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Abstract: In Business-Driven Development (BDD), process mod-
els are produced by business analysts. To ensure that the defined
requirements are satisfied, the I'T solution must ideally be derived di-
rectly from the specifications through a process of model refinement.
Howewver, if the original models contain errors or lack some technical
detail, an incorrect implementation would be inferred and the entire
BDD life-cycle would have to be revised. In this report, we investi-
gate the use of embedded language techniques to enable more abstract
model descriptions and enable quality assurance and transformation
of models. We have embedded such a domain-specific language in the
functional programming language Haskell and show how it enables:
(i) the rapid development of models in a concise and abstract man-
ner, focusing on the specifications rather than the implementation
and ensuring that all the required details to generate the executable
code are specified; (i) quality assurance of the models through the use
of Haskell’s type checker, at construction-time and through sound-
ness analysis; (i) transformation, analysis and interpretation of
the models; and (iv) definition of composite model transformations,
including the use of quality assurance.






Embedded Languages for Business
Process Modelling, Transformation and
Quality Assurance in Business-Driven

Development
Luana Micallef Gordon J. Pace
School of Computing Department of Computer Science
University of Kent University of Malta
Canterbury, UK Msida, Malta
1m304@kent.ac.uk gordon.pace@um.edu.mt

Abstract: In Business-Driven Development (BDD), process mod-
els are produced by business analysts. To ensure that the defined
requirements are satisfied, the I'T solution must ideally be derived di-
rectly from the specifications through a process of model refinement.
However, if the original models contain errors or lack some technical
detail, an incorrect implementation would be inferred and the entire
BDD life-cycle would have to be revised. In this report, we investi-
gate the use of embedded language techniques to enable more abstract
model descriptions and enable quality assurance and transformation
of models. We have embedded such a domain-specific language in the
functional programming language Haskell and show how it enables:
(i) the rapid development of models in a concise and abstract man-
ner, focusing on the specifications rather than the implementation
and ensuring that all the required details to generate the executable
code are specified; (i) quality assurance of the models through the use
of Haskell’s type checker, at construction-time and through sound-
ness analysis; (iii) transformation, analysis and interpretation of
the models; and (iv) definition of composite model transformations,
including the use of quality assurance.

1 Introduction

Business process models are produced by business analysts to graphically communi-
cate the business requirements to I'T specialists. As business processes are updated
to meet the new demands in the competitive market, the underlying IT solution is
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adapted to reflect precisely the current goals of the organization. The models should
then act as an abstract representation of the solution. It is essential to adapt to
Business-Driven Development (BDD) (see [Mit05] and [KHK'08]) whereby models
are refined into the I'T solution and implemented in a Service-Oriented Architecture.
This means that models must be free from data and control-flow errors, such as
deadlocks (whereby a process waits indefinitely for some data or operation to com-
plete). If models are not quality assured at the modelling phase, errors would be
discovered later and the entire BDD life-cycle would have to be repeated. Combining
model transformations with quality assurance would help modellers to preserve the
correctness of models and rapidly carry out modifications [KGK™07].

Although various modelling languages have been developed to assist modellers in the
production of high quality business process models, none of them adopted a func-
tional approach based on higher-order logic. As BDD is being adopted by most
organizations, the need for such a language is becoming more evident. Since spe-
cialized functionality is required, a general-purpose language is not really necessary.
Instead, a domain-specific language may be developed. This would capture precisely
the semantics of the business process modelling domain and thus provide the right
abstraction to define model descriptions which are easy to comprehend and reason
about.

Language embedding is a technique from the programming language community in
which a domain-specific language is built within a general-purpose one, often referred
to as the host language. By giving means of constructing domain-specific programs as
part of programs written in the host language, one can use abstraction techniques from
the host language to build and structure descriptions of domain-specific programs.
Furthermore, still within the host language, one has access to the domain-specific
programs as data objects which can be manipulated, analysed and executed.

In this report, we propose the use of embedded languages to build a domain-specific
language to model business processes embedded in Haskell. We show how such an ap-
proach enables us to model, transform and quality assure business processes in BDD.
Through the use of abstraction mechanisms of the host language, one can build con-
cise and compositional model descriptions, focusing on the required behaviour rather
than the implementation, and then transform and analyse them in various ways. An
important aspect is the quality assurance of these models by carrying out checks rang-
ing from the host language’s type system, to construction-time checks and run-time
soundness analysis. The availability of the host language sitting above the model de-
scription language enables the user to define new composite model transformations,
possibly ensuring quality assurance as part of the transformation. Other tools can be
used in conjunction to the embedded language, such that models would be easily con-
structed, analysed and transformed in the embedded language itself. Such a tool, for



instance a model checker for more sophisticated analysis or a language for developers
to write their own custom transformations and analysis, can be used as a plug-in in a
standard business process modelling tool. Visual editing, on the other hand, could be
done in an external tool and the definition of the model could be transformed from
a visual to a textual one and vice versa. Such a language was embedded in Haskell
to capture the domain semantics of IBM’s WebSphere Business Modeler Advanced

(WSBM).!

2 Embedded Languages

The use of domain-specific languages usually leads to more effective, targeted solu-
tions. However, building the necessary infrastructure around a domain-specific lan-
guage to enable abstraction, modularization, compiling, etc. can be a long and labo-
rious task. A technique to circumvent this problem is the use of embedded languages
— the building of the domain-specific language within a general-purpose language
(usually referred to as the host language). By defining the syntactic constructs and
the type system of the domain-specific language within the host language, domain-
specific programs can be built as objects in the host language. Apart from constructs
to build domain-specific programs, one typically also provides (from within the host
language) different interpretations of domain-specific programs — for execution, vi-
sualization, analysis, etc.

This approach enables one to inherit the tools and features of the host language in
the design, development and analysis of the domain-specific language [Hud98|. In this
way, the language designers are able to reuse the infrastructure of the host and thus
focus directly on the semantics of the new language. Since the limitations of the host
are also inherited, it is important for the language designer to choose the appropriate
host to embed the required language for that specific domain.

The degree of abstraction achievable in the host language and its syntax, impinge on
the degree of assimilation of the embedded language within the host language and
how sharply delineated the boundary between the domain-specific code and the rest
of the program. Through various case studies, it has been shown that the functional
language Haskell can be an excellent host language to provide the right modularity
and abstraction to develop a language which is maintainable, extendible, easy to
design and easy to use [HJ94]. Over the years, Haskell [Jon03] has been used for
embedded languages for various diverse domains ranging from financial contracts
[JES00] to hardware description [CSS03].

http://www-01.ibm.com/software/integration/wbimodeler/advanced/



Using this approach, programs in the domain-specific language are simply data ob-
jects in the host language and therefore, once the end-user defines and generates the
required domain-specific program, it is possible to analyse, interpret, manipulate,
transform, test and verify it through other programs written in the host language.
This gives a limited degree of meta-programming flexibility — programs in the embed-
ded language are both code, which can be executed or interpreted, and data objects,
which can be generated, manipulated and analysed. In this way, higher-order embed-
ded programs can be seen as having two run-time phases: (i) the execution of the code
in the host language producing a fixed embedded program, and (ii) the execution and
analysis of these programs using the interpretation provided in the host language.
For example, when a hardware description language is embedded, a program in the
host language can be defined such that, given a number n, a bit-adder for words of
size n is produced. The simulation of a 24-bit adder consists of a run with distinct
phases: (i) running the general adder function to produce the 24-bit adder, and (ii)
simulating the concrete 24-bit adder with the given input.

At face value, an embedded language may appear to be no more than a domain-
specific library in the general-purpose language, using which, programmers are able to
describe and manipulate domain-specific objects. However, careful design of domain-
specific combinators creates the illusion that the domain-specific code fragments are
‘programs’ written in a domain-specific language that are part of the programs in the
host language. The programmer may then generate, analyse and manipulate these
‘programs’ (written in the domain-specific language) as though they were part of the
host language itself and thus, effectively make the host act as a meta-language for the
embedded language. Clearly, the more flexible and high-level the host language and
its syntax are, the more difficult it becomes to distinguish where the domain-specific
program ends and where the rest of the code starts.

From the language designer’s point of view, the main advantage of designing a domain-
specific language and embedding it within a host language is that one needs not
reinvent the wheel and create a new general-purpose language. From the end-user’s
perspective, the main advantage is that the meta-language is a standard language
with which one may already be familiar and knowledge of which goes beyond the use
of the domain-specific language.



Figure 1: A process to handle orders

3 An Embedded Business Process Modelling Lan-
guage

In process modelling, a sequence of business activities with clearly defined inputs
and outputs is specified in a particular order with the aim of capturing the business’
requirements and objectives. Such models can represent the current (‘as is’) and the
future ( ‘to be’) processes of the organization. By analysing these models, the efficiency
and the quality of the processes can be improved before they are implemented.

Simple shapes, similar to conventional flowchart components, are usually used to
define the required process. These are normally classified as: activities, gateways and
events. Although the actual behaviour of the process is defined by tasks (activities),
gateways (such as a merge or a decision) handle the flow of control and data within
the process, and events (such as a start or stop node) ensure the initialization or
termination of the process. This can be seen in the order handling example shown in
Figure 1 — Once an order is taken and the customer record is retrieved, the record
is updated and the ordered items are reduced from the stock. The items are then
packaged and returned to the customer, and the order is discarded. In this example
there are: four tasks (represented as rectangles), two gateways (a decision named
No more items? and a merge represented as a triangle) and one event (a stop node
represented as a black circle). Connectors are then used to connect the components
and to allow user-defined business items (e.g. Order, Customer Record or Package),
basic typed items (e.g. String to represent the customer identification code) and
control (e.g. the input to task Take Order) to flow between the components. All
types have to be appropriately packaged to enable their use in models.

We proceed to embed these concepts in a domain-specific language for business process
modelling in Haskell [Jon03]. This is possible by building constructs to describe the
concepts (individual blocks) in the models and by providing means to compose them
together to produce larger models. Abstraction and modularization techniques are
inherited directly from the host language.



Listing 1: Defining the order handling process in Figure 1 using basic modelling
elements in our language

orderHandling (x,y) =
let

updateCustRec_out= updateCustRec(takeOrder x,getCustRec y)
merge_out = merge (updateCustRec_out, moreltems_out)

(noMoreItems_out, moreltems_out) =
decision "No More Items?",
(branch_NoMoreItems 0.5, branch_MoreItems 0.5)

(reduceltemFromStock merge_out)

(preparePackaging_Package, preparePackaging_Order) =
preparePackaging noMoreltems_out

stop_out = stop preparePackaging_Order

in (preparePackaging_Package, stop_out)

3.1 Embedding the Language

An important feature of embedded languages is that domain-specific programs typi-
cally appear as first class objects in the host language. To merge seamlessly as part
of the host language, processes and modelling elements are embedded as functions,
and through the use of function definition, one can easily define processes and reuse
them to define more complex models using higher-order functions. This is possible
through the use of functional application as illustrated in Listing 1, where the func-
tions takeOrder, getCustRec, updateCustRec, merge, reduceltemFromStock, decision,
preparePackaging and stop, which are also basic modelling elements, are applied
by assigning the appropriate inputs. The elements are then connected by using the
output of one function as the input of another.

The embedded language, supporting basic modelling constructs and combinators,
is provided to the end-users as a Haskell library. The provided basic constructs
in the language include modelling elements such as: stop (an event to terminate
a process), decision (a gateway to determine how the flow should be diverted on
the outgoing branches, depending on some boolean expressions), and task (to define
specific activities such as the task updateCustRec, which given an Order, updates a
Customer Record accordingly). The provided combinators in the library are then
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Listing 2: Defining the task Update Customer Record for the order handling process
in Figure 1

updateCustRec = task "Update Customer Record"
((type_Order ,type_CustRec):->type_0Order)

used to combine the various tasks so that, similar to composite functions, process
fragments carrying out complex operations can be produced.

Using the Haskell type system, one can ensure that the entire system (including
process fragments and modelling elements) is strongly-typed. This means that the
type of all the inputs and outputs of tasks are clearly defined and checked for con-
flicts at construction-time. Since these types explicitly define the actual operation
and objective of a task, business items specific to that business domain are defined
as domain-specific types. Typing of the language combinators ensure that the con-
structed fragments would in turn be strongly-typed.

This means that before tasks such as Update Customer Record (in Figure 1) are used
to construct a process (as in Listing 1), they must first be defined as in Listing 2.

Multiple structured input and output types can be defined. These types are specified
as objects and as in this case (Listing 2), they can be specific to the concerned
business domain. For instance, type_CustRec refers to a user-defined business item
of type Customer Record.

One of the advantages of using an embedded language approach is that one auto-
matically inherits the features of the host language. Using the strong static typing of
Haskell enables an embedding which ensures type-safety of the models at construction-
time, thus trapping such errors as early as the modelling phase. When new models
are defined, the types of the combined process fragments and basic modelling ele-
ments are checked, and other undefined types are inferred by the embedded type
system. Thus, while the input and output types of tasks are explicitly defined by
the modeller, the types of gateways such as a decision are inferred depending upon
the output types of the fragments attached to its inputs, and the input types of the
fragments attached to its outputs. The main constraint that should be enforced in
the case of gateways is that the data types of all the incoming branches should be
equivalent to the data types of its outgoing branches, for the simplest reason that
the main objective of gateways is to handle the control and data-flow rather than to
manipulate the data.

To infer the appropriate types and restrict constraints on the types of certain mod-
elling elements, type classes [JJM97] provide ad-hoc polymorphism, enabling over-

7




loaded modelling elements to be implemented and thus carry out certain computa-
tions at the type level.

Hence, if for example, an element that expects as input some data item other than
a Customer Record is attached to the output of the task Get Customer Record, the
type checker would generate an error at construction-time and it would prohibit the
user from carrying out other operations on that model. Once the model is defined
and type checked, an internal abstract representation made up of primitive untyped
constructors (with appropriate type annotations) is created. Such a deep embedded
approach, allows interpretation and analysis of defined models.

Thus, when Haskell programs using the domain-specific language (such as the code
shown in Listing 1) are executed, an object representing the model is generated.
However, besides enabling the generation of typed models, the library also provides:
operators to package sub-processes (thus supporting modularisation and composi-
tionality), combinators to effectively combine models, and functions to transform and
quality assure the processes.

3.2 Strongly-Typed Process Fragments

Due to Haskell’s strong and static type system, at construction-time, all the pro-
cess fragments and modelling elements must be typed. If the types of the various
components are not explicitly defined, Haskell’s inferencing type system tries to au-
tomatically infer the appropriate type. Haskell’s type checker carries out type analysis
of the process-model program and thus strictly prohibits all forms of type errors to be
ignored. This is essentially what is required when defining business process models
at the initial phase of the development life-cycle. To make the most out of the host,
a domain-specific type system has to be defined over that of Haskell. In this way,
even though users do not explicitly define the type signature (denoting the input and
output types of the function) for the function representing their model, Haskell is still
able to infer the correct type intended by the user and thus, always ensure a typed
model. In cases where an untyped model is desirable, one can always use a generic
Data type, which places no constraints at all, but which may be later refined as the model
is specialized.

Consider for instance task Update Customer Record defined in Listing 2 for the model in
Figure 1. The type that the compiler infers for this task is defined by the following type
signature:

updateCustRec ::
(PF Order, PF CustRec) -> PF Order



PF Order and PF CustRec represent the actual higher-order types for a process fragment
outputting a user-defined business item of type Order and a process fragment outputting
a user-defined business item of type Customer Record. The correct inferencing of the input
and output types of this task is possible through the type signature defined for the basic
construct in the embedded language, that is:

task :: String -> (PF a, PF b) -> PF ¢

The first type (String) is used to represent the name assigned to the task. The second
((PF a, PF b)) and the third (PF c) types are used to respectively represent the inputs
and outputs of the task. PF a, PF b and PF c are all parameterized polymorphic types,
whereby Haskell’s compiler would bind the generic types a, b and ¢, to any other defined
types — in the case of task updateCustRec, a is bound to type Order, b to type Customer
Record and c to type Order. These types might be specific to a business domain and thus,
before used, the required higher-order types have to be defined for that domain. Since we
want to ensure that the generic types can be manipulated and perceived as business process
modelling types and thus used accordingly, type classes are used to provide the required
ad-hoc polymorphism and to constrain the actual type of such generic types. For this rea-
son, the actual type signature for the construct task in the embedded language is defined as:

task :: (DataType a, DataType b, DataType c) =>
String -> (PF a, PF b) -> PF ¢

The part of the type signature before the implication mark (=>) gives constraints on the
polymorphism of the types, while what follows is the actual type. The constraint in this
case is that generic types a, b and c are all instances of the type class DataType, which is
defined in the embedded language. Since this type class collects all the business domain-
specific types, when a new type is required, example Order, the user is expected to add this
new datatype to DataType by simply defining it as an instance of the class as shown below:

newtype Order = Order ()
instance DataType (Order)

By embedding the domain-specific type system in that of the host as illustrated above,
Haskell’s inferencing system would be able to infer the correct and user-intended type, even
though a type signature is not explicitly defined. It is then also possible to ensure typed
models and use Haskell’s type checker to ensure the appropriate application and use of
constructs in the embedded language.

To allow for various interpretations and analysis of the defined models, a deep embedded
approach is adopted such that, once the model is type checked, an internal abstract repre-
sentation made up of primtive untyped constructors (with type annotations) is created and
then used.



In the domain-specific library, this is possible through the definition of a polymorphic type
PF a defined as

newtype PF a = PF PrimitivePF
and the definition of the abstract recursive data type PrimitivePF which is partly defined as

data PrimitivePF = ConstantValue Value
| Task String PrimitivePF
I

Thus, the abstract representation for the task updateCustRec would internal be defined
as
updateCustRec = Task "Update Customer Record"
(z takeOrder,
y getCustomerRecord)

where z refers to the internal definition of task takeOrder and y refers to the internal
definition of task getCustomerRecord.

The parameterized polymorphic data type PF a is essentially a phantom type [Rhi03] usually
consisting of one constructor (as in this case), whose instances (in this case, PF PrimitivePF)
are independent of the type variables (in this case, a). Thus the solely purpose of such type
variables is to express a type constraint.

In this way, phantom types are used to construct an effective type system which acts
as an additional layer on top of the primitive untyped constructors. This would ensure
the production of type-safe models as early as construction-time and thus trap errors at
the initial phases of the development life-cycle. Moreover, since the primitive untyped
constructors are defined within an abstract data type in the host language, they act as
first class objects in Haskell and thus they facilitate the interpretation and analysis of the
defined model.

3.3 Packaging Models into Sub-Processes

The representation of models as functions automatically gives a modularization mechanism
to modelling. Moreover, referential transparency in functional programming languages,
such as Haskell, also ensures that processes are safely used within other models.

Processes defined in this way provide the right abstraction for a modeller to reason about
and describe a complex model made up of a number of other process fragments. However,
compilation of the Haskell code describing the model reduces it to an internal representation
made up of primitive constructs and thus, the modularization in the original description is
lost. This is a major issue in embedded languages and to mitigate, one typically has to use
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explicit block marking mechanisms. In our case, we resolve this issue be adopting a model
tagging approach.

If an activity in a business process does not have at least one data input, a control input
(as in task takeOrder) is required to start off the execution of that activity. Similarily, if
an activity does not produce any data as output, control should be returned and passed on
to the next modelling element in the process. Thus, by representing the model in Figure 1
as a function as shown in Listing 1, the process orderHandling would have two inputs (a
control and a data input of type String) and produces two outputs (a data output of type
Package and a control from the stop node). However, noting that a data flow implicitly
contains control, the inputs and outputs of a packaged sub-process can be reduced such
that the model in Figure 1 would simply have one input (of type String) and one output (of
type Package). When a model is tagged, the definition is modified such that the required
input control flows are obtained from an input data flow and the returned control flows are
merged into an output data flow. By eliminating unnecessary inputs and outputs, modellers
are enabled to easily and more flexibly reuse sub-processes to create more complex models.

3.4 Connection Patterns and Parameterized Models

To compose complex domain-specific programs, connection patterns have been widely used
in embedded languages for domains such as hardware description. Using such patterns, the
end-user does not need to explicitly refer to the actual inputs and outputs, which act as
connectors, as in Listing 1. Instead, through the combined use of higher-order functions
and functional application, a connection pattern such as ->>- enables the combination of
two processes in sequence by connecting the output of the first to the input of the second.
Such an approach enables model construction to be closer to a visual approach, in such a
way that textual definitions depict precisely the flow and execution order of components as
in visual definitions. For instance, - |- clearly depicts parallel processes and ->>- serially
composes processes such that the output of the first is connected to the input of the next.
In this way, considering the model in Figure 1, its textual construction in Listing 3 would
be more readable and easier to comprehend than the definition in Listing 1.

Frequently, when building large models, one identifies patterns which one could conceptu-
ally generate using a simple algorithm. Since the host language sits above the modelling
language, an embedded language approach enables the user to define functions producing
large, regular models. These functions represent a family of similar structured processes
such that, given a specific input, a particular model in the family is automatically generated.
Furthermore, the input parameters of these functions can include other models, such that
various process fragments can be combined together in any specific and required manner.
This is in fact one of the most effective features of embedded languages.

Consider the composition of multiple fork-joins as in Figure 2. This can easily be defined
using a parameterized model as shown in Listing 4. To enclose n of these fork-join fragments
between a decision and a merge, a parameterized model such as decisionMerge_forkJoins
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Listing 3: Defining the order handling process in Figure 1 using connection patterns
in our language

orderHandling = (takeOrder -|- getCustRec)
->>- updateCustRec
->>- soundCycle reduceltemFromStock
("No More Items?",

(branch_NoMoreItems 0.5,
branch_MoreItems 0.5))

->>- preparePackaging

->>- stop

Listing 4: A parameterized model to define models such as Figure 2

fork_joins [procsInFJ] = fork_join procsInFJ
fork_joins (procsInFJ:procInFJs) = (fork_join procsInFJ) -|-
(fork_joins procsInFJs)

decisionMerge_forkJoins name branches procsInFJsList =
decision_merge name branches (fork_joins procsInFJsList)

Listing 5: Defining the model in Figure 2 using decisionMerge forkJoins (in List-
ing 4)

proc =
decisionMerge_forkJoins
"How Pay?"
(branch_CreditCard 0.5, branch_Cash 0.5)
[(swipeCard, signReceipt, recordCardHolderDetails),
(countMoney, issueCardReceipt)]

12
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(in Listing 4) can be defined. Doing so, then the complex model in Figure 2 can rapidly and
safely be defined by the concise definition in Listing 5, where decisionMerge_forkJoins
is invoked by specifying the name of the decision, the properties for the decision branches
and the list of tasks that should be enclosed by the fork-join fragments.

4 Model Transformations and Quality Assurance

Besides generating the required domain-specific programs, embedded languages also enable
users to manipulate, analyse and verify them. Since these generated programs are essentially
first class data objects in the code of the host language, users can carry out operations on
them by essentially defining functions to obtain the required behaviour.

In our case, transformation and quality assurance functions are particularly useful to assist
modellers in the production of high quality business processes. While transformations help
modellers to transform the current ‘as is’ to the future ‘¢o be’ models, quality assurance of
processes at the modelling phase is essential in BDD to trap control and data-flow errors such
as deadlocks (whereby a process waits indefinitely for some data or operation to complete)
and lack of synchronization (whereby a process receives more than one control and thus
executes more than once). These quality assurance checks are implemented as Haskell
functions which analyse the model using standard functions.

For instance, some of the basic transformations that modellers might frequently use include
substitution or renaming of modelling elements in the process. Modellers might also need
to check some trivial properties about a model, for instance, whether the model contains a
particular named activity, gateway or event and whether a particular name has already been
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Figure 3: Triangular models made up of decisions and a merge

assigned to an element in the model. By providing such basic transformations and checks
in the embedded language, the modeller is enabled to define one’s own transformation as
a function and then, through the use of higher-order functions and functional application,
apply the transformation on the required generated model to produce a new one.

Different from the current visual modelling tools, using an embedded language, modellers
are not limited to a set of pre-defined transformations. Instead, they are free to define their
own sequential, branching and iterative transformations as first class objects in the host
language, as illustrated in Listing 6. In this example, the branching transformation transi
and the simple transformation trans2 are carried out in sequence, such that the required
changes are carried out on the elements of the process. Thus, on execution of transi, if
the model contains a sub-process named Order Verification, then this is renamed to Certify
Order. Else, if it contains a task named Reject Order, then this is substituted with another
task called Apply Special Terms to Order. On completion of the first transformation, the
second one is carried out and thus, the decision Is Order Valid? is renamed to Is Order
Certified?.

Before and after transformations are applied, algorithms to check the soundness of models
(to detect deadlocks and lack of synchronization) are applied, thus ensuring quality assured
composite model transformations. By analysing different models and patterns identified in
[KV07a, KV07b, RtHvdAMO06, RtHEvdA04], functions such as isSound were provided in
the library to try to identify patterns and anti-patterns and thus to detect soundness. If
this is not possible, then soundness is not determined by such functions, and complete-state
analysis techniques would have to be used. To help modellers with the definition of high
quality processes, some of the most complex models, which modelling researchers (such as
Koehler and Vanhatalo in [KV07a] and [KVO07b]) identified as the most common modelling
errors, are provided as pre-defined process fragments or parameterized models. Some of
these include models to construct sound cycles, which in our language is provided as a
pre-defined process fragment named soundCycle (as seen in Listing 3), and functions to
construct triangular models made up of a number of decision constructs and one merge
construct such as in Figure 3.

Using the embedded language approach, connectors are not explicitly defined as modelling
elements and thus modellers can only traverse the generated model top-down. Carrying
out analysis on such a model is not really feasible and intuitive. To mitigate this issue, a
directed graph defined as a set of vertices and edges can be generated. This graph would
flexibly and more intuitively enable the modeller to carry out the required analysis on the
model. Knowing the initial and ending vertices, the modellers would also be allowed to
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Listing  6: Defining the quality assured composite transformation

transOrderProcessing

applySpecialTerms =
task "Apply Special Terms to Order"
(type_Order :-> type_0Order)
transOrderProcessing proc x =
let

hasSubProcOrderVerif =

containsSubProcess "Order Verification" proc
hasTaskRejectOrder =

containsTask "Reject Order" proc

trans1@(wasTransDone, transProc) =

if (hasSubProcOrderVerif)

then (renameSubProc "Order Verification"

"Certify Order" proc x)

else if (hasTaskRejectOrder)

then (substituteTask "Reject Order"

applySpecialTerms proc x)

else (Succeeded, proc x)

trans2 = renameDecision "Is 0Order Valid?"
"Is Order Certified?" transProc

in trans2
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traverse the model either top-down or bottom-up.

5 Evaluation and Case Studies

A number of models created with WSBM were used for our preliminary case studies. These
models were constructed using different approaches and each one was analysed.

The first two case studies are based on two models obtained from the sample projects that
are available with IBM’s tool. These projects are very realistic and they were purposely
created to help modellers learn how to use IBM’s tool. Thus, it was thought that these
models would be ideal to evaluate our first prototype and to help modellers learn how to
define real world processes in our language. In fact, these sample projects are also provided
as samples in our domain-specific library.

The process in the first case study dealt with auto claims handling in a claims assessor
management system of an automobile insurance company. Our main aim was to analyse
the different ways how models and modelling elements can be defined using our language.
We also tried to identify which of these methods would be most feasible and convenient to
use for a modeller who is more acquainted to a visual modelling language. We managed
to illustrate the ease at which complex processes can be defined, without the need for any
knowledge of the host language Haskell and the underlying type system which carries out all
the type-safety checks of the models at construction-time. The definitions using connection
patterns proved to be more comprehensible and compact.

In the second case study, a sophisticated business process that handles customer orders,
from the point the order is received upto the point when the items are reduced from the
stock and dispatched, was considered. An interesting feature of this process is that it
contained links to various data repositories and previously user-defined sub-processes. The
main aim was to identify how easy a complex model can be defined with the least amount
of effort, components and expertize, while still ensuring the correctness of the model. The
importance and usefulness of connection patterns was particularly evident. Such patterns
ensured the right abstraction to construct models which are more readable, comprehensible
and simpler to reason about. Some of the process fragments which are commonly modelled
incorrectly and which are pre-defined in our domain-specific library were also used and
doing so, less effort and expertize was required to correctly define the model.

Noting the importance of connection patterns when handling complex models, a different
order handling process was intentionally constructed to illustrate how most of the connection
patterns, defined in our domain-specific library, could be used. Two semantically equivalent
definitions for the same process were defined. In contrast to the first definition, the second
made use of connection patterns and some of the provided pre-defined parameterized models.
Comparing the two, it was evident that besides being more concise, the second definition was
easier to construct, more comprehensible and required less effort to ensure its correctness.
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Finally, two examples of parameterized models were investigated in the fourth case study.
The main aim was to illustrate different ways how modellers can possibly define their own
parameterized models and convey examples of situations where these would be useful when
defining a business process. The model in Figure 2 was used as one of these examples.
With this study, we illustrated that different from WSBM, modellers are not limited to a
simple recording feature that carries out operations in sequence. More than this, modellers
are free to identify their own commonly used fragments and define them as parameterized
models. Doing so, then the definition of the processes that refer to such models would be
more comprehensible and modular, abstracting away unnecessary details which can easily
be defined in a parameterized model.

Even though these are just preliminary case studies, it is already evident that using an
embedded language approach, various business process models can rapidly be constructed
in a concise and readable manner. This is possible through the use of connection patterns
and parameterized models which provide the right modularity and abstraction mechanisms
to effectively define the required model. Moreover, the produced models are type-safe and
most of the errors are identified at construction-time, such that, they are trapped at the
modelling phase and are thus not allowed to propagate to the succeeding stages in BDD
life-cycle. To effectively prove the benefits of our approach, we still need to carry out more
elaborate empirical studies, possibly involving various domain experts from various areas
and with various skills.

6 Related Work

To assist modellers, over the years, various languages and tools such as WSBM have been
developed. The most recent is Business Process Modelling Notation (BPMN) [Obj08].
Although its main objective is to unify the features of all the other languages and promote
the use of just one standard notation, still, similar to the other previous languages, it does
not adopt a functional approach based on higher-order logic. Thus, our language is the first
modelling language (to specifically model business processes) of this sort.

As argued in [KGKT07], a declarative approach would be appropriate to define composite
transformations and pre and post conditions that assure the quality of the produced models.
In [KHSWO5], pre and post conditions of out-place transformations were represented in
the Object Constraint Language and were successfully used to refine the models into the
executable BPEL code. However, such an approach brings about other advantages. Noting
how effectively certain features in Haskell [Jon03] were used to define circuits [She05] and
other domains, we were inspired to use Haskell as our host and thus define models as
functions. In this way, modellers can declaratively define composite transformations and
pre and post conditions for quality assurance more effectively.

To analyse and interpret the model in an infinite variety of ways, we have adopted a com-
binatorial approach as in [JES00] whereby a combinator library in Haskell was produced
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to compose financial contracts. By employing such a deep embedded approach, the basic
modelling elements in our language act as combinators.

To extend WSBM, in [KGK™'07], IBM presents a model transformation framework. Their
main objective is to provide an abstract layer over the tool, such that specialized develop-
ers are able to easily define new transformations, quality assure them and integrate them
into the tool. However, since it uses first-order logic, developers still need to consider the
implementation of the required operations. Moreover, to carry out checks while the user
is constructing or editing the model, linear-time algorithms that do not introduce any sig-
nificant delay such as [VVL07] would have to be adopted. In contrast, with our approach,
we are able to statically trap errors and ill-typed processes at construction-time through
our embedded domain-specific type system and Haskell’s type checker. These are identified
before any further computation is carried out. Phantom types and type classes are used in
a similar way as in [LM99] and [CSS03] to define our strongly-typed system. Besides this,
specialized functions that operate on the abstract representation are provided to analyse
the structural correctness of the models.

Over the years, various quality assurance techniques have been suggested. In [VVLOT7],
the authors argue that if models are decomposed into Single-Entry-Single-Exit fragments,
they can be quality assured more effectively by using linear-time control-flow heuristics or
complete state analysis. Similarly, a set of patterns and anti-patterns have been identified
in [KVO07a] and [KVO07b]. A number of evaluation criteria for workflow patterns were also
presented in [RtHvdAMO6] and [RtHEvdA04]. To help modellers rapidly and safely trans-
form the current ‘as is’ to the future ‘to be’ models, in-place model transformations must
be combined with quality assurance techniques. Even though IBM’s framework enables
programmers to define such transformations, it is still based on first-order logic and thus, it
not possible for the modellers themselves to create composite branching and iterative trans-
formations and to define pre and post conditions that quality assure them. Our language is
based on higher-order logic and thus the users can declaratively define sequential, branching
and iterative composite transformations and the required pre and post conditions.

7 Conclusion

Through the use of embedded language techniques, we have discussed an approach and
developed a language which is able to capture the domain of business process modelling
and allow the design, modelling, transformation and quality assurance of business processes
in BDD. Connection patterns play an important role to ensure that the definitions of models
are readable, easy to comprehend and type-safe. Unlike visual modelling tools, users are
able to define their own parameterized models and transformations. By defining and using
the provided quality assurance checks, the soundness of the processes is guaranteed and
thus, the derived IT solutions should be correct. Quality assurance can be combined to
model transformations and by using the generated directed graph for the model, users can
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easily analyse the processes. Tools can be used in conjunction to the embedded language
and added as plug-ins to standard business process modelling tools, to facilitate construcion,
analysis and transformations of models in the language. We now plan to link our language
to a model checker to carry out complete state analysis of the constructed models and thus,
assure the quality and thorough evaluation of various models.

Since our language is embedded in Haskell, we were able to adopt a functional approach
and inherit the infrastructure, tools and features of the language without necessarily having
to re-implement them. Various models have been defined in our language to ensure that
our objectives were achieved.

We are aware that some modellers might still prefer to work with a graphical representation
and thus, we started working on some functionality to convert a textual definition in our
language to a visual representation in WSBM. In a similar manner, it would also be useful
to provide some functionality to transform a visual representation of the model to a textual
one in the embedded language. Doing so, this embedded language approach would be linked
to a visual modelling tool and thus, a hybrid of scripting and visual editing approach would
be adopted to modelling.
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