
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Boukhelifa, Nadia and Roberts, Jonathan C. and Rodgers, Peter (2003) A Coordination Model
for Exploratory Multi-View Visualization. In: International Conference on Coordinated and
Multiple Views in Exploratory Visualization, JUL 15, 2003, LONDON, ENGLAND.

DOI

Link to record in KAR

http://kar.kent.ac.uk/13941/

Document Version

UNSPECIFIED

A Coordination Model for Exploratory Multi-View Visualization

Nadia Boukhelifa, Jonathan C. Roberts, Peter J. Rodgers

Computing Laboratory, University of Kent

{n.boukhelifa, j.c.roberts, p.j.rodgers}@kent.ac.uk

Abstract
In this paper, we present a coordination model for

exploratory multi-view visualization. We base our work

on current research in exploratory visualization and

other disciplines. Our model is based on sharing abstract

objects such as the visualization parameters of the

dataflow model to achieve coordinated exploratory tasks

in multiple views. This model describes how current

coordinations in exploratory visualization work and

allows novel coordinations to be constructed.

Keywords: Multiple views, exploratory visualization,

reference model, coordination, coordination objects,

coupling.

1. Introduction

Multiple views are prevalent in many user

interfaces. This is motivated by real-life needs for

simultaneous display of multiform data, rapid

information processing and the necessity to compare and

contrast different aspects of the data. For example,

interactive television allows the viewing of one program

while the user browses additional and related

information. Users are no longer passive. They are often

actively involved in shaping multiple views of data

through interactive exploration.

Multiple views come in different forms. They could

be abstract views that facilitate information processing,

hierarchical and time series views, which describe the

history of exploration or side thumbnail views for

experimentation and quick viewing.

In many of these cases coordinating multiple views

is beneficial. For instance selecting a group of data items

in one view in coordination with the selection of the

same items in another can show new relationships such

as distribution, grouping or subordination within these

items, which might otherwise remain unseen.

However, most coordination realizations in current

visualization systems are last-minute ad-hoc additions.

The coordination rules are informal, which may be

flexible, but the principles would be difficult to export to

other visualizations. Conversely, embedded

coordinations are the result of adopting an underlying

model. For instance the Snap-together conceptual model

for coordination [1] relies on the relational schemata, so

joins between relations are links between visualizations.

While not wrong in itself, this specialization limits the

potential and richness of coordination operations.

Moreover, no visualization reference models

explicitly consider coordination. Even if coordination is

contemplated from the design point of view, it is usually

only regarded as part of the communication protocol and

is generally dealt with within that restricted domain.

There is a need for a flexible model for coordination that

will ensure easy embedding of coordination in such

exploratory environments.

The aim of this work is to first develop a reference

model for coordination that will allow visualization

designers to formally specify existing and novel

coordinations in multiple-view exploratory visualization;

second develop some rudiments of coordination drawing

on the findings of the interdisciplinary study of

coordination and lastly provide some examples of the

model in use. In this paper we present such a model and

formalize aspects of coordination for exploratory

visualization (EV).

This paper is divided into the following sections (2)

Related work. (3) Discussion of the salient features of

coordination in EV. (4) The new model. (5) An extended

example of application. (6) a discussion about the

relationship of the model to current coordinated

visualization systems. Finally, (7) future work and

conclusions.

2. Related work

Coordination is a subject that has been investigated

by many separate disciplines but only recently have

researchers such as Olson et al [2] appreciated the

obvious advantages of interdisciplinary viewpoints.

2.1 Interdisciplinary view of coordination

There are many disciplines that use related ideas that

could be cross-fertilized into coordinated EV. For

example, a translation framework for ontology mappings

of information services, integration and unification of

data, constraints management in concurrent design

2.2 Coordination for EV projects [3], inter-modality in different brain functions,

redundancy for reinforcement of information, time series

and history, middleware provision for cooperative work

and balance and harmony in interior design. For these

files, entities such as objects, events, processes,

functions, agents and ontologies all may be coordinated.

Interactive visualization is important, enabling the

user to change the viewing parameters in one realization.

Certainly the user can subsequently perform the same

operation a number of times in additional views; but

there is an obvious benefit in simultaneously

coordinating the operation for the multiple views.
Each discipline studying coordination has

established its own architectures, models and protocols;

some are based on sharing memory and other resources,

others on managing constraints or propagating data

values or data parameters. Coordination in these fields is

treated in different contexts.

Thus, coordination can be described (as detailed by

Olson et al [2]) as �composing purposeful actions into

larger purposeful wholes�, where �the additional

information processing performed when multiple, and

connected actors pursue goals that a single actor [or

indeed the multiple actors working separately] pursuing

the same goals would not perform�. We emphasize the

point that the whole is greater than the sum of its

components.

Many researchers consider the field of coordination

theory to be the study of the interaction between

processes. For them, coordination is an interoperability

problem because the coordination brings together

heterogeneous and distributed system components.
The essence of exploration in visualization is Visual

Information Seeking (VIS) indeed as Ahlberg and

Shneiderman [8] state: the emphasis is on �rapid

filtering, ... progressive refinement of search parameters,

continuous reformulation of goals and visual scanning to

identify results�. Furthermore, to achieve effective

coordination in exploratory visualization there are many

dependencies between views that need to be managed

appropriately.

The multiple ontologies research, in particular,

provides additional representation formalism defining the

mapping between different ontologies where translation

and other techniques such as approximation are required.

For example, Akahani et al [4] suggest an approximate

ontology translation framework for coordinating

heterogeneous information services. The inter-ontology

mappings of data aim to achieve data integration by

identifying semantically corresponding terms of different

source ontologies [5] where the semantic correspondence

refers to equality or similarity.

A model for coordination improves understanding,

and allows effective development and qualitative

evaluation of systems that incorporate coordination. The

field of visualization is full of overloaded terms and

suffers from inconsistencies. Moreover, visualizations

often are based on different models. Coordinating

different visualizations requires a mechanism, which

allows interoperability between these differing models.

We need a model for coordination to define, test and

compare coordination strategies.

Ciancarini et al [6] examine a suitable middleware

for coordinating distributed active document-centric

applications. This middleware is a software layer that

abstracts from the heterogeneous characteristics of

different architectures, operating systems, programming

languages and networks in distributed systems. The main

responsibility of the coordination middleware is one of

data communication. Furthermore, middleware

coordination often allows multiple views to occur in

client-server architecture. 2.3 Current EV coordination models
Another approach to coordination is the observation

pattern as an ontology and a formal framework, as

proposed by Viroli et al [7]. They write �in general,

observation occurs when a system o [observer] is

interested in some information made available by a

system s [source]. Typically, ... s is modeling some

portion of the world o is interested in, and providing o

with some knowledge about it, as well as some

mechanisms to access it�. The request-reply strategy of

interaction in this paradigm works as a Model-View-

Controller (MVC) pattern.

There are many visualization systems that utilize

coordination. For example, tools like Xmdvtool [9],

Spotfire [10] implement coincident brushing operations;

others like VIP, LinkWinds [11] and Visage [12] include

coordinated 3D views. Many systems include linked

overview-detail views which is highly utilized in

geovisualization, for example see [13]. This fits with

North and Shneiderman [14] dual selection and

navigation motivation for coordination. However, like

Pattison and Philips [15] we believe in a wider view of

coordination, which potentially may coordinate any

aspect such as data preparation, averaging, clustering,

moving window positions etc. Recently two models have

been proposed: the Snap conceptual model [1] and the

View Coordination Architecture [15].

Although much research on ontology translation has

used informal mapping rules between those ontologies

[4], the interdisciplinary study of coordination presents

ideas that can be used for modeling multi-view

exploratory visualization. There is much communality

between concepts from a variety of fields and a strong

case for transference of ideas.

2.3.1 Snap

The Snap conceptual model takes a data-centric

approach to coordination. Relational database

components are tightly coupled such that an interaction

with one component results in changes to other

components. Snap utilizes the concept of database design

to promote better visual exploration. It provides a

mechanism for constructing coordinations without the

need for programming. In addition, new types of

coordination are introduced such as the compound join

and the multiple alternative joins [1].

Snap�s user interactions are currently limited to

�select� and �load�, whereas exploratory visualization

supports much more interactions, which could also be

coupled for coordination outside the relational database

scope.

As we shall see, Snap resembles our model in many

ways; for instance its architecture is event-based and

coordination is built from action associations. Snap also

recognizes the need for a middleware party to ensure

coordination operation and for a translation mechanism

when dealing with heterogeneous information sources.

However, our model handles coordination from a more

general viewpoint and takes in consideration exploratory

visualization needs for rich and varied user interactions.

Furthermore, we are interested in modeling

representation-oriented coordinations as well as data-

centric coordinations.

2.3.2 View coordination architecture for IV

Pattison et al [15] present an architecture for the

implementation of generic view coordination in the

Model-View-Controller (MVC) pattern. The proposed

framework separates between the specification and

implementation of mapping between data model to view

model.

Coordination is managed by a new component

(called coordination). Bidirectional coordinations can be

achieved through directional coordination between

presentation components, view model components or

specification components. The more components there

are and the more links exist between them, the more

complex the implementation and debugging becomes,

especially when linking different components [15]. Thus,

to encourage reuse, presentation, content and the

coordination itself should be - as far as possible -

disparate and independent.

Rather than concentrating on the implementation

architecture our work focuses on a layered approach

based on the dataflow model. Like Pattison we use a

MVC fundamental design, however we utilize multiple

components and different facets of coordination.

3. Facets of coordination

From the related work and broadness of the

interdisciplinary viewpoint we see that coordination

conjures some interesting challenges, such as relevance,

design and visual depiction of each coordination as well

as considering what and how to coordinate.

3.1 Coordination challenges & opportunities

First, due to the multiform nature of the multiple

views, actions in one view cannot always be directly

applied to other views. For example, it may be useful to

coincidentally rotate two three-dimensional views, but if

each uses a different mathematical projection then a

translation needs to occur that converts user interactions

in one view to a suitable format for the other. However,

some coordinations that may be possible to achieve, may

in fact not be useful; and yet others may be impossible to

realize. However, at this abstract level it is possible to

rely on the user to make such judgment of the usefulness

of a particular coordination. Indeed, there is the whole

question of how the system is implemented and whether

the coordinations automatically occur or are created by

user requests [16].

Second, there are design and user-interface

questions that a designer may wish to pose. For example,

if the multiple views represent a visual-history then is it

feasible or relevant to coordinate between past variances

of the exploration? Moreover, is everything coordinated

or are aspects of a few windows coordinated (and if so

who decides on what is coordinated ņ the user or the

system?[17]) For instance, if may be beneficial to only

coordinate views that are classified within the same

group (the notion of Render Groups [18]).

Third, how does the system visually represent and

notify to the user what is currently being coordinated

(e.g. visual methods such as used by the spiral calendar

[19], or by the implicit laying out of modules in Waltz

[18]). Many issues in visualization such as

synchronization, correlation of visual or non-visual

information, occlusion, view explosion and multitasking

could be more approachable through a coordination

model.

3.2 Coordination in use - two examples

In order to develop some rudiments of coordination

in EV we investigate the use of coordination in a current

tool (LinkWinds) and how coordination may be thought

of as analogous to program variables.

LinkWinds uses a data-linking paradigm for

coordination, which is comparable to the spreadsheet

concept where cells are related to each other using a

formula and changing the formula in one cell

recalculates the value of the linked cell [11]. The basic

entities that are coordinated in LinkWinds are objects

shown at the windowing level as either data, control or

display objects. Objects of the same type sit in the same

window making an object view. The general purpose of

coordination is to detect possible relationships in data.

LinkWinds allows one-to-many links; for example a

slider broadcasts messages to all objects it is linked to

when its value is changed. The user performs linking as

well as unlinking interactively. In addition, there exist

some constraints on coordination. For instance, data must

be put into empty windows and messages are passed only

between objects that are already linked. There is also a

message-passing protocol that handles inter and intra

object messages. The effect coordination causes on the

user interface is the emanating flow between linked

objects.

Granularity of links: Program variables may be thought as analogous to

coordination; for example, variables may be used in

multiple places and accessed by reference, they must be

instantiated, and they each have a type (if they are of a

wrong type then they may be cast - either by default or

explicitly). There are also notions of global and local

scope.

Many entities may be connected together via various

links. Granularity determines: the number of entities in

one coordination {2..n}, number of views in one

coordination {1..n}, number of links an entity contributes

to coordination {0..n}.

Initialization:
3.3 The rudiments of coordination Initialization determines who or how the coordination

created. For example, it may be automatic (such as using

a Render Group) or user specific, scheduled in some

fashion etc. Moreover, the user may need to explicitly

connect entity A to B, for every type by (say) connecting

ports from module A to module B; alternatively, the user

may only need to drag and drop the whole module into a

Render Group to instantiate and link everything in

module A to module B.

Taking aspects from this analogy, the LinkWinds

example, aforementioned challenges and other

coordination tools we categorize the rudiments.

Coordination entities:

This details what is actually being coordinated; such as

aspects of the actual window, view, data, record, tuple,

attribute, parameter, process, event, function, graphic or

time.

Updating:
 Coordinated views require that the information is

dynamically up-to-date. However, there may be

conflicting uses especially if, for example, the multiple

views represent a visual history. Commonly, in a

dataflow paradigm, the down stream modules always

reflect the information upstream. However, it may be

prudent that sometimes some views become out-of

synchronization: such that they reflect a previous time in

history. The displays may be updated by various means,

such as eager or greedy update, lazy update, or user

initiated.

Type:

The type of the coordination determines the method by

which the entities are linked. For example, simple

coordination (such as rotation or transformations) may be

implemented using primitive types (float, integer etc)

while others may be more complex data-structures.

Translation (casting) may be required if the entities

utilize different types. The types may also determine

directionality of the links (unidirectional or

bidirectional). For example, IRIS Explorer allows

parameters to be coordinated but the events flow one

way (as it disallows simultaneously connecting the

reverse to inhibit circular event explosions taking place).

Realization (link realization, user control):

How is the expression of coordinated conveyed to the

user? It may be that explicit lines are used (such as the

Spiral Calendar [19]) or via some formal layout

mechanism [18]. Moreover, how does the user control

the information to be linked, do they use direct

manipulation or indirect means via (say) dynamic

sliders?

Chronology (lifetime and scheduling):

How long entities are coordinated is governed by its

lifetime. (This is also known as the persistence of the

coordination.) It may be coordinated permanently, for a

given action, or determined by some scope. Moreover,

the coordination may be synchronous, asynchronous,

reactive, and proactive. For example, it may be useful to

coincidentally rotate the view of a fast and a slow

renderer; one solution is that the time-consuming one

could update at a slower rate by taking every n events

from a coordination event queue, or merely notified at

every n seconds.

4. The Model

The challenge is to develop a model that addresses

the coordination design issues mentioned above without

bias towards a particular data, navigation or

communication paradigm. Effectively, it should be

flexible, adoptable, extensible and foster better visual

exploration.

Scope:

Scope determines both the global/local connection and

the lifetime of the links; a global scope would mean that

any entity (wherever and whatever it is) could be

connected; whereas some links may be restricted to be

only used in a local area (e.g. the user may setup a group

where by simply adding a new member to the group

automatically coordinates it to each of the others in the

group). Commonly known as a Render Group.

Moreover, the scope also may restrict the lifetime.

The model should allow visualization designers to

formally specify existing and novel coordinations in

multiple view exploratory visualization and so facilitate

early testing of the proposed coordination designs before

they are implemented by programmers or constructed

visually by the user.

4.1. Abstract model for coordination

The model we define includes �coordination

objects� that manage combinations of entities (e.g.

parameters) that control aspects of the linked views. A

single coordination object is associated with each

separate coordination in the system. A view is said to be

coordinated if it shares a common coordination object.

All the coordination objects for a visualization system

are held in a �coordination space� as shown in Figure 1.

This is similar to the middleware layer component we

mentioned in the interdisciplinary view on coordination,

Section 2.1.

Figure 1. Abstract model for coordination in EV.

This diagram shows two different coordinations

between two views.

The views that are being coordinated need to define

a translation function (for instance f1 and f2 as shown in

figure 1) from the shared coordination object to the

linked view parameters.

The views must also register to be informed of a

notify event when a coordination object is changed. If an

event occurs, which might typically be a user initiated

action in one of the linked views, it alters the

coordination object, which sends a notify to all the linked

views registered. Registration may depend on a given

scope. Then, those views that were notified of a change

consequently use the information provided by the

coordination object via their translation function to

generate the new view.

A single coordination object is considered to be

present for each type of coordination in the system. So

that if multiple views define coordination for both co-

rotation and brushing, this will be represented by two

separate coordination objects: a rotation coordination

object for co-rotation and a selection coordination object

for brushing.

In the previous example, brushing uses the same

visualization parameter for both views, selecting in one

view results in selecting in another view and the same

applies to co-rotation. However, a coordination object

may hold more than one visualization parameter. For

instance, one action in view V1 may be linked to two

actions in view V2. In this case, we have three

parameters in the coordination object.

An advantage of this model is its dynamic nature, as

views may be added and removed without other views

that also access the same coordination object necessarily

having knowledge of this activity. Importantly, views do

not need to know about other views in the coordination.

4.2. A layered approach to coordination

f2,2

Coordination

Object 2

Coordination

Object 1

Coordination Space

View1 View2

f1,2f2,1

f1,1

Notify1,1 Notify2,2
Notify1,2

Notify2,1

Event 1 Event 2

f2,2

Coordination

Object 2

Coordination

Object 1

Coordination Space

View1 View2

f1,2f2,1

f1,1

Notify1,1 Notify2,2
Notify1,2

Notify2,1

Event 1 Event 2

The views themselves are a result of parameter

changes to the visualization process; an interaction or

exploration would generate a new view, likewise

viewing the same data by a different display technique

(multiform) would provide a new view. These different

instances may be displayed in different windows,

overlaid into the same window or in fact replace the

current window (replication, overlay, replacement,

respectively [17]).

Often in exploratory visualization, visual correlation

is seen as the focus of coordination, which tends to limit

the techniques to brushing and navigational slaving.

However, coordination may be understood in a wider

context and occur on any variable or data at any level

within the whole visualization process [17].

Consider the dataflow model [20] (which is used in

many systems such AVS, IRIS Explorer, Amira, Data

Explorer DX to describe the whole visualization

process); the data is Enhanced or enriched in some form,

then Mapped into an Abstract Visualization Object

(AVO) that can be Rendered into an image (Figure 2).

Multiple views are generated by splitting the dataflow at

any stage of the pipeline (generating a fan-out). Aspects

of the replicated modules may be readily associated to

engender coordination. In additional to the traditional

dataflow model, aspects may also be coordinated at the

viewport Transform (see Figure 2). Such coordinated

Transform operations might include simultaneously

rotating viewpoints or altering projections. Moreover,

coordination may occur at Window level, for example,

moving or closing windows concurrently. Incidentally,

the same visualization process can also be described

using the data state model as it is equivalent to the

dataflow model [21].

Enhance Map Render Transform

V
Abstract

Visualization

Object
Image

Window

Original

Data
Subset

Enhance Map Render Transform

V
Abstract

Visualization

Object
Image

Window

Original

Data
Subset

Figure 2. The data flow paradigm

One criticism directed at the data flow metaphor

concerns the granularity of its processes. The dataflow

paradigm describes a coarse model for the visualization

process, for instance the entire graphics field is

encapsulated in one process �rendering� [22]. In

addition, a single process represents the mapping stage,

which is the essence of information visualization

whereby information objects are mapped to visual

objects. Moreover, the map and render stages of the data

flow model are tightly associated in many application

areas (such as �information visualization�) and thus

often treated as one process.

Therefore, theoretically any process could be

coordinated with anything (relevant translations applied)

however; this may not be feasible or relevant. We

propose coordination may occur at any process layer

within the dataflow paradigm. However, we note that

coordinations tend to occur within these levels.

4.3. Components of the model

Our model is divided into four components. They

are the basic visualization processes and states, the

coordination space, the events and the translation and

notification functions.

4.3.1 Basic visualization processes & states

These are enhance, map, render and transform

processes of the data flow pipeline as explained in

section 4.2. Data is transformed in the data flow

paradigm from the raw data to an image, firstly by

enhancement to produce a derived data set. This is then

mapped onto some geometry described by the Abstract

Visualization Object (AVO). The final data state is the

rendered image. These provide the coordination entities.

4.3.2 Coordination space

Each visualization system has one coordination

space that holds various coordination objects.

Coordination objects connect events and a number of

linked coordinated views. In interactive exploratory

visualization the event is often user initiated in one of the

views.

Enhance Map Render Transform

V1 Subset1

Abstract

Visualization

Object1

Image1Original Data1

V2 Subset2

Abstract

Visualization

Object2

Image2Original Data2

Notify E C Subspace

Subset, Filter,

Enhance

M C Subspace

Mapping

techniques

R C Subspace

Rendering

Algorithms

T C Subspace

GUI Controls

Coordination Space

Event

fE2 fE1
fM2 fM1

fR2 fR1
fT2 fT1

Enhance Map Render Transform

V1 Subset1

Abstract

Visualization

Object1

Image1Original Data1

V2 Subset2

Abstract

Visualization

Object2

Image2Original Data2

Notify E C Subspace

Subset, Filter,

Enhance

M C Subspace

Mapping

techniques

R C Subspace

Rendering

Algorithms

T C Subspace

GUI Controls

Coordination Space

Event

fE2 fE1
fM2 fM1

fR2 fR1
fT2 fT1

Figure 3 Coordination model for exploratory visualization showing subspaces

One view may be associated with many coordination

objects in a coordination space since a view may play

various roles in different coordinations: it might be part

of a focus-and-overview coordination, as well as a

rotation coordination (see granularity, section 3.3).

The abstract parameters in a coordination object

might be simple thresholds, coordinates of mouse clicks,

or more complex notions such as modifications required

to color maps or rendering algorithms (the concept of

type, section 3.3). In the simple cases, the abstract

parameters could easily be the actual parameters used by

a view, such as a bounding box when filtering data in the

Enhance section of the visualization pipeline. Even such

simple parameters are not suitable in a raw form for all

views, as some views may measure screen distances in

different units, or from different origins, so translation

functions may still need to be defined, for example to

convert from measurements in inches to centimeters.

This demonstrates the need for a more neutral

abstract format for storing these abstract parameters in

some cases. Naturally, we might want to store the shared

parameters in the same format as the event-generating

view parameter format. Hence there will be no

translation needed between the coordination space and

that particular view. However, there might be a more

suitable format for storing this parameter that suits more

than one view, which is not the current format of the any

view parameter, hence, in this case, all views would need

to define a non-trivial translation function on the abstract

parameter.

The abstract parameters stored in the coordination

space can be grouped into four varieties of coordination

sub-spaces (see Figure 3) since we describe the

visualization process in terms of four processes: the

enhance shared coordination space, the mapping

coordination space, the rendering coordination space and

the transform coordination space. However, in many

situations the division between these sub-spaces is less

rigid and coordination objects may include various

parameters from each of the coordination sub-spaces.

4.3.3 Events

In this model, abstract parameters held in

coordination objects are changed by events. Events can

be generated by explicit user actions or automatically, by

for example continuous analysis of the input data. Some

user actions, such as selection with a mouse, are

connected to a particular view, whereas others, such as

keystrokes for altering parameters, are not.

Events modify abstract parameters, so they must be

aware of the nature of the format and extent of the

abstract parameters in the coordination objects. Where

events are generated in particular views, the event-

generating view will only be updated in the course of the

event-notify cycle along with the other views.

As events associated with views are usually indirect

in any case, and typically the cycle defined in this model

is fairly immediate, this system seems an elegant manner

of allowing multiple events, generated by any view

linked to the coordination object, to modify the abstract

parameters.

Whilst in this model we do not consider the time lag

to be significant between the occurrence of the event and

the notification event, this model should be adaptable to

more critical real time visualization applications where

large numbers of multiple events are occurring.

There may be many events associated with a

particular coordination object, so allowing the modelling

of various types of coordination. A simple master-slave

relationship, where all the actions are in one view and

which simply reflected in other linked views might have

only one event inputting into the coordination object,

from the master view. On the other hand, where the

coordination allows input from any or all of a group of

similar views, the number of events may be at least the

number of linked views.

4.3.4 Translation & notification functions

A translation function takes the abstract parameters

in the coordination object and converts them to view

parameters which are used in the visualization process to

produce the final image. Each view registered with the

coordination object has one such function. The result of

the translation function at the view level is the

replacement of current view parameters affecting the

operations in the data flow pipeline Often a translation

function might affect only one operation, but it is

perfectly valid for the function to coincidentally affect all

of enhance, map, render and transform. The view

integrator might define the translation function. It is also

possible for a set of default registration methods to link a

coordination object inside the coordination space to a

certain class of views, which would then define a render

group. The coordination object designer would define

these defaults.

As well as defining a translation function, a linked

view must be registered to receive notify events, that

indicate when the coordination object has changed,

indicating that the view�s image needs to be updated. As

there may be concurrent coordination objects defined

over one view parameter, the notify indicates which

coordination object has changed, and so which

translation function must be accessed. The view must

define a notify handler, that is triggered by the notify

event. At its simplest the notify handler merely forces a

regeneration of the image by resending the current data

through the dataflow pipeline. Where temporal issues

exist, for example with time consuming visualizations, so

that perhaps several notify events occur during the

production of one view, then the notify handler in the

view must include a scheduling algorithm to deal with

the queue that develops in the best way for that particular

view, deciding whether to restart the visualization

process or discard some notify events.

4.3.5 Other elements in the coordination object

As mentioned above, it may be desirable to include

some notion of default registration for a render group of

views so that a plug and play approach to linking views

to the coordination object is possible. There are other

possible components in sophisticated coordination

objects. It may be possible to place constraints on both

the type and number of views that can connect to an

object. For instance, if one view wants to register to

coordinate with another specific view over a particular

coordination object, a constraint can be added to that

coordination object as to only give those views

permission for access and change. A further constraint on

linking views might be related to its lifetime, so

restricting linking to limited periods, or timing out views

after a certain amount of time.

5. Using the model to define types of

coordination in EV

Let eve be an exploratory visualization environment

and V1, V2 are views within eve. V1 and V2 are described

by the E.M.R.T composition where each of the

components, Enhance, Map, Render and Transform has a

coordination sub-space associated with it.

CASE I Disconnected Views

V1 and V2 are disconnected if they do not share any

coordination object between them.

CASE II Linked Views

V1 and V2 are connected if they both access at least one

common coordination object.

Two views can be tightly coupled if they have

coordination objects that cover each of the sub-

coordination spaces. In Figure 3, the tightly coupled

views V1 and V2 share all possible coordination sub-

spaces.

Enhance

Data1 AVO 1 Data1

E1 M 1 R 1

T1

Image1
V1

Data2 AVO 2 Data2

E2 M 2 R 2

T2

Image2
V2

Data3 AVO 3 Data3

E3
M 3 R 3

T3

Image3
V3

Data4 AVO 4 Data4

E4 M 4 R 4

T4

Image4
V4

f 4
f 3

f 2
Selection
TopLeft : Point
BottomRight : Point

f1

Data1 AVO 1 Subset1

E1 M 1 R 1

T1

Image1
V1

Data2 AVO 2 Subset2

E2 M 2 R 2

T2

Image2
V2

Data3 AVO 3 Subset3
E3

M 3 R 3

T3

Image3
V3

Data4 AVO 4 Subset4

E4 M 4 R 4

T4

Image4
V4

f 4
f 3

f 2
Selection

TopLeft : Point

BottomRight : Point

f1

Events

Notify

Notify

5.1 Example (enhancement coordination)

Given two views V1 and V2, a user interacts with V1;

this causes the firing an event, which affects E, M, R or

T of V1. For instance, the event might be an enhancement

to the original data set, such that only values greater than

50 are included in the enhanced data set (Figure 4). If the

user wants this event to play a role in coordination, the

new filtering parameter will be stored in the coordination

object E as default storage. Here is what happens at the

view level and at the coordination space:

CASE I Disconnected views

The enhancement will only affect V1 and the enhanced

data will be mapped then rendered as specified by its

own visualization pipeline.

CASE II Linked views

V2 data set will also be enhanced given that the two

views share the same filtering parameter. In the case of

the identity coordination; no translation needed so both

views use information in the coordination space as it is, a

notify message is sent to both views enhance processes

to use the new filter value. In the case of non-trivial

translation functions, this value gets translated to view

format. If there is no sharing at the remaining stages of

the visualization process, each view will finally render

accordingly.

 V1

 V2

Figure 4 Schematic showing an example for

coordinating an Enhance method.

With this model it is possible to discuss the detail of

coordinations. For example, where only the Enhance

section of the data flow pipeline is altered in all linked

views, we have type E coordination as shown in Figure

4. More complex combinations are possible, such as

views where multiple operations are altered, giving

R,E,TR coordination, where Render and Translate are

affected in one group of view, Enhance only in a second

and Render only in a third group of views. In a tightly

coupled coordination we have coordination with the type

EMRT.

5.2 Example (selection coordination)

We illustrate our model using visualizations of

geographical map data. Diagrammatically our

coordination objects and linked views are shown in

Figure 5.

The event handled by the Selection coordination

object is that of the user selecting a rectangular area of a

map, an event that could be generated by any of the

views.

The effect in V1 is to filter the data to show only the

selected rectangle whereas V2 changes the color map to

highlight particular objects, such as road junctions inside

the rectangle. The result in V3 is to modify the rendering

inside the rectangle, increasing the level of detail to show

smaller roads. Finally, the consequence for V4 is to

perform a combination of all these actions, cropping the

data, highlighting certain objects and increasing the level

of detail by altering the rendering.

Filtered Data1

Enhance�

Event

Translation Functions

Data set1

Data set2 Filtered Data2

f1 f2

Enhance Coordination

Object
VALUE: double

Figure 5 Schematic showing selection

coordination.

Furthermore, f1 is a simple identity function, as the

Selection object holds parameters indicating which area

of the map to crop, which is the information required by

the Enhance flow of V1. f2 is slightly more complex, as it

is alters part of the color mapping, so this function

indicates that a subsection of the color map will be

replaced by the mapping indicating selection. f3 will pass

the selection area to the renderer of V3, with a flag

indicating the desired level of detail. f4 combines all the

effects of f1, f2, and f3 in V4. This type of coordination is

then E,M,R,EMR.

6. Discussion

Our model fits well with current visualization

systems that implement coordination. For instance,

Amira is a modular and object oriented software system

for scientific visualization. It allows the simultaneous

display of multiple data sets in different views or in a

common view. Amira�s components are modules and

data objects, each of which has a set of parameters,

which can be modified using a parameter editor in an

interaction area of the application. Views are coordinated

if they share some parameters displayed to the user in the

object pool view. The user specifies which views to

coordinate.

Similarly, IRIS Explorer users interactively create

their application by linking modules; each module has

some associated set of parameters, which describe its

behavior. The control panel editor creates, modifies, and

links module control panels and a parameter function

editor creates relationships between parameters in linked

modules [23]. The parameter value in the downstream

module is then expressed as a function (P-Func) of the

upstream parameter values (the translation function in

our model).

Moreover, the authors of this paper developed a

visualization system using Java in which coordination is

implemented in the Object Oriented paradigm [24]. The

system displays web search results in multiform views,

where each search results returned by the search engine

is mapped to a glyph. There is an interface Class for

these abstract objects (glyphs), which acts as the

middleware layer that facilitates coordination between

glyphs. Glyphs which implement this interface share data

and methods and hence can be coordinated over these

parameters. In this application, users discover

coordination in the midst of exploration.

Many visualization systems such as IRIS Explorer,

AVS and Amira provide capabilities for user-oriented

design; users could choose modules, edit parameters and

link components. This facilitates coordination design.

We note that these systems use the dataflow model to

build applications for scientific visualization.

7. Future work & conclusions

In this paper we described how coordination objects

in exploratory visualization are built from simple user

interactions. Our model handles any combination of data

sets and any number of linked views. The issues

involved in coordinating different data sets and

visualization methods are dealt with at the translation

function stage, where abstract parameters are converted

to meaningful parameters in the particular view.

Interactions are variations on the basic visualization

functions: enhance, map, render and transform. If a view

interaction is to play a role in coordination, it changes the

coordination space, which is then reflected upon the

linked views that use that space.

Our model is based on sharing objects (parameters)

that control the rendered view and not the sharing of the

data that is being visualized. Indeed, a view parameter

can be part of more than one coordination object.

We notify all linked views upon change. Hence, we

use the eager notify mechanism for our model (but not

necessarily an eager update). However, we do not allow

channels for storage and we are not concerned with

establishing a protocol for notification in this paper.

Coordination as described by this paper is the

mechanism through which views interact together to

achieve purposeful goals that could not otherwise be

achieved efficiently by these individual views working

uncooperatively. Our model borrows ideas from recent

research in visualization and other disciplines

Our future work includes implementing an example

system that closely maps to the model and so

demonstrates the flexibility, novelty of possible

coordinations and practicality of the approach.

More research is required in the area of coordination

design to provide rules and guidelines. In addition,

comparative studies regarding users ability to work with

independent compared to working with cooperative

multiple views are still under-investigated. For example,

how many coordinated events can one user keep track of

during visual exploration? (Some work has been done,

such as by North and Shneiderman [25]). Moreover,

further research is required in the area of multitasking for

multi-view exploratory visualization.

Moreover, new types of coordination can be

introduced. We could have default coordinations based

on default system or user settings. Furthermore, we can

have recommended types of coordination if the system

learns about user interactions, goals and existing

coordinations.

There exist various commercial visualization

environments, which implement coordination based on

sharing parameters between visualization modules. We

aim to enrich the shared coordination space to include

not just the visualization parameters but abstract objects

such as constraints, complex methods and time.

Acknowledgements

This work has been supported by EPSRC (grant

reference: GR/R59502/01). CVEV Project homepage

http://www.cvev.org

References

[1]. C. North, N. Conklin, K. Indukuri and V. Saini,

�Visualization Schemas and a Web-based Architecture

for Custom Multiple-view Visualization of Multiple-

Table Databases�, Information Visualization Journal,

Palgrave, pp 211-228, December 2002.

[2]. G. M. Olson, T. W. Malone, J. B. Smith, �Coordination

Theory and Collaboration Technology�, Lawrence

Erlbaum Assoc. 2001.

[3]. L. Gupta, J. F. Chionglo, M. S. Fox, �A Constraint Based

Model of Coordination in Concurrent Design Projects�,

Project Coordination Workshop of the IEEE Fifth

Workshops on Enabling Technologies: Infrastructure for

Collaborative enterprises (WET ICE 96), 1996

[4]. Jun-ichi Akahani, Kaoru Hiramatsu, Kiyoshi Kogure,

�Coordinating Heterogeneous Information Services

Based on Approximate Ontology Translation�,

Challenges in Open Agent Systems, at AAMAS'02 2002.

[5]. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G.

Schuster, H. Neumann, S. Hübner, �Ontology-Based

Integration of Information � A Survey of Existing

Approaches�, Proceedings of the Workshop Ontologies

and Information Sharing, IJCAI, pp. 108-117, 2002.

[6]. P. Ciancarini, R. Tolksdorf, F. Zambonelli,

"Coordination Middleware for XML-Centric

Applications", Proceedings of the 16th ACM Symposium

on Applied Computing, Madrid, March 2002

[7]. M. Viroli, G. Moro, and A. Omicini. �On Observation as

a coordination paradigm: an ontology and a formal

framework�. In ACM Symposium on Applied

Computing, Proceedings of 16th International

Conference (SAC01), pp 166-175, Las Vegas (NV),

USA, March 2001.

[8]. C. Ahlberg, B. Shneiderman, �Visual Information

Seeking: Tight Coupling of Dynamic Filters with

Starfield Display�, CHI�94, pp 313-317.

[9]. Matthew Ward. �XmdvTool: Integrating multiple

methods for visualizing multivariate data�. In

Proceedings Visualization �94, pp 326-333. IEEE

Computer Society Press. 1994.

[10]. C. Ahlberg. �Spotfire: An information Exploration

Environment�. SIGMOD Record. 24(4): 25-29,

December 1996.

[11]. A. Jacobson, A. Berkin, M. Orton, �LinkWinds:

Interactive Scientific Data Analysis and Visualization�,

Communications of the ACM 37, pp. 43-52, April 1994.

[12]. S. F. Roth, et al 1996. Visage: �A user interface

environment for exploring information�. In Proceedings

Information Visualization, pp 3-12. San Francisco, IEEE.

[13]. G. L. Andrienko and N. V. Andrienko. �Interactive Maps

for Visual Data Exploration�. International Journal of

Geographical Information Science, 13(4): 355-374. 1999.

[14]. C. North and B. Shneiderman. �A Taxonomy of Multiple

Window Coordinations�. University of Maryland

Computer Science Dept. Technical Report #CS-TR-

3854. 1997

[15]. T. Pattison, M. Philips, �View Coordination Architecture

for Information Visualization�, Australian Symposium

on Information Visualisation, (invis.au). ACS volume 9,

pp 165-171, 2001.

[16]. J. C. Roberts. �On Encouraging Coupled Views for

Visualization Exploration�. Visual Data Exploration and

Analysis VI, Proceedings of SPIE, volume 3643, pages

14-24. January 1999.

[17]. J. C. Roberts, �Issues of Dataflow and View Presentation

in Multiple View Visualization�, In CISST Annual

Conference, CSREA Press, pp 177-183, 2001.

[18]. J. C. Roberts. �Waltz - an exploratory visualization tool

for volume data, using multiform abstract displays�,

Visual Data Exploration and Analysis V, SPIE, volume

3298, pp 112-122. 1998.

[19]. J. Mackinlay, G. Robertson, R. DeLine, �Developing

Calendar Visualizers for the Information Visualizer�.

Proceedings of UIST'94, ACM Symposium on User

Interface Software and Technology, pp 109-118, 1994.

[20]. R. Haber, and D. McNabb, �Visualization idioms: A

conceptual model for scientific visualization systems�. In

Nielson, G., Shriver, B., and Rosenblum, L., editors,

Visualization in Scientific Computing. IEEE Computer

Society Press, pp 74-93. 1990.

[21]. E. H. Chi, �A Taxonomy of Visualization Techniques

using the Data State Reference Model�, Proceedings of

InfoVis, IEEE Computer Society. pp 69-76. 2000.

[22]. A. M. Duclos, M. Grave, �Reference Models and Formal

Specifications for Scientific Visualization�, Scientific

Visualization Advanced Software Techniques, Ellis

Horwood Workshops, pp 3-14, 1993.

[23]. J. Walton, �Data Visualization with IRIS Explorer

What's New?� Tech. Rep. TR10/96 (NP3070),

Numerical Algorithms Group Ltd., 1996.

[24]. J. C. Roberts, N. Boukhelifa and P. Rodgers, �Multiform

Glyph Based Search Result Visualization�. Proceeding

Information Visualization, IEEE, pp 549-554. July 2002.

[25]. C. North, B. Shneiderman. �Snap-Together

Visualization: can users construct and operate

coordinated visualizations?� International Journal of

Human-Computer Studies 53(5), pp715-739. Academic

Press. 2000.

	Introduction
	Related work
	2.1 Interdisciplinary view of coordination
	2.2 Coordination for EV
	2.3 Current EV coordination models
	2.3.1 Snap
	2.3.2 View coordination architecture for IV

	Facets of coordination
	3.1 Coordination challenges & opportunities
	3.2 Coordination in use - two examples
	3.3 The rudiments of coordination

	The Model
	4.1. Abstract model for coordination

	4.2. A layered approach to coordination
	4.3. Components of the model

	Using the model to define types of coordination in EV
	5.2 Example (selection coordination)

	Discussion
	Future work & conclusions
	Acknowledgements
	References

