very small difference and, as stated
above, may be due to some advantage in settling given by
the spring embedder for some small graphs.

Figure 4a
Graph ‘clustered’ drawn with the SE variation.

Figure 4b

Graph ‘clustered’ drawn with the SE5EL1 variation.

Figure 5a
Graph ‘simple’ drawn with the SE variation.

Figure 5d
Graph ‘simple’ drawn with the EL variation.

The example graph ‘simple’ given in Figures 5a to 5d
shows a less pronounced difference between the SE and
SE5EL1 variations. However, the improvement in
distortion is significant, with the SE variation, shown in
Figure 5a, having a value of 79.30 and the SE5EL1
variation, shown in Figure 5b, having a value of 56.25.
This case indicates that sometimes edge length accuracy
can be improved with little negative effect on
comprehensibility. The SE1EL1 variation, shown in
Figure 5c, has somewhat reduced comprehensibility, but
considerably improved distortion, at 17.78. Figure 5d
shows the EL only variation, with poor comprehensibility,
but minimal distortion of 0.13.

Figure 5b
Graph ‘simple’ drawn with the SE5EL1 variation.

Figure 6a

Graph ‘nonmetric’ drawn with the SE variation.

Figure 6b

Graph ‘nonmetric’ drawn with the EL variation. The
SE5EL1 and SE1EL1 variations look very similar.

Figures 6a and 6b show layouts of the very small

graph ‘nonmetric’, which is a triangle failing the metric
inequality, so that it cannot be exactly drawn on the plane
with edge length proportional to edge weight. Figure 6a
shows a comprehensible drawing, with poor distortion
29821.14, whereas Figure 6b shows an example of the

Figure 5c
Graph ‘simple’ drawn with the SE1EL1 variation.

Much possible further research results from this
preliminary investigation. We have observed that in some
cases applying the edge length method after the spring
embedder, rather than directly onto a randomly laid out
graph, often improved the comprehensibility of the final
drawing. This is related to previous research [6], where
we found that the spring embedder was made more
efficient by a preprocessing step consisting of an earlier
version of the edge length method. The connection
between the two methods is clearly in need of more
research.

edge lengths as close as they can be to the ideal, giving a
distortion of 20023.50, but the nodes lying in a row are
confusing and so adversely affect comprehensibility. The
three methods integrating the edge length heuristic
produce approximately the same figures, with some minor
variation due to rounding.

Investigation is underway to evaluate the edge length
heuristic as a metric embedding method, with no aesthetic
consideration for applications such as clustering, against
other common methods, in particular multidimensional
scaling techniques and hierarchical decomposition.

Figure 7a
Graph ‘metric’ drawn with the SE variation.

 In order to make the method more usable,
implementation optimizations and speed up techniques
are required. The software is currently implemented in a
way that makes investigation easy, but this comes at a
serious compromise to execution time. In addition, to
make the system more user friendly, the system should
provide an indication of suitable values for various
constants used by both the edge length method and the
spring embedder. These values could be derived from
graph size, density and edge weights.

Figure 7b

Graph ‘metric’ drawn with the EL variation.
 References Figures 7a and 7b show the graph ‘metric’, a triangle
for which the metric inequality holds. Figure 7a shows the
SE layout and has an edge length measure of 2069.17. It
is more even than Figure 7b, which is an example layout
of the EL variation, but the EL variation has a close to
perfect measure of 0.18, which is not exactly zero because
of rounding effects.

1 P. Eades. A Heuristic for Graph Drawing. Congressus
Numerantium 42. pp. 149-60. 1984.

2 S.I. Fabrikant. Visualizing Region and Scale in Semantic
Spaces. Proceedings, The 20th International Cartographic
Conference, ICC 2001, Beijing, China. pp. 2522-2529.
2001.

3 D. Gilbert, M. Schroeder, J. van Helden. Interactive
visualisation and exploration of biological data.
Proceedings of 5th Conference on Information Sciences,
Atlantic City, USA, February 2000.

4. Conclusions

We have introduced a new heuristic for drawing
graphs with edge lengths proportional to edge weights.
We have shown how it can be combined in a tuneable
system alongside the metric spring embedder for drawing
graphs according to user preferences.

4 T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs, Information Processing Letters,
v.31 n.1, p.7-15, April 1989.

5 L. Krempel. Visualising Networks with Spring Embedders:
Properties and Extensions for Two-Mode and Valued
Graphs. 19th International Sunbelt Social Network
Conference (Sunbelt XIX). Charleston, South Carolina.
February. 1999

In terms of compromising edge length
proportionality, we feel the notion of tuning the graph for
greater or lesser edge length accuracy has been borne out
by the results in Section 3. In most cases a more frequent
application of the edge length method reduces the edge
length distortion, however the relationship appears not to
be linear, and more investigation is required.

6 P.J. Mutton, P.J. Rodgers. Spring Embedder Preprocessing
for WWW Visualization. Proceedings of International
Symposium on Web Graphics and Visualization, IV02-
WGV. pp. 744-749. 2002.

7 Yuval Shavitt and Tomer Tankel. Big-Bang Simulation for
embedding network distances in Euclidean space. IEEE
INFOCOM 2003, April 2003, San Francisco, CA, USA.

The notion that applying the edge length method less
frequently improves graph comprehensibility is difficult
to demonstrate, as the nature of comprehension is not
objective. However, from the investigators’ personal view
of the understandability of graphs drawn with the
variations, the hypothesis seems to hold.

8 C. Walshaw. A Multilevel Algorithm for Force-Directed
Graph Drawing. Graph Drawing. pp. 171-182. 2000.

	1: Introduction
	2: Description of the Method
	3: Results
	4. Conclusions
	References

