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Abstract 
In this paper, we present a coordination model for 

exploratory multi-view visualization. We base our work 

on current research in exploratory visualization and 

other disciplines. Our model is based on sharing abstract 

objects such as the visualization parameters of the 

dataflow model to achieve coordinated exploratory tasks 

in multiple views. This model describes how current 

coordinations in exploratory visualization work and 

allows novel coordinations to be constructed. 

 

Keywords: Multiple views, exploratory visualization, 

reference model, coordination, coordination objects, 

coupling. 
 

 

1. Introduction 

Multiple views are prevalent in many user 

interfaces. This is motivated by real-life needs for 

simultaneous display of multiform data, rapid 

information processing and the necessity to compare and 

contrast different aspects of the data. For example, 

interactive television allows the viewing of one program 

while the user browses additional and related 

information. Users are no longer passive. They are often 

actively involved in shaping multiple views of data 

through interactive exploration. 

Multiple views come in different forms. They could 

be abstract views that facilitate information processing, 

hierarchical and time series views, which describe the 

history of exploration or side thumbnail views for 

experimentation and quick viewing. 

In many of these cases coordinating multiple views 

is beneficial. For instance selecting a group of data items 

in one view in coordination with the selection of the 

same items in another can show new relationships such 

as distribution, grouping or subordination within these 

items, which might otherwise remain unseen. 

However, most coordination realizations in current 

visualization systems are last-minute ad-hoc additions. 

The coordination rules are informal, which may be 

flexible, but the principles would be difficult to export to 

other visualizations. Conversely, embedded 

coordinations are the result of adopting an underlying 

model. For instance the Snap-together conceptual model 

for coordination [1] relies on the relational schemata, so 

joins between relations are links between visualizations. 

While not wrong in itself, this specialization limits the 

potential and richness of coordination operations. 

Moreover, no visualization reference models 

explicitly consider coordination. Even if coordination is 

contemplated from the design point of view, it is usually 

only regarded as part of the communication protocol and 

is generally dealt with within that restricted domain. 

There is a need for a flexible model for coordination that 

will ensure easy embedding of coordination in such 

exploratory environments. 

The aim of this work is to first develop a reference 

model for coordination that will allow visualization 

designers to formally specify existing and novel 

coordinations in multiple-view exploratory visualization; 

second develop some rudiments of coordination drawing 

on the findings of the interdisciplinary study of 

coordination and lastly provide some examples of the 

model in use. In this paper we present such a model and 

formalize aspects of coordination for exploratory 

visualization (EV).  

This paper is divided into the following sections (2) 

Related work. (3) Discussion of the salient features of 

coordination in EV. (4) The new model. (5) An extended 

example of application. (6) a discussion about the 

relationship of the model to current coordinated 

visualization systems. Finally, (7) future work and 

conclusions. 

2. Related work 

Coordination is a subject that has been investigated 

by many separate disciplines but only recently have 

researchers such as Olson et al [2] appreciated the 

obvious advantages of interdisciplinary viewpoints. 

2.1 Interdisciplinary view of coordination 

There are many disciplines that use related ideas that 

could be cross-fertilized into coordinated EV. For 

example, a translation framework for ontology mappings 

of information services, integration and unification of 

data, constraints management in concurrent design 



2.2 Coordination for EV projects [3], inter-modality in different brain functions, 

redundancy for reinforcement of information, time series 

and history, middleware provision for cooperative work 

and balance and harmony in interior design. For these 

files, entities such as objects, events, processes, 

functions, agents and ontologies all may be coordinated. 

Interactive visualization is important, enabling the 

user to change the viewing parameters in one realization. 

Certainly the user can subsequently perform the same 

operation a number of times in additional views; but 

there is an obvious benefit in simultaneously 

coordinating the operation for the multiple views. 
Each discipline studying coordination has 

established its own architectures, models and protocols; 

some are based on sharing memory and other resources, 

others on managing constraints or propagating data 

values or data parameters. Coordination in these fields is 

treated in different contexts. 

Thus, coordination can be described (as detailed by 

Olson et al [2]) as �composing purposeful actions into 

larger purposeful wholes�, where �the additional 

information processing performed when multiple, and 

connected actors pursue goals that a single actor [or 

indeed the multiple actors working separately] pursuing 

the same goals would not perform�. We emphasize the 

point that the whole is greater than the sum of its 

components. 

Many researchers consider the field of coordination 

theory to be the study of the interaction between 

processes. For them, coordination is an interoperability 

problem because the coordination brings together 

heterogeneous and distributed system components. 
The essence of exploration in visualization is Visual 

Information Seeking (VIS) indeed as Ahlberg and 

Shneiderman [8] state: the emphasis is on �rapid 

filtering, ... progressive refinement of search parameters, 

continuous reformulation of goals and visual scanning to 

identify results�. Furthermore, to achieve effective 

coordination in exploratory visualization there are many 

dependencies between views that need to be managed 

appropriately. 

The multiple ontologies research, in particular, 

provides additional representation formalism defining the 

mapping between different ontologies where translation 

and other techniques such as approximation are required. 

For example, Akahani et al [4] suggest an approximate 

ontology translation framework for coordinating 

heterogeneous information services. The inter-ontology 

mappings of data aim to achieve data integration by 

identifying semantically corresponding terms of different 

source ontologies [5] where the semantic correspondence 

refers to equality or similarity. 

A model for coordination improves understanding, 

and allows effective development and qualitative 

evaluation of systems that incorporate coordination. The 

field of visualization is full of overloaded terms and 

suffers from inconsistencies. Moreover, visualizations 

often are based on different models. Coordinating 

different visualizations requires a mechanism, which 

allows interoperability between these differing models. 

We need a model for coordination to define, test and 

compare coordination strategies. 

Ciancarini et al [6] examine a suitable middleware 

for coordinating distributed active document-centric 

applications. This middleware is a software layer that 

abstracts from the heterogeneous characteristics of 

different architectures, operating systems, programming 

languages and networks in distributed systems. The main 

responsibility of the coordination middleware is one of 

data communication. Furthermore, middleware 

coordination often allows multiple views to occur in 

client-server architecture. 2.3 Current EV coordination models 
Another approach to coordination is the observation 

pattern as an ontology and a formal framework, as 

proposed by Viroli et al [7]. They write �in general, 

observation occurs when a system o [observer] is 

interested in some information made available by a 

system s [source]. Typically, ... s is modeling some 

portion of the world o is interested in, and providing o 

with some knowledge about it, as well as some 

mechanisms to access it�. The request-reply strategy of 

interaction in this paradigm works as a Model-View-

Controller (MVC) pattern. 

There are many visualization systems that utilize 

coordination. For example, tools like Xmdvtool [9], 

Spotfire [10] implement coincident brushing operations; 

others like VIP, LinkWinds [11] and Visage [12] include 

coordinated 3D views. Many systems include linked 

overview-detail views which is highly utilized in 

geovisualization, for example see [13]. This fits with 

North and Shneiderman [14] dual selection and 

navigation motivation for coordination. However, like 

Pattison and Philips [15] we believe in a wider view of 

coordination, which potentially may coordinate any 

aspect such as data preparation, averaging, clustering, 

moving window positions etc. Recently two models have 

been proposed: the Snap conceptual model [1] and the 

View Coordination Architecture [15]. 

Although much research on ontology translation has 

used informal mapping rules between those ontologies 

[4], the interdisciplinary study of coordination presents 

ideas that can be used for modeling multi-view 

exploratory visualization. There is much communality 

between concepts from a variety of fields and a strong 

case for transference of ideas. 

 

2.3.1   Snap 

The Snap conceptual model takes a data-centric 

approach to coordination. Relational database 

components are tightly coupled such that an interaction 

with one component results in changes to other 

  



components. Snap utilizes the concept of database design 

to promote better visual exploration. It provides a 

mechanism for constructing coordinations without the 

need for programming. In addition, new types of 

coordination are introduced such as the compound join 

and the multiple alternative joins [1]. 

Snap�s user interactions are currently limited to 

�select� and �load�, whereas exploratory visualization 

supports much more interactions, which could also be 

coupled for coordination outside the relational database 

scope. 

As we shall see, Snap resembles our model in many 

ways; for instance its architecture is event-based and 

coordination is built from action associations. Snap also 

recognizes the need for a middleware party to ensure 

coordination operation and for a translation mechanism 

when dealing with heterogeneous information sources. 

However, our model handles coordination from a more 

general viewpoint and takes in consideration exploratory 

visualization needs for rich and varied user interactions. 

Furthermore, we are interested in modeling 

representation-oriented coordinations as well as data-

centric coordinations. 

 

2.3.2   View coordination architecture for IV 

Pattison et al [15] present an architecture for the 

implementation of generic view coordination in the 

Model-View-Controller (MVC) pattern. The proposed 

framework separates between the specification and 

implementation of mapping between data model to view 

model. 

Coordination is managed by a new component 

(called coordination). Bidirectional coordinations can be 

achieved through directional coordination between 

presentation components, view model components or 

specification components. The more components there 

are and the more links exist between them, the more 

complex the implementation and debugging becomes, 

especially when linking different components [15]. Thus, 

to encourage reuse, presentation, content and the 

coordination itself should be - as far as possible - 

disparate and independent.  

Rather than concentrating on the implementation 

architecture our work focuses on a layered approach 

based on the dataflow model. Like Pattison we use a 

MVC fundamental design, however we utilize multiple 

components and different facets of coordination. 

3. Facets of coordination 

From the related work and broadness of the 

interdisciplinary viewpoint we see that coordination 

conjures some interesting challenges, such as relevance, 

design and visual depiction of each coordination as well 

as considering what and how to coordinate. 

3.1 Coordination challenges & opportunities 

First, due to the multiform nature of the multiple 

views, actions in one view cannot always be directly 

applied to other views. For example, it may be useful to 

coincidentally rotate two three-dimensional views, but if 

each uses a different mathematical projection then a 

translation needs to occur that converts user interactions 

in one view to a suitable format for the other. However, 

some coordinations that may be possible to achieve, may 

in fact not be useful; and yet others may be impossible to 

realize. However, at this abstract level it is possible to 

rely on the user to make such judgment of the usefulness 

of a particular coordination. Indeed, there is the whole 

question of how the system is implemented and whether 

the coordinations automatically occur or are created by 

user requests [16]. 

Second, there are design and user-interface 

questions that a designer may wish to pose. For example, 

if the multiple views represent a visual-history then is it 

feasible or relevant to coordinate between past variances 

of the exploration? Moreover, is everything coordinated 

or are aspects of a few windows coordinated (and if so 

who decides on what is coordinated ņ the user or the 

system?[17]) For instance, if may be beneficial to only 

coordinate views that are classified within the same 

group (the notion of Render Groups [18]). 

Third, how does the system visually represent and 

notify to the user what is currently being coordinated 

(e.g. visual methods such as used by the spiral calendar 

[19], or by the implicit laying out of modules in Waltz 

[18]). Many issues in visualization such as 

synchronization, correlation of visual or non-visual 

information, occlusion, view explosion and multitasking 

could be more approachable through a coordination 

model. 

3.2 Coordination in use - two examples 

In order to develop some rudiments of coordination 

in EV we investigate the use of coordination in a current 

tool (LinkWinds) and how coordination may be thought 

of as analogous to program variables. 

LinkWinds uses a data-linking paradigm for 

coordination, which is comparable to the spreadsheet 

concept where cells are related to each other using a 

formula and changing the formula in one cell 

recalculates the value of the linked cell [11]. The basic 

entities that are coordinated in LinkWinds are objects 

shown at the windowing level as either data, control or 

display objects. Objects of the same type sit in the same 

window making an object view. The general purpose of 

coordination is to detect possible relationships in data. 

LinkWinds allows one-to-many links; for example a 

slider broadcasts messages to all objects it is linked to 

when its value is changed. The user performs linking as 

well as unlinking interactively. In addition, there exist 

some constraints on coordination. For instance, data must 

be put into empty windows and messages are passed only 

between objects that are already linked. There is also a 

message-passing protocol that handles inter and intra 

object messages. The effect coordination causes on the 

user interface is the emanating flow between linked 

objects. 

  



Granularity of links: Program variables may be thought as analogous to 

coordination; for example, variables may be used in 

multiple places and accessed by reference, they must be 

instantiated, and they each have a type (if they are of a 

wrong type then they may be cast - either by default or 

explicitly). There are also notions of global and local 

scope. 

Many entities may be connected together via various 

links. Granularity determines: the number of entities in 

one coordination {2..n}, number of views in one 

coordination {1..n}, number of links an entity contributes 

to coordination {0..n}. 

 

Initialization: 
3.3 The rudiments of coordination Initialization determines who or how the coordination 

created. For example, it may be automatic (such as using 

a Render Group) or user specific, scheduled in some 

fashion etc. Moreover, the user may need to explicitly 

connect entity A to B, for every type by (say) connecting 

ports from module A to module B; alternatively, the user 

may only need to drag and drop the whole module into a 

Render Group to instantiate and link everything in 

module A to module B. 

Taking aspects from this analogy, the LinkWinds 

example, aforementioned challenges and other 

coordination tools we categorize the rudiments. 

 

Coordination entities: 

This details what is actually being coordinated; such as 

aspects of the actual window, view, data, record, tuple, 

attribute, parameter, process, event, function, graphic or 

time. 
 

Updating: 
 Coordinated views require that the information is 

dynamically up-to-date. However, there may be 

conflicting uses especially if, for example, the multiple 

views represent a visual history. Commonly, in a 

dataflow paradigm, the down stream modules always 

reflect the information upstream. However, it may be 

prudent that sometimes some views become out-of 

synchronization: such that they reflect a previous time in 

history. The displays may be updated by various means, 

such as eager or greedy update, lazy update, or user 

initiated. 

Type: 

The type of the coordination determines the method by 

which the entities are linked. For example, simple 

coordination (such as rotation or transformations) may be 

implemented using primitive types (float, integer etc) 

while others may be more complex data-structures. 

Translation (casting) may be required if the entities 

utilize different types. The types may also determine 

directionality of the links (unidirectional or 

bidirectional). For example, IRIS Explorer allows 

parameters to be coordinated but the events flow one 

way (as it disallows simultaneously connecting the 

reverse to inhibit circular event explosions taking place). 

 

Realization (link realization, user control): 

How is the expression of coordinated conveyed to the 

user? It may be that explicit lines are used (such as the 

Spiral Calendar [19]) or via some formal layout 

mechanism [18]. Moreover, how does the user control 

the information to be linked, do they use direct 

manipulation or indirect means via (say) dynamic 

sliders? 

 

Chronology (lifetime and scheduling): 

How long entities are coordinated is governed by its 

lifetime. (This is also known as the persistence of the 

coordination.) It may be coordinated permanently, for a 

given action, or determined by some scope. Moreover, 

the coordination may be synchronous, asynchronous, 

reactive, and proactive. For example, it may be useful to 

coincidentally rotate the view of a fast and a slow 

renderer; one solution is that the time-consuming one 

could update at a slower rate by taking every n events 

from a coordination event queue, or merely notified at 

every n seconds. 

4. The Model 

The challenge is to develop a model that addresses 

the coordination design issues mentioned above without 

bias towards a particular data, navigation or 

communication paradigm. Effectively, it should be 

flexible, adoptable, extensible and foster better visual 

exploration. 

 

Scope: 

Scope determines both the global/local connection and 

the lifetime of the links; a global scope would mean that 

any entity (wherever and whatever it is) could be 

connected; whereas some links may be restricted to be 

only used in a local area (e.g. the user may setup a group 

where by simply adding a new member to the group 

automatically coordinates it to each of the others in the 

group). Commonly known as a Render Group. 

Moreover, the scope also may restrict the lifetime. 

The model should allow visualization designers to 

formally specify existing and novel coordinations in 

multiple view exploratory visualization and so facilitate 

early testing of the proposed coordination designs before 

they are implemented by programmers or constructed 

visually by the user. 

4.1. Abstract model for coordination  

The model we define includes �coordination 

objects� that manage combinations of entities (e.g. 

parameters) that control aspects of the linked views. A 

 

 

 

  



single coordination object is associated with each 

separate coordination in the system. A view is said to be 

coordinated if it shares a common coordination object. 

All the coordination objects for a visualization system 

are held in a �coordination space� as shown in Figure 1. 

This is similar to the middleware layer component we 

mentioned in the interdisciplinary view on coordination, 

Section 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Abstract model for coordination in EV. 

This diagram shows two different coordinations 

between two views. 

 
The views that are being coordinated need to define 

a translation function (for instance f1 and f2 as shown in 

figure 1) from the shared coordination object to the 

linked view parameters.  

The views must also register to be informed of a 

notify event when a coordination object is changed. If an 

event occurs, which might typically be a user initiated 

action in one of the linked views, it alters the 

coordination object, which sends a notify to all the linked 

views registered. Registration may depend on a given 

scope. Then, those views that were notified of a change 

consequently use the information provided by the 

coordination object via their translation function to 

generate the new view. 

A single coordination object is considered to be 

present for each type of coordination in the system. So 

that if multiple views define coordination for both co-

rotation and brushing, this will be represented by two 

separate coordination objects: a rotation coordination 

object for co-rotation and a selection coordination object 

for brushing. 

In the previous example, brushing uses the same 

visualization parameter for both views, selecting in one 

view results in selecting in another view and the same 

applies to co-rotation. However, a coordination object 

may hold more than one visualization parameter. For 

instance, one action in view V1 may be linked to two 

actions in view V2. In this case, we have three 

parameters in the coordination object.  

An advantage of this model is its dynamic nature, as 

views may be added and removed without other views 

that also access the same coordination object necessarily 

having knowledge of this activity. Importantly, views do 

not need to know about other views in the coordination. 

4.2. A layered approach to coordination 
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The views themselves are a result of parameter 

changes to the visualization process; an interaction or 

exploration would generate a new view, likewise 

viewing the same data by a different display technique 

(multiform) would provide a new view. These different 

instances may be displayed in different windows, 

overlaid into the same window or in fact replace the 

current window (replication, overlay, replacement, 

respectively [17]).  

Often in exploratory visualization, visual correlation 

is seen as the focus of coordination, which tends to limit 

the techniques to brushing and navigational slaving. 

However, coordination may be understood in a wider 

context and occur on any variable or data at any level 

within the whole visualization process [17].  

Consider the dataflow model [20] (which is used in 

many systems such AVS, IRIS Explorer, Amira, Data 

Explorer DX to describe the whole visualization 

process); the data is Enhanced or enriched in some form, 

then Mapped into an Abstract Visualization Object 

(AVO) that can be Rendered into an image (Figure 2). 

Multiple views are generated by splitting the dataflow at 

any stage of the pipeline (generating a fan-out). Aspects 

of the replicated modules may be readily associated to 

engender coordination. In additional to the traditional 

dataflow model, aspects may also be coordinated at the 

viewport Transform (see Figure 2). Such coordinated 

Transform operations might include simultaneously 

rotating viewpoints or altering projections. Moreover, 

coordination may occur at Window level, for example, 

moving or closing windows concurrently. Incidentally, 

the same visualization process can also be described 

using the data state model as it is equivalent to the 

dataflow model [21]. 
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Figure 2. The data flow paradigm 

 

One criticism directed at the data flow metaphor 

concerns the granularity of its processes. The dataflow 

paradigm describes a coarse model for the visualization 

process, for instance the entire graphics field is 

encapsulated in one process �rendering� [22]. In 

addition, a single process represents the mapping stage, 

which is the essence of information visualization 

  



whereby information objects are mapped to visual 

objects. Moreover, the map and render stages of the data 

flow model are tightly associated in many application 

areas  (such as �information visualization�) and thus 

often treated as one process. 

Therefore, theoretically any process could be 

coordinated with anything (relevant translations applied) 

however; this may not be feasible or relevant. We 

propose coordination may occur at any process layer 

within the dataflow paradigm. However, we note that 

coordinations tend to occur within these levels. 

 

4.3. Components of the model 

Our model is divided into four components. They 

are the basic visualization processes and states, the 

coordination space, the events and the translation and 

notification functions. 

 

4.3.1 Basic visualization processes & states 

These are enhance, map, render and transform 

processes of the data flow pipeline as explained in 

section 4.2. Data is transformed in the data flow 

paradigm from the raw data to an image, firstly by 

enhancement to produce a derived data set. This is then 

mapped onto some geometry described by the Abstract 

Visualization Object (AVO). The final data state is the 

rendered image. These provide the coordination entities. 

 

4.3.2 Coordination space 

Each visualization system has one coordination 

space that holds various coordination objects. 

Coordination objects connect events and a number of 

linked coordinated views. In interactive exploratory 

visualization the event is often user initiated in one of the 

views. 
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Figure 3 Coordination model for exploratory visualization showing subspaces 

 

One view may be associated with many coordination 

objects in a coordination space since a view may play 

various roles in different coordinations: it might be part 

of a focus-and-overview coordination, as well as a 

rotation coordination (see granularity, section 3.3). 

The abstract parameters in a coordination object 

might be simple thresholds, coordinates of mouse clicks, 

or more complex notions such as modifications required 

to color maps or rendering algorithms (the concept of 

type, section 3.3). In the simple cases, the abstract 

parameters could easily be the actual parameters used by 

a view, such as a bounding box when filtering data in the 

Enhance section of the visualization pipeline. Even such 

simple parameters are not suitable in a raw form for all 

views, as some views may measure screen distances in 

different units, or from different origins, so translation 

functions may still need to be defined, for example to 

convert from measurements in inches to centimeters. 

This demonstrates the need for a more neutral 

abstract format for storing these abstract parameters in 

some cases. Naturally, we might want to store the shared 

parameters in the same format as the event-generating 

view parameter format. Hence there will be no 

translation needed between the coordination space and 

that particular view. However, there might be a more 

suitable format for storing this parameter that suits more 

than one view, which is not the current format of the any 

view parameter, hence, in this case, all views would need 

to define a non-trivial translation function on the abstract 

parameter. 

  



The abstract parameters stored in the coordination 

space can be grouped into four varieties of coordination 

sub-spaces (see Figure 3) since we describe the 

visualization process in terms of four processes: the 

enhance shared coordination space, the mapping 

coordination space, the rendering coordination space and 

the transform coordination space. However, in many 

situations the division between these sub-spaces is less 

rigid and coordination objects may include various 

parameters from each of the coordination sub-spaces. 

 

 

4.3.3 Events  

In this model, abstract parameters held in 

coordination objects are changed by events. Events can 

be generated by explicit user actions or automatically, by 

for example continuous analysis of the input data. Some 

user actions, such as selection with a mouse, are 

connected to a particular view, whereas others, such as 

keystrokes for altering parameters, are not. 

Events modify abstract parameters, so they must be 

aware of the nature of the format and extent of the 

abstract parameters in the coordination objects. Where 

events are generated in particular views, the event-

generating view will only be updated in the course of the 

event-notify cycle along with the other views. 

As events associated with views are usually indirect 

in any case, and typically the cycle defined in this model 

is fairly immediate, this system seems an elegant manner 

of allowing multiple events, generated by any view 

linked to the coordination object, to modify the abstract 

parameters. 

Whilst in this model we do not consider the time lag 

to be significant between the occurrence of the event and 

the notification event, this model should be adaptable to 

more critical real time visualization applications where 

large numbers of multiple events are occurring. 

There may be many events associated with a 

particular coordination object, so allowing the modelling 

of various types of coordination. A simple master-slave 

relationship, where all the actions are in one view and 

which simply reflected in other linked views might have 

only one event inputting into the coordination object, 

from the master view. On the other hand, where the 

coordination allows input from any or all of a group of 

similar views, the number of events may be at least the 

number of linked views. 

 

4.3.4 Translation & notification functions 

A translation function takes the abstract parameters 

in the coordination object and converts them to view 

parameters which are used in the visualization process to 

produce the final image. Each view registered with the 

coordination object has one such function. The result of 

the translation function at the view level is the 

replacement of current view parameters affecting the 

operations in the data flow pipeline Often a translation 

function might affect only one operation, but it is 

perfectly valid for the function to coincidentally affect all 

of enhance, map, render and transform. The view 

integrator might define the translation function. It is also 

possible for a set of default registration methods to link a 

coordination object inside the coordination space to a 

certain class of views, which would then define a render 

group. The coordination object designer would define 

these defaults. 

As well as defining a translation function, a linked 

view must be registered to receive notify events, that 

indicate when the coordination object has changed, 

indicating that the view�s image needs to be updated. As 

there may be concurrent coordination objects defined 

over one view parameter, the notify indicates which 

coordination object has changed, and so which 

translation function must be accessed. The view must 

define a notify handler, that is triggered by the notify 

event. At its simplest the notify handler merely forces a 

regeneration of the image by resending the current data 

through the dataflow pipeline. Where temporal issues 

exist, for example with time consuming visualizations, so 

that perhaps several notify events occur during the 

production of one view, then the notify handler in the 

view must include a scheduling algorithm to deal with 

the queue that develops in the best way for that particular 

view, deciding whether to restart the visualization 

process or discard some notify events. 

 

4.3.5 Other elements in the coordination object 

As mentioned above, it may be desirable to include 

some notion of default registration for a render group of 

views so that a plug and play approach to linking views 

to the coordination object is possible. There are other 

possible components in sophisticated coordination 

objects. It may be possible to place constraints on both 

the type and number of views that can connect to an 

object. For instance, if one view wants to register to 

coordinate with another specific view over a particular 

coordination object, a constraint can be added to that 

coordination object as to only give those views 

permission for access and change. A further constraint on 

linking views might be related to its lifetime, so 

restricting linking to limited periods, or timing out views 

after a certain amount of time. 

5. Using the model to define types of 

coordination in EV 

Let eve be an exploratory visualization environment 

and V1, V2 are views within eve. V1 and V2 are described 

by the E.M.R.T composition where each of the 

components, Enhance, Map, Render and Transform has a 

coordination sub-space associated with it. 

 

CASE I  Disconnected Views 

V1 and V2 are disconnected if they do not share any 

coordination object between them.  

 

CASE II  Linked Views 

V1 and V2 are connected if they both access at least one 

common coordination object. 

 

  



Two views can be tightly coupled if they have 

coordination objects that cover each of the sub-

coordination spaces. In Figure 3, the tightly coupled 

views V1 and V2 share all possible coordination sub-

spaces. 
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5.1 Example (enhancement coordination) 

Given two views V1 and V2, a user interacts with V1; 

this causes the firing an event, which affects E, M, R or 

T of V1. For instance, the event might be an enhancement 

to the original data set, such that only values greater than 

50 are included in the enhanced data set (Figure 4). If the 

user wants this event to play a role in coordination, the 

new filtering parameter will be stored in the coordination 

object E as default storage. Here is what happens at the 

view level and at the coordination space: 

 

CASE I   Disconnected views 

The enhancement will only affect V1 and the enhanced 

data will be mapped then rendered as specified by its 

own visualization pipeline. 

 

CASE II  Linked views  

V2 data set will also be enhanced given that the two 

views share the same filtering parameter. In the case of 

the identity coordination; no translation needed so both 

views use information in the coordination space as it is, a 

notify message is sent to both views enhance processes 

to use the new filter value. In the case of non-trivial 

translation functions, this value gets translated to view 

format.  If there is no sharing at the remaining stages of 

the visualization process, each view will finally render 

accordingly. 
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Figure 4 Schematic showing an example for 

coordinating an Enhance method. 

 
With this model it is possible to discuss the detail of 

coordinations. For example, where only the Enhance 

section of the data flow pipeline is altered in all linked 

views, we have type E coordination as shown in Figure 

4. More complex combinations are possible, such as 

views where multiple operations are altered, giving 

R,E,TR coordination, where Render and Translate are 

affected in one  group of view, Enhance only in a second 

and Render only in a third group of views. In a tightly 

coupled coordination we have coordination with the type 

EMRT. 

5.2 Example (selection coordination) 

We illustrate our model using visualizations of 

geographical map data. Diagrammatically our 

coordination objects and linked views are shown in 

Figure 5.  

The event handled by the Selection coordination 

object is that of the user selecting a rectangular area of a 

map, an event that could be generated by any of the 

views.  

The effect in V1 is to filter the data to show only the 

selected rectangle whereas V2 changes the color map to 

highlight particular objects, such as road junctions inside 

the rectangle. The result in V3 is to modify the rendering 

inside the rectangle, increasing the level of detail to show 

smaller roads. Finally, the consequence for V4 is to 

perform a combination of all these actions, cropping the 

data, highlighting certain objects and increasing the level 

of detail by altering the rendering. 
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Figure 5 Schematic showing selection 

coordination. 

 
Furthermore, f1 is a simple identity function, as the 

Selection object holds parameters indicating which area 

of the map to crop, which is the information required by 

the Enhance flow of V1. f2 is slightly more complex, as it 

is alters part of the color mapping, so this function 

indicates that a subsection of the color map will be 

replaced by the mapping indicating selection. f3 will pass 

the selection area to the renderer of V3, with a flag 

indicating the desired level of detail. f4 combines all the 

  



effects of f1, f2, and f3 in V4. This type of coordination is 

then E,M,R,EMR. 

6. Discussion 

Our model fits well with current visualization 

systems that implement coordination. For instance, 

Amira is a modular and object oriented software system 

for scientific visualization. It allows the simultaneous 

display of multiple data sets in different views or in a 

common view. Amira�s components are modules and 

data objects, each of which has a set of parameters, 

which can be modified using a parameter editor in an 

interaction area of the application. Views are coordinated 

if they share some parameters displayed to the user in the 

object pool view. The user specifies which views to 

coordinate. 

Similarly, IRIS Explorer users interactively create 

their application by linking modules; each module has 

some associated set of parameters, which describe its 

behavior. The control panel editor creates, modifies, and 

links module control panels and a parameter function 

editor creates relationships between parameters in linked 

modules [23]. The parameter value in the downstream 

module is then expressed as a function (P-Func) of the 

upstream parameter values (the translation function in 

our model). 

Moreover, the authors of this paper developed a 

visualization system using Java in which coordination is 

implemented in the Object Oriented paradigm [24]. The 

system displays web search results in multiform views, 

where each search results returned by the search engine 

is mapped to a glyph. There is an interface Class for 

these abstract objects (glyphs), which acts as the 

middleware layer that facilitates coordination between 

glyphs. Glyphs which implement this interface share data 

and methods and hence can be coordinated over these 

parameters. In this application, users discover 

coordination in the midst of exploration. 

Many visualization systems such as IRIS Explorer, 

AVS and Amira provide capabilities for user-oriented 

design; users could choose modules, edit parameters and 

link components. This facilitates coordination design. 

We note that these systems use the dataflow model to 

build applications for scientific visualization. 

7. Future work & conclusions  

In this paper we described how coordination objects 

in exploratory visualization are built from simple user 

interactions. Our model handles any combination of data 

sets and any number of linked views. The issues 

involved in coordinating different data sets and 

visualization methods are dealt with at the translation 

function stage, where abstract parameters are converted 

to meaningful parameters in the particular view.  

Interactions are variations on the basic visualization 

functions: enhance, map, render and transform. If a view 

interaction is to play a role in coordination, it changes the 

coordination space, which is then reflected upon the 

linked views that use that space. 

Our model is based on sharing objects (parameters) 

that control the rendered view and not the sharing of the 

data that is being visualized. Indeed, a view parameter 

can be part of more than one coordination object. 

We notify all linked views upon change. Hence, we 

use the eager notify mechanism for our model (but not 

necessarily an eager update). However, we do not allow 

channels for storage and we are not concerned with 

establishing a protocol for notification in this paper. 

Coordination as described by this paper is the 

mechanism through which views interact together to 

achieve purposeful goals that could not otherwise be 

achieved efficiently by these individual views working 

uncooperatively. Our model borrows ideas from recent 

research in visualization and other disciplines 

Our future work includes implementing an example 

system that closely maps to the model and so 

demonstrates the flexibility, novelty of possible 

coordinations and practicality of the approach. 

More research is required in the area of coordination 

design to provide rules and guidelines. In addition, 

comparative studies regarding users ability to work with 

independent compared to working with cooperative 

multiple views are still under-investigated. For example, 

how many coordinated events can one user keep track of 

during visual exploration? (Some work has been done, 

such as by North and Shneiderman [25]). Moreover, 

further research is required in the area of multitasking for 

multi-view exploratory visualization. 

Moreover, new types of coordination can be 

introduced. We could have default coordinations based 

on default system or user settings.  Furthermore, we can 

have recommended types of coordination if the system 

learns about user interactions, goals and existing 

coordinations. 

There exist various commercial visualization 

environments, which implement coordination based on 

sharing parameters between visualization modules. We 

aim to enrich the shared coordination space to include 

not just the visualization parameters but abstract objects 

such as constraints, complex methods and time. 
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