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Abstract—Euler diagrams form the basis of various visual
languages but tool support for creating them is generally limited
to generic diagram editing software using mouse and keyboard
interaction. A more natural and convenient mode of entry is
via a sketching interface which facilitates greater cognitive focus
on the task of diagram creation. Previous work has developed
sketching interfaces for Euler diagrams drawn with ellipses.
This paper presents SketchSet, the first sketch tool for Euler
diagrams whose curves can be circles, ellipses, or arbitrary
shapes. SketchSet allows the creation of formal diagrams via
point and click interaction. The user drawn diagram, in sketched
or formal format, is automatically converted to a diagram in
the other format, thus maintaining both views. We provide a
mechanism that allows semantic differences between the sketch
and the formal diagram to be rectified automatically. Finally, we
present a user study that evaluates the effectiveness of the tool.

I. INTRODUCTION

Euler diagrams [5], a popular and widely used tool, are

collections of labelled closed curves used to visualize rela-

tionships between sets, generalizing Venn diagrams [24]. They

intuitively represent exclusion, containment and intersection of

sets. An example is in Fig. 1, which shows a categorization

of countries in the British Isles. The varied application areas

Fig. 1. The British Isles [11].

of Euler diagrams include, for example: crime control [6],

computer file organization [3], classification systems [23], edu-

cation [12], genetics [15], and medicine [20]. In addition, they

Fig. 2. A sketch and its formal version.

form a component of many visual languages, such as spider di-

agrams [9], Euler/Venn diagrams [22], Venn-II diagrams [19],

constraint diagrams [14], and concept diagrams [10], [16].

Given their wide-ranging practical use, there is a need to

provide convenient ways of creating these diagrams in elec-

tronic form. Ideally, the software in which they are created will

have some understanding of the diagram semantics, so it can

further support the user in exploring the information conveyed.

Currently, however, the manual creation of Euler diagrams

in electronic form relies on unintuitive mouse and keyboard

interfaces in software that has no semantic understanding of

the diagram; typically, diagram creation relies on operations,

such as pointing, clicking and dragging shapes on to the

screen, for which the user needs to understand how to use

the software.

A natural creation method for general Euler diagrams is

using a pen, but no intelligent tool support exists for this mode

of entry; currently, the only sketching support restricts Euler

diagrams to those drawn with circles and ellipses [4]. The lack

of fully developed sketching support for Euler diagrams means

that, in the vast majority of cases, when using a computer

they must be drawn in off-the-shelf diagram editing tools.

The current editing support does not provide a natural and

convenient interface because the point-by-point specification

of the diagrams’ curves is slow (compared to sketching) and

the act of sketching is simple in comparison to using a diagram

editor, such as those found in Microsoft’s Word or Visio

packages.
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Sketching the diagram is advantageous in that it allows

the user to focus on the actual diagram creation rather than

the interface of the editing tools, and it is a useful problem

solving and communications technique [8]. In a sketching

context, users can produce, evaluate, modify, refine and replace

diagram components rapidly. The backtalk from the external

representation of the diagram is considered an essential part

of the cognitive support for design. Hand-drawing diagrams is

more effective for external representation of a problem than

using formal computer diagramming tools [7]. To possess

these benefits, the computer-based sketch tools interaction

must be carefully designed with particular attention to retain-

ing the hand-drawn appearance in the initial stages of the

diagram’s creation [17]. However, people often prefer more

formal visualizations over the sketch [25]. Therefore, tools

should facilitate dual representations and, moreover, allow the

user to interact with both the sketch and formal diagram. A

user-sketched Euler diagram can be seen on the left of Fig. 2

whereas a formal version is placed on the right.

Sketch recognition software developed to date has focused

on user interface design and graph oriented diagrams [13].

With respect to user interface design tools the sketched items

are largely independent of each other. In graph oriented

diagrams the spatial positioning of nodes and edges is not

of semantic significance. By contrast, in Euler diagrams the

spatial relationships between sketched items is fundamental

to their semantics. In particular, it is important to maintain

the relative intersection, containment and disjointness of the

curves. To our knowledge, our work on Euler diagram sketch-

ing is the first to consider these types of complex spatial

relationship for sketch recognition and forms an essential basis

for devising sketching tools for the many notations that extend

Euler diagrams.

When converting a sketch of an Euler diagram to a formal

representation, the curves are smoothed and, possibly, replaced

with standard geometric shapes. This process can inadvertently

alter the semantics. Thus, a sketching tool needs to be able

to extract abstract representations, which capture the formal

semantics, of the sketched and formal visualizations. This

is a highly desirable feature, since it allows the software to

determine, automatically, whether both the sketch and formal

diagram have the same semantics. This permits the correction

of differences, ensuring that the users’ intentions are preserved.

The user interaction features of SketchSet, our Euler dia-

gram sketching software, are described in section II. SketchSet

converts a sketched Euler diagram into a formal visualization

that contains circles, ellipses, arbitrary shaped curves, and

text. In addition, the user can create formal diagrams via

point and click interactions; SketchSet also converts formal

diagrams into pseudo hand-drawn diagrams. The process en-

abling these conversions is described in section III. Section IV

presents an algorithm for extracting an abstract representation

of both sketched and formal Euler diagrams and describes

the techniques that we employ to ensure that both the sketch

and formal visualizations have the same formal semantics. We

have conducted a user study evaluating SketchSet, presented

in section V.

This paper extends [4], which considered Euler diagrams

drawn with circles or ellipses. In particular, we now have: (a)

the inclusion of arbitrary closed curves (blobs), (b) input and

editing in the formal view, (c) production of sketches from for-

mal diagrams, and (d) semantic matching via the computation

of abstract representations. In addition, the usability study is a

novel contribution and it resulted in a number of improvements

to SketchSet’s interaction.

II. EULER DIAGRAM CREATION AND EDITING

SketchSet allows the user to create Euler diagrams in

two ways: via a sketching interface using a stylus or via

a formal diagram interface using more traditional point and

click operations. This tool is an extension of the existing

SketchNode codebase [18]. This section describes the process

of creating a sketch or formal diagram, along with the editing

functionality provided within SketchSet.

In the sketching interface, users create sketches by drawing

as on a piece of paper; Fig. 3 shows a screenshot. A stylus

stroke is immediately rendered on the canvas as digital ink.

On completion of the stroke (stylus up event) it is passed to a

gesture recognizer that we have generated using Rata.SSR [1],

as described in [4]. We note, though, that a new recognizer

was generated since we now allow users to sketch arbitrarily

shaped closed curves, which we call blobs, rather than just

circles and ellipses.

The recognizer result may be one of four classes: the

text class or one of the three curve classes, namely circle,

ellipse or blob. Curves are immediately coloured, with a

colour selected in sequence from a list of 16 colours, and

filled with a lighter shade of the same colour. When text is

entered it is taken to be a label associated with the closest

unlabelled curve and is coloured similarly. This allows the

user to readily check the association made by the software and,

thus, have an opportunity to change the sketch if necessary.

Misclassifications can be corrected by selecting the appropriate

stroke in edit mode and tapping on the button for correct

classification in the left hand panel of the user interface. The

process of label assignment is done on-line, whilst the user

is creating the diagram, and adjustments are made as the

user performs edits. For instance, if a curve is deleted but

its associate label remains then that label may be reassigned

to the next closest curve, or assigned to no curve if every

remaining curve already has a label.

The usual editing functions are supported. In edit mode a

stroke or group of strokes can be selected by tapping on the

stroke or lassoing a group of strokes. The selected strokes

can be moved or resized; when this happens, curve labels are

moved with their curves. In erase mode, strokes are removed

from the diagram. After any editing event, colouring is updated

as appropriate. Progressive undo and redo are available by

tapping the buttons at the top of the window.

The formal interface provides similar functionality to the

sketch interface. Based on experience with SketchNode [18],

care has been taken to design simple interactions that are easy

76



Fig. 3. SketchSet’s sketching interface.

Fig. 4. Rotating in the formal interface.

to perform with a stylus. A single tap on the canvas creates

a circle and opens a textbox for the user to type in the label

which is placed at the top left corner of the circle’s bounding

box. In edit mode, a selected circle can be stretched to form an

ellipse. Also when in edit mode, selected curves can be resized,

moved and rotated as shown in Fig. 4. Erase and undo/redo

are supported.

III. CONVERSION

SketchSet maintains two parallel visualizations of the dia-

gram, sketch and formal, so it must render sketched curves as

formal curves and vice versa. Each part has its own challenges:

when moving from sketch to formal one could inadvertently

change the semantics, and when moving from formal to

sketch one has to ensure that the hand-drawn appearance is

maintained, for example. Of note is that a sketch representation

of design problems has been shown to have advantages for

eliciting self-talk back and feedback from others [7], [8], [25].

In addition, generating a realistic pseudo-sketch is non-trivial.

This section describes the techniques that we have developed

to handle this.

A. Converting Sketch to Formal

We now describe the process by which we convert the

sketched diagrams into formal diagrams. As mentioned in

section II, each stroke is recognized immediately it is drawn.

The strokes are classified into four categories (label, circle,

ellipse, and blob) by the recognizer and the conversion process

depends on the recognition results:

1) If an item is recognised as a label then it is sent to

an off-the-shelf character recogniser and converted to a

formal (type written) label: a formal label is added to

the formal panel with the centre coordinate of the formal

label the same as that of the original stroke.

2) If an item is recognised as a circle or ellipse it is

converted to a formal circle or ellipse, respectively

(section III-A1).

3) If an item is recognised as a blob then it is smoothed

(section III-A2).

1) Converting Sketched Circles and Ellipses: The process

of converting circles is simple: we only need to find the

bounding box of the original stroke and create a circle inside

the bounding box. Although ellipses look similar to circles,

several more steps are necessary [4]. A sketched curve is

represented internally by a sequence of points. We find the

longest chord across the ellipse by taking the two points that

are furthest apart in the internal representation and we then

draw a line segment between them. We can calculate the

rotation, α, of the sketched ellipse formed by this chord and

the x-axis, as in Fig. 5.

α

Fig. 5. Computing the angle of rotation.

minor

axis

major axis

Fig. 6. Computing the minor axis.

Next, we rotate the sketched ellipse by α so that this chord

is parallel to the x-axis. A standard algorithm is then used
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to find a bounding box of the sketched ellipse, as shown in

Fig. 6. This rectangle is used to create the formal ellipse: the

centre of the ellipse is the centre of the rectangle, the major

axis takes the width of the rectangle, and the minor axis is the

height of the rectangle. Finally, the formal ellipse has rotation

α, the same angle of rotation as the sketched version, shown

in Fig. 5. Furthermore, we attempt to preserve user intent in

this last step, with regard to approximate alignment with the x

and y-axis. If α is within 10 degrees of 0 or 90 degrees then

we round α accordingly to achieve alignment.

2) Converting Blobs: The last conversion process is when

the curve is recognized as a blob. First, smoothing the curve

is achieved by removing many of the points from the internal

representation because, typically, digital ink capture is very

detailed1 and thus includes many unintended wiggles. Only

those points where the difference in the x or y value, as

compared to x or y value respectively of the neighbouring

points, is greater than a given threshold, currently set to 1000

himetric units – a value derived from experiments, are retained.

This results in a smoother curve where sharp changes in

direction are removed without changing the path of the curve

too much. We note that SketchSet is implemented in c#, and

the method GraphicsPath.AddClosedCurve(Point[] point) is

used to automatically generate a smooth cardinal spline curve

that travels through every point in the passed in array. Fig. 7

shows an example of curve smoothing.

Fig. 7. Smoothing blobs.

Fig. 8. Sketched blobs and formal blobs.

Next, the ends of the stroke are joined to form a closed

curve. There are three potential situations: the stroke crosses

itself, there is a gap between the endpoints, or the stroke

overlaps itself without crossing. Fig. 8 shows an example:

1Digital ink capture is much more dense than mouse capture, storing 10
times as many points.

Fig. 9. Determining cases for closing curves.

in the sketch, a crosses itself, b is overlapping, and c has

a gap. If the stroke crosses itself then the ends are trimmed

to the intersection point. When the curve does not cross itself,

to determine which of the other two cases exists we draw

a line between the beginning and end points and another line

between the beginning point and the second point on the curve

(i.e. point 2), as shown in Fig. 9. If α is greater than than 90

degrees, we assume the ends do not overlap and can simply

joint the start and the end point using a line. In the overlapping

case, we draw a normal to the tangent of the sketched curve

at each end point, see Fig. 10. We trim each end point back

to the first point where the other end point’s normal intersects

with the curve. We then simply join the close the curve by

joining the new ends. The formal diagram in Fig. 8 shows the

result of applying these operations to the sketch.

Fig. 10. Closing curves.

B. Converting Formal to Sketch

For this conversion process, we take a user created formal

diagram and produce a visualization that looks as though it was

hand-drawn. The best way that has been found to do this is by

building libraries that contain sketched examples of curves and

hand written examples of each letter [17]. Whenever we need

to create a sketched shape from a formal shape, an example

is taken from the library and resized to the bounding box

of the formal shape. Currently we use a circle library and

a text library. Since, in the formal interface of the software,

ellipses can only be obtained by stretching circles, we stretch

the corresponding stroke as well. The process of converting

a formal diagram in to a sketched visualization can thus be

summarized as:

1) If the user added a label then choose a hand-drawn

label from a library of hand-drawn examples and scale

appropriately.
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2) If the user drew a circle then choose a hand-drawn

circle from a library of hand-drawn examples and scale

appropriately,

3) If the user drew an ellipse then this was done by

distorting an already drawn circle. Thus, a corresponding

distortion is applied to the hand-drawn circle.

In all cases, the pseudo sketched stroke is placed on the

sketching canvas with the same center coordinates as the

corresponding formal syntax. Fig. 11 shows this process, with

a formal diagram on the left and the conversion to a sketched

version on the right. Here, the ‘sketched’ curves were chosen

from the library, as explained above, and the curve labelled m

was formed by distorting a circle that would have originally

been drawn in the formal interface before the user stretched

it into an ellipse.

Fig. 11. Converting formal to sketch.

IV. ABSTRACT REPRESENTATIONS

A key feature of SketchSet is its ability to compute the

abstract representation of both sketched and formal diagrams,

allowing errors in conversion to be automatically rectified.

In addition, the abstract representation is displayed to the

user, providing feedback pertaining to the diagram semantics,

allowing the user to adjust the sketch if the semantics are not

as intended. This section describes the process by which we

compute the abstract representation and the methods we have

devised to rectify any differences between the sketched and

formal viewpoints.

A. Computing the Abstract Syntax

SketchSet has a semantic understanding of the diagram in

order to support intelligent user interaction, such as editing,

and to ensure correctness of the conversion processes de-

scribed above. Euler diagrams represent sets using curves and

the diagram’s zones completely determine the relationships

between the sets. That is, the zones present correspond to

the semantics. A zone is a region that can be described as

being inside some curves but outside the rest of the curves.

For example, both the sketch and formal diagram in Fig. 12

have seven zones described by a (arising from the zone inside

only the curve labelled a), b, ab, ac, d, ad, and bd. Such a list

of zone descriptors is called an abstract representation.

Our algorithm to compute the abstract representation is as

follows. First we have three lists, called curveList, waitingList

and zoneList. The curve list contains the curves in the diagram.

The waiting list contains regions (for example, the set of

points in the plane contained by a curve). Regions, with their

Fig. 12. A sketch with its formal version.

descriptions, are added to the zone list in order to create the

abstract representation. During the algorithm, the zone list

may contain regions whose descriptions are not part of the

abstract representation but these are removed at the last step;

an example will be given below. We write d(r) to mean the

description of a region, r. The region inside a curve, c, has

description {l} where l is the label of c.

1) Initial Step: Draw a bounding box around the closed

curves, and add the region inside the bounding box to

the waiting list. The description of this region, r∅, is

denoted d(r∅) = ∅.

2) Zone List Creation Step: Take the first item in the

waiting list, say region r1, called the current region, and

the region, say r2, inside the first curve on the curve list.

Add the region r to the end of the waiting list and add

the ordered pair (r, d(r)) to the end of the zone list,

where

r = r1 ∩ r2 and d(r) = d(r1) ∪ d(r2),

provided r contains some points (i.e. is not empty) and

(r, d(r)) is not already on the zone list. Otherwise add

nothing to the waiting list or the zone list. Iterate through

the curve list until all curves have been considered.

Remove the first item from the waiting list. Repeat step

2 until the waiting list is empty.

3) Zone List Refinement Step: Iterate through each item in

the zone list. For each (ri, d(ri)), find the set of curves,

C that do not have labels in d(ri), and form the region,

rC , that is their union. If ri ⊆ rC , then remove (ri, d(ri))
from the zone list.

4) Abstract Representation Extraction Step: Take the zone

list and for each pair, (r, d(r)), in the list the description

d(r) is in the abstract representation.

To illustrate, we will run through the first steps of computing

the abstract representation of the sketch in Fig. 12. We have

curveList = (a, b, c, d) (blurring the distinction between the

curves and their labels). Denote the region inside the bounding

box of the sketch by r∅, which is placed on waitingList,

and denote the region inside each curve by ra, rb, rc and rd
respectively. For the first iteration, we take r∅ (since this is the

only item on the waiting list), and intersect it with ra (since

a is the first curve in the curve list), then rb and so forth,

removing r∅ from the waiting list. At this point we have

waitingList = (ra, rb, rc, rd)

zoneList =
(

(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d})
)

.
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For the second iteration, take ra from the waiting list and form

intersections by proceeding through the curve list again. First,

we encounter a, but ra ∩ ra = ra and (ra, {a}) is already

on the zone list, so nothing is added to the waiting list or the

zone list. Next, we encounter curve b, and ra∩rb = rab is not

empty and has description {a, b}. So, we add (rab, {a, b}) to

the end of the zone list and rab to the end of the waiting list.

After iterating through all of the curves we have:

waitingList = (rb, rc, rd, rab, rac, rad)

zoneList =
(

(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d}),

(rab, {a, b}), (rac, {a, c}), (rad, {a, d})
)

.

After the next full iteration, where the current region is rb, we

add only rbd to the waiting list and (rbd, {b, d}) to the zone list.

Continuing through the algorithm there are no further changes

to the zone list and step 2 terminates with:

zoneList =
(

(ra, {a}), (rb, {b}), (rc, {c}), (rd, {d}),

(rab, {a, b}), (rac, {a, c}), (rad, {a, d}),

(rbd, {b, d})
)

.

After iterating through the zone list, at step 3, exactly one of

the pairs, namely (rc, {c}), is ‘covered’ by a region, rC , that

is inside curves, namely ra and rb, whose labels are not in

{c} (since the region rc is completely contained by ra ∪ rb).

Thus, the final zone list tells us that the abstract representation

is

{a}, {b}, {d}, {a, b}, {a, c}, {a, d}, {b, d}.

Theorem 1. Let d be a formal Euler diagram. Then the

algorithm to compute the abstract representation of d cor-

rectly produces the abstract representation of d. That is, the

descriptions of the zones in d are precisely those in the abstract

representation.

Proof Sketch: The idea behind the algorithm is that

the zone list creation step essentially starts by forming the

regions inside each curve (i.e. a region inside one curve) by

intersecting these regions with the bounding box. The second

step forms regions that are inside two curves, by intersecting

each region at the first step with the regions inside each

of the other curves; this creates regions inside two curves.

As the iteration proceeds, at the nth step, we create regions

inside n curves. Clearly, this process will create at least as

many regions as there are zones. Moreover, any region whose

description does not correspond to a zone will be ‘covered’

by other regions and, thus, removed at step 3. The abstract

representation extracted at step 4 correctly describes the zones

in the diagram.

The above theorem cannot immediately be stated for

sketched Euler diagrams since the user may not have closed

all of the curves. This means that the software has to auto-

matically close the curves before it is meaningful to talk of

the sketch’s zones. However, after any necessary curve closure

has taken place the algorithm correctly produces the abstract

representation of the adjusted sketch.

Concerning computational complexity we observe:

(a) Step 2 iterates through the curve list, creating regions.

An upper bound on the number of steps taken here is

|C| × 2|C| × 2|C| where C is the set of curves in the

diagram (2|C| is the largest number of zones that can be

present).

(b) Step 3 compares each item, (r, d(r)), in the zone list,

of which there are potentially 2|C|, computes the curves

whose labels are not in d(r), of which there are at most

|C|, and then compares regions giving an upper bound

of |C|2 × 2|C| comparisons.

(c) Step 4 runs through the zone list, discarding all infor-

mation about regions and, therefore, has at most 2|C|

steps.

Thus, the overall complexity is O(|C|2 × 2|C|).

Our algorithm can generate the abstract description of any

Euler diagram, including those that possess the properties of

concurrency, triple points, non-simple curves and disconnected

zones. Hence, it improves on existing work that was limited to

so-called well-formed Euler diagrams which do not allow any

of these properties to be present [2]. The algorithm in [2], as

with our algorithm, has a time complexity that is exponential

in the number of curves. This is because the running time of

both is dependent on the number of zones, and the maximum

number of zones for a set of curves, C, is 2|C|. In most cases

the number of zones is significantly smaller than the maximum

2|C|, meaning that in practice our algorithm often runs quickly.

B. Rectification of Differences

The zones in both the sketch and formal visualizations are

recalculated after any change to a diagram. This allows us

to check that the conversions have resulted in semantically

matching diagrams. Emiprically, we have found no cases

where formal diagrams converted to sketch do not have

matching abstract representations. The most likely occurrence

of a mismatch, converting a sketch to formal, is when a

curve that has been converted to an ellipse or circle should

be converted to a smoothed blob. Therefore, if there is a

difference in abstract representations, we convert the most

recently drawn circle or ellipse to a blob and check whether the

zones match. If they still do not match then we iterate through

the curves affected by the zone error, progressively converting

them to blobs and rechecking the zones. If the error is not

corrected when all relevant curves are blobs an error message

is displayed on the interface, alerting the user of the difference.

Fig. 13 shows an example that can be automatically rectified

by this process.

Fig. 13. Differences.
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V. USER STUDY

To assess the usability of SketchSet we conducted a task

based usability study. For each task, participants were asked

to draw diagrams. The first two tasks asked them to create

diagrams in the sketch and formal interface respectively. They

were then asked to switch between the sketched and formal

views and the final task allowed them to choose which view

they used. Usability information was gathered from researcher

observation and a questionnaire. In this section we first

describe the details of the study methodology and then the

results.

A. Methodology

The twelve participants (8 M, 4 F) aged between 25 and 30

had a varied background including: computer science graduate

students (6), information systems students (2). Three had oc-

casionally used pen-based interfaces, all had basic knowledge

of set diagrams, but not necessarily Euler diagrams. Each

participant undertook the study individually and we captured

the screen activity for later review. As our goal is an excellent

user experience, we planned to observe enough participants

to show any major flaws, fix these and then continue with

the study. The study started with the researcher showing the

participant how to create and edit diagrams in both views.

Fig. 14. Examples used in the study.

Participants were then asked to familiarize themselves with

the tool by creating a very small diagram in each view. For the

initial part of the study, they were then asked to reproduce the

diagrams in Fig. 14. The information for each diagram was

presented to the participant in multiple steps. They were asked

to create, delete, move the curves in a specific order and, in

the formal view, to stretch a circle to an ellipse and rotate it.

Each instruction was accompanied by a screenshot showing

the required diagram. To minimize potential bias caused by

the order of tasks, half the participants were asked to create

a sketched diagram first followed by a formal diagram; the

other half did this in reverse order. Next, participants created

a diagram by switching between the views and finally they

created a diagram in whichever mode they wished with only

textual instructions provided. After the tasks were completed

the participants filled in a qualitative questionnaire.

B. Results

After seven participants completed the tasks we reviewed

the results and made a number of refinements to the in-

terfaces and then continued with the last five participants.

The refinements after the first participants were as follows.

In both views we noticed people expected the mode buttons

for drawing, editing and deleting to be in a different order.

Therefore we reordered these to, from top to bottom: draw,

edit, delete instead of edit, delete, draw. SketchSet’s question

about whether to save the diagram when the new diagram

button was clicked was confusing, so we reworded it. Also,

participants expected SketchSet to be initially in draw mode

when a new diagram was started rather than the mode they

were last in, this too was changed. In edit mode labels and

curves are moved together - at times participants wanted to

move the label separately. We have changed this so that when

the curve is moved its label is also moved, but the label can be

moved without its curve - in which case it may be disconnected

from the current curve and reconnected to a different curve

depending on the distance from the curves.

In sketch view, labels are attached to the nearest curve so

long as that distance is less than a predefined value. For some

participants this distance was too short. However, making it

too large could mean that if the label is created before the

to-be-labelled curve then it may incorrectly be attached to an

existing curve, so we have increased the predefined distance

by 1.5 times. In formal view, rotation and moving of curves

was done by clicking - several participants tried to drag the

icons, so we have added drag functionality.

After these modifications we recommenced the user study

with another five participants. The modifications had the

desired effect with users having fewer problems with these

functions and no other major issues were identified. We do

note that when changing modes some participants try to

interact as if they were in the other mode but quickly realize

that a different interaction is required. This has also been

observed in SketchNode [18], and is a consequence of these

dual visualization interfaces.

The questionnaire asked participants to rate the software on

a scale of 1 to 5, with 5 being the best rating, on a variety

of features. The responses for all twelve participants were

very positive, with all participants rating the software 4 or

5 on time to complete tasks (m 4.92, sd 0.29 ) and all but

one (where the software crashed) rating it 4 or 5 for ease

of use (m 4.58 sd 0.67). Notably, the last 5 participants all

rated these categories as 5. Conversion between visualization

was accurate for most participants with a mean score of 4.50,

sd 0.90. We also asked their preferred interface for each of

drawing, editing and visualizing the diagrams. There seems to

be some relationship between the interface they used first and

their preference for drawing: all those who used the sketch

interface first preferred that, while those that used the formal

first were equally split between sketch and formal. For editing,

81



there was no such pattern with 5 having no preference, 5

preferring formal, and 2 preferring sketch. The visualization

was similar: 5 preferred formal, while sketch and no preference

were 4 and 3 respectively. This contradicts [25] where users

showed a clear preference for the more formal visualizations.

C. Recognition Rate

During the usability study, the participants drew 312 strokes,

of which 156 were labels, 40 were circles, 64 were ellipses

and 52 were blobs. We calculated the recognition rates at

two levels. First, and most importantly, when determining

whether a stroke was a label or a curve, the recogniser was

100% accurate. Labels were then classified by the Microsoft

character recogniser, which was 98.71% accurate (i.e. 2 errors

out of 156). The success rates for the curves were as follows:

1) Circles: 39 out of 40, 96.15% accurate (one was recog-

nised as an ellipse).

2) Ellipses: 64 out of 64, 100% accurate.

3) Blobs: 50 out of 52, 96.15% accurate (2 were recognised

as ellipses).

VI. DISCUSSION AND CONCLUSION

This paper presents the first tool, SketchSet, that supports

users in the creation of both sketched and formal Euler

diagrams. The user study allowed us to make improvements

to SketchSet, as described in the previous section. Of note

is that SketchSet provides sophisticated checking to detect

(unwanted) semantic differences between the sketched and

formal views. To provide this functionality, we devised a

general algorithm to compute an abstract representation of

sketches and formal diagrams, extending the previous state-

of-the-art which was limited to so-called well-formed Euler

diagrams. We have used this ability to compute the abstract

representation in order to correct semantically significant dif-

ferences that may arise in the process of converting a sketch

to a formal diagram. Of significance is that our work on Euler

diagram sketching is the first in the area that takes into account

complex spatial relationships between syntactic components

(such as curve containment or partial overlap).

There are numerous notations that extend Euler diagrams,

as described in the introduction, for which the provision of

sketching interfaces would be beneficial to users. Of particular

interest to us are concept diagrams [10] which are rich enough

to specify complex information involving binary relations and

quantification over both sets and their elements. The syntax of

these diagrams extends Euler diagrams by augmenting them

with graphs, arrows, shading, logical operators and quantifiers,

as well as rectangles and other items. A simple example can

be seen in Fig. 15, which includes some of the extra syntax

used in concept diagrams. Extending our foundational work on

Euler diagrams to notations such as this will be challenging.
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Fig. 15. A concept diagram.
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