
Chapman, Peter and Micallef, Luana, eds. (2012) Proceedings of the 3rd
International Workshop on Euler Diagrams (Euler Diagrams 2012). CEUR-WS.org,
Canterbury, UK, 143 pp. ISBN urn:nbn:de:0074-854-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/30799/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.cs.kent.ac.uk/pubs/2012/3232

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Online at http://ceur-ws.org/Vol-854. Workshop webpage at http://www.diagrams-conference.org/2012/content/3rd-international-workshop-euler-diagrams.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/30799/
http://www.cs.kent.ac.uk/pubs/2012/3232
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Proceedings of the

3rd International Workshop on Euler Diagrams

Euler Diagrams 2012

Peter Chapman
Luana Micallef
(editors)

Euler Diagrams

3rd International Workshop, Euler Diagrams 2012

Canterbury, UK, July 2, 2012

Proceedings

Editors:

Peter Chapman
University of Brighton, UK
P.B.Chapman@brighton.ac.uk

Luana Micallef
University of Kent, UK
lm304@kent.ac.uk

Copyright © 2012 for the individual papers by the papers' authors.
Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

Preface

The 3rd International Workshop on Euler Diagrams (Euler Diagrams 2012) was
held in Canterbury, UK on 2nd July 2012 in conjunction with the 7th Interna-
tional Conference on the Theory and Application of Diagrams (Diagrams 2012).

Euler diagrams represent relationships between sets, including intersection,
containment, and disjointness. These diagrams have become the foundations of
various visual languages and have notably facilitated the modelling of, and log-
ical reasoning about, complex systems. Over the years, they have been used
extensively in areas such as biosciences, business, criminology and national se-
curity to intuitively visualize relationships and relative cardinalities of sets. This
widespread adoption has allowed analysis of complex collections of data.

Euler Diagrams 2012 covered all aspects of Euler diagram research, partic-
ularly in areas such as logic and reasoning, drawability, generation and layouts,
readability and aesthetics, information visualization and data exploration, and
evaluation including comparison to other representations. After two successful
workshops in 2004 and 2005, this third Euler Diagrams workshop once again
brought together researchers with diverse backgrounds. Participants from both
academia and industry included: mathematicians; computer scientists; experts
in visualization, human-computer interaction and artificial intelligence; informa-
tion designers; and users from various application areas.

Euler Diagrams 2012 solicited long and short papers, of which we accepted
eight long papers and one short paper. Every submission was reviewed by three
members of the Program Committee who are experts in the relevant topics. In
addition to the paper presentations, we were privileged to have Tim Dwyer from
Microsoft Corportion, USA to give a keynote talk on “Developing a Visual Code-
dependency Analysis Tool for the Visual Studio IDE: Research Meets Practice
in Showing Containment in an Interactive Diagramming Tool”.

We owe thanks to many people for helping to make Euler Diagrams 2012 a
success. First and foremost, we are grateful to our Program Committee consisting
of twelve distinguished experts from both academia and industry. Their insight-
ful reviews provided invaluable feedback to authors of submitted papers. David
Dailey, John Howse, Nathaniel Miller and Nik Swoboda kindly agreed to act as
Session Chairs. As part of the Organizing Committee of Diagrams 2012, we are
indebted to the General Chair, Peter Rodgers, the Workshop Chair, Nathaniel
Miller, and the Publicity Chair, Aidan Delaney, for making the process of orga-
nizing the workshop as smooth as possible. We also thank Gem Stapleton for her
indispensable advice. Finally, we acknowledge the US National Science Founda-
tion for funding many of the PhD students to attend Diagrams 2012, and hence,
to also attend our workshop.

June 2012 Peter Chapman
Luana Micallef

Organization

General Chairs

Peter Chapman University of Brighton, UK
Luana Micallef University of Kent, UK

Publicity Chair

Aidan Delaney University of Brighton, UK

Session Chairs

David Dailey Slippery Rock University, USA
John Howse University of Brighton, UK
Nathaniel Miller University of Northern Colorado, USA
Nik Swoboda Universidad Politécnica de Madrid, Spain

Program Committee

Rosario de Chiara Università degli Studi di Salerno, Italy
Gennaro Cordasco Seconda Università degli Studi di Napoli, Italy
Tim Dwyer Microsoft Corportion, USA
Mateja Jamnik University of Cambridge, UK
Stephen North AT&T Research, USA
Mitsuhiro Okada Keio University, Japan
Nathalie Henry Riche Microsoft Research, USA
Peter Rodgers University of Kent, UK
Frank Ruskey University of Victoria, Canada
Paolo Simonetto INRIA, France
Bettina Speckmann TU Eindhoven, Netherlands
Gem Stapleton University of Brighton, UK

Additional Reviewers

Matej Urbas University of Cambridge, UK

Table of Contents

Keynote

Developing a Visual Code-dependency Analysis Tool for the Visual Studio
IDE: Research Meets Practice in Showing Containment in an Interactive
Diagramming Tool .

Tim Dwyer

1

Logic and Reasoning

Completeness Proof Strategies for Euler Diagram Logics .

 Jim Burton, Gem Stapleton, and John Howse
2

On the Cognitive Efficacy of Euler Diagrams in Syllogistic Reasoning:
A Relational Perspective .

 Yuri Sato, Koji Mineshima, Ryo Takemura, and Mitsuhiro Okada

17

Visualizing Syllogisms: Category Pattern Diagrams versus Venn Diagrams

 Peter C.-H.Cheng
32

Understanding and Predicting the Affordances of Visual Logics

 Jim Burton and Peter Coppin
47

Abstractions, Aesthetics, and Constructions

The Online Abstraction Problem for Euler Diagrams .

 Gennaro Cordasco, Rosario De Chiara, and Andrew Fish
62

Aesthetic and Practical Concerns in the Drawing of Euler and
Venn Diagrams: Case Studies using SVG .

 David Dailey

77

Introducing 3D Venn and Euler Diagrams .

 Peter Rodgers, Jean Flower, and Gem Stapleton
92

X

Application

FunEuler: an Euler Diagram based Interface Enhanced with Region-based
Functionalities .

Gennaro Cordasco, Rosario De Chiara, Andrew Fish, and
Vittorio Scarano

107

Multi-Attribute Glyphs on Venn Diagrams to Represent Quantities and
Aid Visual Decoding .

 Richard Brath

122

Author Index . 131

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright © 2012 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Developing a Visual Code-dependency Analysis Tool
for the Visual Studio IDE: Research Meets

Practice in Showing Containment in an
Interactive Diagramming Tool

Tim Dwyer

Microsoft Corp., One Microsoft Way, Redmond, WA, USA
 timdwyer@microsoft.com

The Microsoft Visual Studio IDE includes various tools for diagrammatic code under-
standing. I am currently involved in the final stages of preparing the next major ver-
sion (11) for release later this year. In particular, I am working on a visual dependen-
cy analyzer that enables developers to dynamically build up a diagram from a particu-
lar piece of code or functionality. In designing and developing this product we have
explored a number of methods for showing containment of various code elements to
different types of grouping. Such a grouping⎯for example, members within types,
types within namespaces, and so on⎯is fundamental to organizing object-oriented
software, but is also the ticket to scalability of diagrams representing code. That is,
grouping at various levels provides degrees of abstraction that can be applied to re-
duce the complexity of the visualization.

Using the Euler diagramming convention to show these groupings as overlapping
regions seems very natural. However, as many researchers in the field have observed,
the topology of these overlapping regions can quickly become complex and extremely
difficult to draw in a readable way. In our exploration of the design space for visual
code understanding we have experimented with many different ways to effectively
convey grouping in code-dependency diagrams. It is a cross-disciplinary effort in-
volving developers and UX researchers from within the Visual Studio team, in col-
laboration with HCI and algorithms researchers from Microsoft Research. Some of
this work has been published as research papers while some of it has given us valua-
ble insight but has not yet been distilled into easily publishable units. In this talk, I
look forward to sharing some of these anecdotes as I reminisce the experience of de-
veloping a high-quality commercial domain-specific diagramming tool for main-
stream customers. A process that has also necessitated exploration of novel visual
conventions, layout techniques and interaction.

Completeness Proof Strategies for Euler
Diagram Logics

Jim Burton, Gem Stapleton, and John Howse

Visual Modelling Group, University of Brighton, UK
{j.burton,g.e.stapleton,john.howse}@brighton.ac.uk

Abstract. Visual logics based on Euler diagrams have recently been
developed, including generalized constraint diagrams and concept dia-
grams. Establishing the metatheories of these logics includes providing
completeness proofs where possible. Completeness has been established
for such logics, including Euler diagrams, spider diagrams and a fragment
of the constraint diagram logic. In this paper, we identify commonality
in their completeness proof strategies, showing how, as expressiveness in-
creases, the strategy readily extends. We identify a fragment of concept
diagrams and demonstrate that the completeness proof strategy does
not extend to this fragment. Thus, we have established that the existing
completeness proof strategies are limited. Consequently, we examine the
challenge of devising new approaches to proving completeness in more
expressive logics.

1 Introduction

There has been a lot of recent interest in logics that, in various ways, extend Euler
diagrams. This interest was sparked by pioneering work in the mid 1990s, by
Hammer [3] and Shin [9]. Hammer developed a very simple sound and complete
Euler diagram logic, whereas Shin devised a logic, called Venn-II, that was more
expressive than Euler diagrams and which she also proved to be sound and
complete. Since these early days we have seen the development of diagrammatic
logics with ever-increasing levels of expressiveness. Amongst these logics, perhaps
the most studied is that of spider diagrams, introduced by Gil et al. [2], which
arose from Kent’s constraint diagram logic [6], formalised in [1]. Building on from
the complete systems of Hammer and Shin, spider diagrams have been shown
to be complete [4], as has a fragment of the constraint diagram logic [11]. Other
related logics include the Euler/Venn system of Swoboda and Allwein [13] and
the Euler system of Mineshima et al. [7].

One reason that significant emphasis has been placed on deriving complete-
ness results for logics is that completeness means that the logic is capable of
proving all theorems expressible within the logic. Formally, a theorem is a state-
ment that semantically follows from a set of statements formulated in the logic,
called axioms. In the case of diagrammatic logics, the set of axioms is a set of
diagrams and a theorem is a diagram whose informational content is derivable
from the axioms. For a theorem to be provable from the axioms, we need to be

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c© 2012 for the individual papers by the papers’ authors. Copying permitted for
private and academic purposes. This volume is published and copyrighted by its editors.

3

able to apply so-called inference rules, which are (informally) transformations
that alter the syntax of the axioms, until we obtain the theorem.

This paper has two key parts. First, in section 2, we will demonstrate that
there are substantial similarities in existing completeness proof strategies for
Euler-based diagrammatic logics, with the result that we can consider the strate-
gies to be variations on a single approach. In section 3 we describe the task of
extending the proof strategy to a fragment of concept diagrams and show that
the strategy breaks down. We examine the factors whose interaction prevents
the ready extension of the strategy and show that completeness proofs for more
expressive notations will require a different approach. We conclude in section 4
by describing some of the approaches that may be taken to finding suitable new
strategies.

2 Completeness Strategies for Euler Diagram Logics

There have been a number of sound and complete logics based on Euler diagrams
developed to date. All of the proofs of completeness have used constructive
strategies, providing a proof that the theorem follows from the axioms (in fact,
those strategies we demonstrate are restricted to a single axiom). Moreover, they
all adopt a similar framework, converting the diagrams involved into normal
forms that are easily comparable. As we shall demonstrate in this section, the
completeness proof for each considered logic is an extension of the completeness
proofs for its fragments. We show this by detailing the strategies used for a
hierarchy of increasingly expressive logics: Euler diagrams [3], spider diagrams [4]
and, briefly, constraint diagrams as considered in [11].

2.1 Euler Diagrams

Euler diagrams, as investigated by Hammer [3], are the simplest logic that we will
consider. They comprise closed curves, each with a label. In any given diagram,
no two distinct curves have the same label. Examples can be seen in figure 1,
where d expresses that (the sets) A and C are disjoint, B is a subset of A, and
D is a subset of C. The diagram d′ expresses that D is a subset of C. Whilst
the curves (labelled) A and E are present in d′, no information is given about
the relationship of the sets they represent to C and D.

Fig. 1. Three Euler diagrams.

4

Hammer’s logic contains just three inference rules: Erasure (of a curve), In-
troduction of a New Curve, and Weakening which allows new regions to be
added; Weakening is illustrated in figure 1, where d + AC is obtained from d
by adding a region inside both A and C. To prove completeness of this logic,
Hammer proceeds by constructing a proof-writing algorithm: given an axiom d
and a theorem d′, carry out the following steps to prove d′ follows from d:

1. Apply the Introduction of a New Curve rule, adding one curve labelled L for
each curve label, L, in d′ that is not in d, to give a diagram dc.

2. Apply the Erasure rule, erasing all curves from dc that have labels not ap-
pearing in d′, to give a diagram de.

3. Apply the Weakening rule, adding minimal regions to de until it is the same
as d′.

The proof of completeness involves showing that it is possible to apply this
algorithm whenever d � d′ (i.e. d semantically entails d′), thus establishing that
d ` d′ (i.e. there is a proof that d′ follows from d). We observe that the first step
of this proof can be considered as kind of maximising step: syntax is added to the
axiom that is used in the theorem. The last step of the proof also adds syntax.
In fact, we can interchange the last two steps without significantly impacting the
details of the completeness proof. Thus, if we add minimal regions before erasing
curves we would genuinely have maximised the syntax in the axiom diagram so
that only inference steps that erase syntax are required in order to obtain d′.
In what follows, we denote the maximised version of d by dmax , and we have,
instead:

1. Apply the Introduction of a New Curve rule, adding one curve labelled L
for each curve label, L, in d′ that is not in d, to give a diagram dc; we can
similarly obtain d′c, which we will use to determine inference rule applications
at the next step.

2. Apply the Weakening rule, adding minimal regions to dw until it has the
same the same minimal regions as d′c, to obtain dw = dmax , the maximised
version of d.

3. Apply the Erasure rule, erasing all curves from dmax that have labels not
appearing in d′, to give a diagram de. Then de = d′.

That is, we have:
d ` dc ` dw = dmax ` de = d′.

To determine which minimal regions to add to obtain dmax , we constructed a
diagram, d′c from d′ by adding the curves with labels that occur in d but not
in d′. Then dc and d′c have the same curve labels, so the minimal regions are
immediately comparable; we add regions that are in d′c but are not in dc, thus
maximising the syntax to get dmax . As we shall see, this concept of maximising
the syntax in the axiom diagram is a recurring theme in subsequently developed
completeness proofs. The completeness proof strategy is illustrated in figure 2,
where we show d ` d′.

5

Fig. 2. Proving d ` d′.

In order to illustrate the extension of this strategy to more expressive systems,
including spider diagrams in the next subsection, we formalize the notion of
maximal forms. First, we define an (abstract) Euler diagram:

Definition 1. An Euler diagram is a pair, d = (L,R), where L is a finite set
of curve labels and R ⊆ {(in, L− in) : in ⊆ L} is a finite set of regions.

So, d in figure 2 is, formally, d = (L,R) where L = {A,B,C,D} and

R = {(∅, {A,B,C,D}), ({A}, {B,C,D}), ({A,B}, {C,D}), ({C}, {A,B,D}), ({C,D}, {A,B})}.

For example, ({A}, {B,C,D}) corresponds to the region inside the curve labelled
A but outside the curves labelled B, C, and D1.

Now, going back to the completeness proof strategy, we have seen that dmax

is created by constructing the diagram d′c which does not formally comprise part
of the proof that d ` d′; in figure 2 we have dmax = d′c when d ` d′. We define
the maximal form as follows:

Definition 2. Let dc = (L,R) and d′c = (L′, R′) be Euler diagrams such that
L = L′. The diagram dc is maximal with respect to d′c provided R′ ⊆ R.

It can be shown, given that dc is maximal with respect to d′c, d � d′c if and
only if R = R′. In terms of the completeness proof strategy, this means that
dmax = d′c. Our re-ordering of the steps in Hammer’s completeness proof can
now be informally justified. Firstly, to dc we add precisely the minimal regions
in d′c that are not in dc to give dw = dmax . Since d

′
c is semantically equivalent to

d′ and d′c = dmax , it should be easy to see that we can then merely delete curves
from dmax to give d′, establishing completeness.

1 The elements of R are often called zones but in this paper we call them regions for
consistency with Hammer’s work.

6

2.2 Spider Diagrams

Spider diagrams extend the Euler diagram logic of Hammer in two distinct ways:
they are augmented with (a) trees, called spiders, and shading, both of which are
used within diagrams to place constraints on set cardinality, and (b) logical con-
nectives which are used to allow more complex expressions to be formed. Whilst
Euler diagrams form a very simple monadic first-order logic, spider diagrams
take the level of expressiveness to monadic first-order logic with equality [12].

Examples of spider diagrams can be seen in figure 3 where, in addition to
the information provided by the underlying Euler diagram, d1 expresses – using
spiders – that there are at least two elements, one of which is in B and the
other of which is in B ∪D. Diagram d1 also expresses – using shading – that no
further elements are in B. Here, each of the spiders (one of which comprises a
single node) represents the existence of an element. The shading in a region, r,
expresses that all elements in the set represented by r must be represented by
spiders. The spider diagram d2 ∨ d3 is semantically equivalent to d1.

Fig. 3. Three spider diagrams.

The completeness proof strategy for spider diagrams, from [4], starts with
axiom d and theorem d′, so d � d′, and, as with Hammer’s approach, constructs
a proof to show that d ` d′. In brief, the process starts off by converting d
to a normal form where the only logical connective used is ∨ and the spiders
each comprise just a single node, giving a diagram we will denote by dNF (NF
for Normal Form). Of note is that the construction of dNF includes some of
the steps we need to maximise syntax in the axiom: all of the so-called unitary
diagrams contain all of the curve labels that occur somewhere in either the
axiom or theorem. Unitary diagrams are spider diagrams which do not involve
any logical connectives. In addition, the unitary diagrams in this normal form
contain the same sets of regions. For Euler diagrams we constructed d′c to direct
which regions we needed to add. The same approach is used for spider diagrams:
we convert diagram d′ to, in this case, d′NF in order to allow us to identify which
inference rules to apply to dNF to give d′NF and, subsequently, to obtain d′ (which
is both syntactically and semantically equivalent to d′NF).

Since the rules applied to convert to normal forms are equivalences, we see
that if it can be shown that dNF ` d′NF , then we have established

d ` dNF ` d′NF ` d′.

7

We focus on the part of the completeness proof that establishes dNF ` d′NF .
Since dNF is in normal form, by definition this means that

dNF =
∨

1≤i≤n

di,

where each di is a unitary spider diagram containing only spiders that are single
nodes. Similarly,

d′NF =
∨

1≤i≤m

d′i.

Returning to our consideration of regions, these normal forms ensure that, for
each di and d′j in dNF and d′NF respectively, the sets of regions are the same.
That is, if we consider the underlying Euler diagrams, Li = L′

j and Ri = R′
j .

So, the ‘Euler part’ of di is maximal with regard to the ‘Euler part’ of dj and
we have the right ‘Euler conditions’ for semantic entailment (i.e. if there were
no spiders or shading then di ` d′j). What remains is to consider the effects
of spiders and shading. By comparing dNF and d′NF , an inference rule can be
applied to dNF in order to add spiders and shading to its components, increasing
the number of diagrams in the disjunction, until it can be established that each
unitary diagram, di, in the axiom logically entails a unitary diagram, d′j , in
the theorem. In this sense, the completeness proof strategy for spider diagrams
maximizes the syntax in the axiom by adding curves (to get the ‘right’ curve
label set), adding regions, and finally adding spiders and shading. Similar to the
Euler diagram case, once this maximal form is achieved it is merely a matter of
erasing syntax from di to obtain d′j . We have di ` d′NF (by using an inference
rule analogous to P ` P ∨ Q in propositional logic). Subsequently, it can be
trivially shown that dNF ` d′NF , as required. We refer to [4] for full details.

For our purposes, it is sufficient for us to now define unitary spider diagrams
where spiders comprise only single nodes, and to extend the definition of maximal
to this case.

Definition 3. A spider diagram is a tuple, d = (L,R,R∗, S, η), where (L,R)
is an Euler diagram, R∗ ⊆ R is a set of shaded regions, S is a finite set whose
elements are called spiders and η : S → R is a function that identifies the region
in which each spider is placed.

In figure 3, the spider diagram d2 has d of figure 2 as its underlying Euler dia-
gram for which we previously specified L and R. In addition, there is one shaded
region, and we have R∗ = {({A,B}, {C,D})}, two spiders, so S = {s1, s2}, and
these spiders are placed in regions as given by η(s1) = ({A,B}, {C,D}) and
η(s2) = ({C,D}, {A,B}). For diagrams with spiders comprising single nodes,
the definition of maximal is as follows:

Definition 4. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′. The diagram d is maximal with respect to d′ provided
R′ = R, R∗′ ⊆ R∗ and there exists an injection, f : S′ → S such that for each
s′ ∈ S′, η′(s′) = η(f(s′)).

8

The definition of maximal given for spider diagrams generalizes that for Euler
diagrams2. Intuitively, our definition of maximal is saying that everything that
occurs in d′ also occurs in d. The next lemma follows from a similar result in [4]
(essentially restated here using our terminology):

Lemma 1. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′ and R = R′. Suppose d is maximal with respect to
d′. Then d � d′ if and only if for each shaded region, r′, in R∗′, the number of
spiders in r′ in both diagrams is the same.

Theorem 1. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′ and R = R′. If d is maximal with respect to d′ and
d � d′ then d ` d′.

Proof (Sketch). By lemma 1, each region that is shaded in d′ contains the same
number of spiders in d. Thus we can erase shading from d until R∗ = R∗′,
obtaining di, then remove spiders from di, that are not mapped to by the injective
function f : S(d′) → S(d). Finally, rename the spiders to obtain d′.

Theorem 2. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider dia-
grams such that L = L′ and R = R′. If d � d′ then d is maximal with respect to
d′.

Proof (Sketch). The proof is by contradiction. Suppose d � d′ but d is not
maximal with respect to d′. Then eitherR∗′ 6⊆ R∗ or there is no suitable injection,
f , from the spiders of d′ to those of d. In the first case, d′ contains a shaded
region, r, which is non-shaded in d. Then d′ asserts that the set represented
by r contains exactly n elements, where n is the number of spiders in r in d′.
However, d allows the set represented by r to contain n+ 1 elements, so d 6� d′.
In the second case, where there is no suitable injection, f , there is a region, r′, in
d′ that contains more spiders than in d. Here, d asserts that the set represented
by r′ contains at least n elements, where n is the number of spiders in r′ in d.
However, d′ asserts that the set represented by r′ contains at least n+j elements,
where j is the number of ‘extra’ spiders in r′ in d′. Again, d 6� d′. Thus, since
d � d′, the conditions for maximality must be satisfied.

We now have a completeness result concerning the fragment of the spider
diagram logic that we have defined:

Theorem 3 (Completeness). Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′)
be spider diagrams such that L = L′ and R = R′. If d � d′ then d ` d′.

Proof. If d � d′ then, by theorem 2, d is maximal with respect to d′. By theo-
rem 1, d ` d′.

To summarize, whilst the overall strategy is more complex, we still have a
process of adding syntax to the axiom in order to maximize it with respect to
the theorem we are aiming to prove.

2 Note that for Euler diagrams we stipulated R′ ⊆ R, but for spider diagrams we
have R = R′. This difference is not significant; it merely makes the details of our
argument more straightforward.

9

2.3 Constraint Diagrams

Constraint diagrams build on spider diagrams by adding further syntax, in par-
ticular arrows, to place constraints on binary relations. The system developed
in [11] was shown to be sound and complete, with the completeness proof strat-
egy directly extending that for spider diagrams. We omit formal definitions of
these diagrams and maximal forms, and just illustrate the concepts by example.

Fig. 4. Constraint diagrams: maximal forms and completeness.

First, to give a brief introduction to the meaning of arrows, consider d in
figure 4. The arrow labelled g tells us that (the element represented by) the
spider at its source is related to precisely the elements in C, the target, under
(the relation represented by) g. Similarly, the spider in D is related to the unique
element in B under f , and no other elements. In this example, d is maximal with
respect to both d′ and d′′. Here, d � d′ but d 6� d′′. In the case of d and d′, we
can injectively map the spiders from d′ to d in such a manner that the regions in
which they are placed match. That is, there is an injective function f : S′ → S
where η(s′) = η(f(s′)) and f ensures that the induced function g : A′ → A is
also an injection, where A′ and A are the sets of arrows for d′ and d respectively.
Arrows are of the form (label , source, target) and g(l, s, t) = (l, f(s), f(t)) in the
case where s and t are both spiders. We then delete shading, along with spiders
and arrows that are not mapped to by f and g, from d to obtain d′.

Similar functions exist for d and d′′, but this time we cannot apply inference
rules to erase syntax from d to give d′′. We would need to erase a spider from
a shaded region, which is not sound; as with spider diagrams, the numbers of
spiders in the shaded regions of the theorem, d′, must match those in the axiom,
d. Similarly to the spider diagram case, the number of spiders in the shaded
regions of the theorem must be the same as in the axiom. These examples give
the idea of the maximal forms used in constraint diagrams. We refer the reader
to [11] for the full details which are too complex to illustrate in full here.

3 Concept Diagrams: The End of the Strategy?

We now consider extending the proof strategy described in the previous section
to concept diagrams, which are intended to be used to model ontologies; see [5]
for a practical example. They were introduced by Oliver et al. in 2009 [8] and
extend constraint diagrams. Concept diagrams may include unlabelled curves,
which we call anonymous curves and which represent anonymous subsets of the

10

universal set. These provide an increase in expressiveness over notations such
as constraint diagrams. As with our consideration of spider diagrams, we only
permit spiders to comprise single nodes. Thus, taking a concept diagram from
this fragment and removing its arrows and anonymous curves yields a spider
diagram from the fragment defined in section 2.2.

Fig. 5. A concept diagram.

The diagram in figure 5 is a concept diagram. The part of the diagram made
up of labelled curves, shading and spiders is a spider diagram. The arrows provide
information about binary relations. The diagram d expresses the following, in
addition to the information given in the underlying spider diagram:

1. there are two sets, x and y, the former is a subset of A and the latter is a
subset of C,

2. the image of the relation f , when its domain is restricted to y, is A,
3. there is an element, a, in A− x such that the image of the relation g, when

its domain is restricted to a, is the element in C − y.

We now present the syntax of the fragment of concept diagrams under con-
sideration, adapted from [10].

Definition 5. A unitary concept diagram is a tuple d = (L,C,R,R∗, S, η, A),
where

1. L = L(d) is a finite set whose elements are called labelled curves,
2. C = C(d) is a finite set whose elements are called anonymous curves,
3. R = R(d) is a set of regions such that

R ⊆ {(in, (L ∪ C)− in) : in ⊆ L ∪ C}.

4. R∗ = R∗(d) ⊆ R is a set of shaded regions.
5. S = S(d) is a finite set whose elements are called spiders,
6. η = ηd : S → R is a function that returns the location of each spider.
7. A = A(d) is a finite set of arrows, each of the form (l, s, t), where l is the

label, s ∈ L ∪ C is the source and t ∈ S ∪ L ∪ C is the target.

If d = (L,C,R,R∗, S, η, A) is a concept diagram and C = ∅ then ds =
(L,R,R∗, S, η) is a spider diagram. Semantics are assigned to concept diagrams
similarly to the previous notations discussed: in addition to the usual interpre-
tation of the underlying spider diagram, the arrows of a concept diagram place

11

restrictions on binary relations and the anonymous curves represent the existence
of sets as illustrated in our examples3.

In order to extend the strategy discussed in the previous section to concept
diagrams, we first extend the definition of maximality:

Definition 6. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A)
be concept diagrams such that L = L′. The diagram d is maximal with respect
to d′ provided:

1. there exists a bijection g : L′ ∪ C ′ → L ∪ C such that
(a) g is the identify map when its domain is restricted to L′,
(b) g induces a bijection h : R′ → R, defined by h(in, out) = (in ′, out ′),

where
i. in ′ = {g(c′) : c ∈ in}, and
ii. out ′ = {g(c′) : c′ ∈ out},
which ensures for each (in, out) ∈ R∗′, h(in, out) ∈ R∗,

2. there exists an injection, f : S′ → S such that for each s′ ∈ S′, η′(s′) =
η(f(s′)), and

3. g and f induce an injection p : A′ → A defined by

p(l, s, t) =


(l, g(s), g(t)) if s, t ∈ L′ ∪ C ′

(l, g(s), f(t)) if s ∈ L′ ∪ C ′ ∧ t ∈ S′

(l, f(s), g(t)) if s ∈ S′ ∧ t ∈ L′ ∪ C ′

(l, f(s), f(t)) if s, t ∈ S′.

Equipped with the definition of maximality, we can examine how to generalize
the lemma and theorems from section 2.2 in order to extend the strategy. We
start by considering the equivalent of lemma 1:

Conjecture 1. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. Suppose d is maximal with respect to
d′. Then d � d′ if and only if for each shaded region, r′, in R∗′, the number of
spiders in r′ is the same as the number of spiders in h(r′) in d.

Figure 6 shows a counterexample to conjecture 1. First, it is obvious that d1
is maximal with respect to d2. Here, d1 tells us that there exists a set containing
exactly two elements. From this we can deduce that there exists a set containing
exactly one element. That is, d2 follows logically from d1. The shaded region in d2
contains fewer spiders than in d1. In both these diagrams, we see that the shading
is actually redundant: removing the shading does not alter the informational
content of the diagrams.

3 Here, we note that our representation of concept diagrams assumes that spiders
represent the existence of elements; strictly, in concept diagrams, spiders act as free
variables. Formally, unitary diagrams as we have defined them would need to be
prefixed by existential quantifies (one for each spider) to get our interpretation.
However, to avoid diagram clutter, we simply omit the existential quantifiers since
no ambiguity arises.

12

Fig. 6. The spiders in the shaded regions do not match.

Clearly, such problems concerning spiders and shading impact our ability to
obtain a completeness result for the fragment under consideration. In order to
obtain completeness, we need inference rules that allow us to identify when (a)
shading is redundant, (b) we can delete spiders from shaded regions, and (c)
when anonymous curves are redundant. Worthy of note is that the diagrams
in figure 6 are semantically equivalent to spider diagrams (on removing the
anonymous curves, the informational content is unaltered). Thus, the problems
here arise from the syntactic richness of the notation and are not merely because
of an increase in expressive power.

To proceed with our exposition of problems that arise when attempting to
extend the previously used proof strategies to concept diagrams, we extend the
definition of maximal to incorporate the condition on shading given in conjec-
ture 1:

Definition 7. A concept diagram d is strongly maximal with respect to d′

provided

1. d is maximal with respect to d′, and
2. for each shaded region, r′, in R∗′, the number of spiders r′ is the same as

the number of spiders in h(r′) in d.

By doing this, we are following the standard mathematical process of applying
further constraints to a conjecture for which we have found a counterexample. In
fact, conjecture 1 is trivially true in the strongly maximal case. As a consequence,
our attempts to extend the completeness strategy apply to a smaller fragment
of concept diagrams.

Next, we consider extending theorem 1 to concept diagrams:

Conjecture 2. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d is strongly maximal with respect to
d′ and d � d′ then d ` d′.

To establish the truth of conjecture 2, we start by defining the inference rules
which are needed to establish d ` d′, if d is strongly maximal with respect to d′

and d � d′.

Inference rule 1: Remove arrow. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let a ∈ A be an arrow in d. Let d′ = (L,C,R,R∗, S, η, A− {a}) be
the diagram obtained by removing a from d. Then d logically entails d′.

13

Inference rule 2: Remove shading. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let r∗ ∈ R∗ be a shaded region in d. Let d′ = (L,C,R,R∗ −
{r∗}, S, η, A) be the diagram obtained by removing the shading from r∗ in d.
Then d logically entails d′.

Inference rule 3: Remove spider. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let x ∈ S be a spider with an non-shaded location in d. Let d′ =
(L,C,R,R∗, S−{x}, η, A) be the diagram obtained by removing x from d. Then
d logically entails d′.

Inference rule 4: Substitute spider Let d = (L,C,R,R∗, S, η, A) be a con-
cept diagram and let x ∈ S. Let y be a spider not in S. Let d′ = (L,C,R,R∗, (S−
{x})∪{y}, (η−{(x, η(x)})∪{(y, η(x)}, A) be the diagram obtained by replacing
x with y in d1. Then d is logically equivalent d′.

Inference rule 5: Substitute anonymous curve Let d = (L,C,R,R∗, S, η, A)
be a concept diagram and let c ∈ C. Let c′ be an anonymous curve not in C.
Let d′ be the diagram obtained from d by replacing all occurrences of c with c′.
Then d is logically equivalent d′.

Lemma 2. The inference rules are sound.

We have sufficient inference rules to show that conjecture 2 is true.

Theorem 4. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d is strongly maximal with respect to
d′ and d � d′ then d ` d′.

Proof (Sketch). Assume d is strongly maximal with respect to d′. By the def-
inition of strong maximality there is an injection, p, from the arrows of d′ to
the arrows of d. Therefore, we can apply rule 1, remove arrow, to d until its
arrows match those of d′, i.e. p becomes bijective. Similarly, we can apply rule
2, remove shading, repeatedly until the shading of d matches that of d′. Now,
by the definition of strong maximality, each shaded region, r′, in d′, contains
the same number of spiders as h(r′) in d. This means we can apply rule 3 to
remove spiders until f is bijective. All that differs now are the spiders and the
anonymous curves. Apply rules 4 and 5 to obtain d′.

We must now consider whether theorem 2 extends to concept diagrams:

Conjecture 3. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d � d′ then d is strongly maximal with
respect to d′.

Figure 6 provides a counterexample to conjecture 3 (as well as conjecture 1).
The problems arising from counterexamples like figure 6 may be easy to over-
come (by defining inference rules that remove redundant anonymous curves, for
instance). We will now demonstrate that problems also arise in more complex
situations where arrows are involved.

14

Such a counterexample to conjecture 3 can be seen in figure 7. In d, the
anonymous curves x and y are given labels for convenience. The arrow (f,A,B)
tells us the image of f when its domain is restricted to A is B. One of the elements
inside x is related to nothing under f , which we know by the arrow targeting
the curve that represents the empty set (i.e. the curve containing shading but no
spiders). At least one of the other elements inside A must therefore be related
to the element inside B. In d′, the arrows provide this information that we have
just deduced from the arrows of d. The other information provided by d′ ‘agrees’
with that provided by d, so d � d′. However, d is not strongly maximal with
respect to d′: there is no appropriate injective mapping from arrows of d′ to
those of d.

Fig. 7. Conjecture 3: not enough arrows.

Fig. 8. Adding arrows.

As stated above, with regard to shading and spiders we can attempt to over-
come the problems by devising inference rules for removing redundant anony-
mous curves, for example. With regard to arrows, the question arises as to
whether we can add arrows to diagram d, figure 7, until there is an appropriate
injection from the arrows of d′ to those of d. This leads to the notion of poten-
tial arrows, those arrows which can be added to a diagram without changing its
meaning:

Definition 8. Let d = (L,C,R,R∗, S, η, A) be a concept diagram and let a 6∈ A
be an arrow not in d. Let d′ = (L,C,R,R∗, S, η, A ∪ {a}). If d is semantically
equivalent to d′ then a is a potential arrow for d.

In figure 7, there are two potential arrows for d. The arrow (f,A,B) tells us
that at least one element of A is related under f to the element in B, and so
we can add an arrow which represents this information explicitly. The arrows
(f, x,B) in diagram d1 and (f, y,B) in diagram d2, figure 8, are potential arrows

15

for d, since either arrow can be added to d without changing its meaning. After
adding either arrow, however, the other arrow ceases to be a potential arrow.
Neither d1 nor d2 have any potential arrows. Thus, an element of choice arises
when adding potential arrows to concept diagrams, which again causes problems
for completeness. Rather, adding potential arrows results in a set of obtainable
diagrams each of which is semantically equivalent to the original diagram. In
figure 8, {d1, d2} is the set of such diagrams obtainable from d (figure 7).

If we are to extend the completeness proof strategy by adding arrows to
the axiom, all of the diagrams obtained from d using this process must have an
arrow set that can be injectively mapped to by the arrows of d′ in the appropriate
way; this is because the diagrams obtained are semantically equivalent to d and,
therefore, semantically entail d′. We can see that we can remove syntax from d2
to obtain d′ since d2 is strongly maximal with respect to d′. However , there is
currently no sequence of rules that would, or general strategy that can be used
to, transform d1 into d′, even though d1 � d′ (since d1 is semantically equivalent
to d and d � d′); d1 is not strongly maximal with respect to d′.

A possible approach to overcome this problem is to determine whether we can
remove syntax from d′ without changing its meaning until we have an appropriate
injection from its arrows to those of, in this example, d1. Unfortunately, no arrows
can be removed from d′ without weakening information, so such an approach is
still insufficient.

Compared to the steps required to extend the definition of maximality, the
non-uniqueness of the ways in which we can add arrows is the most serious blow
so far to the aim of extending the completeness proof strategy. It is not at all
clear how we need to change the syntax of an arbitrary axiom, d, to obtain d′

in general. As we have demonstrated, we need to devise strategies for altering
the spiders, shading and the arrows present in either the axiom and/or theorem
until the axiom is strongly maximal with respect to the theorem. Even once this
is solved, it will be challenging to extend the completeness proof strategies to
larger fragments of the concept diagram logic.

4 Conclusion

We have identified commonality in the completeness proof strategies of various
logics based on Euler diagrams and shown how, as expressiveness increases, the
strategy readily extends in some cases. We have illustrated various ways in which
this strategy breaks down for concept diagrams, which are syntactically richer
and more expressive than earlier logics based on Euler diagrams. The problems
identified with extending the completeness strategy to concept diagrams arise
because we cannot simply delete syntax from the axiom to obtain the theorem,
even for the very small fragment that we considered. Thus, we have established
that the existing completeness proof strategies are limited. The non-unique ways
of adding syntax to concept diagrams, which further complicates the issue, re-
sults from the syntactic richness of the notation and from their expressive power.
We believe that the same phenomena will arise in equally expressive logics.

16

We examined ways in which parts of the completeness proof strategy might
be ‘patched up’ but we conjecture that a new strategy needs to be developed. One
(rather undesirable) route to obtaining completeness for fragments of concept
diagrams is to derive inference rules for them inspired by complete symbolic
logics4. This is not the route we want to pursue, strongly preferring a set of
inference rules that makes use of diagrammatic reasoning. Even small fragments
of the more expressive visual logics will require new completeness strategies.

We believe the need for expressive visual logics such as concept diagrams is
clear, since they allow the techniques of diagrammatic reasoning to be applied in
new domains, such as ontology specification. For these logics to be fully exploited,
we need to develop sound inference rules with clearly understood metatheories,
including establishing expressiveness and identifying complete fragments. Un-
derstanding the effect that increases in both syntactic richness and notational
expressiveness have on completeness is essential for the informed design of new
logics.

References

1. A. Fish, J. Flower, and J. Howse. The semantics of augmented constraint diagrams.
Journal of Visual Languages and Computing, 16:541–573, 2005.

2. J. Gil, J. Howse, and S. Kent. Formalising spider diagrams. In IEEE Symposium
on Visual Languages, pages 130–137. IEEE, 1999.

3. E. Hammer. Logic and Visual Information. CSLI Publications, 1995.
4. J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS Journal of Compu-

tation and Mathematics, 8:145–194, 2005.
5. J. Howse, G. Stapleton, K. Taylor, and P. Chapman. Visualizing ontologies: A case

study. In International Semantic Web Conference 2011, pages 257–272. Springer,
2011.

6. S. Kent. Constraint diagrams: Visualizing invariants in object oriented modelling.
In Proceedings of OOPSLA97, pages 327–341. ACM Press, October 1997.

7. K. Mineshima, M. Okada, Y. Sato, and R. Taakemura. Diagrammatic reasoning
system with euler circles: Theory and experiment design. In Diagrams, pages 188–
205. Springer, 2008.

8. I. Oliver, J. Howse, G. Stapleton, E. Nuutila, and S. Torma. Visualising and
specifying ontologies using diagrammatic logics. In 5th Australasian Ontologies
Workshop, volume 112, pages 87–104. CRPIT, 2009.

9. S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.
10. G. Stapleton, J. Howse, P. Chapman, I. Oliver, and A. Delaney. What can concept

diagrams say? In Submitted to Diagrams 2012, 2012.
11. G. Stapleton, J. Howse, and J. Taylor. A decidable constraint diagram reasoning

system. Journal of Logic and Computation, 15(6):975–1008, December 2005.
12. G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The expressiveness of spider

diagrams. Journal of Logic and Computation, 14(6):857–880, December 2004.
13. N. Swoboda and G. Allwein. Using DAG transformations to verify Euler/Venn

homogeneous and Euler/Venn FOL heterogeneous rules of inference. Journal on
Software and System Modeling, 3(2):136–149, 2004.

4 Symbolic logics have radically different (uncomparable) completeness proof strate-
gies due to their vastly different syntax.

On the Cognitive Efficacy of Euler Diagrams in
Syllogistic Reasoning: A Relational Perspective

Koji Mineshima1, Yuri Sato1, Ryo Takemura2, and Mitsuhiro Okada1

1 Department of Philosophy, Keio University
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.

{minesima,sato,mitsu }@abelard.flet.keio.ac.jp
2 College of Commerce, Nihon University

5-2-1 Kinuta, Setagaya-ku, Tokyo 157-8570, Japan.
takemura.ryo@nihon-u.ac.jp

Abstract. Although logic diagrams are widely used as methods for introducing
students to elementary logical reasoning, it is still open to debate in cognitive
psychology whether diagrams can aid untrained people to successfully conduct
deductive reasoning. In our previous work, some empirical evidence was pro-
vided for the effectiveness of a certain type of logic diagrams in the process of
solving categorical syllogisms. However, the question of why certain diagrams
but not others have such inferential efficacy in performing syllogism reasoning
has not been fully answered. Based on a proof-theoretical analysis of categori-
cal syllogisms and diagrammatic reasoning, we supplement our previous study
of cognitive efficacy of diagrams and argue that the relational information under-
lying quantified sentences plays a crucial role in understanding the efficacy of
diagrams in syllogistic reasoning. The distinctive features of our conception of
diagrammatic reasoning are made clear by comparing it with the model-theoretic
conception of ordinary reasoning developed in the mental model theory.

1 Introduction

In logic teaching, Venn and Euler diagrams have been widely used as tools for introduc-
ing students to elementary logical reasoning, including set-theoretical and syllogistic
reasoning.3 However, in the literature of cognitive psychology of reasoning, it is still
open to debate whether external diagrams can aid logically untrained people to conduct
deductive reasoning in a successful way (see Scaife & Rogers [30] for an overview of
the work on external representations in cognitive science). Indeed, it is often claimed
that diagrams can only serve as an auxiliary source of information in deductive problem
solving. Thus, Larkin and Simon [14], in a seminal work on the efficacy of diagram-
matic representations in problem solving in general, argued that reasoning is largely
independent of ways of representing information, and hence, that diagrams are less
beneficial in reasoning than in such tasks as searching and recognition. Additionally,
previous studies reported empirical evidence for negative effects of traditional Euler di-
agrams on the performance of syllogistic reasoning (Calvillo, Deleeuw, & Revlin [4];

3 In fact, Leonhard Euler [7] introduced his diagrams to teach Aristotelian syllogistic logic to a
German princess.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c⃝ 2012 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

18

Rizzo & Palmonari [25]). Furthermore, although various systems of logic diagrams
have been proposed and studied using the methods of mathematical logic (e.g. Shin
[31]; Hammer [11]; for a survey, see Stapleton [34]), little attention has been paid to the
question of how effective such diagrammatic systems are in people’s actual reasoning.4

To improve this situation, we have studied how logic diagrams can support actual
deductive reasoning, focusing on the case of syllogistic reasoning supported by Euler
and Venn diagrams that are externally given to reasoners (Sato, Mineshima & Takemura
[26, 27]).5 Typical examples of reasoning tasks that we examined are shown in Figs.1
and 2.

All A are B.

No C are B.

A
B

C B

(Therefore, No C are A)

Fig.1 An example of a syllogistic reasoning
task with Euler diagrams

All A are B.

No C are B.

(Therefore, No C are A)

Fig.2 An example of a syllogistic reasoning
task with Venn diagrams

Euler diagrams represent set relationships in terms of inclusion and exclusion relations
between circles (see the diagrams in Fig.1). By contrast, Venn diagrams have a fixed
configuration of circles and represent set relationships by stipulating that shaded re-
gions denote the empty set (see the diagrams in Fig.2). In the experiments of Sato et al.
[26], subjects were divided into three groups, called the Euler group, Venn group, and
Linguistic group. The Euler group and Venn group were first provided with instructions
on the meanings of diagrams. A pretest was conducted to check whether the subjects
understood the instructions correctly. The Euler group was then asked to solve syllo-
gistic reasoning tasks in which subjects were presented with two sentential premises
together with two corresponding Euler diagrams, as in Fig. 1, and asked to choose a
valid conclusion. Similarly, the Venn group was asked to solve tasks like the one in Fig.
2. The Linguistic group was presented only with sentential premises and required to
choose a valid conclusion without any aid from diagrams. The results showed that (1)
the performance of the Euler and Venn groups was significantly better than that of the

4 A notable exception is important work on hyperproof by Stenning, Cox, and Oberlander [36],
where the effects of teaching elementary logic classes using Hyperproof methods, i.e., multi-
modal graphical and sentential methods, and a standard syntactic teaching method are com-
pared.

5 Although traditional syllogisms are less expressive than standard first-order logic, they are one
of the most basic form of natural language inferences and still important for investigating hu-
man reasoning. Indeed, syllogistic logics, considered as alternative logical systems to standard
first-order logic, have recently attracted increasing attention from logical and linguistic points
of view, for example, in the study of decidable fragments of first-order logic; see Moss [21]
and references given there.

19

Linguistic group, and (2) the performance of the Euler group was significantly better
than that of the Venn group.

Sato et al. [26, 27] argue that the differences in performance between the three
groups can be explained on the basis of the distinction between two kinds of effi-
cacy, namely, interpretational and inferential efficacy. By interpretational efficacy we
mean the effects of diagrams on determining the correct interpretation of a sentence.
For example, sentence All B are A tends to be interpreted as equivalent to All A are
B.6 Diagrams can contribute to avoiding deductive reasoning errors due to such un-
intended interpretations of linguistic materials. For example, those who are presented
with diagrams representing All B are A as shown in Figs. 1 and 2 can immediately see
that the semantic information delivered is not equivalent to All A are B by virtue of
their form. Diagrams can also can play a crucial role in reasoning processes. We refer
to the efficacy of diagrams in reasoning processes themselves as “inferential efficacy”.
More specifically, when diagrams of a certain form are externally given, the process of
solving deductive reasoning tasks could be replaced with the syntactic manipulation of
diagrams.

It should be noted that in the experimental set-up of Sato et al. [26], subjects in
the Euler and Venn groups were given instructions on the meaning of diagrams, while
subjects in the Linguistic group were not. Then one might argue that the difference in
training could have had a major effect on differences in performance between the Euler
and Venn groups, on the one hand, and the Linguistic group, on the other. However,
such an objection can be avoided if a comparison is made between the Euler group and
the Venn group. The latter was also given substantial instructions and practice trials, yet
the result showed that the performance of the Euler group was significantly better than
that of the Venn group.

The hypothesis explored in Sato et al. [26] was that the difference in performance
between the three groups can be explained by assuming that Venn diagrams only have
interpretational efficacy, while Euler diagrams have both interpretational and inferen-
tial efficacy.7 That is, Euler diagrams not only contribute to the correct interpretations of
categorical sentences but also play a substantial role in the inferential processes of solv-
ing syllogisms. To substantiate this claim, Sato et al. [27] outlined a cognitive model
of syllogistic inferences that are externally supported by diagrams, assuming that both
(categorical) sentences and diagrams conventionally express semantic information, and
furthermore, that diagrams are syntactic objects to be manipulated in reasoning pro-
cesses. In Sato et al. [27], however, the semantic and syntactic (proof-theoretical) anal-
yses of categorical sentences and diagrams were left unspecified. Consequently, the
question of why certain logic diagrams, in particular, Euler diagrams, have inferential
efficacy in syllogism solving has not been fully answered. The rest of the present paper
is devoted to addressing this question. Building on the proof-theoretical study of cate-
gorical syllogisms and Euler diagrams in Mineshima, Okada and Takemura [19, 20], we

6 This is known as “illicit conversion error” in the literature; see, e.g. Newstead & Griggs [22].
7 Gurr [10] emphasizes that in addition to the process of combining information, the process

of extracting information from a diagram plays a role in diagrammatic reasoning. Sato, Mi-
neshima, and Takemura [28] examines differences in the cognitive process of extracting infor-
mation between Euler and Venn diagrams in some details.

20

will analyze both syllogistic and diagrammatic inferences from a unified perspective,
which we call a relational perspective. Thus, the aim of this paper is to make a con-
nection between the logical study of syllogisms and diagrams in Mineshima et al. [19,
20] and the cognitive study of diagrams in Sato et al. [26, 27], and thereby to provide a
model of reasoning in which the experimental results of Sato et al. [26, 27] can be ex-
plained in a natural way. The key assumption is that both syllogistic and diagrammatic
inferences are decomposed as inferences with two primitive relations, i.e., inclusion and
exclusion. We claim that the efficacy of Euler diagrams in syllogistic reasoning derives
from the fact that they are effective ways of representing and reasoning about relational
structures that are implicit in categorical (quantified) sentences.

The formal study of logic diagrams in Mineshima, Okada and Takemura [20] also
sheds light on the question of how diagrams can contribute to judging that a given in-
ference is invalid in actual reasoning. It has been noticed in cognitive psychology of
reasoning that falsification tasks, including tasks that require a reasoner to judge that
there is no valid conclusion drawable from a given set of premises, are often difficult
for untrained people when inference materials are only presented in linguistic (senten-
tial) form. Interestingly, the experimental results in Sato et al. [26] showed that Euler
diagrams were particularly effective in supporting such falsification tasks of syllogistic
reasoning. We argue that the efficacy of Euler diagrams in falsification tasks is partly
explained by assuming that when such diagrams are externally given, the information
that there is no valid conclusion drawable from the premise diagrams can be obtained
in a direct way, specifically, by combining premise diagrams and extracting the rele-
vant relational information. This way of understanding diagrammatic reasoning can be
made clear by comparing it with model-based inferences such as those studied in the
mental model theory (e.g., Johnson-Laird & Byrne [13]), where the process of con-
structing a particular model plays a crucial role in checking the validity and invalidity
of an inference. By taking a closer look at the difference between the two conceptions
of inferences, we will point out that in reasoning with Euler diagrams, constraints on
unification processes of diagrams play an important role; furthermore, both processes
of proving and refuting a conclusion can be realized as a uniform process of syntactic
manipulation of diagrams.

This paper is structured as follows. In Section 2, we provide a preliminary back-
ground on a relational analysis of categorical syllogisms, originally provided in Mi-
neshima, Okada and Takemura [20]. In Section 3, we turn to the relational analysis of
Euler diagrams. In Section 4, our model of diagrammatic reasoning is compared with
that of the mental model theory. Finally, in Section 5, we give a summary of the discus-
sion.

2 Background: Categorical syllogisms as relational inferences

Categorical syllogisms are inferences concerned with quantificational sentences in nat-
ural languages. According to the traditional analysis in logic textbooks, such quantifi-
cational sentences are analyzed as formulas in first-order logic, i.e., formulas involving
quantification over individuals. Thus, All A are B is analyzed as ∀x(Ax → Bx) and Some
A is B as ∃x(Ax∧Bx), and so on. By contrast, according to the theory of generalized

21

quantifiers (see Barwise & Cooper [2]), which is dominant in the field of natural lan-
guage semantics, quantificational expressions such as every, some, and no are analyzed
as denoting relations between sets. Thus, a universal sentence of the form All A are B is
semantically analyzed as expressing that A ⊆ B, where the determiner all corresponds
to the subset relation. Similarly, No A are B is analyzed as expressing that A∩B = /0,
where the determiner no corresponds to the disjointness relation.8 Proof systems for
such a relational semantics of quantificational sentences have been investigated in the
modern reconstructions of Aristotelian syllogisms (cf. Łukasiewicz [16]; Corcoran [6];
Smiley [33]) and in the recent development of natural logic (cf. Moss [21]). In these
studies, the relational structure of a quantified sentence is taken as a primitive logical
form; as a result, syllogistic inferences are formalized as a certain kind of relational
inference without reference to first-order quantifiers and individual terms.

Mineshima, Okada, and Takemura [20] present a simple proof system based on
two primitive relations, i.e., inclusion @ and exclusion ⊢⊣ for syllogistic inferences.9

The system is called a generalized syllogistic inference system and abbreviated as GS.
The inference system of GS is simple but expressive enough to represent categorical
syllogisms in a perspicuous way. In the rest of this section, we provide a brief overview
of the syntax of GS and then see how to formalize categorical syllogisms using inclusion
and exclusion relations of GS.

The language of GS is defined as follows. Terms of GS (denoted by X ,Y,Z, . . .)
are divided into singular terms (denoted by a,b,c, . . .) that correspond to proper names
like Socrates, and general terms (denoted by A,B,C, . . .) that correspond to common
nouns like philosopher. An atomic formula (denoted by P,Q, . . .) is of the form X @ Y
or X ⊢⊣Y , where X and Y are terms. A complex formula (denoted by P ,Q , . . .) is defined
as a set of atomic formulas, {P1, . . . ,Pn}. Intuitively, {P1, . . . ,Pn} means the conjunction
of atomic formulas, P1∧·· ·∧Pn. To simplify the notation, we usually omit the brackets.

The proof system of GS is shown in Fig. 3. A proof in GS has a tree form; it starts
with formulas of GS or Axioms (ax) and proceeds by one of the inference rules in Fig.
3.10 As we will see below, the crucial rules for representing categorical syllogisms are
the (@) and (⊢⊣) rules. A set-theoretical semantics of GS can be given in a natural way,
but to conserve space we omit it here. See Mineshima, Okada & Takemura [19, 20],
where soundness and completeness are established.

Now we turn to categorical syllogisms. A categorial sentence has one of the follow-
ing forms: All A are B, No A are B, Some A are B, and Some A are not B, where A and B
are distinct general terms. We assume that readers are familiar with what count as valid
inferences in categorical syllogisms.11 A translation (·)◦ from a categorical sentence

8 A strong argument against the traditional first-order analysis of natural language quantifiers
comes from the fact that proportional quantifiers such as most and half of cannot be properly
represented in first-order logic. See Barwise & Cooper [2].

9 The notation of ⊢⊣ is due to Gergonne [9], where symbols for some binary relations (the so-
called “Gergonne relations”) were introduced for the purpose of the abstract representation of
Euler diagrams.

10 The (C) rule allows us to infer a @ A (“a is A”) from A @ a (“Only a is A”) and a @ b (“a is
b”) from b @ a (“b is a”).

11 See Mineshima et al. [20] for discussion on so-called existential import.

22

Axiom (ax): X @ X .
Inference rules:

X @ Y Y @ Z
X @ Z

(@)
X @ Y Y ⊢⊣ Z

X ⊢⊣ Z
(⊢⊣) X @ a

a @ X
(C)

P Q

P ∪Q
(+) P

Q
(−)

where in (+), P ̸= Q , and in (−), Q is a proper subset of P .

Fig.3 Proof system of GS

into a GS-formula is defined as follows.

(All A are B)◦ = A @ B

(No A are B)◦ = A ⊢⊣ B

(Some A are B)◦ = {c @ A, c @ B} for some c

(Some A are not B)◦ = {d @ A, d ⊢⊣ B} for some d

where c and d are arbitrarily chosen singular terms. The crucial point is that in GS
existential sentences are decomposed in terms of inclusion and exclusion.12 Given this
translation, all the valid inferences in categorical syllogism can be transformed into the
proofs in GS. Let us look at some typical examples. To begin with, syllogisms Barbara
(All A are B, All B are C. Therefore, No A are C) and Celarent (All A are B, No B are
C. Therefore, No A are C) correspond to the (@) and (⊢⊣) rules, respectively.

All A are B
A @ B

All B are C
B @C

A @C
(@)

All A are C

All A are B
A @ B

No B are C
B ⊢⊣C

A ⊢⊣C
(⊢⊣)

No A are C

Here, to make clear the translation between categorical sentences and formulas of GS,
we attach a categorical sentence with each assumption and conclusion. As a case in-
volving an existential sentence, consider a syllogism Darii (Some A are B, All B are C.
Therefore, Some A are C). This inference is simulated in GS as follows:

Some A are B
a @ A, a @ B

a @ A
(−)

Some A are B
a @ A, a @ B

a @ B
(−) All B are C

B @C
a @C

(@)

a @ A, a @C
Some A are C

(+)

As stated above, the formula “a @ A,a @ B” means the conjunction of a @ A and a @ B.
Hence, the (+) and (−) rules can be understood as corresponding to introduction and

12 This translation is similar to Aristotle’s alternative way of formulating categorical syllogisms,
known as ecthesis. See Łukasiewicz [16] for a modern reformulation of ecthesis.

23

elimination rules of conjunction in standard natural deduction systems (i.e., the rule
which allows to infer P ∧ Q from P and Q and the rule which allows to infer P as
well as Q from P∧Q). By decomposing existential sentences in terms of inclusion and
exclusion, we can represent syllogisms like Darii without using some additional rules
specific to existential sentences; if we take existential sentences as primitive formulas
or define them from other formulas using sentential negation (e.g. some A are not B is
defined as not (all A are B)), we will need such additional axioms or inference rules. 13

It turns out that all the valid categorical syllogisms (with and without existential import)
can be simulated in GS; more specifically, they can be proved using the inference rules
(@), (⊢⊣), (+), and (−) only.14

If the relational information encoded by categorical sentences was transparent to
untrained reasoners, it would be much easier for them to solve categorical syllogisms.
However, the cognitive psychological studies of deductive reasoning accumulated so
far showed that this is not the case (see Sato et al. [26] and references given there).
For example, the fact that logically untrained people often interpret All A are B as
equivalent to All B are A indicates that the relational information A @ B is not directly
available to them. Similarly, the observed difficulties in solving categorical syllogisms
involving existential sentences (cf. Evans, Newstead & Byrne [8]) suggest that there is a
certain gap between ordinary ways of performing existential inferences and relationally
decomposed processes as indicated above.

3 Solving categorical syllogisms using diagrams

As mentioned in Section 1, there are two aspects in which diagrams can externally
support ordinary reasoning. Given the relational analysis of categorical syllogisms in
the last section, we can summarize the effectiveness of Euler diagrams in syllogistic
reasoning as follows.

1. Interpretation. Euler diagrams that are externally given to reasoners make explicit
the relational information contained in categorical sentences.

2. Inference. Then the process of combining premise information to draw a valid con-
clusion can be replaced by the process of manipulating diagrammatic objects and
extract the relevant relational information.

In what follows, we will concentrate on the inferential aspect in (ii). We start by ex-
plaining the representation system of Euler diagrams used in the experiment of Sato et
al. [26, 27], called the EUL system. The formal properties of this system are studied in
Mineshima et al. [19]. The exposition in this section is informal. More technical mate-
rial as well as a detailed discussion on the motivation behind the relational approach to
formalizing Euler diagrams can be found in Mineshima et al. [19].

13 See Łukasiewicz [16], Corcoran [6], Smiley [33], and Moss [21] for such proposals.
14 For a proof, see Mineshima et al. [20]. Conversely, all the proofs in GS that have syllogistic

formulas in premises and conclusion can be simulated in categorical syllogism. This means
that categorical syllogisms are faithfully embeddable into GS. In other words, although GS is
more expressive than categorical syllogism, the syllogistic fragment of GS proves all and only
the valid inferences in categorical syllogism.

24

The EUL system is a simple representation system; diagrams are composed only
of circles and points and no syntactic device to express negation, such as “shading” in
Venn diagrams, is introduced. Following traditional Euler diagrams, the EUL system
represents quantificational sentences in terms of the spatial relationships between cir-
cles, in particular, inclusion and exclusion relations (see Fig. 1 in Section 1). In what
follows, we refer to diagrams in the EUL system simply as Euler diagrams.

In the EUL representation system, an Euler diagram D is abstractly defined as a set
of relations holding between objects in D. Based on this idea, a proof system for Euler
diagrams, called GDS, is developed in Mineshima et al. [19]. An alternative, standard
approach to formalization of diagrams is a “region-based” approach, where diagrams
are defined as a set of regions (e.g. Shin [31]; Hammer [11]).15 In our approach, there
are three kinds of relations to be distinguished:

(i) a circle or a point X is located inside a circle A, symbolically written as X @ A;
(ii) a circle or a point X is located outside a circle A, written as X ⊢⊣ A;

(iii) a circle A and a circle B partially overlap each other, written as A ◃▹ B.

In this symbolic notation, we use the same binary symbols as in GS for the relations in
(i) and (ii). Indeed, the abstract representations of diagrams can be naturally translated
into formulas of GS.

A deductive reasoning task generally requires us to combine the information con-
tained in premise sentences. Given a correspondence between Euler diagrams and cat-
egorical sentences, such a process of combining the premise information can naturally
trigger the process of unifying premise diagrams and extracting the relational informa-
tion. We will explain, by some typical examples, how our Euler diagrams can be used
in representing and reasoning about categorical sentences.

First, consider the case of the syllogism of the form: All A are B, No C are B;
therefore No C are A.

De
1

All A are B.

A
B

De
2

No C are B.

C B

s +Unification

De
3

C B
A

No C are A.

Fig.4 Solving a syllogism with Euler diagrams

Here the premise All A are B is associated with diagram De
1, where the relation A @ B

holds, and the premise No C are B is associated with diagram De
2, where the relation

15 A comparison of these two approaches from a logical point of view is found in Mineshima
et al. [18], where the region-based inference system is formalized as resolution calculus, in
contrast to the relation-based system formalized as a natural deduction system.

25

C ⊢⊣ B holds. These diagrams make explicit the relational information contained in the
premise sentences. The operation of combining two diagrams De

1 and De
2 in Fig. 4 is an

instance of an application of the unification rule.16 In this case, the unification process
consists in identifying circle B and keeping all the relations holding on the premise
diagrams. The resulting diagram, De

3, has three relations: A @ B, C ⊢⊣ B and A ⊢⊣ C.
The first two are inherited from the premise diagrams De

1 and De
2, and the last one, the

exclusion relation A⊢⊣C, is created as a by-product of the unification process. As is seen
in Fig.4, this new relation A ⊢⊣ C corresponds to the sentence No C are A, and hence,
one can arrive at the valid conclusion of this syllogism.

An important characteristic of the unification process is that by combining the two
premise diagrams, one can almost automatically determine the semantic relation hold-
ing between the objects in question, without any additional operation. Such information
that is automatically inferred from the result of a diagrammatic operation is what Shi-
mojima [32] calls a “free ride”.

For the process of unifying diagrams, there are two constraints that determine the
spatial relationship between objects in the conclusion diagrams. Namely, for any circle
or point X and for any circle Y and Z,

(C1) if X is inside Y in one diagram D1 and Y is inside Z in another diagram D2, then X
is inside Z in the combined diagram D1 +D2;

(C2) if X is inside Y in one diagram D1 and Y is outside Z in another diagram D2, then
X is outside Z in the combined diagram D1 +D2.

In the example in Fig. 4, the relation A ⊢⊣C is obtained using (C2). Note that these two
constraints have counterparts in inference rules in GS: (C1) corresponds to the (@) rule
and (C2) to the (⊢⊣) rule.

The constraints (C1) and (C2) seem so natural and intuitive that even users who
do not have explicit training on diagrammatic reasoning can exploit them to draw a
correct conclusion without much effort. Theoretically, the inference rules (@) and (⊢⊣),
which are crucial for deriving valid syllogisms, are simulated in terms of the spatial
constraints, (C1) and (C2). Such a simulation can happen in actual syllogistic reasoning
with external diagrams. For example, a procedure using the (⊢⊣) rule, which licenses
us to derive A ⊢⊣ C from A @ B and B ⊢⊣ C, can be made manifest by perceiving the
spatial relationships between diagrammatic objects as seen in Fig. 4. We can then argue
that sentential (linguistic) premises themselves do not provide untrained reasoners with
specific procedures of solving syllogisms in terms of (@) and (⊢⊣), such as the ones
we saw in the last section; by contrast, Euler diagrams externally given provide the
reasoners with a concrete problem-solving procedure based on intuitive understanding
of such constraints as (C1) and (C2).

As a second example, let us look at a syllogism having no valid conclusion, which
is known to be particularly difficult for untrained reasoners (cf. Evans et al. [8]) and
hence deserves special attention.

16 The rule of unification plays a central role in the inference system for Euler diagrams devel-
oped in Mineshima et al. [20]. The system has another rule called deletion rule, which allows
to delete an object from a given diagram. For discussion on the relevance of deletion rule to
the cognitive process of information extraction, see Sato, Mineshima and, Takemura [28].

26

All B are A.

De
1

B
A

No C are B.

De
2

C B

s +Unification

De
3

C
A

B

No valid conclusion.

Fig.5 Solving a syllogism with no valid conclusion using Euler diagrams

In the syllogism in Fig.5, sentence All B are A is associated with diagram De
1, where the

relation B @ A holds, and sentence No C are B is associated with diagram De
2, where

the relation C ⊢⊣ B holds. Again, by unifying these two diagrams, one can obtain the
conclusion diagram De

3. Note that in this case, neither constraint (C1) nor (C2) can be
applied. That is, none of the the inclusion and exclusion relations between circles A
and C (i.e., A @ C, C @ A, and A ⊢⊣ C) is inferable from the information conveyed by
the two premises. In such a case, one needs to put circles A and C in such a way that
they partially overlap each other, that is, A ◃▹ C holds. Note that such a convention of
partially overlapping circles is common to Venn diagrams; it enables us to handle partial
or indeterminate information in a relatively simple way.

To be more specific, the relevant rule is the following. For any circles X and Y ,

(C3) if none of the relations X @Y , Y @ X , or X ⊢⊣Y holds in the combined diagram, put
X and Y in such a way that X ◃▹ Y holds.

Using this rule, one can see that the relations holding on the conclusion diagram De
3 in

Fig. 5 are B @ A, B ⊢⊣C, and A ◃▹C. The fact that A ◃▹C holds in the conclusion diagram
indicates that no specific semantic information about terms A and C can be drawn from
the premises. This amounts to saying that there is no valid conclusion with respect to
A and C (except trivial ones such as A @ A) in this syllogism. Here again, we can see
that Euler diagrams associated with sentential premises play a dual role in the process of
checking the invalidity of a syllogism: first, they make explicit the relational information
underlying categorical sentences; second, the unification of premise diagrams using the
constraints (C1) and (C2) leads us to understanding what relational information can
be obtained in a given inference; when no particular inclusion or exclusion relation is
newly introduced by the unification, that is, when the situation is as described in (C3),
the reasoner can conclude that there is no valid conclusion of the inference.

The procedure of checking invalidity of inferences sketched here is remarkably
distinguished from the standard procedure in model-theoretic semantics, according to
which an inference is judged to be invalid if one can construct a counter-model in which
all the premises are true but the conclusion is false. Note that some existing proposals
using diagrams are also based on such an idea of counter-model constructions. Thus in
Lewis Carroll’s version of logic diagrams [5], an inference is invalid if it is impossible
to superpose all the premises and the negation of the conclusion; see Lear [15] for a
discusion. The diagrammatic procedure based on (C3) is distinctive in that it does not

27

depend on any process of negating the conclusion; the information that there is no valid
conclusion with respect to the two terms in question can be obtained in a direct way,
via a process of unifying premise diagrams. An interesting point to note is that the pro-
cess of manipulating premise diagrams, more specifically, the process of unification, is
common to the tasks of checking validity and invalidity. In other words, not only proof
but also refutation is realized as a syntactic process of manipulating diagrams, rather
than as a process of constructing counter-models.

4 Comparisons with the mental model theory of reasoning

As mentioned in Section 1, it has been noticed in cognitive study of deductive reason-
ing that falsification tasks are often difficult when inference materials are presented in
natural languages (cf. Evans et al. [8]). As we argued above, our logic diagrams can
contribute to solving such falsification tasks by making available to users syntactic pro-
cesses of unifying diagrams. An interesting feature of such unification processes is that
premise diagrams themselves impose a constraint on the possible ways of unification,
so that by simply trying to unify the premise diagrams, the user can observe what re-
lations hold between the objects in the resulting diagram. In this respect, it is worth
noting that there is a difference between the underlying mechanism behind unification
processes of diagrams discussed in the last section and the reasoning mechanism behind
the mental model theory (e.g. Johnson-Laird & Byrne [13]), which is a dominant model
of linguistic (sentential) deductive reasoning in cognitive psychology.

According to the mental model theory, mental models are made up of tokens (i.e.,
elements of a set) and supposed to represent states of the world (cf. e.g., Bara, Buccia-
relli, & Lombardo [1]). For instance, sentence All A are B corresponds to a model in
which each token of set A is connected to a token of set B. Similarly for sentence All B
are C, in which case each token of set B is connected to a token of set C. As a crucial
step, such two premise models are integrated into a single mental model. In the present
example, we can finally obtain a model in which each token of set A is connected to a
token of set C. This model corresponds to the categorical sentence All A are C. Note
that not all tokens of set C are necessarily connected to some token of set A. By this
fact, we can confirm that All C are A cannot be a valid conclusion of this syllogism.
In general, difficulties in drawing a valid conclusion are measured by the number of
models that can be constructed from the integrated model.

As is suggested by this brief exposition, there is a certain similarity between pro-
cesses of solving syllogisms using Euler diagrams and reasoning processes with mental
models. Specifically, a unification process of Euler diagrams is very similar to an inte-
gration process of mental models, and both processes play a crucial role in deriving a
valid conclusion from given premises.

However, by taking a closer look at processes of invalidity judgements, we can
find that an important difference exists between the two conceptions. In the case of
syllogistic reasoning by mental models, processes of integrating mental models can be
performed without determining the relation between the tokens in question. That is,
alternative models are to be searched for after performing the process of integrating the
premise models. Thus, according to the theory presented by Bucciarelli and Johnson-

28

Laird [3], the process of constructing alternative models from an integrated model is
constrained by a representational convention such as [a]. Bracketed token [a] indicates
that the set containing it is represented by this individual; no new tokens can be added to
the sequence with bracketed tokens. On the other hand, in the case of tokens without a
square bracket, new tokens can be added so that alternative models are constructed. As
an illustration, consider the case of a syllogism having no valid conclusion, as shown
in Table 1 (cf. Bucciarelli and Johnson-Laird [3], p. 260). Here, there are two premise
models corresponding to All A are B and All C are B. In the integrated model, then,
the relationship between set A and C is indeterminate; the integration process does not
require us to resolve such indeterminacy, in sharp contrast to the case of unification in
diagrammatic reasoning. Processes of adding the token “b” to this integrated model are
performed after the integration process. As a result, the integration process itself does
not constrain the ways of constructing alternative models; see Stenning & Oberlander
[35] for a related discussion.

Table 1 Representations by mental model theory for the syllogistic task from premises All A are
B and All C are B to the conclusion that there is no valid conclusion.

[a] b [c] b [a] b [c] [a] b [a] b
[a] b [c] b [a] b [c] b [c] b [c]

[a] b [c] [a] b
b [c]

All A are B All C are B
1st premise 2nd premise Integrated model Alternative model 1 Alternative model 2

On the other hand, the unification process of Euler (EUL) diagrams forces a user to
decide what relation holds between the terms in question. That is, the configurations of
diagrams constrain what relations (i.e., @, ⊢⊣, or ◃▹) are created in unifying the premise
diagrams. As is well known, such a characteristic of diagrammatic representations is
called specificity by Stenning and Oberlander [35]. In the case of syllogistic reasoning
with our Euler diagrams, the relevant constraints are (C1) and (C2); these constraints are
almost self-evident given intuitive understanding of inclusion and exclusion relations.
In the case of falsification tasks, in particular, such a constraint can increase the chance
of finding that the indeterminacy relation ◃▹ holds between the relevant objects, say, A
and C, that is, none of the relations A @C, C @ A, or A ⊢⊣C hold in the unified diagram.

It should be noted here that diagrams themselves are not models in the sense of
model theory but certain syntactic representations that are subject to model-theoretic
(set-theoretic) interpretations. In particular, if A ◃▹ C holds in a unified diagram, one
can readily construct a counter-situation to any of the relations A @ C, C @ A, and
A ⊢⊣ C. We may say that the potential to construct alternative models from diagrams
are presupposed in the process of unification, in particular, in the process of entertain-
ing a diagram containing the ◃▹-relation. It has been observed that the specificity of
diagrammatic representations often impedes reasoning; in particular, Shimojima [32]
aptly characterizes such a negative aspect of representations in terms of the notion of

29

over-specificity. Interestingly, in the present case, the specificity of diagrams has a pos-
itive effect on the process of checking the invalidity of a syllogistic inference. That is,
the failure to apply constraints such as (C1) and (C2), i.e., the failure to create a mean-
ingful relation (@-relation or ⊢⊣-relation), can trigger the recognition that a given set of
premises does not have a (non-trivial) valid conclusion.

We can summarize that in the case of reasoning with Euler diagrams, the process of
entertaining alternative possibilities is presupposed, and implicitly triggered, in the pro-
cess of unifying premise diagrams, whereas in the case of reasoning with mental mod-
els, such a process is only conducted after the process of integration, without appealing
to visual constraints. In this respect, the two conceptions of combining the premise
information stand in striking contrast to each other.

5 Concluding remark

In the cognitive psychology of deduction, it has long been known that solving cate-
gorical syllogisms is a difficult task for those who are untrained in logic (cf. [8]). The
experimental results in Sato et al. [26] were consistent with this traditional view in that
they show the performance of the Linguistic group as much lower than that of the Eu-
ler and Venn groups. The question we asked is: how can diagrams that are externally
provided improve the performance of syllogism solving even for untrained people? To
answer this question, in Section 1, we distinguished between interpretational and infer-
ential efficacy of diagrams in the overall process of solving syllogisms. Now, given the
relational analysis of categorical syllogisms and Euler-style diagrammatic inferences
presented so far, we can elaborate and summarize the distinction in the following way.

First, concerning the interpretational side, the relational semantic information asso-
ciated with quantificational sentences is often not directly accessible to reasoners. Thus,
there is a tendency to interpret the sentence All A are B as equivalent to All B are A,
and Some A are not B as implying Some B are not A (called conversion error in Sectoin
1). Euler and Venn diagrams can then help reasoners realize the underlying seman-
tic relations implicit in categorical sentences in virtue of their spatial properties, more
specifically, in virtue of inclusion and exclusion relations between objects. Hence, such
external representations allow us to fix the intended relational interpretations of cate-
gorical sentences in syllogistic reasoning tasks, resulting in interpretational efficacy.

Second, concerning the inferential side, the manipulation of diagrams in the infer-
ential process is triggered without effort, if the spatial relations holding on external
diagrams are governed by natural constraints, i.e., constraints that depend solely upon
spatial properties of diagrams and hence are accessible even to untrained users. Further-
more, given the fact that a deductive reasoning task in general requires the reasoner to
assemble the information contained in the premises, the syntactic manipulations of dia-
grams could be spontaneously triggered when those diagrams are externally presented.
The essential steps involved in the manipulations of Euler diagrams are unification pro-
cesses, that is, those processes in which the inclusion and exclusion relations between
objects in the unified diagrams are effectively determined using the constraints (C1),
(C2), and (C3). Such a unification process is composed of steps in matching an object
(a circle or a point) with another object and determining the diagrammatical relation-

30

ships between the other objects. Users can exploit the natural constraints of diagrams
and extract the correct procedure to apply from Euler diagrams themselves.

If these claims are correct, it would be expected that any diagram that can make ex-
plicit the relational information of a categorical sentence in a suitable way would be ef-
fective in supporting syllogistic reasoning. Sato and Mineshima [29] examines the case
of a linear variant of Euler diagrams, where set-relationships are represented by one-
dimensional lines, rather than by circles in a plane. The experimental results obtained
there indicated that the linear diagrams for syllogistic reasoning work as effectively as
Euler diagrams. This provides partial evidence that the effectiveness of external dia-
grams in syllogistic reasoning does not depend upon particular shapes such as circles
that are specific to Euler diagrams. Rather, what is crucial is the fact that diagrams can
effectively represent relational structures and aid reasoning about them.17

Such a comparison between reasoning with various forms of diagrams would pro-
vide further evidence to specify the semantic primitives of sentences used in reasoning
tasks, and thus contribute to making progress in understanding the nature of both lin-
guistic and diagrammatic inferential processes in human deductive reasoning. There
are various ways of extending our basic fragment of syllogistic logic; e.g., relational
syllogisms [24], syllogisms involving proportional quantifiers like most [21], and syllo-
gisms involving conjunctive and disjunctive terms [23]. Applications of our framework
to such extended syllogistic and diagrammatic inferences are left for future research.

References

1. Bara, B.G., Bucciarelli, M., & Lombardo, V. (2001). Model theory of deduction: A unified
computational approach. Cognitive Science, 25, 839–901.

2. Barwise, J. & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics
and Philosophy, 4, 159–219.

3. Bucciarelli, M. & Johnson-Laird, P.N. (1999). Strategies in syllogistic reasoning. Cognitive
Science. 23(3), 247–303.

4. Calvillo, D.P., DeLeeuw, K. & Revlin, R. (2006). Deduction with Euler circles: Diagrams that
hurt. In Proceedings of Diagrams 2006, LNAI 4045 (pp.199–203), Heidelberg: Springer.

5. Carroll, L. (1896). Symbolic Logic. New York: Dover.
6. Corcoran, J. (1974). Aristotle’s natural deduction system. In J. Corcoran (ed.), Ancient Logic

and its Modern Interpretations (pp. 85–131), Dordrecht: Reidel.
7. Euler, L. (1768). Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique et de

Philosophie. Saint-Pétersbourg: De l’Académie des Sciences.
8. Evans, J.St.B.T., Newstead, S.E. & Byrne, R. (1993). Human Reasoning: The Psychology of

Deduction. Hove: Lawrence Erlbaum.
9. Gergonne, J. D. (1817). Essai de dialectique rationelle. Annuales de Mathematiques pures et

appliqukes, 7, 189–228.
10. Gurr, C.A. (1999). Effective diagrammatic communication: syntactic, semantic and prag-

matic issues. Journal of Visual Languages & Computing, 10(4), 317–342.
11. Hammer, E. (1995). Logic and Visual Information. Stanford, CA: CSLI Publications.
12. Hammer, E. & Shin, S. (1998). Euler’s visual logic. History and Philosophy of Logic, 19,

1–29.

17 This claim is consistent with Gurr’s [10] “well matchedness” theory.

31

13. Johnson-Laird, P.N., & Byrne, R. (1991). Deduction. Hillsdale, NJ: Erlbaum.
14. Larkin, J. & Simon, H. (1987). Why a diagram is (sometimes) worth 10,000 words. Cognitive

Science, 11, 65–99.
15. Lear, J. (1980) Aristotle and Logical Theory. Cambridge, UK: Cambridge University Press.
16. Łukasiewicz, J. (1957). Aristotle’s Syllogistic: From the Standpoint of Modern Formal Logic,

Second edition, Oxford: Oxford University Press.
17. Mineshima, K., Okada, M., Sato, Y & Takemura, R. (2008). Diagrammatic reasoning system

with Euler circles: theory and experiment design. In Proceedings of Diagrams 2008, LNAI
5223 (pp.188–205), Berlin, Heidelberg: Springer.

18. Mineshima, K., Okada, M., & Takemura, R. (2010). Two types of diagrammatic inference
systems: Natural deduction style and resolution style. In Proceedings of Diagrams 2010, LNAI
6170 (pp. 99–114), Berlin, Heidelberg: Springer.

19. Mineshima, K., Okada, M., & Takemura, R. (in press-a). A diagrammatic reasoning system
with Euler circles. Journal of Logic, Language and Information, to appear.

20. Mineshima, K., Okada, M., & Takemura, R. (in press, b). A generalized syllogistic inference
system based on inclusion and exclusion relations. Studia Logica, to appear.

21. Moss, L.S. (2008). Completeness theorems for syllogistic fragments. In F. Hamm & S.
Kepser (eds.), Logics for Linguistic Structures (pp.143–173), Berlin : Mouton de Gruyter.

22. Newstead, S.E. & Griggs, R. (1983). Drawing inferences from quantified statements: a study
of the square of opposition. Journal of Verbal Learning and Verbal Behavior, 22, 535–546.

23. Nishihara, N. & Morita, K. (1988). An extended syllogistic system with conjunctive, dis-
junctive and complementary terms, and its completeness proof (in Japanese). Trans. IEICE
Japan, Vol. J71-D, No.4. 693–704, 1988.

24. Pratt-Hartmann, I. & Moss, L.S. (2009). Logics for the relational syllogistic. Review of Sym-
bolic Logic, 2, 647–683.

25. Rizzo, A. & Palmonari, M. (2005). The mediating role of artifacts in deductive reasoning. In
Proceedings of 27th Annual Conference of the Cognitive Science Society (pp. 1862–1867).

26. Sato, Y., Mineshima, K., & Takemura, R. (2010a). The efficacy of Euler and Venn diagrams
in deductive reasoning: Empirical findings. In Proceedings of Diagrams 2010, LNAI 6170,
(pp. 6–22), Berlin, Heidelberg: Springer Verlag.

27. Sato, Y., Mineshima, K., & Takemura, R. (2010b). Constructing internal diagrammatic
proofs from external logic diagrams. In Proceedings of the 32nd Annual Conference of the
Cognitive Science Society (pp. 2668–2673). Austin, TX: Cognitive Science Society.

28. Sato, Y., Mineshima, K., & Takemura, R. (2011). Interpreting logic diagrams: a compari-
son of two formulations of diagrammatic representations. In Proceedings of the 33rd Annual
Conference of the Cognitive Science Society (pp. 2182–2187). Austin, TX: Cognitive Science
Society.

29. Sato, Y., & Mineshima, K. (2012). The efficacy of diagrams in syllogistic reasoning: A case
of linear diagrams. Proceedings of Diagrams 2012, to appear.

30. Scaife, M. & Rogers, Y. (1996). External cognition: how do graphical representations work?
International Journal of Human-Computer Studies, 45, 185–213.

31. Shin, S.-J.(1994). The Logical Status of Diagrams. New York: Cambridge University Press.
32. Shimojima, A. (1996). On the Efficacy of Representation. PhD thesis, Indiana University.
33. Smiley, T. (1974). What is a syllogism? Journal of Philosophical Logic, 1, 136–154.
34. Stapleton, G. (2005). A survey of reasoning systems based on Euler diagrams. Proceedings

of Euler Diagrams 2004, ENTCS 134 (pp. 127–151). Amsterdam: Elsevier.
35. Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reason-

ing. Cognitive Science, 19, 97–140.
36. Stenning, K., Cox, R. & Oberlander, J. (1995) Contrasting the cognitive effects of graphical

and sentential logic teaching: reasoning, representation and individual differences. Language
and Cognitive Processes, 10, 333–354.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright © 2012 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Visualizing Syllogisms:

Category Pattern Diagrams versus Venn Diagrams

Peter C-H. Cheng

Department of Informatics, University of Sussex, Brighton, UK
p.c.h.cheng@sussex.ac.uk

Abstract. A new diagrammatic notation for Syllogisms is presented: Category
Pattern Diagrams, CPDs. A CPD configures different styles of line segments
to simultaneously assign quantification values to categorical variables and rela-
tions among them. The design of CPDs attempts to coherently visualize the
structure of syllogisms at various conceptual levels. In comparison to Venn
Diagrams and conventional verbal expressions of syllogisms, the potential
benefits of CPD may include: a relatively straightforward inference method;
simple rules for evaluating validity; applicability to multiple (>2) premise syl-
logisms.

1 Introduction: the project and programme

This paper is part of a project that is attempting to develop a novel set of related dia-
grammatic notations for various systems logic. The project’s objective is to design a
family of diagrammatic notations that share a common representational scheme for
encoding logical states of affairs and a common inference method. The focus here is
syllogisms, with the introduction of Category Pattern Diagrams, CPDs. The design
of CPDs builds directly upon our previous work on Truth Diagrams for propositional
logic [1,2]. In turn, CPDs are being used as intermediate stage to develop a related
notational system for full predicate calculus. The overarching aim of the project is to
show how re-codifying systems of logic in closely related notational systems may
reveal the similarities and differences in the conceptual structures of those logics.

The project is, in turn, part of a larger Representational Epistemic research pro-
gramme that is studying how notational systems encode knowledge and the potential
cognitive benefits that novel codifications of knowledge may confer on higher forms
of thinking [3-6]. The core principles of the Representational Epistemic approach
address how to design representational systems for knowledge rich topics. They
claim that directly encode the fundamental conceptual structure of a topic in coherent
notational schemes will provide semantically transparency and thus enhance problem
solving and conceptual learning in multiple ways [3-5]. Previous knowledge domains
that have been re-codified as part of the programme include electricity, probability

33

theory and (school) algebra [3-5]. The project on logic is extending the scope of the
programme by providing further stringent test cases for the Representational Epis-
temic claims.

The previous work in the logic notation design project developed Truth Diagrams,
TDs, to re-codify propositional logic (and Boolean Algebra) [1,2]. Fig. 1 shows an
example in which the validity of Modus Tollens is demonstrated. The details of TDs
are not essential to consider here, rather it is the overall form of the notation that is of
concern, because the design of CPDs aims to adopt a similar representational scheme
and inference method. In TDs letters are labels for variables and configurations of
line segments assign truth-values to propositional variables and relations among those
variables. Solid lines stand for True and dashed for False. Fig. 1.1, 1.2, 1.4 and 1.6
are unary or binary relations of variables involving P and Q. The inference method
creates a composite diagram, Fig. 1.4, by combining the premise diagrams, Fig. 1.1
and 1.2, using a diagrammatic operator, Fig. 1.3, which specifies the types of the lines
to draw in the composite diagram given the permutations of line types in the premise
diagrams. The validity of the inference is determined by comparing the structure of
the composite diagram with the diagram for the given conclusion, Fig. 1.6, using a
simple set of diagrammatic validity rules, Fig. 1.5, which specifies correct correspon-
dences between the types of lines in the two diagrams. TDs constitute an efficient
method to reveal how the propagation of patterns of truth-values determines the struc-
ture and validity of interferences. Taken together, the structure of the diagrams, the
composition operators and the validity rules provide a novel, complete and sound,
system that reveals conceptual structures (symmetries and regularities) on multiple
levels that are typically hidden by standard formula notation [1,2].

The specific aims of this paper are: (a) to introduce Category Pattern Diagrams,
CPDs, as a notation for syllogistic reasoning, that adopts a similar representational
scheme and inference method to TDs; (b) to compare CPDs with syllogistic infer-
ences using Venn diagrams and the traditional verbal approach; (c) to examine how
codifications of syllogisms in these alternative notational systems provides quite dif-
ferent perspectives on the underlying conceptual structure of syllogisms, with varying
degrees of coherence, and the impact this has on the ease of making inferences. Thus,
the paper has the following sections: 2 is a brief reminder about syllogisms; 3 de-
scribes the graphical structure of CPDs; 4 gives the procedures of composing premise
diagrams in to a result diagram; 5 provides the method to determine whether the result
diagram correctly implies the given conclusion diagram; 6 extends the approach to
multi-premise syllogisms, sorites; and, 7 discusses the overall efficacy of the CPD
encoding of syllogisms and considers implications for the design of notations to en-
code logic.

Fig. 1. Truth Diagram demonstration of the validity of Modus Tollens

34

2 Syllogisms: a brief reminder

See [7] and [9], for example, for full introductions to syllogisms; but as a reminder,
consider syllogisms S1 and S2.

 S1. No diagrams are sentential notations
 All Venn Diagrams are diagrams
 No Venn Diagrams are sentential notations

 S2. All Category Pattern Diagrams (CPDs) are diagrams
 All diagrams are effective representations
 No effective representations are poor systems for learning
 Some poor systems for learning are sentential notations
 No CPDs are sentential notations

S1 is a classical two-premise syllogism, consisting of a major premise, a minor
premise and a conclusion. The middle term, M, occurs in both premises and the
predicate and subject, P and S, are the major and minor terms of the major or the
minor premises, respectively. (M is a subject in the major premise and a predicate in
the minor premise.) The quantity and quality of S1’s major premise happens to be
universal and negative (No M are P); such propositions are labelled ‘E’. S1’s minor
premise is universal and affirmative (All S are M); labelled ‘A’. The conclusion is
also an E proposition (No S are P). Particular affirmative propositions are labelled
‘I’ and particular negative propositions labelled ‘O’. The mood of a syllogism is its
particular permutation of proposition types for the two premises and the conclusion:
S1’s mood is EAE. S always precedes P in syllogism conclusions. The four possible
permutations of the order of the premise variables are called Figures; S1 is of Figure
type 1: M-P, S-M. The Mood and Figure type of S1 may be summarised as ‘EAE-1’
and like all valid syllogisms has been given a name, “Celarent” [1,2].

To determine the validity of syllogisms in verbal form, one may apply five rules
concerning the quality and quantity of the propositions. The quality rules state: (QL1)
no conclusion may follow when both premises are negative; (QL2) a conclusion is
negative when either premise is negative; (QL3) a negative conclusion cannot follow
from two affirmative premises. The quantity rules rely upon the notation of distribu-
tion, which is the extent to which all the members of a category are affected in a
proposition [7]; e.g., S is distributed in All S are P, but variable P is not. The quantity
rules state: (QN1) the middle term must be distributed in one or both premises; (QN2)
if a term in the premises is not distributed, then it must not be distributed in the con-
clusion. These rules are challenging to understand and apply, and explanations of
why they govern the validity of inferences are not straightforward to give.

Venn Diagrams, e.g. Fig. 2, provide a more comprehensible means to assess the
validity of syllogisms. First, a diagram is drawn with three fully intersecting circles
to represent all the possible combinations of sub-sets, Fig. 2.3. Then, beginning with
any universal premises, Fig. 2.1, corresponding regions in Fig. 2.3 are shaded for
empty sets. Subsequently, for any particular premises, Fig. 2.2, a cross is drawn in
any corresponding non-shaded region of Fig. 2.3. Care is needed to correctly locate

35

the shading and crosses to take into account the term not mentioned in each premise.
The inference is valid if the conclusion, Fig. 2.4, can be read directly from the pattern
of shading and crosses in the three-circle diagram.

S2 is a sorites, a multiple premise syllogism. Their general form is P1–P2, P2–P3,
…, Pn-1–Pn ⇒ P1–Pn. The particular form of S2 is: All C are D, All D are E, No E are
P, Some P are S ⇒ No C are S. Although Venn Diagrams can be systematically
drawn for four and more sets [8], the diagrammatic benefits of that approach appear to
be reduced for larger numbers of premises.

From this brief overview, it is clear that to re-codify syllogisms CPDs must do
many things: identify the categorical variables; denote whether things belong to each
category or not; specify relations among the variables, i.e., the mode and Figure; sig-
nify the quantification of the multiple subsets defined by those relations; have the
potential to represent multiple premises (>2); provide a method to infer the quantity
values of variables in the combined relations; establish a procedure to determine
whether inferences correctly imply the given conclusion.

3 Graphical structure of CPDs

Fig. 3 shows examples of CPDs for unary, binary and ternary relations of categorical
variables. Each diagram represents a state of affairs relating the categories identified
by the letters. The letter is a label for a category and the lines run between the specif-
ic positions relative to the letters. In a unary variable diagram, Fig. 3.1, horizontal
line segments are positioned above and below the letter. For the binary relation, Fig.
3.2, four lines run between the letters with their ends located at the four possible com-
binations of positions above or below each letter. We will call such line segments
connectors. In the ternary relation diagram, Fig. 3.3, the eight connectors are com-
posed of two binary connectors joined near the middle letter and with free ends asso-
ciated with the other two letters. The eight connectors are arranged as four pairs: (1)
an inverted triangular pattern; (2) an upright triangular pattern; (3) a descending paral-
lelogram pattern, which slopes downwards from left to right; (4) an ascending paral-
lelogram pattern. As will be seen below, this design of the ternary CPDs is intended

Fig. 2. Venn Diagram for the Ferio syllogism

M

S P
S M

I

×
M P

E

×
S P

O

×

(1) (2) (3) (4)

Fig. 3. Unary, binary and ternary Category Pattern Diagrams

R T

—
R
=

member

not member

member

not member

(1) (2) (3)

R T U

36

to support judgments about the validity syllogisms.
The position of the ends of a connector, top or bottom, refers to possible member-

ship or possible non-membership of the category, respectively. Fig. 3.1 and 3.2 in-
clude labels making this explicit. Each connector is a particular case, a combination
of inclusion or exclusion of things in the subsets of the variables of the relation. The
unary relation has two cases and the binary relation has four cases.

Consider examples of some cases in the ternary CPD of Fig. 3.3. In the top invert-
ed triangle the upper straight connector refers to the case of the membership of all
variables, where as the \/ shape connector is the case of subsets R and U membership
but T not. In general, the local altitude of the middle point or free ends of a connector
within a triangle or parallelogram indicates the membership status of a subset, with a
high position in the shape for membership and low position for absence. In the de-
scending parallelogram the —\ connector refers to the membership of R and T and the
absence of U, whereas the _ connector refers the membership just of R.

The line style of the connector assigns a quantity to a case. There are three styles
for three quantifiers: (1) a single solid connector is some – at least one instance of the
case; (2) a dashed connector is none – no instance of the case; (3) a solid double-line
connector means no information (no-info) – the quantification of the case is not
known; it may either be some or none. In Fig. 3.1 the top some connector specifies
that something is a member of R and the bottom no-info connector means it is not
known if things are excluded from R or not. In Fig. 3.2 the three double-line connect-
ors means the only specific information provided relates R and not T, and its solid
single-line connector says that at least one thing is a member of R is not a member of
T: in other words, the diagram reads Some R are not T. Consider three cases in Fig.
3.3. The double-line top connector of the upper triangle pair says that there is nothing
known about the assignment of members to the intersection of R, T and U. In the
descending parallelogram the solid line of the lower _ shape connector indicates that
at least one thing is a member of R but it is absent from T and U. The dashed line of
the /— connector says there is nothing that is T and U and not R.

Each connector in a CPD is equivalent to a region in a Venn diagram.
Fig. 4 shows CPDs diagrams for the four syllogistic propositions, A, E, I and O

(and gives their verbal expressions). Notice that all the CPDs have three unknown
connectors (double-lines) and either a single some or a none connector to constitute
the particular and universal propositions. The intersection of the two sets is the top
connector; the two exclusive subsets of the variables are the ascending and descend-
ing diagonals; the exclusion of both sets is the bottom connector. When the order of
the terms in a proposition is swapped, the order of the letters in the CPD is simply
reversed. Equivalently, the pattern of the lines may be reflected with the letter posi-
tions fixed. (If both the letters and lines are reversed, the proposition is unchanged.)
Notice that the patterns of lines in E and I are symmetrical, which has interesting
implications for the validity of certain syllogisms; as will be seen below.

37

Turning to ternary CPDs, Fig. 5.2 shows a generic ternary relation CPD with num-
bered connectors that show the corresponding regions of the Venn diagram in Fig.
5.1. Fig. 5.3 and 4 are two examples of specific ternary relations. In Fig. 5.3 the
descending parallelogram says there is nothing that is S and not P, whatever the case
with M. The ascending parallelogram says that no-info holds for not S and P, for both
values of M. The top and bottom triangles both possess cases in which either there
are no instances present or that no-info occurs, for different values of M. Fig. 5.4
shows other patterns of connectors including the assignment of some to one case.
With a little experience, identifying individual cases in CPDs appears to be as easy as
finding sub-sets in a Venn diagram. Similarly, selecting pairs of cases for the same
values of S and P, as is required to judge the validity of a syllogism, also appears to
be comparable in both notations. However, we will see below that the CPDs and
Venn diagrams diverge when more than three propositions are considered.

That completes the overview of the syntax and semantics of relational CPDs. The
next section considers how to make inferences with CPDs.

4 Composition of Binary CPDs

Fig. 6 shows the CPD for the Celarent syllogism (EAE-1: No M are P, All S are M,
therefore No S are P; Figure type 1). In outline, the overall procedure for syllogistic
inferences with CPDs has two stages. First, given the two premises (Fig. 6.1 & 6.3),
the conjunction operator (6.2, see below for a full explanation) is applied to generate
the ternary result diagram (6.4). (The term result refers to the set of implications
derived from the premises as distinct from the given conclusion.) In the second stage,
the pairs of connectors of the result diagram are compared to the conclusion diagram
(6.5.E) to check that the result diagram fully and correctly implies the conclusion
diagram. (In Fig. 6 the desired conclusion (6.5.E) is highlighted but three others are
included for the discussion of invalid inferences below.) This stage compares the
types of connectors in the result diagram with the corresponding conclusion connect-
ors using a table of validity rules (6.6). This section describes the construction of the
ternary result diagram and the next section gives the procedure for testing validity.

Fig. 5. Ternary CPDs

S M P S M P

(4) (3)
M

S P
1

6 5 2

7

3

8

4

1
2
3
4
5
6
7
8

S M P

(2) (1)

Fig. 4. The four types of syllogistic propositions as binary CPDs

S P

All S are P

A

S P

E

No S are P

S P

Some S are P

I

S P

Some S are not P

O

38

To construct a ternary result diagram we simply consider each of the eight con-
nectors in the CPD in turn. Fig. 7 shows two examples of the construction of two
connectors in the result CPD of Fig. 6.4. Three steps are required for each connector.
Step 1 – Fig. 7, arrows 1: determine the shape and position of the new connector from
the relevant connectors in the two premise CPDs. Step 2 – arrows 2: from the styles
of the pair of premise connectors find the relevant composition rule. Step 3 – arrows
3: the style of the new result connector is given by the output of the selected rule.

In preparation for step 1, the two premise diagrams are drawn so that the middle
term (M) will be in the centre of the new diagram and the subject term (S) on the left
and predicate term (P) on the right, see Fig. 6 and 8. M is in the middle because it is
common to both binary premise diagrams. The S and P arrangement will facilitate the
comparison of the result diagram with the conclusion diagram later (see below). Fig
8.1 illustrates this process for a ternary CPD of no particular mood (faint lines for
arbitrary connector types). If S is to the right and P to the left of M in the premise
diagrams, as in Figure type 1 syllogisms such as Fig. 6, they can simply be put to-
gether without further ado. If the premises are different syllogism Figures, then one
or both of the premise diagrams is reflected before they are combined; for example, in
a type 2 Figure syllogism, the M term occurs on the right of both the binary premise
diagrams, so just the P-M diagram needs to be reversed. Thus, all the possible moods
and Figures of syllogism handled.

Fig. 6. EAE-1 Syllogism (and some alternative conclusions)

|

S M

A

M P

E

S M P

S P

I

S P

A

S P

E

S P

O
|

(1) (2) (3)

(4)

(5)

(5.A) (5.E) (5.I) (5.O)

C1 C2 C3

— — - - - =
— =

⋅?⋅ =
— - - - =

Result

Conclusion

Premises

V1 V2 V3 V4

√ √ √ ×

—
— - - -

=
= Any

—
⋅?⋅

- - - =
- - - other

— - - - = Comb’n

|

(6)

/ /

39

Now, step 1 builds each ternary result connector from possible pairs of the premise
connectors. The top connector of result CPD, Fig. 7.1 (arrows 1), combines the top
connectors of the premises. The _/ shape result connector, Fig. 7.2 (arrows 1), is
assembled from the bottom and ascending diagonal connectors of the premises. In
general, for each connector in one binary diagram there are two possible associated
connectors in the other diagram. Fig. 8.2 shows how the four pairs of connectors in
Fig. 3.3 and 6.4 are obtained from the binary diagrams in Fig. 8.1. Each of the four
patterns in Fig. 8.2 corresponds to a particular case of S and P values, but the values
of M differ.

In Step 2, we find the quantification value for the new connector by looking up the
values of the premise binary connectors in the composition operator look up table in
Fig. 9. A copy of this table is reproduced between the two binary diagrams in Fig. 6
and 7 for convenience. Given the three possible types of each of the two premise
connectors, 32=9 permutations are possible. The table determines mappings from
pairs of premise connector types at the top of each column to the result connector type
at the bottom. The ‘�?�’ symbol in Fig. 9 means any type of connector. (C1) The
result of the operator will obviously be a some connector when both premises are
some connectors. Whenever one premise connector is a some connector and the other
a no-info connector, the result is also a some connector, because just one premise
possessing a member will ensure that the new case contains a member. (C2) When
both of the connectors are no-info types, combining them provides no new infor-
mation; therefore, the result is also a no-info connector. (C3) Given a single none
connector, or pair of them, the result must be a none connector, because the presence
of any members of the new com-
bined category is forbidden. For
example, in Fig. 7.1 rule C2 ap-
plies to the left no-info and the
right none connectors, so the new
connector will be have none style.

In step 3, we simply draw the
result connector in the style given

Fig. 8. Composing ternary CPDs

 S M P

 S M P

 S M P

 S M P

 S M P

(1) (2)

 S M M P

Fig. 7. Composition of ternary CPDs – connector shape and style

C1 C2 C3

— — - - - =
— =

⋅?⋅ =

— - - - =

C1 C2 C3

— — - - - =
— =

⋅?⋅ =

— - - - =

S M P

S M

A

M P

E

Result

S M

A

M P

E

Result
11

2

2

3 11

2

2

3

S M P

(1) (2)

40

by the output of the rule selected in step 2, in
the position determined in step 1; in Fig. 7.1
(arrow 3) this is a dashed top connector. In Fig.
7.2 the bottom and the ascending diagonal
premise connectors will give a _/ shaped result
connector (step 1), rule C3 applies because both
premise connectors are both no-info (step 2), so
the result connector is drawn in position as a
no-info connector (step 3). Repeating the steps
for the other six connectors completes the result
CPD. As the two premise CPDs in Fig. 6 both
possess just no-info or none connectors the
resulting ternary CPD contains only connectors
of these types.

5 Determining Validity

The second stage of the CPD approach compares the result diagram with the given
conclusion diagram to establish whether, or not, each case of possible assignments of
values of S and P in the conclusion is validly implied by the two possible cases for the
same assignment of S and P in the result. As noted, the pairwise design of the con-
nectors in the ternary CPDs supports these comparisons. Fig. 10 shows the corre-
spondence between the pairs of result connectors and the conclusion connectors: the
upper result triangle maps to top conclusion connector; the descending parallelogram
to the descending connector; the ascending parallelogram to the ascending connector;
the bottom triangle to the bottom connector. The subsets of S and P are the same in
the result and conclusion for each matching case.

For each of these matches, we now determined whether the types of the two result
connectors correctly imply the type of the conclusion connector. Fig. 11 provides a
look up table for valid matches, where each column is a validity rule. (V1) If either or
both of the result connector types are some, then the conclusion connector is some,
because the presence of any member in the result implies the conclusion will have a
member. (V2) Two none result connectors imply a none conclusion, because the total
absence of any category members in the result implies an absence of members in the
conclusion. (V3) Two no-info connecters,
or one with a none connector, implies a no-
info conclusion connector, because these
combinations provide no information about
whether there are category members or not.
(V4) No other permutations of result and
conclusion connectors are valid. Given that
each of the three connectors may be one of
three types, a total 33 different permutations
exist, so the four rules of Fig. 11 constitute

Fig. 9. Composition operator rules

Some none no-info
Result connector type

Premise
connector

combinations

Both some

Some &
no-info

Both
no-info

1
none

C1 C2 C3

— — - - - =
— =

⋅?⋅ =
— - - - =

Fig. 10. Matching result connectors to

the conclusion connectors

S P

Conclusion Result

E

S M P

41

a concise encoding of the 27 possible ways result connectors may, or may not, validly
imply the conclusion. Again, this conciseness may be attributed to the representation
of the possible quantification values as three styles of lines.

Now applying the validity
rules to Fig. 6, the none top con-
nector of the target conclusion
(Fig. 6.5.E) is correctly implied
by the result, because the upper
triangle has two none connectors
(Fig. 6.4) – Rule V2. The de-
scending parallelogram correctly
implies the respective no-info
descending conclusion connector,
because the result parallelogram
has one no-info connector and
one none connector – V3. This
rule applies to the ascending parallelogram in the same fashion. It also applies to the
bottom triangle but in respect to the two no-info connectors. Therefore, as all four of
the result connector pairs correctly imply their conclusion connectors, the overall
inference is valid. Had just any one of these matches been invalid, the overall impli-
cation would have been invalid.

The other types of proposition, A, I and O, are shown in Fig. 6 as alternative con-
clusions, which we now demonstrate are not implied by the conjunction of premises E
and A; i.e., EAA-1, EAI-1 and EAO-1 are not valid syllogisms. The bars on the con-
clusion connectors in Fig. 6.5.A/I/O identify those that are not satisfied in the result
diagram. In the case of the A conclusion, the top no-info connector is not implied by
the pair of none connectors in the upper triangle (V4 true, V3 violated), and the de-
scending none diagonal is not implied by a single none connector in the parallelogram
(V4 true, V2 violated). For the I proposition the top some connector is not implied,
because there is no some connector among the pair of in the upper triangle of the re-
sult (V1 violated), and similarly for the some descending connector in the O proposi-
tion (Fig. 6.5.O).

Fig. 12 derives the valid Ferio, Festino and Ferison and Fresison syllogisms (EIO-
1, 2, 3, 4), and has three points of interest. (1) The presence of the some connector
yields a some connector or a none connector in the result CPD when it is combined
with a no-info or a none connector, respectively, from the other premise. (2) The
match of the some connector in the result diagram and the O conclusion satisfies V3,
but the A, E and I conclusions neatly show how different forms of mismatch are easi-
ly spotted. (3) Both premise diagrams are symmetric, because their only non no-info
connectors are the top lines, which means that the overall configuration of the result
ternary CPD is invariant: the orders S, P and M does not matter, which is why the EIO
mood is the only one that is valid for all four Figures. By the same reasoning, this
explains why valid syllogisms often occur in pairs; they have an E or I as a premise.

Fig. 11. Validity rules

42

Is the CPD approach for classical syllogisms complete and sound? All the 256
possible combinations of mood and figures have been examined. CPDs are complete
because all 15 valid syllogisms [7] are found to be valid in the approach. It is sound
because none of the 241 invalid syllogisms [7] are found to be valid. (As the compo-
sition and validity rules are few in number and simple, a spreadsheet was setup to test
all 256 syllogisms en masse.)

6 Sorites

The CPD approach extends beyond classical syllogisms. Fig. 13 shows two examples
of sorites, or polysyllogims. In each, the sequence of premises is on the left and the
conclusion on the right. A ternary CPD has eight connectors, and as each additional
proposition doubles the number of cases, quaternary and quinary CPDs will have
sixteen and thirty-two connectors, respectively, so would consequently be cumber-
some to draw. However, given the relative simplicity of the composition rules and
validation rules it is not essential to expand the row of premise CPDs, but rather we
may consider possible paths along connectors from the first variable through to the
last. The composition rules in Fig. 9 may be applied iteratively to a sequence of con-
nectors. The top row of Fig. 13.1 are all no-info connectors, so Rule C3 (Fig. 9)
yields an overall no-info path. The \ _ _ shaped path has one none connector and two
no-info connectors, so its overall path is none. Is this sorite valid? In an equivalent
fashion to Fig. 10, all the paths through the premises from a specific start point to a
specific end point are compared to the conclusion connector that has corresponding
points; for example, paths from the top-left to bottom-right through of the sequence of

Fig. 12. EIO-1/2/3/4 syllogism (and some alternative conclusions)

|

S M

E

M P

I

Result

S M P

Conclusion

S P

I

S P

A

S P

E

S P

O

/
|

/

Premises

V1 V2 V3 V4

√ √ √ ×
—
— - - -

=
= Any

—
⋅?⋅

- - - =
- - - other

— - - - = comb’n

/

C1 C2 C3

— — - - - =
— =

⋅?⋅ =
— - - - =

43

premises (top P to bottom S) corresponds to the descending diagonal connector of the
conclusion (top P to bottom S). The rules in Fig. 11 are used to judge whether all the
types of these paths correctly imply the conclusion connector type. The top connector
of the conclusion of Fig. 13.1 is a no-info connector and by inspect we can see that all
paths (———, \/—, _/, —\/) from the top left to the top-right of the premises are
either no-info or none paths by rules C2 and C3. Thus, all four paths satisfy V3.
Similarly, the ascending connector in the conclusion is correctly implied by the four
paths from the bottom-left to top-right, because there is at least one no-info path and
the rest are none paths, applying C3, C2 and V3. The same is true of bottom conclu-
sion connector and the bottom-left to bottom-right premise paths. The descending
line in the conclusion is a none connect. Again by inspection, we see that all four
paths from the top-left to the bottom-right contain one or two none connectors, so by
rule C2 all the paths are none paths, which means that the conclusion is correctly
implied (V2 satisfied). As all the conclusion connectors are correctly implied the
overall inference is valid.

Our second syllogism above, S2, is a four-premise inference with a mixture propo-
sition types (A, E and I). The letters of the variables in Fig. 13.2 have been chosen to
match the terms in the S2. Although this example is more complex than Fig. 13.1,
testing its validity is relatively straightforward. Consider the top none connector of
the conclusion. Rule V2 say that all premise paths must be the none type for this to
be correct, however we immediately see that there is a path consisting only of no-info
connectors, ——\/, so this case is not valid, and in turn the overall inference is invalid:
QED. (Testing the other cases is not arduous. All the other premises paths corre-
spond to three no-info connectors in the conclusion. By inspection all the cases in-
clude at least one no-info path (C3) and none paths as the only other type (C2), so all
have a mixture of no-info and none paths, therefore all three conclusion connectors
are correctly implied, because the conditions for V3 are met. Nevertheless, the sorite
is invalid, because the validation of top conclusion connector failed.)

This inspection method may, of course, be applied to two-premise syllogisms, and
is simpler than constructing of the ternary result diagram (Fig. 6 and 12). However,
the ternary result diagrams are nevertheless worth considering, because they provide
an explicit introduction to the analysis of the structure for binary CPDs sequences that
is needed to familiarize learners on the composition of connectors and about the
matching of multiple connectors to test validity. Quaternary CPDs can be drawn with
four groups of distinct patterns of four connectors that serve the same role as the four
pairs of connectors in ternary CPDs. However, they are cumbersome, because they
include 16 distinct lines. Clearly, higher order CPDs will be impractical to draw.
Fortunately, this limitation of CPDs is mitigated by the potential to use the inspection

Fig. 13. Two sorites as CPDs

C

A A

C S D E P S

E I E

P

A A

P S Q R S

A A
(1) (2)

44

method on linear sequences of binary CPDs for many purposes when dealing with
multi-premise syllogisms.

7 Discussion

Two of the aims of developing Category Pattern Diagrams were (1) to investigate
whether a new notation for syllogisms could be designed using a similar representa-
tional scheme and inference method to that devised for propositional logic Truth Dia-
grams (c.f., Fig. 1), and (2) to examine whether the possible benefits of the CPD nota-
tion were similar to those of the TD notation.

CPDs have been successfully developed using a scheme in which assignments of
values to variables, and values to relations among variables, is based on the position,
shape and style of line segments running among letters for categories. CPDs used
three styles of lines for some, none and no-info connectors, whereas TDs have two
styles for truth-values. Unlike the many diagrammatic composition operators of TDs,
there is just a single composition operator for CPDs, as syllogisms merely concern
conjunctions of propositions. Although there are many possible permutations of val-
ues for a pair of connectors, the CPD composition operator includes just three simple
rules. Similarly, the method for testing the validity of an inference consists of just
four simple rules to compare connectors in the conclusion and combined diagram of
the premises. When one is new to CPDs, an explicit result diagram may be drawn in
order to work methodically through all the permutations of connectors (e.g., Fig. 6
and 12). However, when one is familiar with the system, the validity of an inference
may be determined by inspecting paths running through the sequence of premises
(e.g., Fig. 13). This approach is feasible because (i) the small number of simple com-
position rules enables one to mentally compute the overall type of a path traced along
successive connectors and (ii) the small number of simple validity rules means that
the implications of a group paths can be readily judged in relation to a conclusion
connector.

The simple rules of the CPD approach stands in marked contrast to the convention-
al verbal approach to the evaluation of syllogisms that relies on the three quantitative
and two qualitative rules given in section 2. Because the quality rules, QL1-3, are
stated in terms of negatives or even double negatives, this inevitably makes them
somewhat tricky to apply. (They may be restated in positive terms, but at the cost of
introducing awkward disjunctions to work through.) The same comment holds for
quantity rule QN2. Further, both quantity rules are also challenging to apply, because
they not only concern the distribution of terms among the premises and conclusions,
but very notion of distribution is conceptually demanding to apply to all the terms in
all four types of syllogistic proposition. Inferences with CPDs works at a more ele-
mental level, with judgments about the overall validity of an inference depending
upon simple comparisons of whether the assignment of values to conjunctions of
variables are compatible, which is done by visually matching the styles of simple
patterns of line segments.

45

A similar claim holds for Venn Diagrams, as the assessment of the validity of an
inference revolves around whether the presence of a cross or the shading of particular
region in the three circle diagram are consistent with the conclusion. Whether CPDs
or Venn diagrams, in themselves, are better visualization for classical two premise
syllogisms will depend on particular representation design issues. One such is the
explicit representation of the absence of information in CPDs (i.e., the no-info con-
nector) versus the implicit encoding in Venn Diagrams (i.e., no × and no shading).
Another issue is the efficacy of representing sub-sets using spatially contained regions
versus distinct line segments. Such design issues will require empirical tests with
users. However, an advantage of CPDs over Venn diagrams is in relation to multi-
premise syllogisms. Venn himself show how to draw his diagrams for four and more
sets, but even with more simpler modern designs (e.g., [8]), the difficulty of dealing
with large numbers of premises increases more rapidly for Venn Diagrams than with
CPDs. The complexity of constructing the diagram and interpreting its relations ap-
pears to grow with the power of the number of sets. In CPDs the difficult arises with
the growing number of paths, but this is mitigated by the multiple constraints that the
construction rules and validity rules usefully offer. For example, composition rule C2
means all combinations of paths up or down stream of a none connector in a sequence
of binary premise diagrams will be none paths. Finding just a single no-info or some
path corresponding to a none connector in the conclusion invalidates the whole infer-
ence.

The comparisons of CPDs to the verbal and Venn diagrams approaches allow some
observations to be made about the general nature of how notations systems might
effectively codify logic. First, although both CPDs and Venn Diagrams are graphical
representations they use quite different schemes to encode the same concepts, which
again supports the theoretical claim that it is the nature of the relation between the
conceptual structure of the ideas being encoded and the characteristics of a notational
that largely determines the efficacy of a representational system [3-6]. It is not mere-
ly that a graphical representation is spatial or geometric in nature that provides poten-
tial benefits to reasoning, but how particular diagrammatic properties encode and
interrelate the concepts. Although the spatial containment on the plane provides an
initially compelling device to encode a small number of set memberships, the scheme
becomes rather less efficacious with larger numbers of sets.

The second observation is that the composition and validity rules of CPDs operate
at the “elemental” level of the assignment of fundamental quantity values (some, no-
info and none) to the “atomic states” of member and non-membership of the subsets
of variables and relations. As a consequence the basic rules of the system are simple
and relatively few in number. It is therefore possible to hypothesize that the concep-
tual difficulties we face in order to understand syllogisms does not arise from the
intrinsic nature of the topic, but rather is due to the complexity generated by
combinatorics of these fundamental elements in situations with multiple terms. The
design of CPDs appears to demonstrate that directly encoding the fundamental con-
cepts of the syllogism domain in the primary representational schemes of a notational
system creates an effective codification of the topic (potentially). As such, this would

46

be a further example of the core Representational Epistemic principle, which was
previously demonstrated in a range of other knowledge rich topics [3-6].

The third observation concerns how the direct encoding of the fundamental con-
cepts supports reasoning with the new notation. It has previously been theorized such
codifications of knowledge produce a semantically transparent system, in which many
of the concepts at different levels of granularity, levels of abstraction and in alterna-
tive perspectives are readily accessible in the same of expressions of the notation [3-
6]. It appears that this claim is also true for CPDs, as they provide explicit access to
multiple types of information that are variously used to make inferences with and to
explain syllogisms. These include: the identification of categories (labels); distin-
guishing the subsets of variables (high and low position); specification of relations
among variables (connector shapes); assignment of values to the variables (position-
ing of connectors relative to letters); the type and order of propositions, or moods
(arrangement of binary CPDs); the ordering of the variables within a proposition, or
Figures (arrangement of unary CPDs in each binary CPD). As the composition opera-
tor and validity rules apply directly to patterns of connectors their effect on the cate-
gorical state of affairs tends to be plain. Further, by examining overall patterns of
connectors for different combinations of mood and Figures one can gain a sense of
regularities that follow from the underlying categorical constraints (e.g., the impact of
the symmetry of the E and I) and also the implications of concepts such as distribution
(e.g., by adding symbols to explicitly show the distributional status of terms).

The next challenge for the project is to extend CPDs beyond syllogisms to cover
predicate logic in full.

8 References

1. Cheng, P.C.-H.: Truth diagrams: An overview. In: B. Plimmer & P. Cox (Eds.), Proceed-
ings of the 7th International Conference on the Theory and Application of Diagrams:
Springer (2012, in press)

2. Cheng, P.C.-H.: Truth diagrams: A notation for propositional logic (in preparation)
3. Cheng, P.C-H.: Electrifying diagrams for learning: principles for effective representational

systems. Cognitive Science, 26(6), 685-736 (2002)
4. Cheng, P.C-H.: Probably good diagrams for learning: Representational epistemic re-

codification of probability theory Topics in Cognitive Science 3(3), 475-498 (2011)
5. Cheng, P.C.-H.: Algebra Diagrams: A HANDi Introduction. In: B. Plimmer & P. Cox

(Eds.), Proceedings of the 7th International Conference on the Theory and Application of
Diagrams: Springer (2012, in press)

6. Cheng, P.C-H., & Barone, R.: Representing complex problems: A representational epis-
temic approach. In: D. H. Jonassen (Ed.), Learning to solve complex scientific problems.
(pp. 97-130). Mahmah, N.J.: Lawrence Erlbaum Associates.

7. Copi, I.M., Cohen, C.: Introduction to Logic. Upper Saddle River, NJ: Prentice-Hall
(1998)

8. Edwards, A.W.F.: Cogwheels of the mind: the story of Venn Diagrams. Baltimore, MD:
John Hopkins University Press (2004)

9. Lemmon, E.J.: Beginning Logic. Wokingham, UK: Van Nostrand Reinhold (1965)

Understanding and Predicting the Affordances
of Visual Logics

Jim Burton1 and Peter Coppin2

1 University of Brighton, UK
j.burton@brighton.ac.uk,

2 University of Toronto, Canada
petercoppin@gmail.com

Abstract. We compare the affordances of two visual logics, one from
the Euler family of notations, spider diagrams, and one which takes a
significantly different approach to representing logical concepts, existen-
tial graphs. We identify strengths and weaknesses of each notation and
present these features as being related to the idea that each notation is,
to a greater or lesser degree, biased towards objects or predicates, and
that such biases make a notation more or less effective in a given con-
text. We then introduce a framework for understanding and predicting
those affordances, which can help guide us towards better use of exist-
ing graphical notations and the design of more effective new notations.
The framework links research in semiotics and linguistics with insights
provided by the HCI and diagrams communities.

1 Introduction

A fundamental premise of the diagrams community is that graphical notations
have, by some set of metrics which is not always made entirely clear, certain
advantages over symbolic notations. These advantages relate to intuitive under-
standing and to the ability for new information to arise spontaneously within
diagrams. Gurr [10] wrote that the effectiveness of a graphical notation arises
from its being “well matched to meaning”, which is to say that the syntax of the
notation is naturally connected to its semantics. Hammer and Shin [11] showed
that Euler diagrams do possess these advantages, and that while the changes
made to Euler’s notation by Venn and Peirce remove ambiguity and increase
formal expressiveness, they also reduce its visual clarity.

If these advantages exist, and can be categorised and measured, the poten-
tial exists to design more effective graphical notations and to make better use of
existing ones. Shin [23] undertook the latter task in her reevaluation of Peirce’s
system of existential graphs, in which she argued that if the diagrammatic prop-
erties of existential graphs were better understood and exploited in the design of
reading procedures and inference rules, then they would be considered more use-
ful as a tool for reasoning. Indeed, and in contrast to Euler diagrams, existential
graphs have often been considered a cumbersome and non-intuitive system. In
the same work, Shin shows, however, that Peirce consciously designed his system

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c© 2012 for the individual papers by the papers’ authors. Copying permitted for
private and academic purposes. This volume is published and copyrighted by its editors.

48

to take advantage of distinctively diagrammatic properties, but that his insights
were largely ignored in the way existential graphs were subsequently understood.

In this paper we will compare the affordances of two visual logics, spider
diagrams [13] and existential graphs, analysing some of the strengths and weak-
nesses of each system. In this context, we use the term affordance to refer to the
possible meanings of a piece of diagrammatic syntax, as perceived by an actor.
The starting point for our comparison is the observation, made by Blackwell
and Green [2], that “every notation highlights some kinds of information, at the
cost of obscuring other kinds.” We focus on the affordances arising from the
spatial conditions of diagrams from each system with the same meanings. Thus,
we consider the static properties of the notations and how those properties sup-
port comprehension, rather than any dynamic properties exhibited when either
notation is used as a reasoning system. This work is a precursor to a planned
empirical study in which we will test our findings. Our goal is not to show that
one notation is superior to the other. In fact, existential graphs are consider-
ably more expressive than spider diagrams. To enable the comparison, we will
consider the fragment of existential graphs with monadic predicates only, which
is equivalent to the spider diagram system. We choose the two systems for the
comparison because we take them to be representative of two distinct families
of visual logics: those based on Euler diagrams, such as spider diagrams and
constraint diagrams [24], and logical graphs, such as existential graphs and con-
ceptual graphs [5]. Spider diagrams and existential graphs are concerned with
the same domain and have common features. For instance, both represent exis-
tential quantification directly. Neither system has an explicit way of representing
universal quantification but both can do so implicitly. However, the two systems
take fundamentally different approaches to representing information.

In sections 2 and 3 we examine the notational strengths and weaknesses of
spider diagrams and existential graphs. We do so informally, introducing only
so much of each notation as is necessary to make our argument. In section 4 we
introduce Coppin’s framework for visual affordances and show that it can be used
to explain and predict the affordances described in the previous sections. The
framework exposes general principles which we believe can be used to design
effective visual notations, formal or otherwise. We show that the framework
synthesises understandings gained from the fields of semiotics, neurolinguistics
and diagrammatic reasoning. In section 5 we discuss the predictive power of the
framework and the ways in which the principles of the framework may enable
us to make more effective use of existing systems, such as spider diagrams and
existential graphs, by understanding and exploiting their strengths.

2 Spider diagrams

Spider diagrams (SD) were introduced by Howse et al. in 2001 [13]. They are a
sound and complete visual logic, equivalent in expressiveness to monadic first-
order logic with equality [25]. Figure 1 shows a spider diagram, consisting of
labelled curves, spiders and shading. Curves represent sets and their placement

49

makes assertions about relations between sets: figure 1 tells us that the sets Bird ,
Plane and Sman are disjoint. Spiders are trees placed in the diagram, where the
nodes are called feet and the edges are called legs. Each spider represents a single
element that exists in one of the regions in which its feet is placed. The diagram
in figure 1 includes a single spider, telling us that there is something which is
either a bird, a plane, or Superman. Shading is used to represent the emptiness
of regions. So, the shading in figure 1, considered alongside the information
provided by the spider, tells us that Sman contains either one element or no
elements.

Fig. 1. Is it a bird, is it a plane...? Fig. 2. A cluttered spider diagram.

The spider diagrams in figures 1 and 2 are unitary diagrams. SD allows us
to use conjunction and disjunction to join together unitary diagrams to form
compound diagrams. This is done by placing the usual symbols from symbolic
logic in part of the diagram: see Howse et al. [13] for details.

As well as statements about sets, we can construct the meaning of a spider
diagram as a series of logical assertions. From this point of view the diagram
in figure 1 states, among other things, that ∃x (Bird(x) ∨Plane(x) ∨ Sman(x)),
and ∀x (Bird(x) ⇒ ¬Plane(x)).

SD extends the Euler diagram notation which, as noted in the previous sec-
tion has been identified as being intuitive or fit-for-purpose as the basis of dia-
grammatic reasoning by several authors (see for, instance, chapter 6 of Shin [22],
where the discussion focuses on Venn diagrams but also considers Euler dia-
grams). In summary, Euler diagrams represent relations between sets – intersec-
tion, disjointness, and so on – in a way that users can read quickly and intuitively
because the spatial conditions “resemble”, in some sense, the properties they rep-
resent. Although a circle does not have any literal resemblance to the abstract
notion of a set, a circle encloses a region of space and any point is either inside
or outside of that region, just as any object is either inside or outside of a set.
Thus, placing two circles so that they overlap or are disjoint leads the viewer
to the obvious inferences about the relationship between the sets in question.
Similarly, the fact that SD represents the existence of an element in a set by
placing a spider foot in the region of the diagram that represents that set is
well matched to meaning, and allows for intuitive understanding. Hammer and
Shin [11] noted that the additions to Euler’s original notation do not always
provoke the same natural associations in the reader. Shading, for instance, first

50

introduced by Venn, bears no resemblance to the emptiness of a set and has a
purely conventional meaning (apart from a slightly tenuous connection between
shading, darkness and the emptiness of a void). Similarly, although spiders with
a single foot may be well matched to meaning, the meaning of spiders with sev-
eral feet is purely conventional. Thus, our first approach to understanding the
intuitive power of diagrams might be to consider a spectrum from resemblance
to conventionality. However, Shin [22] argues that resemblance is not, in fact,
inversely proportional to conventionality. Two cognitive properties of diagrams
which are inversely proportionate to each other, however, are conventionality
and the use of perceptual inferences. That is, the less a notation relies on con-
vention, the more perceptual inferences are introduced. Furthermore, she points
out that several of the conditions we might want to represent are incapable of
depiction without convention, particularly disjunctive and negative information.
It is not possible to depict a situation that resembles the ones described by the
formulae A ∨ B and ¬A. So, any graphical notation that conveys this type of
information must do so by importing symbolic features. In SD, disjunction is
shown using the symbolic device of spiders’ legs and, in the full system, the log-
ical symbol ∨. SD can depict some negative information by resemblance but not
all. For instance, we can depict the situation reflected by the formula ∃x(¬A(x))
by placing a spider outside of a curve labelled A, but to show ¬∃x(A(x)), we
must use the symbolic device of shading.

As well as inheriting the benefits of Euler diagrams, SD inherits some lim-
itations: an Euler diagram can quickly become cluttered [15]. The diagram in
figure 2 shows all possible intersections of four curves. We can see that this di-
agram has lost some of the readability of simpler examples, and the problem
escalates quickly with the addition of more curves. If we want to add a new
curve, say A, to figure 2 without adding any new information, we must do so
such that A intersects every region, resulting in a diagram which is very difficult
to draw and understand. The same problem applies to symbolic logic, however.
A sentence from first-order logic that contains four or more predicate symbols
or, worse, four or more variables, could also take considerable effort to read.
Thus, SD, and visual logics generally, are not alone in suffering from clutter.
There are ways of reducing this clutter, but these means, such as the use of
discontinuous curves or overlapping edges [26], do so at the cost of some of the
intuitive properties of Euler diagrams.

As a final observation about the diagram in figure 2, we note that we could
produce this diagram from 1 by discarding three pieces of information about the
disjointness of sets, as well as making other changes. Discarding this information
requires us to add syntax to the diagram (the region representing Bird ∩Plane),
and makes the resulting diagram harder to read as a result.

In summary, spider diagrams, at least in the case of unitary diagrams, pre-
serve and extend much of the effective and intuitive power of the underlying
Euler notation. However, the rapid accumulation of regions in a diagram can
mean that SD doesn’t scale well, although this lack of scalability also affects
symbolic languages.

51

3 Existential graphs

Existential graphs were introduced by Peirce [17] at the end of the 19th cen-
tury, at the same time as his seminal work on symbolic systems. There are two
variations of the notation, α graphs and the more expressive β graphs, which
are as expressive as first-order logic with equality [19]. Unlike SD, β graphs can
represent predicates with any number of places. In order to make a meaningful
comparison between the systems, we will consider Peirce’s β graphs with the
restriction that all predicates are monadic, and call this system EG. An graph
in EG is composed of predicate symbols, lines of identity (LIs) and cuts. A predi-
cate symbol is a label representing a predicate; since our predicates are monadic
we can equally well consider the labels to represent sets as predicates. An LI is a
network of lines which may have any number of branches and which represents
an individual (there is an exception to this rule, which we explain below). A cut
is a closed curve drawn on the diagram which represents the negation of that
information inside it. The final syntactic device is juxtaposition: placing graphs
G1 and G2 next to each other creates a new graph whose meaning is the con-
junction of the meanings of G1 and G2. Figure 3 shows an existential graph. The
parts of the graph labelled G1 to G5 we call subgraphs (note that these labels
are added for convenience and are not part of the notation). The subgraph G1

has one LI, three predicate labels and four cuts.

Fig. 3. An existential graph equivalent to figure 1

Interpreting existential graphs has often been seen as a difficult task, and this
is one of the main points of criticism of the system. Shin [23] proposed a new
reading procedure which is both more regular than earlier procedures and which
exploits the diagrammatic properties of existential graphs. However, the reading
procedure which is arguably easiest to describe informally is the endoporeutic
reading proposed by Peirce himself. Informally, we read a graph from the “outside
in”, or from the region of the graph which is least enclosed by cuts towards the
most enclosed part. Thus, reading subgraph G2 in figure 3, we first encounter
a cut, so we know that some piece of information is to be negated. Next, we
encounter an LI, so we know that a statement concerning some individual will
be made. Finally, the predicate labels Bird and Sman are at the ends of the LI,

52

and we construct the meaning “it is not the case that there is some thing for
which Bird and Sman are true”, or “nothing is a bird and a Superman”. More
formally, we construct the formula ¬∃x(Bird(x)∧Sman(x)). So, the subgraph G2

in figure 3 conveys a subset of the information given in figure 1 by the placement
of the curves labelled Bird and Sman. The conjunction of the meanings of the
subgraphs G2, G3 and G4 provides the same information as the placement of
curves in figure 1. Reading G1 from the outside in, we encounter an LI, denoting
an individual, say x, so the constructed meaning begins with the fragment ∃x
Next, we encounter a cut, and so we have ∃x¬(. . .). Next, we encounter three
nested cuts, and we construct the fragment

∃x¬(¬(. . .) ∧ ¬(. . .) ∧ ¬(. . .)).
Inside these cuts are predicate labels attached to the ends of the LI, and we have

∃x¬(¬(Bird(x)) ∧ ¬(Plane(x)) ∧ ¬(Sman(x))).

Shin’s reading gives the equivalent but neater formula ∃x(Bird(x) ∨ Plane(x) ∨
Sman(x)). Thus, subgraph G1, figure 3, demonstrates how disjunction is con-
veyed in EG. Compare this to figure 1, where the spider conveys the same infor-
mation.

Subgraph G5, figure 3, tells us that it is not the case that there are two things,
say x and y, for which Sman is true and where x �= y. That is, there is at most
one Superman. This is the same information as is conveyed in figure 1 by the
combination of the shading and spider foot in the curve labelled Sman. Inequality
between objects in EG is shown by an LI which crosses an otherwise empty cut,
indicating that the two (or more) extremities of the LI do not represent the same
object; this is the exception to the way we read an LI mentioned above.

Thus, the spider diagram in figure 1 expresses the same meaning as the
existential graph in figure 3. We note that figure 1 is much more compact than
figure 3, demonstrating the expressive power of Euler diagrams and showing that,
in this case, SD preserves and extends that power. Recall that spider diagrams
assert information by the use of spiders, shading and the relative placement of
curves. Figure 1 includes one spider, one shaded region and three curves placed
so as not to intersect every region: five pieces of information. An existential graph
representing the same information must include five subgraphs. Given a spider
diagram, d, with n regions which are shaded or not represented in d, an existential
graph, G, requires n − 1 subgraphs to represent the same information. The
mapping between the spiders in d and subgraphs in G is not so straightforward,
since several spiders which each have a single foot and which are placed in the
same region can be represented by a single LI which crosses an other wise empty
cut. The subgraphs of G will contain duplicated predicate labels, as is the case
with figure 3, and distinct LIs which may refer to the same individual, whereas
this duplication is not necessary in SD. This is one sense in which SD is more
compact and elegant than EG. Like SD, the syntax of EG contains conventional
or symbolic features: notably, cut bears no resemblance to negation. As discussed
previously, however, any notation that represents negation or disjunction must

53

do so symbolically. In comparison with Euler diagrams, it may seem that EG
uses only symbolic features, with the exception of the LI. Even in this case,
in which it seems reasonable to say that a line resembles, in some sense, an
individual, the effect is marred by the special case of an LI that passes through
an otherwise empty cut.

Fig. 4. An existential graph equivalent to figure 2

Similarly to the relationship between figures 1 and 3, the diagram in figure
4 has an equivalent meaning to the spider diagram in figure 2: informally, there
is something which is either a bird, a plane, or is Superman and is wearing a
cape. In this case, comparing the two diagrams leads us to the conclusion that
EG is relatively effective in this context, since the intuitive properties of SD are
hampered in figure 2 by clutter. In order to avoid asserting information about
the relationship between two sets, S1 and S2, a spider diagram must include
an unshaded region which contains no spiders and which represents S1 ∩ S2. In
figure 2, this leads to a diagram which is difficult to read (and draw). In EG, there
is no need to avoid making claims about the relationship between S1 and S2.
Adding more curves to the spider diagram would render it very difficult to read,
whereas adding another predicate symbol to the existential graph in figure 4
would not have that effect. Furthermore, at the end of section 2 we noted that
spider diagrams may require more syntax to represent less information. This is
not the case with EG: the graph in figure 4 can be produced from the graph
in figure 3 by adding one piece of information (that if a particular individual is
Superman, it is also wearing a cape) and discarding three pieces of information
regarding the relationships between the predicates (given by subgraphs G2 to
G4 in figure 4). Discarding this information results in less syntax appearing in
the graph in figure 4.

Remarkably, EG does not introduce specialised syntax to represent disjunc-
tion, conjunction or implication: all these properties are represented as a by-
product of the spatial relations of predicate symbols, LIs, cuts and juxtaposi-
tion. Despite the fact that EG was almost entirely ignored by logicians until
the 1960s, Peirce considered his graphical system superior to his own symbolic
system [17]. Peirce categorised diagrammatic features as icons, indices and sym-
bols. An icon represents something by its resemblance to that thing. An index

54

represents something by “pointing it out”, much as a signpost does. A symbol
represents some fact or condition merely by convention. Peirce’s aim was to cre-
ate a system which was as iconic as possible. As discussed, this effort can be
considered successful with respect to lines of identity, which “resemble” individ-
ual identity, but the use of cut is symbolic. Furthermore, the regularity of using
LIs to represent individuals is disturbed by the special case of LIs which cross
an empty cut, in which case a single LI represents two or more objects which
are not the same. In contrast, the symbolic device of shading used in SD seems
to us to pose less of a cognitive challenge, since the shading is deployed within
the relatively iconic context of Euler circles.

Before describing Coppin’s framework in the next section, we note a final im-
portant syntactic similarity between SD and EG. Both systems feature node-link
diagrams, which are lines of identity and spiders respectively. In EG the edges
of the node-link diagrams represent identity and do so iconically, or by resem-
blance, while the nodes represent predicates, and do so symbolically. In SD the
edges of the node-link diagrams represent disjunction and do so symbolically,
whilst the nodes provide an iconic representation of individuals. In a recent eye
tracking study [4], Burch et al. investigate the impact of the orientation and
format of node-link diagrams on comprehension tasks; amongst other things,
their results show that readers of node-link diagrams prioritise giving attention
to nodes over links – these are the information-rich parts of the diagram. Thus,
when comprehending the node-link component of a spider diagram, attention is
first paid to a series of assertions about objects, making this an object-centric
notation. When comprehending an existential graph, information about predi-
cates is given prominence for the same reason, making EG predicate-centric. For
our purposes, the relative efficiency of representation is of less importance than
this bias towards objects (SD) or predicates (EG), accompanied by the fact that
the nodal information is represented iconically by SD and symbolically by EG.

4 A framework for affordances

In this section we describe a framework that explains the fact that the differing
approaches of SD and EG may each be more effective than the other in a given
context.3

4.1 Pictorial and Symbolized Information

Our aim is to work towards an understanding of perception-recognition that can
be used to distinguish pictorial and symbolized information. Throughout this
development, it will be important to remember that perception of visual rep-
resentations necessarily and simultaneously always involves both pictorial and
symbolized information to various degrees. At the core of the argument is the

3 The majority of the ideas in this section are attributed to author Coppin and will
form part of his forthcoming PhD thesis [6].

55

claim that these two types of information closely correspond to two aspects of
perception-recognition that we categorise as emulation and simulation. Indeed,
it is via their relative engagements of these two aspects that we will be able to
distinguish between symbolic and pictorial visual representations: pictorial rep-
resentations engage relatively more of the aspects or perception that we char-
acterize as emulation, while symbolic representations (that is, representations
which contain relatively more symbolic information) engage relatively more of
the aspects of perception we characterize as simulation. In order to proceed, we
need to establish what is involved in these two key aspects of perception.

What we refer to as emulation can loosely be described as the aspect of
perception-recognition that is most closely coupled with the proximal stimuli
and sensations that impinge upon an organism. With respect to vision, emu-
lation would include the near isomorphic response of retinal receptors to the
aspects of the optic array [9] to which they are specifically tuned to respond.
As information gets further from this “surface interface” and is processed by
higher level aspects of the perceptual-cognitive system, it becomes less accurate
to characterize the process as emulation. The key characteristic of this aspect
of perception-recognition is that there is a structural relationship between the
organism’s response and the proximal stimulus (change) to which that response
is a reaction.

What we refer to as simulation is alluded to by various terms in the cognitive
science literature, such as“filling in” [18] and “prediction” [3]. This is the aspect
of perception that allows us to see distal things as three-dimensional objects,
even when only some subset of two-dimensional surfaces are reflecting light to
our eyes. In order to achieve this, our visual systems must be able to simulate
things and events in the world, in some spatio-temporal sense. This has been
shown to rely on experience/memory and learning [12]. Because of this, the range
of possibilities for a simulation that is a response or reaction to an external
change or variation is greater than for the emulated aspects. Unlike emulation,
because structural correspondence (between the proximal stimuli/change and
the reaction) is not a defining characteristic of simulation, it is not easy or even
possible to directly map back from the reaction to the structure of the stimuli.
Emerging from all of this, the key characteristic of simulation is (subjective)
extrapolation from the proximal structure of stimuli to the recognition of the
distal structure of the world.

As described above, the distinction between these complementary modes of
perception-recognition is noted at several points in the literature, and the modes
are given various names. Hurford [14] identifies the modes with dorsal and ventral
neural pathways, respectively. He notes the precedence of the dorsal/emulated
mode and argues for the importance of this on the sense-making activities of our
pre-linguistic ancestors and, ultimately, on our own development of language.
Dorsal pathways make an initial categorisation of a stimulus that Hurford likens
to a series of evaluations of predicate statements, whereas ventral pathways
supply further environmental detail used to locate the stimulus in context. Thus,
we use emulation to learn what a stimulus represents, before using simulation

56

to learn where it is, how it stands in relation to its environmental context, and
so on. To borrow terms from philosophy, we discover quiddity, the whatness
or initial categorisation of a stimulus, then haecceity, the thisness or refined
categorisation4.

Fig. 5. From pictorial to symbolic representation.

At this point, an example is required. Figure 5 shows, from left to right, a
realistic picture of an apple, successively less realistic depictions, the logo of the
Apple company, and finally the (purely symbolic) name of that company. Emu-
lation occurs when the viewer recognises that the apple picture on the far left is
structurally similar to the emulation that occurs when looking at a real apple.
Meanwhile, the activity that occurs when the viewer sees the Apple logo is less
easily mapped back onto proximal stimuli and therefore more in the realm of
simulation. Furthermore, the type and degree of learning required for perceiving-
recognizing the Apple logo is greater than and different in quality from that re-
quired for perceiving-recognizing a photograph of an Apple. Together these two
perceptual-cognitive distinctions justify distinguishing between the two repre-
sentations such that we label one as being more pictorial and the other as being
more symbolic.

Figure 6 presents these distinctions in grid form, and shows the mixture of
emulation and simulation required to process content in a heterogeneous no-
tation. To relate this to earlier sections, both SD and EG may be considered
heterogeneous systems from this point of view, containing relatively pictorial
and relatively symbolic elements. A good example of this is the differing se-
mantics assigned to closed curves in each notation. In SD, the use of curves
is strongly pictorial/emulated, whilst in EG it is strongly symbolic/emulated.
Conversely, disjunction is symbolic/emulated in both notations. In particular,
the node-link diagrams that feature in each notation are heterogeneous, and
each notation mixes pictorial and symbolic information in opposite ways. In SD,
nodes, which are spiders’ feet, use the pictorial device of placement within a re-
gion, whilst edges, spiders’ legs, are symbolic. In EG, nodes, which are predicate
labels, are purely symbolic, whilst edges, lines of identity, are relatively pictorial.

4 In Coppin’s thesis the roles of memory and recognition are developed extensively
in this context and these processes are posited as intermediaries between the two
modes.

57

Fig. 6. A perceptual-cognitive framework for graphic representation.

The Emulative and simulative modes are engaged, therefore, when processing
node-link diagrams in either notation. Because priority is given to the nodes of
those diagrams, however, the order in which the cognitive modes are engaged
differs.

4.2 Affordances of Graphic Representation Types

The framework enables predictions regarding the perceptual-cognitive affordances
of the graphic representation types described in this paper. We build on the idea
that capabilities for emulation and simulation share a common, and limited, re-
source: attention and working memory [1, 8, 16]. Presented at a high level, the
predictions we make are as follows.

1. Pictured object relations or attributes interfere with, or hinder, mental sim-
ulation of object relations or attributes, intended by an author.

2. Pictured object relations or attributes can support a mental emulation in-
tended by an author.

3. Combinations of pictured and symbolized information can
(a) free resources for mental simulation of symbolized objects, and
(b) symbolized information affords mental simulations that are difficult, or

impossible, to emulate.

We will first consider item 1. The “free rides” provided by Euler diagrams
(and by other notations), noted by several authors and named by Shimojima [21],
occur when information arises in a diagram as a by-product of its syntax. In
figure 7, the Euler diagram on the left tells us that all jets are planes, and no
birds are planes. We can read immediately from this, as a free ride, that no jets
are birds. Free rides accumulate: we can produce the diagram on the right of
figure 7 by adding the curve labelled Sings to the diagram on the left; as well

58

as adding the information that everything that sings is a bird we also learn, as
a free ride, that no planes can sing and neither can any jets sing.

Fig. 7. Pictorial representations depict an entire state of affairs.

Free rides are a powerful component of the effectiveness of a graphical nota-
tion. They come about when a notation is well matched to meaning, allowing the
viewer to use their intuition to make valid inferences for themselves. They also
depend on a situation where a single piece of relatively pictorial syntax depicts
several things at once, and this can become a significant distraction when com-
prehending a cluttered diagram. This point is related to the authors’ previous
work on constraint diagrams [7], in which we argue that generalized constraint
diagrams possess the advantage over the original constraint diagram notation of
being less diffuse; constructing the meaning of an individual piece of syntax can
be done with reference to relatively fewer diagrammatic elements. However, the
features that make generalized constraint diagrams less diffuse may also reduce
the number of free rides available.

To consider cases in the current context where free rides may be counterpro-
ductive, recall that figures 2 and 4 display equivalent information. In figure 2,
a relatively pictorial device is used to depict sets but since every possible set
intersection is depicted, no information about the sets is conveyed by the curves
in isolation. The informational content of the diagram relates to upper and lower
bounds on set cardinality, and includes disjunctive information. This in forma-
tion is provided by shading and a spider, although the interpretation of the
information depends on the relative position of curves. In the context of Cop-
pin’s framework, processing this information requires, predominately, simulation,
and the framework predicts that a less pictorial approach may be effective. This
is stated as item 1 above: pictured object relations or attributes interfere with
mental simulation. In figure 4, we saw that EG conveys the same information
as SD, figure 2, and we claimed that it did so relatively effectively. The frame-
work predicts this effect, since in figure 4 the information requiring simulation
is conveyed by predominately symbolic means.

On the other hand, consider figures 1 and 3. In figure 1, several pieces of
information about relations between sets are conveyed simultaneously: no birds
are planes, no birds are superman, and so on. Although this spider diagram also
includes disjunctive information, the majority of the content is conveyed via the
spatial relations of curves, and the viewer benefits from a natural mapping from

59

these relations to relations between sets. The process of comprehending figure 1
is relatively emulative. We can see that a pictorial approach is effective by consid-
ering an existential graph with equivalent meaning to figure 1, shown in figure 3.
In this figure no free rides occur and so each set relation is given explicitly using
a symbolic representation. This is an example of the effect we state in item 2
above: pictured object relations or attributes can support emulation.

Figure 8 shows a spider diagram in which “uncertainty”, or disjunctive infor-
mation, is removed from figure 1 whilst figure 9 shows an existential graph with
an equivalent meaning. The information conveyed by figures 8 and 9 is emulated,
consisting of a series of initial categorisations: there are sets of birds, planes and
supermen, there is a superman. Comparing the two representations shows that
the pictorial approach of SD is certainly less cluttered and, we believe, more
effective.

Fig. 8. It’s Superman!
Fig. 9. Symbolic representation of emu-
lated content.

Items 3a and 3b in our list of assertions on page 57 can be seen as corollaries
to items 1 and 2. As we have seen, although the curves used in SD (and in Euler
diagrams) to represent sets or predicates are more pictorial than the predicate
labels of EG, the use of curves can reduce the effectiveness of the notation by
causing clutter. This calls to mind Peirce’s stated goal for EG ([17], quoted in
Shin [23]) that a diagram should be “as iconic as possible”: perhaps we should
add to this the caveat “but not more”. When something cannot be depicted,
an approach that represents that information using a relatively symbolic device
may be easier to comprehend and more scalable than one that uses a metaphor
of resemblance.

5 Conclusion

Our comparison of the affordances of SD and EG is not undertaken in order to
conclude which system is the most effective. Instead, we have shown that the
interaction of pictorial and symbolic features can promote or hinder certain cog-
nitive processes, which we call emulation and simulation. Using the framework,
we have explained the fact there are certain tasks for which EG is surprisingly

60

effective, although EG is (we believe) more cumbersome and less intuitive than
SD. We have considered static comprehension tasks only, but SD and EG are
reasoning systems. In further work, we intend to use the framework to evalu-
ate the two notations when used to construct and comprehend proofs, and to
conduct empirical studies which test the validity of the findings.

A more finely grained version of the predictions in section 4.2 is part of Cop-
pin’s thesis. Using these predictions in a consideration of emulated and simulated
features in existing notations could lead to a principled approach to generating
effective diagrams. The same problem is addressed, though using quite different
means to our own, by Rodgers et al. [20] in their definition of well-formedness
criteria for Euler diagrams and the effect of the criteria on readability. The fine
grained principles could also be used by designers of new notations, through
a consideration of the informational domain of the notation and the cognitive
processes implied.

We also believe the framework can be used to investigate “layers” of informa-
tion within graphical notations. As we have discussed, both SD and EG include
node-link diagrams, and we believe the balance of pictorial/symbolic information
at the nodes of these diagrams must be appropriate to the task in question. We
conjecture that the node-link diagrams form part of an upper layer or “cognitive
foreground” of the notations. Both SD and EG have a series of nested curves
as a “background” layer, though only SD has a background layer which can be
interpreted independently of other diagrammatic content. We intend to study
the existence of layers of content and the effect of their degrees of independent
coherence by conducting eye tracking studies that investigate the ways in which
users pay attention to the syntactic elements of diagrams that include node-link
diagrams amongst other syntax.

Acknowledgements: The authors would like to thank Steve Hockema and Gem
Stapleton for helpful discussions around the topics in this paper.

References

1. A. Baddeley. Working memory. Comptes Rendus de l’Académie des Sciences-Series
III-Sciences de la Vie, 321(2-3):167–173, 1998.

2. A. Blackwell and T. R. Green. Notational systems – the cognitive dimensions
of notations framework. In John M. Carroll, editor, HCI Models, Theories, and
Frameworks: Toward a Multidisciplinary Science, Interactive Technologies, chap-
ter 5, pages 103+. Morgan Kaufmann, San Francisco, CA, USA, 2003.

3. A. Bubic, D. Y. Von Cramon, and R. I. Schubotz. Prediction, cognition and the
brain. Frontiers in human neuroscience, 4, 2010.

4. M. Burch, N. Konevtsova, J. Heinrich, M. Hoeferlin, and D. Weiskopf. Evalua-
tion of traditional, orthogonal, and radial tree diagrams by an eye tracking study.
Visualization and Computer Graphics, IEEE Transactions on, 17(12):2440–2448,
December 2011.

5. M. Chein and M. Mugnier. Conceptual graphs: fundamental notions. Revue dé
Intelligence Artificielle, 6:365–406, 1992.

61

6. P. Coppin. Perceptual-cognitive properties of realistic pictures, outline drawings,
diagrams, and sentences: toward a science of information design. PhD thesis,
University of Toronto, Available in 2012.

7. P. Coppin, J. Burton, and S. Hockema. An attention based theory to explore affor-
dances of textual and diagrammatic proofs. In Ashok Goel, Mateja Jamnik, and
N. Narayanan, editors, Diagrammatic Representation and Inference, volume 6170
of Lecture Notes in Computer Science, chapter 27, pages 271–278–278. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2010.

8. N. Cowan. An embedded-processes model of working memory. Models of working
memory: Mechanisms of active maintenance and executive control, pages 62–101,
1999.

9. J. J. Gibson. The ecological approach to visual perception. Lawrence Erlbaum,
1986.

10. C. Gurr and K. Tourlas. Towards the principled design of software engineering di-
agrams. In Proceedings of 22nd International Conference on Software Engineering,
pages 509–518. ACM Press, 2000.

11. E. Hammer and S. J. Shin. Euler’s visual logic. History and Philosophy of Logic,
pages 1–29, 1998.

12. S. A. Hockema. Perception as prediction. PhD thesis, Indiana University, 2004.
13. J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider diagrams: A diagram-

matic reasoning system. Journal of Visual Languages and Computing, 12(3):299–
324, June 2001.

14. J. R. Hurford. The neural basis of Predicate-Argument structure. Behavioral and
Brain Sciences, 23(6), 2003.

15. C. John, A. Fish, J. Howse, and J. Taylor. Exploring the notion of clutter in
Euler diagrams. In 4th International Conference on the Theory and Application of
Diagrams, pages 267–282, Stanford, USA, 2006. Springer.

16. G. A. Miller. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956.

17. C. S. Peirce. Collected Papers, volume 4. Harvard University Press, 1933.
18. L. Pessoa, E. Thompson, A. Noë, and Others. Finding out about filling-in: A

guide to perceptual completion for visual science and the philosophy of perception.
Behavioral and Brain Sciences, 21(6):723–748, 1998.

19. D. D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, 1973.
20. P. Rodgers, L. Zhang, G. Stapleton, and A. Fish. Embedding wellformed euler

diagrams. In Thirteenth International Conference on Information Visualization,
pages 585–593. IEEE, 2008.

21. A. Shimojima. Inferential and expressive capacities of graphical representations:
Survey and some generalizations. In 3rd International Conference on the Theory
and Application of Diagrams, volume 2980 of LNAI, pages 18–21, Cambridge, UK,
2004. Springer.

22. S. J. Shin. The Logical Status of Diagrams. CUP, 1994.
23. S. J. Shin. The Iconic Logic of Peirce’s Graphs. Bradford Book, 2002.
24. G. Stapleton, J. Howse, and J. Taylor. A decidable constraint diagram reasoning

system. Journal of Logic and Computation, 15(6):975–1008, December 2005.
25. G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The expressiveness of spider

diagrams. Journal of Logic and Computation, 14(6):857–880, December 2004.
26. G. Stapleton, L. Zhang, J. Howse, and P. Rodgers. Drawing euler diagrams with

circles: The theory of piercings. IEEE transactions on visualization and computer
graphics, September 2010.

The Online Abstraction Problem for Euler Diagrams

Gennaro Cordasco1, Rosario De Chiara2, and Andrew Fish3

1 Dipartimento di Psicologia – Seconda Università di Napoli, ITALY,
gennaro.cordasco@unina2.it

2 ISISLab, Dipartimento di Informatica – Università di Salerno, ITALY
dechiara@dia.unisa.it

3 School of Computing, Engineering and Mathematics – University of Brighton, UK
Andrew.Fish@brighton.ac.uk

Abstract. A Euler diagrams are an accessible and effective visualisation of data
involving simple set-theoretic relationships. Efficient algorithms to quickly com-
pute the abstract regions of an Euler diagram upon curve addition and removal
have been developed, but a strict set of drawing conventions (called wellformed-
ness conditions) were enforced, meaning that some abstract diagrams are not
representable as concrete diagrams. We present a variation and extension of the
methodology which enables region computations for Euler diagrams under the
relaxation of several drawing conventions. We provide complexity analysis and
compare with the previous methodology. The algorithms are presented for generic
curves, allowing for specialisations such as utilising fixed geometric shapes for
curves that often occur in applications.

1 Introduction
Venn [21] and Euler diagrams are a well known representation of sets and their re-

lationships. Venn diagrams have had significant theoretical interest from the likes of
Grünbaum and Hamburger in recent times; a detailed survey of Venn diagrams can be
found in [16]. Euler diagrams are the modern incarnation of Euler circles [3], first in-
troduced for the purposes of syllogistic reasoning. Whilst Venn diagrams ensure that
every region determined by being inside some contours and outside the other contours
is nonempty, Euler diagrams generalise Venn diagrams by relaxing this condition. This
allows them to specify subset relations and disjointness relations amongst sets without
any extra cognitive load since these semantic relationships are well-matched the spatial
relationships of containment and disjointness [11, 17].

In a practical setting, Euler diagrams appear frequently in various application do-
mains. For example, they have been used in biological areas for representing complex
genetic set relations in [14], in computer-based resource management scenarios in [2],
and in the information retrieval/visualisation context to depict the numbers of results of
collections of library database query results in [20] and in network visualisation [15].
Euler diagrams, together with diagrammatic inference rules, form a diagrammatic logic,
and comparisons of the effect of the choice of inference rules on automated searches
for minimal proofs within Euler diagram-based reasoning systems [18] has been in-
vestigated. There are many variations of the basic system, and they have also been
incorporated into heterogeneous reasoning systems [19]. More complex diagrammatic
logics such as Spider [12] or Constraint diagrams [4, 13] build on the underlying Eu-
ler diagram logic, adding more syntax in order to increase the expressiveness of the
languages.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c⃝ 2012 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

63

Motivation. For any computer-based applications there is a natural disparity between
the concrete level information that the user perceives and manipulates (the drawn or
concrete diagrams) and the abstract information that the system requires or manipulates
(the abstract models or abstract diagrams). Many important computations of the system
tend to be defined at this abstract level. For instance, if one wished to present the se-
mantics of a user-constructed diagram then the system needs to perform computations
such as to identify the regions present in the diagram, to compute the set intersections
that they represent, and to combine these into some set-theoretic statement. In a more
general sense an efficient way to calculate the abstract diagram is also useful for the
comparison of concrete diagrams.

The efficient computation of the abstract model from a given concrete diagram,
together with the ability to update the abstract model upon concrete changes such as
curve addition, removal, translation and resizing represent an important challenge to be
addressed. The relaxation of the drawing constraints is a significant extension because
under these relaxed constraints, every abstract diagram has a concrete diagram repre-
senting it [5]. Furthermore, for dynamic diagrams (e.g. sequences of diagrams con-
structed during interactive user construction or the presentation of evolving data sets) it
permits the temporary relaxation of the chosen set of drawing conventions imposed for
a diagram in the sequence. This enables a natural construction or presentation, assisting
in preserving a user’s mental map.
Contribution and paper outline. In this paper we provide a solution to the on-line
abstraction problem: compute the abstraction of a concrete Euler diagram (i.e. a drawn
diagram), keep track of the concrete and abstract diagrams, and enable the automatic
update of the abstract diagram upon concrete level manipulations. The algorithms pre-
sented in [8] solved this problem for the wellformed diagrams of [5], but here we pro-
vide a solution for the more general case in which several well-formedness conditions
are relaxed, enabling much greater utility and flexibility. The algorithms have also been
extended to permit further relaxation of the wellformedness constraints, enabling the
processing of ‘generalised Euler diagrams’ (representing sets as unions of regions with
holes), ensuring that any abstract diagram has a concrete realisation. However, this fur-
ther extension is not presented in this paper due to space constraints.

2 Preliminaries
We provide a definition of Euler diagrams, separating the abstract and concrete models
as usual, together with the set of wellformedness conditions considered. Specifically, we
incorporate some of the wellformedness conditions of [5] and [10] that are simplicity of
contours (no self-intersection) and uniqueness of contour labels, into the main definition
of concrete Euler diagram, which enables an omission of labels since the contours can
be uniquely identified.

Definition 1. A concrete Euler diagram is a pair d = ⟨C,Z⟩ where C is a set of simple
closed curves, called (concrete) contours, in the plane and Z is the collection of (con-
crete) zones z determined by being inside a set of contours Xz ⊆ C and outside the rest
of the contours. That is,

z =
∩

c∈Xz

int (c) ∩
∩

c∈C−Xz

ext (c) ,

64

for each Xz ⊆ C, provided this region is non-empty. Here int(c) and ext(c) denote the
interior and the exterior of c, respectively, and the set Xz is called the zone descriptor
for z. A minimal region of d is a connected component of R2 −

∪
c∈C

c.

Fig. 1. Nonwellformed Euler diagrams, breaking WF1a, 1b, 2 and 3, resp., from left to right.

We say d is wellformed if the following wellformedness conditions (WFCs) hold (see
Fig. 1):

WF1 Transverse intersections: Contours that intersect do so transversely.
This can be subdivided into:
WF1a No tangential intersections.
WF1b No concurrency (distinct contours meet at a discrete set of points).

WF2 No multiple points: At most two contours can intersect at any given point.
WF3 Connected concrete zones: Each concrete zone is a minimal region.

An abstract Euler diagram (see Definition 2) is an abstraction (see Definition 3) of
a concrete diagram. We overload the term zone, using it for the concrete zones, which
are regions of the plane, as well as for abstract zones, which are the sets of containing
contours of that region (or the labels of those contours in the generalised case); the
context determines which is meant. Let PX denote the powerset of set X .

Definition 2. An abstract Euler diagram is a pair: d = ⟨C(d), Z(d)⟩ where: C(d) is a
finite set of labels, called (abstract) contours, drawn from some alphabet L. The set of
(abstract) zones of d is Z(d) ⊆ PC(d), where

∪
z∈Z(d)

z = C(d).

Definition 3. Let d be a concrete Euler diagram and d′ an abstract Euler diagram. If
there is a bijection between C(d) and C(d′) that induces a bijection between Z(d) and
Z(d′), then d is said to be a realisation of d′, and d′ is the abstraction of d. An abstract
Euler diagram d′ is drawable if there is a realisation of d′ as a concrete Euler diagram.

By convention, each concrete Euler diagram contains a zone o, called the outer
zone, which is exterior to all the contours (that is, Xo = ∅). The left of Fig. 2 shows
a concrete Euler diagram containing four contours (A,B,C,D). The zone descriptors
for the concrete zones are graphically depicted in the right hand side of the figure; these
sets can be viewed as the abstract zone set.

We need terminology relating to the important operations of the addition and re-
moval of the contours of an Euler diagram.

Definition 4. Let d = ⟨C,Z⟩ be a concrete Euler diagram with A /∈ C and B ∈ C. Let
d+A and d−B denote the concrete Euler diagrams obtained by the addition of a new

65

Fig. 2. (a) A wellformed concrete Euler diagram, with contour identifiers (or labels); (b) a depic-
tion of the zone descriptors.

contour A to d and the removal of contour B from d, respectively. A region r of d is a
union of minimal regions; it is: (i) a covered region (or is covered by A) if r ⊂ int(A)
in d + A; (ii) split by A (a split region) if r ∩ int(A) ̸= ∅ and r ∩ ext(A) ̸= ∅ (i.e. r
is partially covered by A). Analogously, a zone z of d is a covered zone (respectively a
split zone) when it is covered (respectively partially covered) by A.

Fig. 3 shows an example of contour addition. We observe that the zone described
by {C} is split by the contour A but neither of its two minimal regions is split by A.
A point of intersection x between two curves c1 and c2 is called a crossing point. We
denote with Cross(d) the set of all the crossing points generated by contours in d.

Fig. 3. An example of contour addition: (a) A non wellformed diagram d =
⟨{B,C}, {∅, {B}, {C}, {B,C}}⟩. The crossing points of d are shown with filled-in dots; (b)
The crossing points of A with d (i.e. those in Cross(A)) are depicted as hollow dots. The set of
all hollow and filled-in dots depicts the set of crossing points of d+A.

3 Computing the abstraction of Euler Diagrams
The main problem that we address is the following, with variations according to the
choice of wellformedness conditions imposed.

Abstraction Update Problem
Let d = ⟨C,Z⟩ be a concrete Euler diagram and d′ = ⟨C ′, Z ′⟩ the abstraction of d.
Let A /∈ C and B ∈ C. Efficiently compute the abstractions of d+A and d−B.

66

In [6, 8] the single marked point approach (SMPA) (described below) was pre-
sented, computing the abstraction for wellformed Euler diagrams, following an online
approach where diagrams are viewed as a sequence of contour additions and removals.
Other operations such as translation or resizing of a contour can be easily simulated by
the addition and removal operations, and so such algorithms are applicable in a wider
context.

In this paper, we present an evolution of these algorithms, adopting the multiple
marked point approach (MMPA) (described below), permitting the relaxation of condi-
tion WF3 so that Euler diagrams whose zones are disconnected can be processed.

First of all, we recall from [8] that the set of zones split by A, due to the addition
of a contour A to (or its removal from) a given wellformed Euler diagram d, can be
computed using the following observation.

Observation 1 Let d be a wellformed Euler diagram and let {x0, x1, . . . , xm−1} be
all of the crossing points that we meet as we traverse the contour A from an arbitrary
point on A. Then:
(i) For each i = 0, . . . ,m− 1 each arc (xi, xi+1 mod m) splits one zone (note that two
arcs can split the same zone but one arc cannot split more than one zone) of d.
(ii) Two consecutive arcs (xi, xi+1 mod m) and (xi+1 mod m, xi+2 mod m) split two zones
such that their zone descriptors differ by exactly one contour (the contour which inter-
sects with A generating the crossing point xi+1 mod m).

Fig. 4. A schematic diagram which illustrates Observation 1. The addition of A generates six new
crossing points shown with small blobs. The point x01 is an arbitrary point of the arc (x0, x1)
used to compute an initial zone descriptor for the zone split by arc (x0, x1), whilst subsequent
zone descriptors are computed using Observation 1.

For the wellformed diagram case of [8], we adopted the SMPA where each zone z
of d has a single point mp(z) ∈ R2 associated to it, where mp(z) lay in the boundary of
the closure of the zone z (with the possible exception of the marker for the outside zone).
These points keep track of the zone sets, and were used to update these sets according
to their relationships with contours that are added or removed from a diagram. Then,
the zones that are not split by A are covered by A if and only if mp(z) belongs to the
interior of A. The SMPA is illustrated in Figure 5: each minimal region is marked by a
single marked point (an arrowed dot indicates a marked point, the arrow indicating the

67

minimal region which is marked); additional marked points, or pseudo-crossing points,
are used to mark the outside zone and any contour which has no crossing points, either
in d or at some stage during its incremental construction (e.g. see the marked point for
zone {B,D,E} in Figure 5). However, the SMPA is not sufficient to deal with the Euler
diagrams with disconnected zones. In this case, there are two ways of splitting a zone:
(i) a zone is split when one of its minimal regions is split by A; (ii) a zone is split when
some of its constituent minimal regions are covered by A and some are not. To address
case (ii) one can consider associating one marked point to each minimal region of the
diagram. Figures 5 (c) illustrates a generalization of the case of [8] where each minimal
region is associated with one marked point. Then, if a zone z has no minimal regions
which are split by A (i.e. case (i) does not hold) we can analyse the relationships of the
marked points with A to classify z as split by A, covered by A, or neither. In particular,
if all of the marked points of z belong to int(A) then z is a covered zone, whilst if some
of the marked points of z belong to int(A) while others do not, then z is a split zone,
according to (ii) above.

Fig. 5. Single marked point approach (SMPA): in (a) each zone of a wellformed Euler diagram is
marked by a single point; (b) shows in grey the zone {B,C} and its marked point; in (c) a non
wellformed Euler diagram (WF3 relaxed) with a zone {B}, shown in grey, which consists of two
minimal regions, therefore requiring at least two marked points.

However, the management of marked points (taking one for each minimal region)
for non-wellformed diagrams (relaxing WF3) raises some tricky problems such as: if
a zone z becomes split upon contour addition or deletion, how can one efficiently find
a marked point for each of the minimal regions that comprise z? For example, Figure
6 shows two parallel examples which adopt the SMPA (using the algorithm of [8]) in
which only the order of contour addiction has been varied. Whilst one of these gives a
valid solution, the other does not. In detail, the first two steps (a) and (b) in the figure
represent the addition of the first two contours (E and C) to the diagram. Then the two
cases are depicted: on the left we add first contour D and then contour B, whilst on the
right we first add B and then D. In the first case (on the left) the association between
the marked points and minimal regions is correct, with the two minimal regions of
zone {B} marked by points z0 and z2. However, in the second case (on the right) the
association is incorrect: there are two marked points associated to the same minimal
region (top, shaded) and no marked point associated the other minimal region (bottom,
shaded). The problem is that, in general, there is no easy way of discriminating between
the case on the left from the case on the right; by just analyzing the relation between
a marked point and the contours it is possible to discriminate between zones and not
minimal regions.

68

Fig. 6. The influence of the order of contour addition on the marked points/minimal region asso-
ciation, by using the algorithms of [8]. The dotted contour is the one that is going to be added to
the current diagram.

We avoid such problems by adopting the MMPA in which each zone is associated
with a set of marked points (which comprises the set of crossing points laying on its
boundary). This approach requires the tracking of a larger number of marked points
but we accept this trade-off against a simpler marked point management (also making
implementation easier), since when a zone is split, we just need to correctly partition
the set of its marked points.

The MMPA is illustrated in Figure 7: a set of points marks each minimal region r,
including all of the crossing points on the boundary of r. Thus, each zone has marked
point set including all of the crossing points laying on its boundary (i.e the boundaries
of its constituent minimal regions). In the specific case in Figure 7, each marked point
marks one, two or four zones.

In the following we define a procedure for contour addition (with contour removal
omitted for space reasons), which satisfies:

Theorem 1. Let d = ⟨C,Z⟩ be an Euler diagram, satisfying WF1 and WF2 (i.e. with
WF3 relaxed). Then
i) If A /∈ C, then the procedure NewContour(d,A) computes the new collection of zone

descriptors for the zones Z ′ of d′ = ⟨C ∪A,Z ′⟩.
ii) If B ∈ C, then the procedure DeleteContour(d,B) computes the new collection of

zone descriptors for the zones Z ′ of d′ = ⟨C −B,Z ′⟩.
Moreover, both procedures:

1. compute, for each zone z ∈ Z ′ − {z0}, where z0 is the zone in the exterior of all
contours in d′, the set of marked points of the zone, MP (z), that is comprised of the

69

Fig. 7. Multiple marked point approach (MMPA): in (a) each zone is marked by points including
all of the crossing points belonging to its boundary; (b) shows in grey the zone {B,C} and its
marked points; (c) a non wellformed Euler diagram (WF3 relaxed) with a zone {B}, shown in
grey, comprised of two minimal regions, utilising eight marked points.

set of all crossing points (or pseudo-crossing points) of d′ belonging to the closure
of z. There is a single marked point mp(z0) in the exterior of all of the curves of d′.

2. have running time O(|Z|+ |Cross(d)| log(|Cross(d)|)).

3.1 The algorithms

Initially, we consider the key case of Euler diagrams with WF3 relaxed (but WF2
and WF1 enforced). Subsequently, we will provide the ideas enabling the relaxation
of WF2 and WF1. For space reasons we present only the algorithm for contour addition
(omitting the algorithm for contour removal). Both algorithms are based on two auxil-
iary algorithms, ComputeContourRelationships (which computes the relationship of
a contour with the other contours in a diagram, and updates the marked point sets) and
ComputeSplitRegions (which computes the zone descriptors of the split zones using
Observation 1).

Definition 5. Let d = ⟨C,Z⟩ be a concrete Euler diagram and A a contour which is
not in C. Let

Over(A) denote the collection of all of the contours in C that properly overlap A; that
is Over(A) = {c ∈ C | int(A) ∩ int(c) ̸= ∅};

Cont(A) denote the collection of all of the contours in C that properly contain A; that
is Cont(A) = {c ∈ C | c /∈ Over(A) and int(c) ∩ int(A) = int(A)}.

For example, Figure 3 (a) shows diagram d and Figure 3(b) shows the addition of
contour A to d. We have Over(A) = {B,C}, Cont(A) = ∅ and Cross(A) contains
the four crossing points between A and the contours in C.

The methodology adopted makes use of the following low level computations, and
we assume that, given two contours A and B of an Euler diagram with WF3 relaxed,
we can quickly find:
1. the relationships between A and B; that is if A and B properly overlap, or if one

contains the other;
2. their crossing points (if A and B properly overlap);
3. the relationship between any given point x ∈ R2 and A; that is whether x belongs

to A, int(A) or ext(A).

70

Fig. 8. The addition of contour A splits eight minimal regions determined by the eight arcs that
comprise A. However, it splits nine zones, eight of which are the distinct zones containing the
eight minimal regions that are split. The ninth zone {B} is split, without splitting any of its
constituent minimal regions, since one of its minimal regions is covered by A but the other is not.

Placing restrictions on the geometric shapes used for contours (which is common
in some applications) can enable particularly fast computations. For example, if each
contour is a simple geometric shape, such as a circle or an ellipse, these computations
reduce to solving a system of two quadratic equations (1 and 2) and a quadratic equa-
tion (3), which can be computed very quickly (with different methods having different
time/precision tradeoffs).

Algorithm ComputeContourRelationships: (i) computes the relationship between the
contours present in a diagram d (with WF3 relaxed) and a contour A; (ii) updates the
set of crossing points of d.

We will refer to Fig. 8 to assist with the explanation of the algorithms. Consider the
addition of the dashed contour A to the diagram in Fig. 8 without A. After the execution
of Algorithm ComputeContourRelationships we have Cont(A) = ∅, Over(A) =
{B,C,D,E} whilst Cross(A) is the set of eight crossing points created by the addition
of A.

Algorithm ComputeSplitRegions uses the sets output by Algorithm ComputeCon-
tourRelationships and calculates the collection of zone descriptors for the zones that
contain a minimal region of d − A split by A. The crossing points of A can be used to
decompose A into a set of arcs. This algorithm computes the zone descriptors of all of
the zones of d−A that have at least one of their minimal regions split by A.

In detail, the arcs are analysed in the sequence that they are met as one traverses the
contour; see Fig. 4 for an example. The region that is split by the first arc (x0, x1) is
determined the set of contours that properly contain A and then by checking which of
the contours that properly overlap with A contains the arc. Each successive region that
is split is calculated by computing the difference with the previously computed region;
this idea was present in Observation 1.

Contour addition. Algorithm 1 updates the collection of zone descriptors upon the
addition of a new contour A to a diagram d. There are two cases to consider. Firstly, if
Over(A) = ∅ then no new crossing points are created by the addition of A, and so A
forms a new connected component. Thus, A splits only the zone described by contours

71

Algorithm 1: NewContour(d,A)

Input: An Euler diagram d = ⟨C,Z⟩ and a contour A such that A /∈ C.
Output: Z ′, the collection of zone descriptors of d′ = ⟨C ∪ {A},Z ′⟩.

1: (Cont(A), Over(A), Cross(A)) := ComputeContourRelationships(d,A)
2: if Over(A) = ∅ then // A does not properly overlap any contour present in C
3: s := Cont(A) // s is the zone split by A
4: Zs := {s} // Zs is the set of zones having a minimal region split
5: s.points := any point in A // the marked point for s
6: else
7: Zs := ComputeSplitRegions(d,A,Cont(A), Over(A), Cross(A))

8: Z ′ := Z
9: forall z ∈ Zs do

10: s := z // s is the old zone
11: n := z ∪ {A} // n is the new zone
12: Ms := Mn := MA := ∅
13: forall x ∈ s.points do
14: switch do
15: case x ∈ int(A) // the point x marks n
16: Mn := Mn ∪ {x}
17: case x ∈ ext(A) // the point x marks s
18: Ms := Ms ∪ {x}
19: case x ∈ A // the point x marks both s and n
20: MA := MA ∪ {x}

21: s.points := Ms ∪MA

22: n.points := Mn ∪MA

23: Z ′ := Z ′ ∪ {n} // The new zone n is added to the collection of zones of the diagram

24: forall z ∈ Z − Zs do
25: Mint := Mext := ∅ // Mint and Mext record the marked points of z that are in the

interior and the exterior of A, respectively
26: forall x ∈ z.points do
27: if x ∈ int(A) then
28: Mint := Mint ∪ {x}
29: else
30: Mext := Mext ∪ {x}

31: if Mext = ∅ then // if z is covered by A then z should be removed
32: Z ′ := Z ′ − {z}
33: else
34: z.points := Mext

35: if Mint ̸= ∅ then // if z is split or covered by A then a new region should be added
36: n := z ∪ {A}
37: n.points := Mint

38: Z ′ := Z ′ ∪ {n}

39: return Z ′

72

in Cont(A) (in Fig. 2 (a), contour D splits only the outer zone, exterior to all other
contours, for example). Secondly, if Over(A) is not empty, then A splits several zones
(contour A in Fig. 8 splits several zones, for example). Algorithm 1 computes the split
zones in two steps: (i) the split zones which contain a split minimal region are computed
by Algorithm ComputeSplitRegions; (ii) the split zones which do not have any split
minimal regions are computed, together with the set of covered zones, by analysing the
relationship between the collection of marked points of the zones and the contour A.

For instance, in Fig. 8, the zones having a minimal region split by A are {∅, {C},
{B,C}, {B,C,E}, {B,E}, {B,D,E}, {B,D}, {D}} while the zone {B} is split by
A even though neither of its two minimal regions are split by A since one of them is
covered by A and the other is not.

In detail, when Over(A) is empty, A does not properly overlap any of the contours
in d and it does not generate any new crossing points. In this case there is exactly one
zone of d split, defined by Cont(A), and any point on A can be chosen as the marked
point for both of the zones of d+A that are described by Cont(A) and Cont(A)∪{A},
referred to as the old zone and the new zone respectively (lines 3− 5).

Thereafter the algorithm considers the marked points of each zone of d which has
a minimal region that is split by A (line 7). The variable s refers to the zone in d that
is split as well as the old zone that this becomes upon the addition of A in d′, the
variable n refers to the new zone that is created in d′ from s which is also inside A.
For each such marked point x, the algorithm checks if x is a marked point for just the
old zone, just the new zone or both (lines 13 − 20) in d′ (recorded using Ms, Mn and
MA respectively). The new zone n is added to the collection of zones of the diagram
(line 23). Subsequently (line 24) the algorithm checks the remaining zones (i.e. those
that do not contain any split minimal regions) looking for covered or split zones of
d. This is performed by verifying the relationship between the marked points of the
zone z ∈ Z − Zs and A (lines 26 − 30). In particular, if all of the marked points
belong to int(A) (i.e., Mext = ∅) then the zone z is covered by A and so the old
zone z is removed from the diagram (lines 31 − 32). Moreover, if at least one marked
point belongs to int(A) then the zone z is either split or covered and so a new zone is
generated and added to the diagram (lines 35− 38).

3.2 Relaxing the wellformedness condition WF2 and WF1

WF2. We extend the algorithms to also handle crossing points with multiplicity greater
than 2 (i.e., more than two contours crossing transversely at a given point). For Euler
diagrams with WF3 relaxed, we used Observation 1 in Section 3 to compute the set of
zones split by the addition (or removal) of a contour A. Although Observation 1 (i) holds
for Euler diagrams with WF2 also relaxed, part (ii) does not hold if the crossing point
xi+1 mod m has multiplicity greater than 2. Fig. 9 (left) presents a schematic diagram,
similar to that in Fig. 4, in which there is a crossing point, x2, with multiplicity 3.
Observation 2 provides the modification of the strategy to deal with diagrams that relax
WF2 (as well as WF3).

73

Fig. 9. (left) A schematic diagram illustrating the need for Observation 2 when WF2 is relaxed
(c.f. Fig. 4). (right) The addition of A, yielding a diagram with WF1a relaxed. We have four
transverse crossing points (shown as filled dots) and one tangential intersection point (shown as
a hollow dot).

Observation 2 Let d be an Euler diagram with WF3 and WF2 relaxed. Let {x0, x1, . . . ,
xm−1} be all of the crossing points that we meet as we traverse the contour A from an
arbitrary point on A. If there are exactly ℓ ≥ 1 contours crossing A transversely at
a point xi+1 mod m then the zone descriptors of the zones that are split by the arcs
(xi, xi+1 mod m) and (xi+1 mod m, xi+2 mod m) differ by exactly ℓ contours, and these
are the contours that intersect with A comprising the crossing point xi+1 mod m.

The algorithms in Section 3.1 can now be altered to deal with the relaxation of WF2.
WF1. Firstly, we relax WF1a. Since tangential intersection points do not affect the
zones which are split by the corresponding arc (see Fig. 9 (right)), we adapt the algo-
rithm to deal with tangential intersections by simply ignoring them. Hence even the
relaxion of WF1a is straightforward.

Secondly, we relax WF1b, allowing concurrency. For this case, we assume that,
given two contours A and B of an Euler diagram, we can quickly: (i) check whether
they meet in a concurrent arc (i.e. a maximal non-discrete set of points of intersection).
(ii) check whether a concurrent arc is tangential (i.e. if a homotopy of the concurrent arc
to a point would leave a tangential intersection point; see Figure 10 left) or transversal
(i.e. if a homotopy of the concurrent arc to a point would leave a transverse crossing;
see Figure 10 right) and (iii) find the split points (the points where two contours that
meet in a concurrent arc separate).

The split points will play essentially the same role as the crossing points within the
extended algorithms: they will be used as marking points for zones and to compute the
set of zones which are split by the addition of a new contour A (noting that the crossing
points are also still used, as before). There are two cases to consider: (i) tangential
concurrent arcs and (ii) transversal concurrent arcs. For a tangential concurrent arc,
both of the split points of that arc do not affect the zones which are split (see Figure
10 left), and so we treat such points in the same manner as tangential intersections;
For a transversal concurrent arc, the first split point that we encounter as we traverse
the contour A does not affect the zone which is split, whilst the corresponding second
split point does affect the zone which is split (see Figure 10 right). Therefore, the first
point will be treated as a tangential intersection while the second one will be treated as
a transverse crossing.

74

Fig. 10. The addition of A, yielding diagrams with WF1b relaxed. (left) The contour A creates
two transverse crossing points, x0 and x2, and one tangential concurrent arc between points x1

and x3 (shown as hollow dots). (right) The addition of contour A create three transverse crossing
points, x0, x2 and x4, and one transverse concurrent arc between points x1 and x3 (shown as
hollow dots).

3.3 Timing
We provide complexity analysis for the MMPA for Euler diagrams.

The invocation of procedure ComputeContourRelationships analyses the relation-
ship between A and each contour in C and updates the set of crossing points, taking time
O(|C|+ |Cross(d)| log(|Cross(d)|)).

Then, if there are intersection points, the procedure ComputeSplitRegions com-
putes the set Zs of zones having a split region and, for each such zone updates the
set of marked points. Hence the procedure ComputeSplitRegions requires O(|C| +
|Cross(d)| log(|Cross(d)|) steps.

Finally, for contour addition, lines 9−23 and 24−38 respectively compute the col-
lection of marked points for zones having, and not having, split minimal regions, respec-
tively. We can compute this two collections in O(|Z|+ |Cross(d)|) steps. Collectively,
algorithm NewContour operates within time O(|Z|+ |Cross(d)| log(|Cross(d)|)).

4 Related work and conclusion
The relationship of the Euler diagram abstraction problem with arrangements of Jordan
curves in the plane [9] was discussed in [6]. We note that in our approach we do not need
to store or manipulate graphs, but we work directly with the diagrams utilising its in-
tersection points and the domain specific data structures, and we obtain a methodology
with a straightforward means of implementation.

In [22], an application is presented that interprets an Euler Diagram sketched with a
pen or a mouse, and calculates the abstract diagram. The authors claim complexity that
is asymptotically similar to ours, but this claim is not substantiated, with the paper not
providing details of how the Zone List Refinement Step is performed. The only apparent
method that would be effective with the generality that they describe is a pixel based
inspection of the drawing (commonly available in programming languages) but which
has the drawback of being dependent on the resolution of the image. Our methodology
has the added advantage of being more general in that it is not dependent on the image
of the contours, but only on their analytical representation.

In [23], a methodology is provided which takes a set of polygons (meaning regions
determined by sets of non-overlapping curves) and outputs a set of non-overlapping

75

polygons, which is essentially the boundary of a zone of the diagram in our termi-
nology; this enables the computation of polygon operations such as union, intersection,
difference and clipping. A graph based representation is constructed which consists of a
binary tree structure, encapsulating the structure of non-overlapping contours, together
with a winged-edge data structure which captures sets of polygons as a graph (indi-
cating the intersection points) and provides a simple means of traversing faces of the
graph. Their algorithm “corrects” input containing degeneracies (e.g. zero area contours
or coincident edges, meaning concurrency), whereas we wish to develop a method that
explicitly considers them. For ‘diagrams’ that consist of more than one connected com-
ponent, they compare each output contour with the others to determine if one is inside
the area of another or if they co-exist within the same area, and they record these contour
relationships in the hierarchical tree structure of the contours. Our approach (utilising
marked points) provides removes the need to compute these graph structures and then
to operate on them, whilst providing a means to explicitly capture the ‘singularities’
that may occur within certain contexts or application domains.

In [1], they prove that the Grünbaum encoding uniquely identifies simple Venn dia-
grams (i.e. they are wellformed) which are monotone and polar symmetric, and develop
an algorithm utilising a matrix representation to enumerate the monotone simple sym-
metric 7-Venn diagrams. The codes considered in the paper rely upon numbering the
curves (adopting certain conventions based on the curve segment in other and inner
faces to fix the choices) and for a given curve recording the sequence of curve numbers
that are given as one traverses the curve. Our methodology applies to a much wider
class of diagrams, but investigating the computation of encodings from the data struc-
tures utilised in our algorithms is an interesting line of future investigation.

In this paper, we have developed a new methodology, called the multiple marked
point approach, which enabled us to develop algorithms to solve the Euler diagram ab-
straction problem for nonwellformed Euler diagrams relaxing the constraints imposed
on the previous state of the art in [8], which utilised the single marked point approach
and was limited to the wellformed diagram case. Furthermore, these algorithms extend
in a natural manner to enable the processing of generalised Euler diagrams (i.e. unions
of regions with holes).

This enables greater flexibility for users of software tools, enabling them to work
with nonwellformed diagrams where it is convenient, or necessary, to do so. For exam-
ple, during user construction of wellformed diagrams if the user is permitted to con-
struct intermediary non-wellformed diagrams then this aids them in adopting a natural
construction method, whilst it can be very complex, or even impossible, to do so without
allowing passage through non wellformed diagrams. Furthermore, the extension to gen-
eralised Euler diagrams ensures that every abstract diagram has a concrete realisation
(which is not the case for wellformed diagrams, as shown in [5]).

The algorithms presented in this paper are available in a Java library, although to
simplify implementation (and to improve the efficiency) it restricts the geometric shape
of contours to be arbitrarily rotated ellipses [7]. This enables the specification of each
contour in parametric form, enabling easy implementation of operations such as choos-
ing a point on an arc, or checking contour relationships of intersection or containment.

The applications of this work are widespread since the algorithms can be utilised in
any software system that utilise Euler diagrams or their extensions.

76

References
1. T. Cao, K. Mamakani and F. Ruskey. Symmetric Monotone Venn Diagrams with Seven

Curves. In Fifth Intern. Conference on Fun with Algorithms, LNCS 6099, 331-342, 2010.
2. R. De Chiara, U. Erra, and V. Scarano. VennFS: A Venn diagram file manager. In Proceed-

ings of Information Visualisation, pages 120–126. IEEE Computer Society, 2003.
3. L. Euler. Lettres a une princesse dallemagne sur divers sujets de physique et de philosophie.

Letters, 2:102–108, 1775. Berne, Socit Typographique.
4. A. Fish, J. Flower, and J. Howse. The Semantics of Augmented Constraint Diagrams. Jour-

nal of Visual Languages and Computing, 16:541–573, 2005.
5. J. Flower, A. Fish, and J. Howse. Euler diagram generation. Journal of Visual Languages

and Computing, 19:675–694, 2008.
6. G. Cordasco, R. De Chiara, and A. Fish. Interactive Visual Classification with Euler Dia-

grams. In Proceedings of VL/HCC, pages 185–192. IEEE Press, 2009.
7. G. Cordasco, R. De Chiara, and A. Fish. EulerDiagramNWF: source code.

http://isis.dia.unisa.it/projects/EulerNWF, 2010.
8. G. Cordasco, R. De Chiara, and A. Fish. Efficient on–line algorithms for Euler diagram

region computation. Comput. Geometry: Theory and Application (CGTA),44:52–68, 2011.
9. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir. Arrangements

of curves in the plane—topology, combinatorics, and algorithms. In Theoretical Computer
Science, Vol. 92 N. 2, pages 319–336. Elsevier Science Publishers Ltd. 1992.

10. A. Fish. Euler Diagram Transformations. Graph Transformations & Visual Modelling Tech-
niques, ECEASST, 18:1–17, 2009.

11. C. A. Gurr. Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic
Issues. Journal of Visual Languages and Computing, 10:317–342, 1999.

12. J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider Diagrams: A Diagrammatic
Reasoning System. Journal of Visual Languages and Computing, 12(3):299–324, 2001.

13. S. Kent. Constraint Diagrams: Visualizing Invariants in Object Oriented Models. In Pro-
ceedings of OOPSLA97, pages 327–341. ACM Press, 1997.

14. H. Kestler, A. Muller, T. Gress, and M. Buchholz. Generalized Venn diagrams: A new
method for visualizing complex genetic set relations. J. of Bioinformatics, 21(8), 2005.

15. N. Henry Riche, and T. Dwyer. Untangling Euler diagrams. IEEE Transactions on Visual-
ization and Computer Graphics, 16(6):1090–1099, 2010.

16. F. Ruskey. A survey of Venn diagrams. Electronic Journal of Combinatorics.
www.combinatorics.org/Surveys/ds5/VennEJC.html, 1997

17. A. Shimojima. Inferential and Expressive Capacities of Graphical Representations: Survey
and Some Generalizations. In Proceedings of 3rd International Conference on the Theory
and Application of Diagrams, Vol. 2980 of LNAI, pages 18–21. Springer-Verlag, 2004.

18. G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern. Automated Theorem Proving
in Euler Diagrams Systems. Journal of Automated Reasoning, 39:431–470, 2007.

19. N. Swoboda, and G. Allwein. Using DAG Transformations to Verify Euler/Venn Homo-
geneous and Euler/Venn FOL Heterogeneous Rules of Inference. Journal on Software and
System Modeling, 3(2):136–149, 2004.

20. J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using Euler Diagrams in Traditional Library
Environments. In Euler Diagrams 2004, Vol. 134 of ENTCS, pages 189–202, 2005.

21. J. Venn. On the Diagrammatic and Mechanical Representation of Propositions and Reason-
ings. Phil.Mag, 1880.

22. M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, and A. Delaney SketchSet:
Creating Euler diagrams using pen or mouse. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing VL/HCC, pages 75–82. IEEE Press, 2011.

23. K. Weiler. Polygon comparison using a graph representation. Computer Graphics (SIG-
GRAPH ’80 Proceedings), 14(3):10–18, July 1980.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright © 2012 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Aesthetic and Practical Concerns in the
Drawing of Euler and Venn Diagrams:

Case Studies using SVG

David Dailey

Computer Science Department, Slippery Rock University, Slippery Rock, PA, USA
david.dailey@sru.edu

Abstract. SVG is a graphical language standardized by the World Wide Web
Consortium for the display of vector graphics on the WWW. It would appear to
be precisely appropriate for drawing Euler and Venn diagrams so that those
drawings would scale properly to different display devices. This paper presents
techniques for using SVG for doing exactly this as well as investigating a varie-
ty of aesthetic considerations that might improve the “explanatory power” of
such diagrams. Such features as the smoothness and convexity of curves, the
angles and distances between their intersections, the areas of resultant regions,
colors and other markings of the curves, as well has how to bring about these
effects are considered.

1 Introduction

SVG or Scalable Vector Graphics has been the World Wide Web Consortium’s
(W3C) recommended standard for web-based vector graphics since 2001 [1]. Its im-
plementation by web browsers, however, has been somewhat slow, with Opera, Fire-
fox, Safari and Chrome all providing some support during the years 2005 to 2008, but
Microsoft not providing support, finally, until 2011, with the release of Internet Ex-
plorer 9 [2] .

SVG is an XML language that provides formulaic descriptions of graphics that al-
low quicker download times than bitmapped formats (such as GIF, JPEG and PNG),
rescaling to the device resolution (so that clarity may be preserved as an image is
zoomed in upon or printed), and interactivity (meaning that images may be modified
dynamically through JavaScript). By being a W3C standard, SVG ensures interopera-
bility with the other web standards such as HTML, CSS, DOM, JavaScript and
AJAX.

It is a language particularly well-suited to the creation of mathematical illustrations
such as graphs [3], Voronoi diagrams [4], and, as will be argued in this paper, Euler
and Venn diagrams. In part, this advantage owes to the portability and scalability of
this form of graphics (supported by all modern web browsers and about 1 billion cell
phones [5]), but SVG also brings advantages toward addressing certain aesthetic con-
cerns, as these diagrams are used as explanatory constructs in teaching disciplines

78

ranging from Computer Science to Psychology and Philosophy [6]
(http://www.jfsowa.com/ontology/ontoshar.htm). This paper will also pre-
sent some of these aesthetic concerns and will critically examine SVG’s suitability for
addressing them.

Overall, the paper will conclude that while SVG is very appropriate and, in fact,
easy to use to create illustrations that will be of value to the diagramming community,
some of the more advanced features of the language (like filters and animation) still
suffer from inconsistent support across browsers, while other aspects of the language
appear to suffer from under-specification within the W3C specification. It is hoped
that some of these concerns can be addressed within the nascent SVG 2.0 specifica-
tion currently under development by the W3C.

2 Several Aesthetic Concerns for the Presentation of Set
Theoretic Diagrams

Intrinsic to the study of Venn and Euler diagrams are several terminological distinc-
tions and a few presuppositions that seem to be motivated by aesthetic considerations.
For example, the concept of a simple Venn diagram [7] is based on the notion that no
more than two curves should intersect at a given point. The very definition of Venn
diagrams begins with the concept of the simple closed curve, despite the fact that
certain set relations might be better represented by complex closed curves such as
shown in figure 1. And included in the basic definition of Venn diagrams is another
primarily aesthetic concern: the notion that all distinct regions in the plane should
have differing inclusion relations (i.e., that no two subregions should be subregions of
exactly the same collection of regions). We also, generally speaking, prefer smooth
closed curves rather than ones with sharp edges, and prefer the regions each to be
“large enough” (certainly to be visible).

Fig. 1. An Euler diagram in which the absence of certain regions (AC and BC are null) moti-
vates the use of closed curves that are not simple. This image is available in vector format at
http://cs.sru.edu/~ddailey/svg/NotSimple.svg.

79

This section will discuss several aesthetic concerns that can be, in some sense of
“perceptual distinguishability,” be added naturally to these diagrams to enhance their
“readability.”

2.1 Aesthetic Criteria for Venn and Euler Diagrams

1. Curves should be, when possible, simple closed curves. The example of Figure 1
illustrates a situation in which, for sake of accurate adherence to the set relations,
this may not be possible.

2. Curves should be smooth. Certainly the investigation of polygonal diagrams is of
interest to combinatorists, but smooth curves are easier for the eye to follow.

3. When possible, curves should be convex. This appears not always to be possible,
and the constructions of n-Venn diagrams, for any n, by both Venn and Edwards
[7] rely on curves that have numerous concavities. But curves that do not have fre-
quent changes of direction (from convex to concave) are intuitively easier for the
human eye to follow.

4. The number of intersections between any pair of curves should be not only finite,
as required by the standard definition, but small. Once again, this relates to the
perceptual ease of understanding a diagram, though two completely convex curves
may intersect at arbitrarily high numbers of points (as, for example, two regular n-
gons each centered at the same point, with one slightly rotated about the center).

5. The number of curves that meet at a given point should be minimal. While many
inquiries of Venn diagrams seek to minimize the number of intersections in the en-
tire diagram (to make the graph of the diagram have fewer nodes), such diagrams
are harder for the eye to traverse and must often rely on additional visual cues such
as color to make the various curves distinguishable. According to this criterion, di-
agrams whose graphs are four-regular are preferred.

6. The points of intersection between regions should be relatively far apart, when pos-
sible. Cleary, if more than two curves intersect at a given point, then the distance
has been eliminated altogether, but again, for ease of perception, it is best to ensure
that these intersections are not so close together that confusion should result.

7. When two or more curves intersect at a given node, the angles of intersection
should be “relatively high.” For example, in the four diagrams in Figure 2, diagram
1, is the relatively “classical” presentation, with each circle passing through the
center of the other, producing an angle of intersection of sixty degrees. In Figure 2,
the angels between the curves is maximized at ninety degrees. While it is arguable
that diagram 1 may be preferable to diagram 2, this would probably stem from the
relative sizes of the regions, a factor addressed in criterion 8 which follows.

8. The regions of the Venn diagram should be relatively “large.” While in certain
contexts, we may wish to ensure that the areas of regions is proportional to the car-
dinality of the sets and intersections represented by the diagrams [8], absent this
empirical constraint, it is expected that the human perceiver will more readily
make sense of the subset and overlap relations when the regions are large enough
to be labeled, shaded, or colored, and certainly, large enough to be seen.

80

Fig. 2. Diagrams illustrating different sizes of regions and angles of intersection. This image is
available in vector format at http://cs.sru.edu/~ddailey/svg/intersection.svg.

9. Regional markings (coloration, patterning or shading) should maintain “family
traits.” That is, each of the subregions of a curve should bear some resemblance to
one another, and certainly to the “undiluted” pure set as it appears outside the in-
tersections with other sets. In Figure 3, the first two diagrams (at upper left) present
the traditional additive and subtractive color models as rendered in SVG. And
though, each subregion inherits its chroma from its parents, this fact is rather lost
on many human perceivers who see no particular resemblance between black or
white and the surrounding colors.

10. Notwithstanding criterion, 9, the markings (coloration, patterning or shading) of
regions should, nevertheless, be maximally distinguishable, from one another, par-
ticularly when regions are adjacent. In the sixth diagram of Figure 3 (lower right)
the four lowermost regions within it are not so perceptually distinguishable as we
might prefer.

Fig. 3. Various Venn diagrams marked with different colors in an attempt to satisfy criteria 9
and 10. This image is available in vector format at cs.sru.edu/~ddailey/svg/V11.svg.

81

Among these ten criteria are many principles that rather work against one another.
Distinguishability of regions (criterion 10) and family resemblance (criterion 9) call
for opposing solutions. Likewise, as seen in Figure 2, maximizing the angles of inter-
section of curves, is in contrast with maximizing the areas of the regions inside, par-
ticularly for the preferred convex curves. This, however, is the nature of aesthetics: a
compromise, ultimately between several competing criteria. One seeks to minimize
confusability at several different parts of a rather complex psychophysical realm. In
subsequent sections, we’ll look at how some approaches to working in this realm
using SVG.

3 Basics of Using SVG

Those readers familiar with HTML will find SVG quite natural. It is a markup lan-
guage complete with tags (inside angle brackets “<” and “>”) and attributes. The tags
of SVG are typically geometric things like <line> <circle> <rect> (for rectan-
gle), and the attributes are things like r=20 that might specify the radius of a circle, or
width=200 that might specify the width of a rectangle. Sometimes, for sake of reus-
ing code, we may group objects together using the group element <g>, and reuse them
using the <use> element. SVG also has transforms (for rotation, translation and resiz-
ing), patterns (for specifying customized patterns for use in filling curves), and filters
(for modifying the way that regions appear).

SVG is visible in all modern browsers (meaning that you will have to use Internet
Explorer 9 or 10 to see it) and many mobile devices (including i-phones, Androids
that run IceCreamSandwich, Blackberry Playbooks, and dozens of others) for a total
number of devices estimated at 1 billion [5]. However the SVG specification [9] is
complex and has taken several years for most browsers to implement. Currently, sup-
port is quite thorough and consistent for basic SVG, but is a bit spotty for more ad-
vanced features like filters and animation [10].

To get started, one may copy the following code (also available at
http://cs.sru.edu/~ddailey/svg/simplest.svg) into a text editor and
save it as simplest.svg. Once saved in a place that is visible to web browsers (typical-
ly, a web server, though one’s own hard drive will generally work), then one may
simply open the file with a (modern) browser to see.

<svg xmlns="http://www.w3.org/2000/svg">
<circle r="50"/>
</svg>

This should succeed in drawing a black circle centered at the extreme upper left
corner of the web browser. To some extent, it is the simplest SVG document possible.

Much more about how to use SVG to draw far more elaborate illustrations, and
even interactive web documents, can be seen in the W3C’s SVG Primer [2].

82

4 Drawing Curves: using circles, ellipses and paths.

SVG has several drawing primitives, including polygons, rectangles, and the like, but
for these purposes we will concentrate on how to draw smooth curves: circles, ellipses
and paths.

4.1 Drawing circles

While the above simplest code adds only one attribute (r for radius) to the <circle>,
more attributes may be added to vary its center, the colors of both its boundary and
interior, and other aspects. As shown in Figure 4, the coordinate system places the
origin (0,0) at the top left of the browser window, with x increasing to the right and y
increasing downward.

Fig. 4. Circles drawn with increasingly more complexity and attributes. This image is available
in vector format at cs.sru.edu/~ddailey/svg/circles.svg .

As can also be verified from the above, fill controls the color (or gradient or pat-
tern) that is placed into a shape; its default value is black. If the center of the circle
(cx,cy) is not specified, then it is assumed to be (0,0) .

Two other things about circles (and by extension the more complex shapes like el-
lipses and paths) in SVG should be known. We may make the interior of a circle in-
visible by setting fill=”none” and we may vary the opacity of the stroke and the fill,
independently as shown in Figure 5. Both of these will prove useful in drawing of set
theoretic diagrams.

83

Fig. 5. Making a circle empty or partly transparent. This image is available in vector format at
cs.sru.edu/~ddailey/svg/opacity.svg .

The magenta circle in the second diagram of Figure 5 has its opacity set to .4.
Hence it will be 40% opaque and 60% transparent. The stroke-opacity attribute has
not been adjusted, meaning that its value remains the default: 1.0, or 100% .

4.2 Ellipses

Ellipses are drawn in SVG much like circles except for having two radii: rx, and ry
representing the distances from the center to the horizontal and vertical extremities.
And unlike circles, rotation is relevant for ellipses, allowing us, for example, to draw,
Venn’s symmetric construction of one of the two 4-Venn diagrams. This example
shows some of SVG’s power for creating these sorts of illustrations.

In Figure 6, an initial ellipse is drawn. Because other ellipses will share the same
stroke-width (3), stroke color (black) and the same fill (none) , it is nestled inside a
group (a <g> tag) so that it, and all other versions of it, may inherit these shared at-
tribute values. So that the drawing will have vertical symmetry, the ellipse is then
rotated 60 degrees, about its center (250,150), using the transform attribute:

<g stroke="black" fill="none" stroke-width="3" >
 <ellipse id="E" ry="55" rx="100" cy="150" cx="250"
transform="rotate(60, 250,150)"/>
</g>

Fig. 6. The sixteen regions of a 4-Venn diagram drawn with congruent ellipses. The SVG ver-
sion can be seen at cs.sru.edu/~ddailey/svg/fourVenn1.svg .

84

Next the ellipse is cloned using the <use> element, with the resulting code appearing
as this:

<g stroke="black" fill="none" stroke-width="3" >
 <ellipse id="E" ry="55" rx="100" cy="150" cx="250"
transform="rotate(60, 250,150)"/>
 <use xlink:href="#E" transform="translate(-40, 45)"/>
 <use xlink:href="#E" transform="rotate(60, 250,150)"/>
 <use xlink:href="#E" transform="translate(40, 45) ro-
tate(60, 250,150)"/>
</g>

The initial ellipse has been given an id (“E”) which can be referred to later (as #E
in the use elements). There are three reuses of the ellipse named E: one is simply
translated down 45 pixels and leftward 40 pixels. Another one is rotated an additional
60 degrees about its center. The final one is both rotated and translated. In SVG mul-
tiple transforms are performed from right to left, so that this last ellipse is first rotated
60 degrees from the original, and then repositioned into alignment. Another way of
efficiently reusing code can be used in the construction of the radially symmetric 5-
Venn diagram, shown in Figure 7, using the <replicate> tag, that is being consid-
ered for addition to SVG 2.0.

Fig. 7. A radially symmetric Venn diagram on 5 curves, drawn with only 10 lines of markup
using <replicate>. The SVG version can be seen at
http://cs.sru.edu/~ddailey/svg/repVenn3.svg

4.3 Paths

The use of SVG paths is particularly useful for drawing smooth curves with con-
cavities. Using the <path> element, the diagram author has complete control over the
slope of curves at the specified endpoints.

We will illustrate two uses of SVG paths, including the components for both quad-
ratic and cubic Bézier curves, to draw a figure eight and a trefoil.

In a nutshell, SVG paths (see [11]) shape a curve using components based on lines,
circular arcs, and Bézier components. The Bézier components allow us to draw, be-
tween any pair of points, a curve that visits both points and does so from any desired

85

angle. Let us consider just a figure-eight curve such as shown in Figure 8, below (and
at http://cs.sru.edu/~ddailey/svg/figureEight.svg).

Fig. 8. Drawing a figure-eight using quadratic and cubic Bézier segments.

The code for this figure is as follows:

<path d="
 M 300,200
 Q 500,100 500,200
 Q 500,300 300,200
 C 100,100 100,300 300,200
"/>

Note that the curve begins at the point, 300,200, as marked and then progresses “in
the direction” of the point 500, 100, finally ending up (after the first “Q”) at 500,200.
From there, it now heads south in the direction of 500,300, ultimately returning to
300, 200. That is, the two quadratic components of the curve are controlled by the
collinear points (500,100) and (500, 300). The slope of the curve as it begins at
(300,200) is ½ and, as it returns to (300,200) it is -½ . At the midpoint of its double
quadratic swoop, the path is momentarily vertical. The cubic component while simi-
lar, uses two control points (chosen to be collinear with those of the quadratic compo-
nent) so as to assure that its slopes at (300,200) are likewise ½ and – ½ . This demon-
strates how we might stitch smooth segments together while controlling their slopes at
key points such as intersections.

Circular arc components are conceptually a bit simpler, however, given two points
and a radius of a circle that passes through both, there are, in fact, four circles that
satisfy those constraints. Thus, the syntax for drawing arcs specifies with a few attrib-
utes which of those four curves is actually intended. (The interested reader is directed
to the illustration at [12])

Without going into detail about this syntax, observe from Figure 9, that we may
use circular arcs to adjoin line segments into smooth curves (in the sense of being
continuously differentiable.)

86

Fig. 9. A curve with three linear components and three circular components.

The curve at left in Figure 9 is drawn via the following code:

<path d="M 150,300 L 250 300
 A 50 50 0 1 1 200 350
 L 200 150
 A 50 50 0 1 1 250 200
 L 150 200
 A 50 50 0 0 0 150 300
"/>

while the curve at the right emphasizes the linear components (L) and the arc compo-
nents (A) as well as the six connecting endpoints {(150,300), (250.300), (200,350),
(200,150), (250,200), and (150,200)} .

Without much difficulty, one can interrupt this curve at key points of overlap to create a
roadway with bridges as shown at http://cs.sru.edu/~ddailey/svg/notknot3.svg.

By redirecting some of the arcs of Figure 9, we may “reattach” some of those arcs,
as shown in the following code to produce the shape on the left in Figure 10:

<path d="M 150,300 L 250 300
 A 100 100 0 0 0 340 245
 A 100 100 0 0 0 250 100
 A 50 50 0 0 0 200 150
 L 200 350
 A 50 50 0 0 0 250 400
 A 100 100 0 1 0 250 200
 L 150 200
 A 50 50 0 0 0 150 300
" />

87

Fig. 10. Two versions of the trefoil. Left: using circular arcs; right: using Bézier curves.

The code for the diagram on the left of Figure 10 can then be generalized as shown
in the diagram on the right, by using Bézier curves and making sure, as shown earlier
in Figure 8, that the curve remains smooth.

<path d="M 200,200 Q 300, 174.12 400,200
C 600, 251.76 444.82,520.52 300,372.2
Q 227.59,299.54 200,200
C 145.82,0.82 455.18,0.82 400,200
Q 372.41,299.54 300,373.2
C 155.18,520.52 0,251.76 200,200
"/>

Traffic diagrams flowing along these curves, when drawn as knots, can be seen at
cs.sru.edu/~ddailey/svg/knot1.svg and
cs.sru.edu/~ddailey/svg/knot2.svg , while a similar illustration with
Borromean rings can be seen at cs.sru.edu/~ddailey/svg/rings.svg .

5 Marking territory: shades, colors and patterns.

A cursory examination of Euler diagrams sampled in situ from the web, suggests that
color (either as what SVG would call fill or stroke) is used to aid the viewer in “read-
ing” the diagram. The concepts that such diagrams are used for (for example differen-
tiating between the British Isles and the British Islands1 [13], are frequently fairly
complex (why else would we need a picture?), and as such helping the reader to parse
the visual information seems to be one of the only uses of color (as articulated in Aes-
thetic Principles 9 and 10): namely to help recognize family traits (that subregions
inherit from their regions) and to illustrate the individual differences (that distinguish
subregions from their various containers, subsets and siblings).

However, color need not be the only way of doing this, and several centuries of
printing with black ink have undoubtedly helped to inform the ways of “illustrating
overlap” between geopolitical regions with and without the use of color. Techniques

1 One might guess this to be a particularly difficult set of distinctions for American speakers

of English.

88

of shading, coloring and patterning have been investigated by researchers in a broad
array of fields (as instantiated by the visualization work of Ian McHarg and Edward
Tufte). To what extent can some of these methods of conveying family resemblance
and individual differences be expressed within SVG?

The simplest technique for combining markings of regions is to let their darknesses
accumulate as more regions overlap, as shown in the code below and in Figure 11.

<g stroke-width="5" stroke="black" fill-opacity=".4"
fill="black">
<circle cx="240" cy="60" r="50" />
<circle cx="290" cy="60" r="50" />
<circle cx="265" cy="95" r="50" />
</g>

Fig. 11. Superimposition of partially opaque, simply shaded regions. The SVG version of this
may be seen at http://cs.sru.edu/~ddailey/svg/opacity3.svg.

The problem with shading in this manner is that while it helps to differentiate “par-
ent” regions from “child” regions, it does not help us distinguish things of the same
generation. In SVG, objects maintain a stacking order from first to last declared. That
is, two ovals, one magenta and one yellowgreen, and both 40% transparent, will not
look the same, as in Figure 12. Thus, SVG imparts a bit of three dimensional asym-
metry to its two dimensional objects.

Fig. 12. Effects of stacking order and opacity on appearance in SVG. SVG version may be seen
at http://cs.sru.edu/~ddailey/svg/opacity2.svg.

89

Figure 13 investigates some combinations of color values and opacity values that
seem to yield diagrams that are at least hint at satisfying principles 9 and 10. The
obvious conclusion here is that the choice of colors and opacity values is somewhat
critical toward producing a pleasant design, but it is not altogether obvious as to what
might work. This is in part due to the fact that human color perception is complex.
While most people have three differentially sensitive cones in the retina, some (main-
ly males) have only two, and some (mostly women) have recently been shown to have
four. And while we are a predominantly trichromatic species at the level of the retina,
we tend to be tetrachromats in the occipital lobe. Different cultures have differing
numbers of primary color terms, though the boundaries between the primaries tend to
coincide. Yellow is perceptually different than other primary or secondary colors and
distance as calculated between two colors RGB values is not a good predictor of their
perceptual distinctness. Couple all this with differing gamma curves for different
monitors and the world of color is more complex than it might, at first glance, appear
to be. Figure 13 also begins to raise and experiment, just a bit, with the interactions of
labels and the regions underneath. Clearly, labels of regions must retain legibility, and
that means that color contrasts must in some way be maximized, adding one more
“readability” criterion to the Aesthetic Criteria already discussed.

Fig. 13. Several differing color values offered to regions by varying the colors, opacities, and
filtered combination of the original curves. (The original vector-based SSVG file can be found
at http://cs.sru.edu/~ddailey/svg/V9.svg).

As mentioned earlier, SVG also has the ability to use filters to allow, among other
things, the interaction of colors to be more precisely controlled, or to allow the inter-
sections of regions to be precisely targeted. In Figure 14, one can observe that higher
inter-region color differences can be promoted by either using multiplicative or
screening filters (top left and top center) or by using compositions filters to choose
specific regions and, to it, apply any chosen color whatsoever. That is, in browsers
that support advanced filters (currently only the Adobe plugin for Internet Explorer,

90

and Opera support these particular effects, though this is likely to change soon for
both Firefox and Internet Explorer) we may exercise complete control over the col-
oration of the regions of a diagram, making the question of how to choose these col-
ors all the more relevant.

While color is certainly a salient dimension of visual perception, it is not the only
way to assign personality to shapes in SVG. Figure 14 shows several approaches us-
ing shapes and textures rather than just color to do so. These examples give rise quite
naturally to a large set of complex questions about the distinguishability of various
pattern glyphs, particularly in the context of multiple markings coalescing within
regions that share features of two or more parent sets. That such information could be
conveyed through tactile perception rather than through color, is a rather intriguing
notion. While the meaningful primitives of color perception are relatively well stud-
ied, how might we most sensibly combine shapes in the manner? Is there a possibility
of optimization is so complex a realm?

Fig. 14. Using SVG <pattern> to fill overlapping regions so as to preserve family traits. The
SVG example can be studied at http://cs.sru.edu/~ddailey/svg/V12.svg. .

6 Conclusion

Interrelations between the technology of drawing and the aesthetics of diagrams have
certainly occurred since the early days of printing. The progression from engraving to
half-tones to photography, color printing and web-based vector graphics has been a
fascinating one. An interdisciplinary topic such as how best to portray the fundamen-
tal inclusion relations among a set of concepts is a topic as old, no doubt, as philoso-
phy. SVG offers promise to those engaged in these studies, across many disciplines
since the language offers both succinctness of expression, broad and growing stand-
ards support, and access to high level tools such as CSS, JavaScript and server-side
web tools. At the same time, maximizing control over our diagrams can, in some cas-
es, require some of the most advanced features the language has to offer. Browser
support for some of these features remains spotty, but shows continual improvement

91

with new energy coming from major computing corporations as more parts of the
SVG specification are implemented and as the specification itself shows very active
growth and development.

References

1. Lilley, C.: W3C Scalable Vector Graphics (SVG) – History. W3C Interaction Domain,

http://www.w3.org/Graphics/SVG/History
2. Dailey, D: An SVG Primer for Today's Browsers. W3C Working Draft — September 2010,

http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html (2010)
3. Dailey, D., Elder, E., Perri, R.: A Browser-based Graphical User Interface for Designing

and Manipulating Graphs. In: 7th Annual Conference, SVGOpen. W3C and SVG Working
Group, Mountain View, CA http://srufaculty.sru.edu/david.dailey/grapher/
(2009)

4. Bostock, M.: Voronoi Diagram,http://mbostock.github.com/d3/ex/voronoi.html
5. Dailey, D., Frost, J., Strazzullo, D.: Building Web Applications with SVG, Microsoft Press

(2012)
6. Sowa, J.: Building, Sharing, and Merging Ontologies

http://www.jfsowa.com/ontology/ontoshar.htm
7. Venn Diagram Survey: What is a Venn Diagram? The Electronic Journal Of Combinatorics

(ed. June 2005), DS #5. http://theory.cs.uvic.ca/~cos/venn/VennWhatEJC.html
8. Micallef, L., Rodgers, P.: Drawing Area-Proportional Euler and Venn Diagrams using El-

lipses, http://www.eulerdiagrams.org/eulerAPE
9. Dahlström, E., Dengler, P., et al.: Scalable Vector Graphics (SVG) 1.1 (Second Edition),

W3C http://www.w3.org/TR/SVG/ (2011)
10. Devaria, A.: When can I use...Compatibility tables for support of HTML5, CSS3, SVG and

more in desktop and mobile browsers http://caniuse.com/#cats=SVG
11. Dailey D.: <path> in An SVG Primer for Today's Browsers, W3C (2010)

http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#path
12. Dailey, D.: http://srufaculty.sru.edu/david.dailey/svg/newstuff/arcs.svg
13. File:British Isles Euler diagram 15.svg, Wikipedia,

http://en.wikipedia.org/wiki/File:British_Isles_Euler_diagram_15.svg

Introducing 3D Venn and Euler Diagrams

Peter Rodgers1, Jean Flower2, and Gem Stapleton3

1 University of Kent, UK
p.j.rodgers@kent.ac.uk

2 Autodesk, UK
3 Visual Modelling Group, University of Brighton, UK

g.e.stapleton@brighton.ac.uk

Abstract. In 2D, Venn and Euler diagrams consist of labelled simple
closed curves and have been widely studied. The advent of 3D display
and interaction mechanisms means that extending these diagrams to 3D
is now feasible. However, 3D versions of these diagrams have not yet been
examined. Here, we begin the investigation into 3D Euler diagrams by
defining them to comprise of labelled, orientable closed surfaces. As in
2D, these 3D Euler diagrams visually represent the set-theoretic notions
of intersection, containment and disjointness. We extend the concept of
wellformedness to the 3D case and compare it to wellformedness in the
2D case. In particular, we demonstrate that some data can be visualized
with wellformed 3D diagrams that cannot be visualized with wellformed
2D diagrams. We also note that whilst there is only one topologically
distinct embedding of wellformed Venn-3 in 2D, there are four such em-
beddings in 3D when the surfaces are topologically equivalent to spheres.
Furthermore, we hypothesize that all data sets can be visualized with 3D
Euler diagrams whereas this is not the case for 2D Euler diagrams, unless
non-simple curves and/or duplicated labels are permitted. As this paper
is the first to consider 3D Venn and Euler diagrams, we include a set of
open problems and conjectures to stimulate further research.

1 Introduction

Euler diagrams represent intersection, containment and disjointness of sets. Cur-
rently, these diagrams are drawn in the plane and consist of labelled simple
closed curves. These 2D Euler diagrams have been widely studied over the last
few years and much progress has been made on their theoretical underpinning
and techniques for automatically drawing them.

Here we introduce the concept of 3D Euler diagrams. We know of no other
work defining this type of 3D representation and, thus, this paper focusses on
setting the groundwork for discussing this new diagrammatic type. Furthermore,
it provides a platform to engage the community in discussion about the various
issues in 3D Euler diagram research. 3D Euler diagrams consist of labelled ori-
entable closed surfaces drawn in R3. An example of a 2D and a 3D Euler diagram
representing the same information can be seen in figure 1. This 3D diagram, as
well as all of the 3D Euler diagrams drawn in this paper, can be accessed from

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c© 2012 for the individual papers by the papers’ authors. Copying permitted for
private and academic purposes. This volume is published and copyrighted by its editors.

93

P Q

R

Q

P

R

Fig. 1. A 2D Euler diagram with an equivalent 3D Euler diagram.

P R

Q

P
R

Q

P
R

Q

Fig. 2. Four topologically distinct wellformed Venn-3s.

www.eulerdiagrams.com/3D/workshop/. Using the freely available Autodesk
Design Review software, one can rotate and explore the 3D diagrams.

We define 3D Venn diagrams as 3D Euler diagrams where all combinations of
surface intersections are present. An interesting comparison between 2D and 3D
is in the common Venn-3 case, i.e the Venn diagram representing exactly three
sets. It is known that there is only one topologically distinct embedding of well-
formed Venn-3 in 2D [9]. In 3D, there are infinitely many topologically distinct
embeddings of wellformed Venn-3 when the surfaces are closed and orientable
(i.e. connected sums of tori). When the surfaces are topologically equivalent to
the sphere, there are at least four topologically distinct embeddings of wellformed
3D Venn-3, shown in figure 2.

Whilst 3D Venn and Euler diagrams are interesting in their own right, we
believe that there are also solid practical motivations for examining them. Firstly,
the recent advances in hardware available for 3D display and interaction (eg. 3D
televisions and Microsoft Kinect) support 3D visualization. As Venn and Euler
diagrams form an important aspect of 2D visualization, it is reasonable to expect
that they will also be important for 3D visualization.

Secondly, there are intrinsic benefits to exploring 3D with respect to Euler
diagrams. When 2D Euler diagrams are defined as consisting of (anything equiva-
lent to) simple closed curves without duplicated labels (for instance [4] and [6]),
not all data sets can be visualized. This is clearly a major limitation. Subse-
quently, the definition of a 2D Euler diagram was relaxed, permitting diagrams
to have non-simple curves and duplicated curve labels [7, 10]. Under this new ap-
proach, all data sets can be visualized but potentially at the cost of significantly
reduced usability [8]. However, as we note later in this paper, in the 3D case
we conjecture that it is possible to draw all data sets (encapsulated by diagram
descriptions) without duplicate labels and non-simple surfaces. Consequently,
this major limitation on undrawability is overcome in the 3D case.

94

Q

P

R

Q

P

R

Fig. 3. An non-wellformed 2D diagram and an equivalent wellformed 3D diagram.

Wellformedness properties are a key aspect of drawing of Euler diagrams. In
2D, they relate to how the curves intersect and to the properties of the regions
present. In 3D, we generalize them to how the surfaces intersect and the prop-
erties of the solids to which the surfaces give rise. The 2D Euler diagram on the
left of figure 3 is not wellformed because it has a triple point of intersection be-
tween the curves. By contrast, the same data can be represented in a wellformed
manner in 3D, as shown in the righthand side of figure 3; we will demonstrate,
in section 4, that any way of drawing a 2D Euler diagram representing the same
data breaks a wellformedness property. Often, there exists wellformed 3D Euler
diagrams for data that has no wellformed 2D representation.

The remainder of this paper is as follows. Section 2 formally defines 3D Euler
diagrams and related concepts. Section 3 generalizes wellformedness properties
of 2D Euler diagrams to the 3D context. Section 4 establishes that more data sets
can be drawn wellformed with 3D Euler diagrams than with 2D Euler diagrams.
We then go on to examine future work and propose open questions in section 5.
Finally, section 6 concludes.

2 What is a 3D Euler Diagram?

3D Euler diagrams are formed from closed surfaces embedded in R3 rather than
closed curves embedded in R2. We refer the reader to [12] for a formal definition
of a 2D Euler diagram and associated wellformedness properties. As with closed
curves in 2D Euler diagrams, which are typically required to be simple, we choose
not to use arbitrary surfaces in 3D Euler diagrams. This is because we want to be
able to define certain properties of 3D Euler diagrams that require the surfaces
to be ‘nice’. Choosing our surfaces to be orientable gives us a well-understood
notion of what constitutes the interior. Hence, we define 3D Euler diagrams as
follows, where L is a set of labels that we use to label the surfaces:

Definition 1. A 3D Euler diagram is a pair, d = (S, l), where

1. S is a finite set of closed, orientable surfaces embedded in R3, and

2. l:S → L is an injective function that labels each surface.

95

In 2D Euler diagrams, zones are sets of points in the plane that are inside all
curves in a given set and outside the rest of the curves in the diagram. In figure 1,
both diagrams have five zones. Zones are fundamentally important, since these
correspond to the semantics of the diagram: between them, the present zones
must represent all of the non-empty set intersections. We now generalize the
notion of a zone to the 3D case:

Definition 2. A zone in a 3D Euler diagram, d = (S, l), is a set of points, z,
in R3 for which there exists a subset, S, of S such that

1. every point, pin , in z is inside all of the surfaces in S and outside all of the
surfaces in S − S, and

2. z is maximal with this property.

Such a zone, z, is described by des(z) = {l(s) : s ∈ S}. The set of zones in d is
denoted Z(d).

In the visualization process, one starts with a description of the to-be-drawn
diagram. A diagram description is a list of the set intersections that must be
present in the diagram, given the sets to be visualized, thus precisely encapsu-
lating the categories in which data items lie. For example, suppose we wish to
visualize the sets P , Q, and R, and the intersections we wish to visualize are
P∩Q∩R, Q∩P∩R, R∩P∩Q (i.e. the set intersections that comprise elements in
exactly one of the three sets), along with P ∩Q∩R, P ∩R∩Q and Q∩R∩P (i.e.
the set intersections that comprise elements that are in exactly two of the sets).
Further, we also must visualize the set intersection that comprises elements in
none of the three sets, namely P ∩ Q ∩ R. This is more succinctly represented
as ∅, P,Q,R, PQ,PR,QR, listing the non-complemented sets from each speci-
fied intersection, and is visualized by both diagrams in figure 3. More formally
these diagrams have description {∅, {P}, {Q}, {R}, {P,Q}, {P,R}, {Q,R}}, but
we will abuse notation as just illustrated.

Definition 3. A diagram description, D, is a subset of PL that includes ∅.
The description of a 3D Euler diagram, d = (S, l), is {des(z) : z ∈ Z(d)}.

The classic drawing problem, generalized to 3D, is given a diagram descrip-
tion, D, draw a 3D Euler diagram with description D. In 2D, this problem is
often subject to a range of extra constraints that typically relate to the well-
formedness properties. For instance, we may wish to find a diagram that has no
concurrency between surfaces. We generalize the wellformedness properties to
3D in the next section.

3 Wellformedness Properties of 3D Euler Diagrams

There are various wellformedness properties that can be applied to 2D Euler
diagrams [12]. These are informally described in table 1, where we also present
their generalizations to 3D. Examples of non-wellformed diagrams in both 2D

96

Property 2D Case 3D Case

Connected Zones Every zone is a connected compo-
nent of R2.

Every zone is a connected compo-
nent of R3.

n-Point Every point in R2 is passed
through at most n = 2 times by
the curves.

Every point in R3 is passed
through at most n = 3 times by
the surfaces.

Crossings Whenever two curves intersect,
they cross transversely.

Whenever two surfaces intersect,
they cross transversely.

Line Concur-
rency

No two curves share a common line
segment.

No three surfaces share a common
line segment.

Surface Concur-
rency

N/A No two surfaces share a common
sub-surface.

Table 1. Wellformedness properties.

and 3D are shown in table 2. Some of the wellformedness properties in 3D are
obvious generalizations of the 2D case, but others benefit from further discussion.

First, consider the n-points properties. For the 2D case, a diagram is non-
wellformed if it contains a triple point (i.e. a 3-point). The reason that the pres-
ence of 2-points does not render a diagram non-wellformed is because whenever
two curves intersect, a 2-point is formed. However, given three curves that pair-
wise intersect it need not be the case that a 3-point is formed. Thus, 3-points are
avoidable in 2D. However, 3-points are not avoidable in 3D. This is illustrated
in figure 4. Here, three spheres intersect to form Venn-3. The cross-section of
the diagram shown on the right of the figure illustrates that a three 3-point is
formed.

Now consider now line concurrency. In 2D, diagrams that have two curves
running concurrently along a line segment are not wellformed. However, in 3D,
such a property is unavoidable: two surfaces that intersect and share common
interior points necessarily share a common line segment. For instance, the Venn-3
diagram drawn with spheres on the left of figure 4 has line concurrency.

Q

P

R

Q

P

R

Fig. 4. The necessity of 3-points in 3D.

97

Property 2D Case 3D Case

Connected
Zones P

Q

R

Q

P

The zone PQ is disconnected. Here, P is a sphere with a
‘sausage’, Q, through it. The zone
inside Q and outside P is discon-
nected.

n-point
P

QR

Q

P R

S

The curves P , Q, and R form
two 3-points.

The spheres P , Q, and R form a 4-
point where they all intersect with
S.

Crossings

P Q

R

S

Q

P

R

Q

P

R

The curves P and Q intersect
at a point where they do not
cross (as do R and S).

The sphere R intersects withQ but
does not cross Q; a cross-section is
shown on the right.

Line Concur-
rency

P

Q R

Q

P

R

Q

P

R

The two curves P and Q share
a common line segment.

The three tori share a common line
segment; a cross-section is shown
on the right.

Surface Con-
currency

N/A
P

R

The two ‘squashed’ spheres share
a disc-like surface.

Table 2. Examples of non-wellformed diagrams.

98

4 Drawability of 3D Euler Diagrams

One of our key motivations for developing 3D Euler diagrams is that they allow
more diagram descriptions to be drawn in a wellformed manner than is the case
for 2D Euler diagrams. Recall that a 2D Euler diagram comprises a set of labelled
simple closed curves such that no label is used on more than one curve.

Definition 4. Let D be a diagram description. Then D can be drawn well-
formed if there exists a Euler diagram with description D which satisfies all of
the wellformedness properties of table 1.

We now establish that every diagram description that can be drawn well-
formed in 2D can be drawn wellformed in 3D. Our proof strategy is to convert a
wellformed 2D diagram into a wellformed 3D diagram with the same description.
To illustrate the approach, consider figure 5. Here, the wellformed 2D diagram is
converted into a 3D diagram by rotating the 2D diagram around line that does
not pass through any of the curves. Each resulting surface is a torus and the
final 3D diagram is shown on the right.

P Q

R

P

Q

R
P

QR

Fig. 5. Converting a wellformed 2D diagram into a wellformed 3D diagram.

Theorem 1. Let D be a diagram description. If D can be drawn wellformed in
2D then D can be drawn wellformed in 3D.

Proof (Sketch). Suppose that D can be drawn wellformed in 2D. Choose any
wellformed 2D diagram, d2, with description D. Draw a line, λ, that does not
pass through any curve in d2. Rotate d2 about λ by 2π to create a 3D Euler
diagram, d3. Each closed curve, c2, in d2 gives rise to a torus, t3, in d3 and we
label t3 the same as c2. It can be shown that each zone, z2, in d2 gives rise to
a zone, z3, in d3 with the same description and that no other zones appear in
d3. That is, the description of d3 is D. The wellformedness of d3 can be trivially
established using the wellformedness of d2.

We now demonstrate that there are diagram descriptions that cannot be
drawn wellformed in 2D that can be drawn wellformed in 3D. Work by Flower
and Howse [4] identified necessary and sufficient conditions for when a diagram
description can be drawn wellformed in the 2D case. We will demonstrate that
their conditions are not both necessary and sufficient in 3D, failing in multiple
ways. Their approach starts by converting a diagram description into a graph,

99

called the super-dual, and looks at properties of this graph to establish drawa-
bility.

Definition 5. Given a diagram description, D, the super-dual of D is a graph,
G = (V,E), where V = D is the set of vertices and, for every pair of vertices,
v1 and v2, there is an edge between v1 and v2 if and only if v1 and v2 differ by
a single label (recall elements of D, i.e. the vertices, are sets of labels).

Assuming we have a super-dual that is planar, we can draw that graph in the
plane without edges crossing. Given such an embedding of the super-dual, we
can attempt to form the required Euler diagram. An illustration of the process
is given in figure 6. Here, we start with description ∅, P,Q, PQ and turn it into
the super-dual, shown on the left of figure 6. The curves of the 2D Euler diagram
are constructed by enclosing the vertices appropriately. For example, to draw a
curve labelled P we enclose the vertices that include P but no others. The curve
labelled Q is similarly formed. Finally, we delete the super-dual and are left with
the required 2D Euler diagram, shown on the right.

The preceding example is rather simple, but it is by examining the super-dual
and, if necessary, its subgraphs that we can determine wellformed drawability in
the 2D case. Now, the curves of a (wellformed) 2D Euler diagram are all simple
which means that for each curve, c, the set of points inside c is a simply connected
region. In terms of a super-dual, this implies that the maximal subgraph induced
by the vertices that contain the label of c is connected and, moreover, that
the subgraph induced by the vertices that do not contain the label of c is also
connected. This key insight led Flower and Howse to define the connectivity
conditions for graphs; these are used to establish properties of super-duals arising
from diagram descriptions.

Definition 6 (Connectivity Conditions [4]). Let G = (V,E) be a graph
such that V ⊆ PL. The connectivity conditions for G are:

1. G is connected,
2. for each curve label, λ, in L, the maximal subgraph of G whose vertices

include λ is connected, and
3. for each curve label, λ, in L, the maximal subgraph of G whose vertices do

not include λ is connected.

PQP Q PQ

P Q

P Q

P Q

Fig. 6. Constructing a 2D Euler diagram from the super-dual.

100

Theorem 2 (2D Connectivity Test [4]). Let D be a diagram description
whose super-dual fails connectivity conditions. Then there is no 2D Euler dia-
gram, d, with description D that is wellformed.

The connectivity conditions are necessary for wellformed drawability in 3D:

Theorem 3 (3D Connectivity Test). Let D be a diagram description whose
super-dual fails connectivity conditions. Then there is no 3D Euler diagram, d,
with description D that is wellformed.

Flower and Howse further introduce the face conditions, which we now infor-
mally explain via an example; for full details we refer to [4]. Consider the diagram
description ∅, P,Q, PQ,R, PR,QR. This has super-dual as shown on the left of
figure 7. All three curves will pass through the face f , which will lead either
to a 3-point (as shown in the figure), a disconnected zone, or an un-required
zone (to create such a zone, nudge one of the curves to remove the triple point).
The non-wellformedness of the diagram is determined by examining the edges
around f . By traversing the simple cycle around f , each time we pass along an
edge we write down the curve label that is in one of the incident vertices but
not the other to form a word, say w = RPQRPQ. By examining alternations
of letters in w, we can see which curves are required to cross. For instance, P
and Q alternate, since PQPQ is a scattered subword of w. This tells us that
(the curves labelled) P and Q must cross in f . Similarly, P and R must cross
and Q and R must cross. This indicates the possible presence of a triple point.
In general, a combinatorial analysis of the words around faces in the graph is
used to determine whether the plane embedding will give rise to a wellformed
2D Euler diagram. The face conditions for the graph, roughly speaking, identify
whether too many crossings occur for wellformedness to be achieved. Of note is
that our example is very simple and the actual details are more complex than
we have illustrated. In any case, the super-dual in figure 7 is planar, passes the
connectivity conditions, but fails the face conditions. Hence, this embedding of
the super-dual cannot be used to draw a wellformed 2D Euler diagram with the
specified description. Moreover, there is no different choice of embedding which
passes the face conditions.

PQ

P

Q

QR

PR

R

Q

P

R
PQ

P

Q

QR

PR

R

Q

P

R

Q

P

R

Fig. 7. Failure of the face conditions.

101

For some diagram descriptions, but not the one just considered, it is possible
to remove edges from the super-dual whilst ensuring connectivity holds and pro-
duce a subgraph, G, that has an embedding which passes the face conditions. A
further complication is the potential lack of planarity of the super-dual. Again,
we may be able to remove edges to create a planar subgraph G with the prop-
erties just described. In either case, if such a G exists then D is drawable as a
wellformed 2D Euler diagram, otherwise it is not. This key result is captured in
the following theorem:

Theorem 4 (2D Drawability – Necessary and Sufficient Conditions [4]).
Let D be a diagram description with super-dual SG(D). There exists a wellformed
2D Euler diagram that is a drawing of D iff there exists a planar subgraph, G, of
SG(D) obtained by removing edges from SG(D), which passes the connectivity
conditions and has a plane embedding that passes the face conditions.

We can immediately generalize one side of this theorem to the 3D case:

Theorem 5 (3D Drawability – Sufficient Conditions). Let D be a dia-
gram description with super-dual SG(D). If there exists a planar subgraph, G,
of SG(D) obtained by removing edges from SG(D), which passes the connectivity
conditions and has a plane embedding that passes the face conditions then there
exists a wellformed 3D Euler diagram that is a drawing of D.

Proof. By theorem 4, a wellformed 2D Euler diagram exists. The result then
follows from theorem 1.

We now demonstrate that there are diagram descriptions that are not draw-
able wellformed in 2D (they fail one of more of the conditions in theorem 4) but
that are drawable wellformed in 3D. The three examples below fail the condi-
tions of Theorem 4 in different ways. This shows that there are more diagram
descriptions that can be drawn wellformed in 3D than 2D and that the condi-
tions to determine drawability in 2D are not useful for determining drawability
in the context of 3D diagrams. For these three examples, the wellformedness
of the 3D representations suggests that they are more readable than the 2D
representations and the 3D diagrams display a pleasing symmetry.
Example 1: Figure 7 shows a planar super-dual that passes the connectivity
conditions but fails the face conditions, so the corresponding 2D representation
shown in figure 7 is not well-formed (it has a triple-point). All plane embeddings

Q

PQ

P

R

QR

S

PQ

RS

PS PQ

Q

PQ

P

R

QR

S

PQ

RS

PS PQ

Q

QP

R

PQ

P

R

QR

S

SPQ

RS

PS PQ

QP

R

S

PR

Q S

Fig. 8. Failure of planarity of the super-dual.

102

Q

PQ

P

R

QR

S

PR
RS

PS PQ

RT

QT
T

PT

ST

Q

PQ

P

R

QR

S

PR
RS

PS PQ

RT

QT
T

PT

ST Q

QP

R

PQ

P

R

QR

S

S

PR
RS

PS PQ

T

T RT

QT
T

PT

ST

QP

R

S

T

T P

R

Q

S

T

Fig. 9. Failure of planarity with no planar subgraph that passes connectivity.

of this graph fail the face conditions. Removing edges from this graph will never
result in a graph that passes the connectivity and face conditions. Hence, there
is no wellformed 2D Euler diagram with the given description. A wellformed 3D
Euler diagram with this description can be seen in figure 7.

Example 2: Figure 8 shows a super-dual that is non-planar, since it is home-
omorphic to K5,5, so some edge removal is necessary to achieve planarity. We
demonstrate that any way in which edges can be removed to achieve planarity
whilst maintaining connectivity does not produce a graph which passes the face
conditions. If we remove an edge from the super-dual that is not incident to ∅
then we break the connectivity conditions. If we remove an edge which is incident
to ∅ then the graph becomes planar and connectivity is preserved, so we then
look for an embedding which passes the face conditions. However, any plane em-
bedding of the graphs resulting from the removal of exactly one of these edges,
shown here with the edge between ∅ and S removed, fails the face conditions.
Continuing this kind of analysis, it can be demonstrated that there is no well-
formed 2D Euler diagram with the given description. A wellformed 3D Euler
diagram with the same description can be seen in figure 8.

Example 3: Figure 9 shows a super-dual that is non-planar, since it has a proper
subgraph homeomorphic to K5,5, so again some edge removal is necessary to
achieve planarity. However, all planar subgraphs fail the connectivity conditions.
Take one edge as an example, say the edge between T and RT . This edge is in
the maximal subgraph of the super-dual whose vertices include T . The removal
of the T -RT edge would disconnect this subgraph, breaking connectivity. The
same argument prevents removal of any edge not incident to ∅. Thus, the only
edges we can consider removing are those incident with ∅. However, the subgraph
obtained by removing the vertex ∅ is homeomorphic toK5,5. This implies that we
cannot obtain a planar subgraph by removing edges from the super-dual whilst
preserving connectivity. Hence, there is no wellformed 2D Euler diagram with
the given description. A wellformed 3D Euler diagram with the same description
can be seen in figure 9.

Thus, more diagram descriptions are drawable wellformed in 3D than in 2D.
In particular, the face conditions need not be passed in order for us to have
wellformed drawability in 3D and we need not have planarity of the dual.

103

Q

P

Fig. 10. Constructing 3D diagrams from descriptions.

5 Future Work and Open Problems

There are numerous open questions in 3D. Following the previous section:

Open Problem 1 What are necessary and sufficient conditions for determin-
ing wellformed drawability in the 3D case?

We have demonstrated that the connectivity conditions are necessary, but
there is no obvious generalization of the face conditions to the 3D case (the
notion of a face does not translate to 3D graphs). We conjecture that a differ-
ent approach is needed and it is very possible that this could provide a new
perspective on wellformed drawability in the 2D case as well.

An important question is how the definition of Euler diagrams needs to be
relaxed in order to draw every diagram description. As discussed previously, in
2D we require either non-simple curves or duplicated label use. We believe that
the definition given in this paper for the 3D case is sufficient for drawability in
general, if we do not impose any wellformedness properties:

Conjecture 1 For every diagram description there exists a 3D Euler diagram
with that description.

We are confident that this conjecture is true because we believe the following
method for construction works in general. Given the diagram description D =
{∅, {P}, {Q}, {P,Q} for each element, z, in D create one sphere for each label
in z and draw them concurrently. For each pair of elements, z1 and z2, in D, if
they share a non-empty set of labels, L = z1 ∩ z2, then join the spheres with
labels in L arising from z1 and z2. This example can be seen in figure 10.

We focus now on a specific class of Euler diagrams which is the widely known
family of Venn diagrams [9]. In 2D, Venn diagrams are Euler diagrams where all
2n possible intersections between n sets are represented by connected regions,
that is there are 2n zones each of which is connected. In 3D:

Definition 7. A 3D Venn diagram, d = (S, l), is a 3D Euler diagram where
there are 2|S| zones, each of which is connected.

Four topologically distinct embeddings of Venn-3 are shown in the introduc-
tion, figure 2. To see that they are distinct, we make arguments about their
zones. The first (leftmost) Venn-3 has only simply connected zones. The second
Venn-3 has exactly two zones that not simply connected, namely P and PR.
The third Venn-3 has exactly two zones that are not simply connected, namely

104

∅ and R. The fourth (rightmost) Venn-3 also has exactly two zones that are
not simply connected, namely QR and PQR. The four diagrams are pairwise
topologically distinct because the non-simply connected zones are contained by
different numbers of surfaces.

Conjecture 2 There are exactly four topologically distinct embeddings of well-
formed 3D Venn-3 when the surfaces are all topologically equivalent to spheres.

A variety of other open problems can be stated for 3D Venn diagrams, some
of which have been answered for 2D Venn diagrams (see [9] for an excellent
survey on results for 2D Venn diagrams). One such example is:

Open Problem 2 How many topologically distinct embeddings of wellformed
Venn-n exist when the surfaces are all topologically equivalent to spheres?

Returning to the more general case of Euler diagrams, there has been consid-
erable interest in drawing them with curves of particular shapes. For instance,
Stapleton et al. [13] identified a class of diagram descriptions that could be
drawn using only circles and Wilkinson devised a method that only drew Euler
diagrams using circles [14]. Kestler et al. devised a method for drawing Euler
diagrams with regular polygons [5] and others have considered drawing Venn
diagrams where the curves have other geometric shapes, such as triangles [1].
Thus, curve shape is considered interesting and important in the 2D case. For
3D, this generalizes to surface shape (where we no longer mean ‘up to topological
equivalence’). We pose the following two problems concerning surface shape:

Open Problem 3 What class of diagram descriptions can be drawn when the
surfaces are all some specified shape, such as spheres?

Open Problem 4 Can all diagram descriptions that can be drawn wellformed
in 2D using only circles can be drawn wellformed in 3D using only spheres?

P

Q

R

S

P

Q

R

S

Fig. 11. Converting from circles to spheres.

A näıve method for converting a diagram drawn with circles into one drawn
with spheres is to use each circle to generate a sphere. However, this construc-
tion approach need not lead to the required diagram description or preserve
wellformedness. This is demonstrated in figure 11: the leftmost Euler diagram is

105

drawn with circles, the 3D Euler diagram is obtained by converting the circles to
spheres and the remaining diagrams show cross-sections of the 3D Euler diagram.
Unfortunately, this created an extra zone, that inside only S and, moreover, this
zone is disconnected. We conjecture that there does not exist a wellformed 3D
diagram drawn with spheres with the same diagram description as figure 11.
However, we believe that some classes of diagram descriptions drawable well-
formed with circles can be drawn wellformed with spheres:

Conjecture 3 The class of inductively pierced descriptions, introduced in [13]
and generalized in [10], which can all be drawn wellformed with circles in 2D can
be drawn wellformed with spheres in 3D.

Finally, there has also been significant interest in drawing 2D Euler diagrams
in a so-called area-proportional manner. In the area-proportional 2D case, the
zones must have specified areas. Key publications on area-proportional Venn
and Euler diagram drawing include Chow and Rodgers [2], Chow and Ruskey [3],
Kestler et al. [5], Stapleton et al. [11], and Wilkinson [14]. These methods mostly
consider drawing the diagrams where the curves have specific shapes, such as
circles. In 3D, the area-proportional case generalizes to the zones having specified
volumes, the volume-proportional case.

Definition 8. A volume specification is a function, v:PL−{∅} → R+∪{0}.
The diagram description induced by v is {z : v(z) 6= ∅ ∨ z = ∅}. A 3D Euler
diagram conforms to a volume specification, v, if its description is induced by
v and its zones have the volumes specified by v.

Open Problem 5 What class of volume specifications can be drawn in a well-
formed manner?

Open Problem 6 What class of volume specifications can be drawn where the
surfaces are all some specified shape?

6 Conclusion

In this paper we have introduced the concept of 3D Euler diagrams, formally
defining them as orientable closed surfaces which implies the surfaces are simple.
We have compared them with 2D Euler diagrams and discovered that 3D Euler
diagrams have some benefits over 2D Euler diagrams in terms of drawability
when wellformedness is considered. In particular, we have shown that there are
more diagram descriptions that can be drawn wellformed with 3D diagrams than
2D diagrams and we conjecture that all diagram descriptions can be drawn in
3D without allowing non-simple surfaces and duplicate label use, unlike in 2D.

We established that there are four topologically distinct wellformed embed-
dings of 3D Venn-3, whereas there is only one such embedding in 2D. This
demonstrates that there is more choice in terms of how we layout diagrams in
3D over 2D, which is likely to be beneficial when more sets need to be repre-
sented. This gives further insight into why more diagram descriptions can be

106

drawn wellformed in 3D: we have greater control over which zones are topolog-
ically adjacent and topological adjacency impacts whether we can add a new
surface (or curve in 2D) and maintain wellformedness.

By presenting a series of open questions and conjectures, we hope to stimulate
research progress on 3D Euler diagrams. In some cases there is no obvious way
to extend existing 2D results to the 3D case, such as Open Problem 1 concerning
the drawability of wellformed diagrams. Hence, a different approach is likely to
be required. It may be that results in the 3D case will allow more progress to be
made in the 2D case.

With the advent of recent affordable 3D display, interaction and printing
devices, 3D visualization has the potential to be commonplace. We expect that
3D Euler diagrams will form a useful component in this field.

Acknowledgement Gem Stapleton was partially supported by an Autodesk
Education Grant.

References

1. J. Carroll. Drawing Venn triangles. Technical report, HP Labs HPL-2000-73, 2000.
2. S. Chow, P. Rodgers. Constructing area-proportional Venn and Euler diagrams

with three circles. In Euler Diagrams 2005.
3. S. Chow, F. Ruskey. Towards a general solution to drawing area-proportional Euler

diagrams. In Euler Diagrams 2004, ENTCS, pages 3–18, 2005.
4. J. Flower, J. Howse. Generating Euler diagrams. In Diagrams 2002, pp 61–75.

Springer, 2002.
5. H. Kestler, A. Muller, T. Gress, M. Buchholz. Generalized Venn diagrams: A new

method for visualizing complex genetic set relations. Journal of Bioinformatics,
21(8):1592–1595, 2005.

6. O. Lemon, I. Pratt. Spatial logic and the complexity of diagrammatic reasoning.
Machine GRAPHICS and VISION, 6(1):89–108, 1997.

7. P. Rodgers, L. Zhang, A. Fish. General Euler diagram generation. In Diagrams
2008, pp 13–27. Springer, 2008.

8. P. Rodgers, L. Zhang, H. Purchase. Wellformedness properties in Euler diagrams:
Which should be used? accepted for IEEE Transactions on Visualization and
Computer Graphics, 2012.

9. F. Ruskey. A survey of Venn diagrams. Electronic Journal of Combinatorics, 1997.
www.combinatorics.org/Surveys/ds5/VennEJC.html.

10. G. Stapleton, J. Flower, P. Rodgers, J. Howse. Automatically drawing Euler dia-
grams with circles. Journal of Visual Languages and Computing, accepted 2012.

11. G. Stapleton, P. Rodgers, J. Howse A general method for drawing area-proportional
Euler diagrams. Journal of Visual Languages and Computing, 22(6):426–442, 2011.

12. G. Stapleton, P. Rodgers, J. Howse, J. Taylor. Properties of Euler diagrams. In
Layout of Software Engineering Diagrams, pp 2–16. EASST, 2007.

13. G. Stapleton, L. Zhang, J. Howse, P. Rodgers. Drawing Euler diagrams with
circles: The theory of piercings. IEEE Transactions on Visualisation and Computer
Graphics, 17(7):1020-1032, 2011.

14. L. Wilkinson. Exact and approximate area-proportional circular Venn and Euler
diagrams. IEEE Transactions on Visualization and Computer Graphics, available
online, 2011.

FunEuler: an Euler Diagram based Interface Enhanced
with Region-based Functionalities

Gennaro Cordasco1, Rosario De Chiara2, Andrew Fish3?, and Vittorio Scarano2

1 Dipartimento di Psicologia - Seconda Università di Napoli - ITALY
2 ISISLab - Dipartimento di Informatica - Università di Salerno - ITALY

3 School of Computing, Mathematical and Information Sciences, University of Brighton - UK

Abstract. Euler Diagrams are an accessible means of representing non hierar-
chical set-based relationships which have recently been used in resource man-
agement interfaces to facilitate user categorisation. We develop a novel, exten-
sible Euler diagram based interface, called FunEuler, which integrates thecon-
cepts of visual classification, spatial arrangements and functional application,
thereby greatly extending the power of such Euler diagram based interfaces by
enabling fast application of a collection of predefined functions to collections of
categorised resources. To demonstrate the principle, we provide several function-
alities such as file zipping or creating playlists within the application, whilst also
providing a mechanism to extend the functionality to facilitate end user develop-
ment. Preliminary user testing suggests that the Euler diagram concept is easily
comprehensible for resource categorisation purposes, the conceptand application
of functions can be understood and applied successfully, and that users perceived
the addition of functions increased the usefulness of the application for repetitive
tasks.

1 Introduction

User based resource management tasks such as file categorisation are clearly important
tasks and yet there are serious limitations within current methodologies to assist users.
The traditional hierarchical-based representations are well known to have limitations in
the realms of user categorisation, with difficulties occurring when a user wants to cat-
egorise resources in more than one place, to change the categorisation structure, or to
perform operations on sets of resources that are spread overmultiple directories. An al-
ternative methodology is via tagging, and there are methodsto handle specific resources
such asmp3’s or particular types of tagged documents, but they can be problematic if
the user wishes to utilise file type based methods for types such asTeX or eps, for in-
stance; also, tag-based methodologies have the downside that documents with missing
or mis-typed tags may be omitted from searches, for example.Some modern operating
systems do allow the use of facilities for both tag and file-type based save, search and
retrieval methods. As a proposed alternative approach, Euler Diagrams are a means of
representing non-hierarchical set-based relationships.They have recently been used in
resource management interfaces to facilitate user categorisation, in [15, 5], for instance.

? thanks to EPSRC grant EP/J010898/1.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright c© 2012 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

108

Looking from another perspective, we know that the organisation of desktop files or
links into groups can enhance working memory by utilising the spatial information [4,
12, 14]. However, no methodologies exist, to the best of our knowledge, that bring to-
gether the avenues of spatial organisation, categorisation and functional application.
Doing so enables the application of functions to spatially organised (or categorised)
resources, utilising the user’s own spatial memory, whilstalso providing the powerful
feature of functional application to sets of the spatially organised resources. Therefore,
we extend the power of an Euler diagram based interface, enabling the application of a
collection of pre-defined functions to collections of categorised resources. The interface
enables the user to quickly create a diagram which captures the categories of interest,
and their intersections, and utilises a drag and drop facility to apply functionalities to
the intersection of categories that are of interest (or to a union of such intersections).

Key ideas. One of the key concepts considered in this paper is the extension of the
concept of apalette, which is an area where collections of resources of interestcan
be placed and manipulated, to aspatial palettein which these areas are arranged into
non-hierarchical regions, as defined by an Euler diagram. Wehave developed an Euler
diagram based interface for user-based categorisation within a non-hierarchical struc-
ture, which also allows users to apply functionalities to collections of resources placed
within that structure. From an application point of view, weprovide means to extend
the functionalities in order to encourage end user development and aid future uptake of
the interface.

To provide a concrete motivational example, we present one of the user based sce-
narios that we have developed,set within themp3 application domain. Then, in Sec-
tion 2, we provide Euler diagram interface background information and describe related
works. The application is described in detail in Section 3, and some preliminary user
testing is reported in Section 4. Subsequent to the user test, we developed a specialisa-
tion of the FunEuler interface within the music domain, providing an indication of how
the interface can be specialised to cater for domain specificapplications; this is reported
in Section 5. Conclusions and future work avenues are suggested in Section 6.

User based scenarios.Let us imagine George, a local student DJ, who often creates mu-
sic based gifts for his friends as well as constructing larger distributions. Related tasks
that he performs include: selecting a collection ofmp3 tracks and creating a playlist;
naming the playlist and printing out the tracklist as a PDF; zipping a playlist together
with a tracklist, or collections of these; emailing the zip file, or uploading it to a music-
sharing website; creating multiple zip files of playlists, together with tracklists, plus a
global list of the zipped packages in order to distribute more efficiently. By developing
a spatial palette (which is a virtual space in which he can arrange his resources and
have the facilities to apply the relevant functionalities to them) we will assist George
in performing his tasks more efficiently. To gain long term benefits, he would also like
to store his music files in an accessible manner, and related tasks he performs include:
categorising a collection ofmp3 files, building a structure to hold them, storing (or tag-
ging) the created zip files appropriately. These tasks are also facilitated via the use of
an Euler diagram based structure and interface.

109

2 Euler Diagram interfaces

Venn diagrams [17] are sets of simple closed curves in the plane such that everyzone
(a region that is inside a set of those curves and outside the remaining curves) is a non-
empty connected region of the plane. Although there are manyvariations, especially in
terms ofwellformedness condtions(geometric or topological conditions that one can
impose on the diagrams, commonly with the intent of reducingthe risks of human mis-
comprehension), the main difference is that for Euler diagrams not all of these zones
have to be present (i.e. non-empty). Commonly these curves are labelled to indicate
the set that they represent, and the diagrammatic systems can be extend to incorporate
more information content. Currently there are many application areas for Euler diagram
based interfaces related to diagrammatic logic and software specification, and set based
data visualisation. Here we present only those interfaces which are directly relevant
to our work, being related to enhancing searching and categorisation tasks. The basic
architecture and insights into FunEuler were described in [3]. In this paper we specialize
FunEuler to a specific context (managingmp3 files, see Section 5). This provide a
simple scenario of use inspired by real life, with motivation easily comprehended by
users without explanation.

Related Work.A clickable Venn diagram interface was developed in [13] with the idea
of improving web search transparency (the ability to see howsub-queries contribute
to the entire result set of a search). It showed the number of results displayed by each
term or group of terms in the diagram, but was limited to threesearch terms and the
queries performed upon clicking each region of the diagram were just the conjunc-
tion of the terms of the containing curves. Euler diagram based query interfaces have
also been used in Traditional Library Environments [11] where the curves represent
the query terms, and numbers are used to indicate the number of search term results in
the database returned from the Boolean expression associated to the region, but with a
slightly different meaning: a region which is outside a curve also means that that curves’
search term does not occur in the search results.

Venn diagrams have been used to represent non-hierarchicaldirectories, replac-
ing the traditional hierarchical structure of file systems [15], where diagrams could
be drawn with curves representing categories (or tags) and files could be placed within
more than one directory by utilising a region of overlap of the contours. In [5], an
Euler diagram interface was developed, enabling more general resource management,
together with efficient interpretation algorithms to detect the underlying meaning of the
regions of the diagram. A reification of an Euler diagram based categorisation structure
was integrated with Flickr in [16], utilising the non-hierarchical categorisation struc-
ture.

There has been relatively little actual user testing of the Euler diagram concept, with
the idea generally being taken for granted as being beneficial. In [2], the comprehen-
sion of basic Euler diagrams (without items) that had the same zone sets, but differed
in terms of properties such as jaggedness of curves, was examined, whilst in [6], an
investigation of the effects of varying wellformedness conditions (e.g. of typical condi-
tions are: no concurrency, no more than two curves crossing at a point, etc.) imposed

110

on user comprehension and preference was performed. In terms of human reasoning
processes with Euler diagrams, in [18], eye-tracking experiments to investigate user’s
focus changes during reasoning tasks were performed. In [7]an in-depth study was
presented that aims at measuring the influence of the wellformedness conditions on the
comprehension of a diagram; the tests utilised paper based materials.

Background.We view the zones of an Euler diagram as a repository in which to place
resources, such asfiles andurls, and so the basic notion of Euler diagrams is ex-
tended to capture the placement of items in the diagram; thisis similar to unitary alpha
Spider diagrams in the diagrammatic logic context [9]. However, in terms of the se-
mantics assigned within this application area, we simply assign the set of tags in a
zone’s description to that zone, and extend this assignation to any items placed in that
zone. Thus an Euler diagram provides a means to build a non-hierarchical categorisation
structure, and to use it to categorise resources, as in [5].

3 Application description

We describe the FunEuler interface, together with justifications for the design decisions
adopted. In Figure 1 a screenshot of the new FunEuler application developed is shown.
The application is available at [1]. The main portion of the window real estate contains
the diagram itself and this is where the main user-interaction occurs. At the top of the
left hand pane, a list of icons representing the possible operations that the user may
apply (to regions of the diagram) is displayed. Below this operations list there is a spe-
cial area displaying a simple diagram which indicates theResultsset. This essentially
depicts the output from the application of the user-selected operations (see Subsection
3.2 for more details). At the top of the interface, a standardmenu bar enables the user to
select different interaction modes: modify a curve (Arrow icon), draw new curve (Pen-
cil icon), query the diagram (Eyedropper icon), reset the zoom level (Magnifying glass
icon), tag selected items (Tag icon) and save the diagram (Camera icon).

3.1 Diagram construction and interaction

We allow users to construct a diagram by adding curves, in theform of ellipses, one at
a time by a simple mechanism of left click and drag to specify one axis whilst using
the mouse scroll wheel to specify the other axis (cf. Figure 2top-left). This allows
fast user construction of the diagrams, as well as a fast interpretation of the zones of
the diagram [5]. The downside is that it slightly restricts the freedom of users who
may wish to draw other types of curves, but the use of more general curves can be
considered as a future extension where the associated trade-offs will be investigated.
However, we emphasise the important point that in this application domain users only
need to construct diagrams which have a superset of their required collection of set
intersections that they need to represent and so concerns relating to the complexity of
diagram construction [8] are reduced.

At the moment of creation of a curve, the system automatically assigns a random
colour to the curves, as well as a choice of set name (according to a predetermined
sequence), but these names and colours can be then edited by the user. This facilitates

111

Fig. 1.A screenshot of the FunEuler interface.

rapid user construction of diagrams via ellipse addition without the interruption of nam-
ing and choosing a colour for each curve, which could interrupt the flow of creation.
The collection of parameters associated to each ellipse areeasily accessible through a
pop-up menu via a right-click action (cf. Figure 2 top-middle). Existing ellipses can be
quickly modified by translation, rotation or by altering thesize of its axes.

Although the general advice would be that users constructing categorisation dia-
grams should keep them as simple as possible, human readers of diagrams may have
difficulties identifying zones correctly if complex diagrams which have small zones
with a lot of bounding curves, or if zones are complex spatialregions (e.g. in the gen-
eral case they can be disconnected or non-simple regions) are constructed. Therefore,
we assist in helping a reader to understand a categorisationby providing the possibility
of querying a zone: by selecting a pointp within any zone using the eyedropper the
entire zone containingp is highlighted, and the zone descriptor displayed in the status
bar (cf. Figure 2 top-right).

To aid user navigation within larger diagrams, we allow the usual scrollbars for
horizontal and vertical directions, but we also provide spatial zooming: this is accessed
via a select zoom option and mouse wheel scroll in and out, providing a larger working
area when needed. This facility is likely to be useful in cases when users are working
with a lot of categories, or when there are a large number of items in an intersection of

112

categories and one needs to enlarge the working space (i.e. to enlarge the region that is
the spatial palette under consideration).

Item management.We utilise a drag and drop protocol for resource classification, sim-
ply placing items within the relevant region of the diagram.Item properties are visual-
ized through tool tip text while the status bar, at the bottomof the interface, provides its
current categorization (cf. Figure 2 bottom-left). Each item can be interactively reposi-
tioned and consequently re-classified. In order to not restrict the selection (and hence
the functional application) of items to those sets of items corresponding to entire zones
we also allow the selection of multiple items via a common box-selection (cf. Figure 2
bottom-middle/right).

Fig. 2.A sequence of screenshots demonstrating FunEuler basic functionalities.

3.2 Operational functionality

At the core of the FunEuler functionalities is the ability toselect and apply one, or more,
operationsto regions of the diagram. Performing operations on zones uses the familiar
drag and drop: the user simply drags the operation icon onto the desired zone of the
diagram. To perform operations on multiple zones (or similarly for other selected sets
of items), the user must first perform a selection (by using the eyedropper) on all of the
zones that he/she wishes to apply the operation to, and then drag the operation icon onto
one of the selected zones.

To demonstrate the principal of functional application within the Euler diagram
structure we developed several operations including: zip (which individually zips all

113

files in a region, creating a collection of zip files), ZipToSingle (which zips all files in
a region to a single zip file), createplaylist (which createsa playlist when applied to a
collection ofmp3 files) and search (described below).

Tagging and Searching.The Euler diagram based interfaces commonly have a means
to export to a tree based file system using conjunction of categories as node labels.
However, we provide some specialised tag-based support forthis interface. In general
item tagging can be performed by adding information “inside” the item (e.g. utilising
the genre field formp3 files or tag data for office documents) or “outside” by utilising
an item tagging database.

Now, if diagrams contain a large number of items then the user’s ability to find and
use specific items may be adversely affected. Therefore we offer the user the option of
hiding tagged items, so that a user can hide items classified within the zone, thereby
controlling what is actually visualised. Then, users can display tagged items by using
a specific Search functionality, which displays all of the items whose tags correspond
to the appropriate intersection of categories. We have developed a simple yet powerful
Search functionality that relies on the Windows Search feature (which was introduced
with Windows Vista/Seven) which allows the user to query, using an SQL-like lan-
guage, theSistemIndex catalogue of Windows machines; since we offer support for
this kind of operation we have access to functions for searching and modifying tags.

Developing new functions.FunEuler is designed to let the user to program to extend its
functionalities. The very essence of the operational application within the interface is
allowing users to assemble operations and this could be viewed as building a simple pro-
gram or macro to support their tasks. The interface allows programmers to develop new
operations by using their favourite scripting language (e.g. php, python, etc). Indeed,
FunEuler provides access to two lists for the items and the zones that the operation is to
be applied to: one list containing the pathnames of the itemsand the zones they belong
to, and another list reporting the zones and the items that each zone contains. Each op-
eration can produce zero, one or several files as result. As anexample, thezip file
operation produces a zipped file for each pathname in the input list, whilst thezip to
single file operation produces one singlezip file containing all of the files of the
input list. On the other hand, thesend by email operation does not produce any re-
sult files. Independent of the number of files produced the Results pane supports their
representation in a special single-curve ED, where file icons are automatically placed
within the curve representing the results set.

Closure. The application of an operation to a region of a diagram causes the generation
of a new diagram in the Results part of the application window, and since the Results set
is a diagram in its own right, operations can be applied to it generating a new Results
diagram arising from the sequential application of the selected operations. Thus we
can view the class of diagrams in FunEuler as beingclosed under the application of
operations. Figure 3 shows the operations’ icons within the Results set; in the left hand
side the items are the result of one operation (create playlist onmp3s) whilst on the
right they are the result of two operations (create playlistfollowed by zip). Subsequent
operation icons are added consecutively, above the previous operations’ icon. Due to

114

the closure we allow the user to drag the Results set onto the main diagram pane. This
permits the user to categorise items which are the result of one of more operations
alongside the original items that were already displayed intheir diagram.

Fig. 3. Two screenshots showing the results of operations: (left) A single operation, Create
Playlist; (right) Two sequential operations,Create PlaylistandZip.

3.3 Comparison with other tools
We decided not to try to compare the Euler diagram concept directly with other ex-
isting methodologies, because it is difficult to determine asuitable comparator and it
also seems likely that tasks set would have a good chance of being biased towards one
methodology. For example, a comparison of the Euler diagramconcept for categorisa-
tion/resource management versus a hierarchical structureis likely to favour the Euler
diagram concept for tasks that utilise overlapping categories, providing the underly-
ing concept of Euler diagrams is not challenging for users. Furthermore, knowledge
of users’ level of comprehension and abilities with this underlying concept is a neces-
sary precursor to allow us to accurately examine their abilities with the concept of the
application of functions to regions of the diagram.

4 User testing

We decided to test users’ conceptual understanding of the basic concept of Euler di-
agrams within this domain, together with their perception of its utility. Since we also
wish to know if users can understand and apply functions, we also perform a basic test
of this, keeping the tasks fairly straightforward in order to test the basic concept, with
significantly more complex operational tasks being plannedfor future studies (as well
as a more direct comparison within a more specific domain application that we have
subsequently developed and is described in Section 5).

115

We test the concepts within the FunEuler tool we developed, which means we can-
not really separate the conceptual effects of the actual representation from the effects
of the particular tool, since the tool may restrict a user’s actions and thus alter their be-
haviour; to acknowledge this, at the end of the tests, we asked users if they were aware
of anything they would have liked to have been able to do but could not, either because
of the representation or because of the tool. However, we believe these effect of the
tool on the judgement of the representation will be minor in this instance due to the
simplicity of the notation and the interface, whilst the tool based approach brings many
benefits in that we can trace with the behaviour of the users indetail (e.g. the number
of clicks, the number of corrections made during the test, etc. . .).

We describe our experimental design, some of the actual tasks set to the users, and
a summary of the results of the user tests. We provide very high-level broad hypothe-
ses below, but note that we are actually testing a restrictedclass of fairly small simple
diagrams (no more than five curves or twelve zones), and as always any statement of
results must really be restricted to the diagrams used and the tasks set within the exper-
iment; we take this restriction for granted in the following. However, we are provided
with an indication of the potential usefulness of the interface.

Hypotheses.

H1 Users can easily comprehend, create and modify Euler diagram based categorisa-
tions using FunEuler.

H2 Users are able to utilise the application of functions usingFunEuler effectively.
H3 Users perceive FunEuler as an application they would find useful to improve their

efficiency of operations.

The intention of the user testing is to investigate HypothesesH1 andH2 using
quantitative methods, by the recording of correctness of task completion, and efficiency
in terms of timing, whilst we investigate the subjective questions related to Hypotheses
H3 using qualitative methods. In order to test these hypothesis we carried out two dif-
ferent test sessions: test session1 focused onH1 andH3, whilst test session2 focussed
onH2 andH3.

Participants. We recruited19 volunteers, twelve of whom were male, aged between
21 and31, who were a mix of undergraduate Computer Science students and Ph.D.
students at the ISISLab, Università di Salerno. Three of these participated in pilot testing
of successive versions of the experimental materials (e.g.the tasks and questionnaire).
This allowed us to thoroughly check the experimental set-up, altering the language
and providing more clarification of the tasks where necessary. The remaining sixteen
participants were equally divided between two tests sessions (each of which were of
approximately25 minutes duration).

Test setting.In terms of the test conditions, both tests were carried out in a laboratory
setting where each user had a dedicated laptop. Each test wasexplained orally and
guided via a printed handout offering a short description ofeach of the stages. At the
end of each step the user was asked to take asnapshotof the diagram, by clicking a
special button in the application, in order to record both the duration of the last task and

116

the current state of the diagram. At the end of each session, the users were asked to fill in
a questionnaire, consisting of26 questions divided into6 sections: general application,
set creation, set manipulation, item categorisation, executing operations and perceived
effectiveness of FunEuler in accelerating daily activities. These were measured on a
Likert scale with score range[−3, 3].

Experimental design.In the first test session each user was provided with a sequence of
five stages, with each stage describing a basic concept or functionality of FunEuler. A
task was presented to the user which required the utilisation of that functionality in order
to modify the diagram, for instance. Thus we could check the users’ comprehension of
the induced modifications. Sample tasks included: reproduce a given diagram presented
on paper utilising the tool, and to count the number of zones into which a given set was
split. For each stage we recorded the completion time and we measured the percentage
of the tasks performed correctly (e.g. the number of sets that were correctly represented,
or the number of zone sets that were correctly counted). The second test session was
aimed at assessing users’ ease of comprehension and their application of operations to
zones containing items. This test session consisted of three stages. The first stage was
to perform item tagging in the similar manner to that of the first test, whilst the next two
stages focussed on the application of a zip operation to certain zones of the diagram.
We provide a brief description of the tasks below.

User Tasks.We consider user tasks divided into the following categories: Interpretation
(given a diagram interpret its meaning), Development (given some categories and items
construct a diagram) and Functional (utilise diagrams, applying functions). Note that,
as mentioned earlier, we had decided it was a priority to testthe fundamental aspects of
the concept and the application and to leave the complex taskcategories like end-user
development to a future date.

Table 1 show the basic results related to the tasks that comprised the two test ses-
sions. We briefly describe the tasks and the criteria that we adopted to evaluate their
execution, where necessary:

Diagram Construction To create a diagram containing certain specified zones. The
presence of the given zones is checked.

Diagram Modification To modify a diagram by altering the sets represented (i.e mod-
ifying the curves which changes the set of zones present).

Zone Counting To count the number of zones contained belonging to certain set (i.e
contained within a certain region).

Diagram Reproduction To reproduce a printed diagram. The presence of the given
zones is checked.

Item Tagging To place eleven files onto zones of a given diagram. Each file isnamed
according to the zone it should be placed in. The reason for this was to mimic the
pre-existing knowledge of file content that a user would normally have at the time
at which he/she is about to categorise a file. The correctnessof the placement is
checked.

Zip Items in one zone To apply the zip operation to files belonging to one zone which
represented the intersection of two sets.

117

Zip Items in multiple zones To apply the zip operation to files belonging to multiple
zones from a single set.

Fig. 4.Screenshots from one of the tests

In Figure 4 we present screenshots of diagrams constructed by users of the test. In
the upper part the user has reproduced the diagram in Figure 1: on the left the diagram
has no items, whilst on the right she had categorized12 files, as requested, and a single
file was misplaced (placed inE instead ofD). In the lower part of the same figure we
show a diagram used to categorizemp3 files.

118

4.1 Results

In Table 1 we present a summary of the results of the two test session that were carried
out. Within the context of the diagrams and tasks used, HypothesisH1 is supported by
a high score on the tasks of Diagram Construction, Diagram Modification and Diagram
Reproduction. HypothesisH2 has been tested in tasks Zip Items in one zone and Zip
items in multiple zones which also report≈ 100% success rates.

Table 1.Tests results: (left) first test; (right) second test.

By comparing the two tests session results we could evaluatehow the use of op-
erations influenced the users’ perceived usefulness of FunEuler: the average score was
0.13 for participants of the first test session but1.88 for participants of the second test
session (the score range is[−3, 3]). A one-way ANOVA was calculated on participants’
ratings of the question “is FunEuler useful for repetitive tasks ?”. The analysis was
significant, withF1,14 = 5.0, p = 0.04.

The accurate responses to the tasks indicate that the underlying conceptual use of
Euler diagrams for categorisation was easily grasped by users. The functional applica-
tion utilising this structure did not appear to be a large conceptual step for them. The
perceived usefulness of the FunEuler application was significantly enhanced by the util-
ity for functional application. Users also reported that they would use the application
in the future, suggesting areas where it would be useful, andsome even stated that they
would be interested in developing the associated functionality themselves.

5 FunEuler specialisation withmp3 files

FunEuler can be viewed as a flexible framework on which to hostservices based upon an
Euler Diagram representation of information. As an exampleof this flexibility, and as an
extension of FunEuler following the experiment, we developed a prototypicalmp3 files
management system. Since the music domain is of interest to the student participants,
and since there are applications available to deal withmp3 files, we focussed on this
specialisation area.

119

The diffusion of digital music has radically changed the manner of listening to
music for the average user, and one fundamental step toward this evolution is the
widespread adoption of themp3 file format [10].mp3 files are commonly created by the
so-calledripping of CDs: CD audio tracks are digitally recorded by using a computer
and compressing them into anmp3 file. This process is straightforward and a number
of applications can perform it as well as attempt to fill the ID3 fields (identification for
mp3) by accessing online archives (e.g.http://www.gracenote.com). A sec-
ond, and perhaps the most relevant, method to obtainmp3 files is by buying them from
online music stores (e.g. iTunes, Amazon), which usually provide correctly filled in ID3
fields. Despite these two widespread methods to obtain music, there is a large number
of mp3 files that are not tagged at all: we sampled more than8000 mp3 files available
on our students’ accounts, by asking them to run a small application that calculates a
statistic on the content of the field Genre in eachmp3, and we found that around75%
of them had empty or bad (containing random characters) Genre tags. Thus we inferred
that the Genre field would be a suitable testbed for FunEuler tagging capabilities.

New functionalities.We implemented the operations of searchingmp3 files by genre
and taggingmp3 files. By combining the use of these operations it is possibleto cate-
gorise large archives ofmp3 files using few mouse clicks. The idea is to implement a
cycle ofsearch-categorise-tag: search for untagged files, categorise them by dragging
and dropping their icons onto the zone representing the correct genre, and tag files by
applying the tagging operation. The search for untaggedmp3 files can be obtained by
applying the Search operation to the “Universe” zone, and inthis specialisation, the
number of untaggedmp3 files is displayed within the zone; clicking on the number
causes a window containing the list of files to be opened. It isnow possible to drag and
drop themp3 file icons onto the desired zone of the diagram in order to categorise them.
The tagging operation assigns the set of tags associated with the zone containing a file
to the Genre ID3 field.

6 Conclusion & Future works

We have brought together concepts of visual non-hierarchical classification, spatial
arrangements and functional application in the development of a novel Euler diagram
based interface called FunEuler. The prototype application developed was utilised in
user testing, which investigated if the Euler diagram concept was easily comprehensible
for resource categorisation purposes, if the application of functions could be performed
successfully, and if users perceived this idea to be useful either in its current state or
together with future functionalities. The results were extremely encouraging.

The FunEuler interface also provides a firm base for future developments in many
directions. For example, we could extend the power of the labels of curves, allowing
a mixture of user defined categories (or tags) such as “Computational Geometry” and
pre-determined types such as TeX files, or to allow functional labels such as “Before
this year”, which would filter for files based on the timestamp. Allowing any Boolean
expressions on labels would assist with scalability of the diagrams since more informa-
tion could be encapsulated in the labels instead of via the addition of more curves. A
useful option could be to allow users to select from a set of curves in a library (e.g. files

120

modified yesterday, PDF files, etc). In terms of repetitive tasks, we observe that choos-
ing specific groups of contacts for sending email to is a task that a user often needs to
perform several times a day, and so enabling a fast mechanismto realise group selec-
tion as well as to facilitate repeated usage of related groupselections could be of great
assistance to end users, and we will extend an Euler diagram interface for such tasks.

Furthermore, there are many potential application areas within which the developed
concept and interface could be applied. For instance, we briefly reported on the speciali-
sation formp3 files and we plan to run future user testing within this domain. Secondly,
in the workflow application area (e.g. see Alfresco), we could allow the drag and drop
of a TeX document into a particular region, automate the running of macros such as
PDFTeX and observe the results appear automatically elsewhere as an item in the PDF
category. Users could then understand and track workflow involving multiple people
on different systems. Thirdly, we will consider Euler Diagram Programming, where we
will assign behaviour to curves instead of to the zones. For example one might have
“Hotel” and “Food” categories with different “print” functions but their intersection
might make use of both functionalities, although one must deal with the usual multiple
inheritance problems, of course (e.g. we do not want to printoff a date twice due to its
appearance in each categories’ behaviour).

One weakness of the representation is the need for continuous navigation in order to
find specific sets/regions, particularly in larger diagrams. Whilst the representation may
be an effective way of leveraging the spatial memory of the user, performance of actions
by hand without specific automated support from the application may be annoying. A
deeper investigation into the advantages and disadvantages of the representation, and
exploration of potential tasks and application areas is a next step.

A wider investigation of the usability of EDs in a general context is required. There
are many unanswered questions, such as: how large (in terms of the number of zones
and number of curves) can a diagram be to be effectively manipulated by an average
user; how well does the representation scale with the increasing of the complexity of the
diagram; what effect does the representation have on user behaviour? Such questions
require specifically targeted testing.

Acknowledgments.We wish to thank the anonymous reviewers for their useful
comments, particularly reviewer number 3 whose insightfulcomments will be invalu-
able in future works.

References

1. Funeuler.http://www.isislab.it/projects/FunEuler/.

2. F. Benoy and P. Rodgers. Evaluating the comprehension of euler diagrams. In
Proceedings of IV 2007, pages 771–780, 2007.

3. Paolo Bottoni, Gennaro Cordasco, Rosario De Chiara, Andrew Fish, and Vitto-
rio Scarano. Personalised resource categorisation using euler diagrams. In Maria
Costabile, Yvonne Dittrich, Gerhard Fischer, and Antonio Piccinno, editors,End-
User Development, volume 6654 ofLecture Notes in Computer Science, pages 251–
257. Springer Berlin / Heidelberg, 2011.

121

4. Andy Cockburn. Revisiting 2d vs 3d implications on spatial memory. InAUIC ’04:
Proceedings of the fifth conference on Australasian user interface, pages 25–31,
Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

5. G. Cordasco, R.De Chiara, and A. Fish. Interactive visualclassification with eu-
ler diagrams. InProceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing VL/HCC 2009, pages 185–192. IEEE Press, 2009.

6. A Fish, B. Khazaei, and C. Roast. Exploring human factors in formal diagram
usage. InProceedings of Engineering Interactive Systems conference 2007, LNCS
4940, pages 432–448, 2008.

7. Andrew Fish, Babak Khazaei, and Chris Roast. User-comprehension of euler dia-
grams.Journal of Visual Languages & Computing, 22(5):340 – 354, 2011.

8. J. Flower, A. Fish, and J. Howse. Euler diagram generation. Journal of Visual
Languages and Computing, 19:675–694, 2008.

9. J. Howse, G. Stapleton, and J. Taylor. Spider diagrams.LMS Journal of Computa-
tion and Mathematics, 8:145–194, 2005.

10. ISO/IEC 11172-3:1994.Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1,5Mbit/s – Part 3: Audio.
ISO, Geneva, Switzerland.

11. A. Verroust-Blondet. J. Thièvre, M. Viaud. Using euler diagrams in traditional
library environments. InProceedings of Euler Diagrams 2004, pages 189–202.
Electronic Notes in Theoretical Computer Science, 2005.

12. Akrivi Katifori, George Lepouras, Alan Dix, and Azrina Kamaruddin. Evaluat-
ing the significance of the desktop area in everyday computeruse. International
Conference on Advances in Computer-Human Interaction, pages 31–38, 2008.

13. L. Langer and E. Frokjaer. Improving web search transparency by using a venn
diagram interface. InProceedings of NordiCHI 2008, pages 249–256. ACM Press,
2008.

14. Maarten, Mary P. Czerwinski, Maarten Van Dantzich, George Robertson, and
Hunter Hoffman. The contribution of thumbnail image, mouse-over text and spatial
location memory to web page retrieval in 3d. pages 163–170. Press, 1999.

15. R.De Chiara, U. Erra, and V. Scarano. VennFS: a Venn Diagram File Manager.
In Proc. of the Seventh International Conference on Information Visualisation, IV
2003, 16-18 July 2003, London, UK, pages 120–126. IEEE Computer Society Press,
2003.

16. R.De Chiara, A. Fish, and S. Ruocco. Eulr: a novel resource tagging facility in-
tegrated with Flickr. InProceedings of the AVI 2008 Advanced Visual Interfaces
Conference, pages 326–330. ACM Press, 2008.

17. F. Ruskey. A survey of Venn diagrams.Electronic Journal of Combinatorics, 2005.
www.combinatorics.org/Surveys/ds5/VennEJC.html.

18. A. Shimojima and Y. Katagiri. An eye-tracking study of exploitations of spatial
constraints in diagrammatic reasoning. InDiagrams 2008, LNAI, pages 74–88,
2008.

3rd International Workshop on Euler Diagrams, July 2, 2012, Canterbury, UK.
Copyright © 2012 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Multi-Attribute Glyphs on Venn and Euler Diagrams to
Represent Data and Aid Visual Decoding

 Richard Brath

Oculus Info Inc., Toronto, ON, Canada
richard.brath@oculusinfo.com

Abstract. Representing quantities on Venn and Euler diagrams can be achieved
through the use of multi-attribute glyphs. These glyphs can also act as an aid to
assist in the visual decoding of the membership of segments within the
diagrams and convey other data attributes as well.

1 Overview

Instead of area-proportional Venn and Euler diagrams to indicate quantities, this
approach uses separate overlaid glyphs to decouple the representation of data from
logical combinations. It also uses glyph attributes to assist in visual decoding of
membership of regions. This approach can scale to higher-order logical diagrams and
potentially offer more accurate visual estimation than area-proportional techniques.

The depiction of data on set diagrams is useful in various applications (e.g.
Boolean queries, genetic informatics). Area-proportional set diagrams have become
popular in research (e.g. [1-6]) and software (e.g. see eulerdiagrams.org). However,
the area-proportional approach has shortcomings, such as:
1. Visual comparison of irregular areas is difficult. Information visualization

researchers indicate difficulty with visual comparison of areas and/or a preference
for using length instead of area for faster visual comparison (e.g. [7,8,9,15]). In our
casual test, only 8% (2 out of 25 people) correctly identified the region of different
area on a 2 way Venn as opposed to 80% correctly identifying the circle of
different area out of three circles, each test having one item of 20% different area.

2. Area accuracy vs. aesthetic shapes. Researchers prefer circles and other aesthetic
shapes[6], but the areas (particularly circles) may have a degree of error, typically
increasing with higher order sets. e.g.[1]. Wilkinson [6] says “Higher-order Venn
diagrams can be drawn on the plane with nonconvex polygons, but they are
difficult to compute for more than a few sets and are difficult to decode visually.”

3. Negative values: Areas cannot represent negative values unless coupled with
another visual attribute, such as hue (e.g. red/green) or shape (e.g. arrows).

Also, discussions with prospective users revealed concern for visual decoding of set
membership for a region in complex diagrams, such as higher-order Venn diagrams.

123

Instead, a glyph-based approach is considered. The use of glyphs within set dia-
grams is not new. Glyphs have been used to represent items in a dataset (first 3 in fig.
1). Spoerri’s approach [10] reduces each region of a Venn diagram to a glyph, each
glyph indicating the particular Boolean combination by its relative position and shape.

Fig. 1. Top Left: TwitterVenn [11] uses simple glyphs per tweet matching each of three search
terms. Top Right: Edwards’ Carroll diagram [2] uses both proportional areas (to indicate
expectations) with dots (to indicate observations) to draw attention to regions with unexpected
results. Bottom Left: [12] depicts a uniform density of glyphs with membership indicated by
shading or outlined boxes. Bottom Right: InfoCrystal [10] reduces each region of a Venn
diagram to a glyph, where shape and position indicate the Boolean relationship, and the number
indicates the count of items within each region.

The contribution of this paper explores, in section 2, the use of glyphs
(pictographic and scaled glyphs) to indicate quantities and the use of additional visual
attributes to indicate set membership or other data. Results are discussed in section 3.

2 Glyph-based Approach

Our approach is focused on the use of glyphs to decouple the depiction of logical
relationships (e.g. Venn and Euler diagrams) separate from the depiction of quantities.
By decoupling the quantity from the set diagram, visual attributes more amenable to
fast estimation (e.g. size, origentation and color) can be used [7-9]. This approach
enables the use simple aesthetically pleasing diagrams of set representations to show
the logical relationships between the sets; while using separate glyph(s) within each
region to indicate a) quantity of items within a given region, b) indicate set member-
ship to aid visual decoding and c) potential additional attributes.

124

2.1 Sketches and Real-Data Mockups

To quickly iterate through conceptual ideas, loose sketches were followed by mock-
ups using simple sets of real-data. Loose sketches can reveal limitations of promising
ideas when implemented with real-data, (e.g. occlusion, imperceptible differences,
large dynamic ranges, etc). For rapid mock-ups, we divided the Titanic passenger list
into 4 sets for a Venn diagram and 3 sets for an Euler diagram which resulted in use-
ful properties such as empty segments, small segments and large segments.

Fig. 2. Left: Venn diagram of Titanic passengers by 4 attributes showing passenger counts.
Right: Euler diagram of Titanic passengers and crew.

2.2 Unit Markers and Pictographs

Markers of a fixed size can be repeated to represent quantities ranging from simple
dots to pictographs e.g. Isotype [13]. Additional data can be represented on each
marker, e.g. using color or sub-shapes. For example, “Social Stratification in the
United States” [14] uses pictographic markers with human figures indicating five
variables, through 1) background color (occupation), 2) shape (gender), 3) pairing
(marital status), 4) extra outline (dependents), and 5) figure color (race). We have also
used this approach successfully, e.g. [15].

Fig. 3. Pictographic glyphs indicating multiple data variables, from [13,14].

However, a pictograph approach has some challenges:
• Some regions of the set diagram are too small to fit the pictographs. The addition

of the leader line could increase the effort to visually decode the relationships.
• The irregular shape of some regions of the set diagram requires an irregular place-

ment. Pictographs organized linearly can be visually estimated by length, which is
preferred to visual estimation of area (e.g. [8]).

125

Fig. 4. Pictographs on set diagrams. Leader lines are used when pictographs do not fit regions.

2.3 Scalable Glyphs

Scalable glyphs are a single glyph for each region, sized by the quantity of items as-
sociated with that region. Simple glyphs, such as bars varying in length or circles
varying in radius, can effectively convey quantities [8,9,16]:

Fig. 5. Scaled glyphs indicating quantities on both Venn and Euler diagrams.

2.4 Indication of Set Membership

With higher order set diagrams, it can be more difficult to perceptually decode the
membership for a given component of interest [6]. There are many possible approach-
es to indicate set membership using either the set diagram or the glyphs.

Background Color: Color can be used, but is problematic. It is challenging to de-
code the color in intersections as color is not understood as separable [16].

Background Texture: Textures have been used to aid in identification of set
membership e.g. [17, 18]. Distinguishing regions by a heterogeneous channel-based
approach [19] could be more effective. However, in small regions, textures may not
be clearly distinguishable or the glyphs may occlude textures.

126

Fig. 6. Background textures can assist in decoding membership.

Glyph with Colors: The same coloring used in the set diagram can be reused in
glyphs to indicate membership. Rather than blend colors, however, the colors can be
kept separate within the glyph. The layout of the color could be organized as stripes,
or radially resembling a bullseye or pie.

Fig. 7. Colored glyphs use same colors as the sets to aid in identification of set membership.

Glyph with Oriented Whisker: In some set diagrams (e.g. Venn) the placement
of the label is typically around the perimeter which can be leveraged by the glyph,
specifically by modifying the shape with an added whisker [20] oriented along the
same vector from the center of the diagram to the label. To visually decode the mem-
bership of any bubble, the viewer can read the orientation of the whisker, similar to
decoding the hands of a clock or the spokes of a wind rose.

Fig. 8. Glyphs with added whiskers oriented based on set memberships.

The glyph-based approach also allows for additional visual attributes to convey addi-
tional data values. For example, the whisker-based glyphs can use:

127

• Traditional visualization attributes, such as brightness, hue, texture
• Shape-based attributes, such as closure, curvature or edge type
• Each whisker-shape can be independently modified to indicate a data attribute with

respect to the set membership, for example whisker length or width
• The internal area of the glyph can be used, in larger glyphs, for example, as a pie

chart or with a pictograph.

Fig. 9. Example whisker glyphs with additional visual attributes, a) brightness, b) closure,
c) curvature, d) whisker width and length, e) internal pie, f) internal pictograph. Negative val-
ues could be connotatively conveyed by fill (e.g. red/green hue) or pictograph (up/down arrow).

The whisker-based approach may work well with Venn diagrams, but has may have
issues with Euler diagrams and issues where whiskers are potentially occluded. The
image below shows a 5-way Venn diagram that has been modified from ellipses to
increase the size of the smaller regions to make the technique more workable.

Fig. 10. Whisker glyphs on a 5 way Venn diagram showing data from a survey of 5000 people
purchasing fuel, in sets by age, payment type, fuel grade, residence and income. Size of glyph
indicates number of respondents in a given component, whiskers indicate set membership, and
angular shading indicates the ratio of female to male purchasers of a component.

128

3 Discussion and Next Steps

Our contribution shows that glyphs can be used to separate the representation of data
such as quantities from the representation of sets. Glyphs can:

• Indicate data layered over set diagrams, either as scalable glyphs or as pictographs,
and simple size is preferred for fast visual estimation as opposed to irregularly
shaped areas [16].

• Also indicate additional data attributes, such as set membership or other data at-
tributes, using visual attributes such as color or orientation of sub-shapes.

While current research in visual comparison indicates this approach may work, evalu-
ation is required to validate. The examples provided indicate various limitations:

• Glyph size needs to be carefully managed. Glyphs too big can result in occlusion
or require an offset and leader lines. Glyphs too small can be difficult to add addi-
tional visual attributes, e.g. for visual decoding.

• Glyph colors can effectively represent set membership except color can be diffi-
cult to discern when used internally on small glyphs.

• Glyph whiskers can effectively represent set membership when set labels are or-
ganized around the perimeter, such as in Venn diagrams; but is problematic when
sets are distributed throughout the plane.

Implementation on a wide variety of data sets and testing with users requires further
effort. Other work could include 3D and interaction techniques, for example, on inter-
action, extend whiskers to set labels to aid interpretation of whiskers.

References

1. Chow, S., Ruskey, F.: Drawing Area-Proportional Venn and Euler Diagrams. Lecture
Notes in Computer Science 2912:466–77 (2004)

2. Edwards, A.W.F., Edwards, J.H.: Metrical Venn diagrams, Annals of Human Genetics 56:
71-75 (1992)

3. Micallef, L., Rodgers, P.: eulerAPE: Drawing Area-Proportional Euler and Venn Diagrams
using Ellipses. EMEA Google Scholars Retreat 2011 www.cs.kent.ac.uk/pubs/2011/3119
(2011)

4. Chow, S., Rodgers, P.: Constructing Area-Proportional Venn and Euler Diagrams with
Three Circles. Presented at Euler Diagrams Workshop 2005, Paris (2005)

5. Pirooznia, M., Nagarajan, V., Deng, Y.: GeneVenn – a web application for comparing
gene lists using Venn diagrams. Bioinformation, 1:420–422 (2007)

6. Wilkinson, L.: Venn and Euler Data Diagrams. Science (2), Citeseer (2010)
7. Healey, C., Booth, K., Enns, J.: High-speed visual estimation using preattentive pro-

cessing. ACM TOCHI (1996)
8. Jock Mackinlay. Automating the Design of Graphical Presentations, ACM Transactions on

Graphics, 5(2) (1986)

129

9. MacEachren, A.: How Maps Work: Representation, Visualization and Design (2004)
10. Spoerri, A.: InfoCrystal: A Visual Tool For Information Retrieval And Management. In:

CIKM '93 Proceedings of the second international conference on Information and
knowledge management (1993)

11. Clark, J.: TwitterVenn. www.neoformix.com/Projects/TwitterVenn/view.php
12. Brase, G.L.: Pictorial representations in statistical reasoning. Applied Cognitive Psycholo-

gy, 23(3), 369-381 (2009)
13. Neurath, O.: International picture language. London: Kegan Paul (1936)
14. Rose, S.: Social Stratification in the United States: The American Profile Poster. The New

Press (2007)
15. Jonker, D., Wright, W., Schroh, D., Proulx, P., Cort, B.: Information Triage with TRIST.

2005 Intelligence Analysis Conference (2005)
16. Ware, C.: Visual Thinking for Design. Ch. Structuring Two-Dimensional Space,

pp. 43-65, Morgan Kaufmann (2008)
17. Byelas, H., Telea, A.: Texture-based Visualization of Metrics on Software Architectures.

Software Visualization (2008)
18. Simonetto, P., Auber, D., Archambault, D.: Fully Automatic Visualisation of Overlapping

Sets. Eurographcs/IEEE-VGTC Symposium on Visualization (2009)
19. Ware, C.: Information Visualization: Perception for Design. Ch. Glyphs And Multivariate

Discrete Data, pp. 176-184 (2004)
20. Brath, R.: The Many Dimensions of Shape. IV'09 Opening Keynote,

www.oculusinfo.com/expertise.html (2009)

Author Index

Brath, Richard 122
Burton, Jim 2, 47

Cheng, Peter C.-H. 32
Coppin, Peter 47
Cordasco, Gennaro 62, 107

Dailey, David 77
De Chiara, Rosario 62, 107
Dwyer, Tim 1

Fish, Andrew 62, 107
Flower, Jean 92

Howse, John 2

Mineshima, Koji 17

Okada, Mitsuhiro 17

Rodgers, Peter 92

Sato, Yuri 17
Scarano, Vittorio 107
Stapleton, Gem 2, 92

Takemura, Ryo 17

