
A Controlled Natural Language Interface for Authoring Access Control Policies
Leilei Shi
School of Computing
University of Kent
Canterbury, CT2 7NF, U.K.
+44 1227 76 2811
L.L.Shi@kent.ac.uk

David W. Chadwick
School of Computing
University of Kent
Canterbury, CT2 7NF, U.K.
+44 1227 82 3221
D.W.Chadwick@kent.ac.uk
ABSTRACT
With increasingly distributed computing systems, the management task of controlling access to shared resources becomes more and more complicated. Policy based access control systems may provide a solution to this problem, but the issue then becomes one of how to easily specify access control policies. We have designed and implemented a user interface that enables novice users to author their own access control policies using a controlled natural language (CNL) interface. With this interface, users are able to author their policies by typing sentences in a sub set of the English language. The sentences are then parsed and output as a machine readable policy, ready for automatic enforcement by a policy decision point (PDP). In this paper we describe the details of the design and implementation of this CNL interface, along with a summary of the user evaluation.
Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; D.5.2 [HCI]: Natural Language;
Keywords
Access Control, Policy, NLP, HCI
1. INTRODUCTION

Research has shown [1] that when users are asked, they already intuitively know who should have access to their resources and who should not. If a person is asked whether someone is allowed to use a resource owned by him, s/he will say yes or no according to some rules s/he knows, which can be represented with a set of sentences such as “only I can use the notes in my wallet” or “the members of our research group are allowed to modify the project code”. In other words, they already know the access control policy, or a set of rules, that are needed to make correct access control decisions. However, certain specialized knowledge, such as computer science jargon, or machine languages, or complex interfaces, are usually required in order to write these rules as an executable policy for an access control system. It would be much easier for the users if they could express these rules in their own natural language.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SAC’11, March 21-25, 2011, TaiChung, Taiwan.

Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

Given this motivation, we have developed a technique that allows users to author their own role based access control (RBAC) policies using a controlled natural language (CNL) interface. A CNL is a sub-language of the corresponding natural language [2]. The grammar and semantics of a CNL are usually the same as those of the (complete) natural language, but sometimes it might be looser or stricter, depending upon the purpose of the application. With the software we have developed, users can type sentences in (a subset of) English, and a machine processable policy is generated from the input text. In the current implementation, three output language formats are supported: OWL/RDF ontology [3], PERMIS XML [4], and XACML [5], but the design is modular allowing other formats to be added.
A big advantage of our interface is that users are not required to have prior knowledge of any access control models or languages in order to create policies. Users only need to learn to use the CNL interface once (or won’t need to learn it at all) and they can then write access control policies for different target systems.

The rest of the paper is structured as follows. Section 2 reviews related research. Section 3 describes the overall design of the system and section 4 the implementation details. Section 5 describes the GUI CNL interface. Section 6 summarises the results of a series of user trails that were performed to evaluate the CNL interface, whilst section 7 concludes and states where future work is still needed.
2. RELATED RESEARCH

Several CNL interfaces have already been developed, e.g. Weeds et al. [13] demonstrate how CNL can be used to formulate user policies in pervasive computing environments; Brodie et al. [14] use a web interface to allow users to specify privacy policies for the IBM SPARCLE workbench; whilst De Coi et al. [15] use a CNL interface for specifying privacy policies in social networks. The advantage of our work is that the CNL interface is not specific to any single application or output policy language. The exported policy can be used by a variety of application independent policy decision points (PDPs).

3. Previous research has modelled the whole or a part of standard RBAC [7] with ontologies: Finin et al [16] proposed an ontology model for RBAC; Rodolfo [17] use an ontology to store roles for an XACML RBAC system that will aid with separation of duty constraints. Our work extends the standard RBAC model in order to cater for federated environments in which remote administrators assign roles (as credentials) to different groups of users.
4. OVERALL DESIGN
The goal of the overall design is to make the system modular and extensible, with the CNL interface being a separate (and replaceable) component. The CNL interface must be easy to use and intuitive, involving very little effort to learn, or ideally no effort at all. The user’s tasks should be very basic, and require little effort (both cognitive and dextrous). All the complex processing tasks such as parsing the text, matching concepts and generating the machine processable policy should be hidden from the user. Since new CNL sentences and new target policy formats are expected in future developments, extensibility is an important design objective of the system. It should be possible to add new sentences and policy formats with minimum affects on other parts of the system.
To satisfy these requirements, the Mediator design pattern [6] is adopted in the design. Processes are grouped in modules, and only the modules with very basic functions, e.g. text editor, are exposed to users. All the other processes are transparent. In the mediator pattern, process modules do not directly communicate with each other. Instead, communication between modules is encapsulated in mediator objects. This reduces the dependencies between modules, thereby lowering the coupling and increasing the extensibility. As a result, the following design has been adopted (see figure 1).

[image: image1.emf]PolicyOntology

PERMISPolicy

OWL/RDF Text

XACMLPolicy

OntologyEditor

TextImporter

PERMISExporter

PERMIS PolicyEditor XACML PolicyEditor

Text Editor

PolicyOntologyImporter

RDFImporter

PolicyOntologyExporter

XACMLExporter RDFExporter

OWL/RDF

OntologyEditor

Figure 1. Overall Design
In this design, the whole process is divided into two parts, information extraction and policy generation. An intermediate layer, an ontology of the access control policy, is the mediator object used to bridge them together. There are two reasons for using an ontology as the intermediate layer: it is an abstract model which can be used to represent policies of different target languages, and it supports reasoning which can be utilised in retrieving and merging policies.
In figure 1, circles represent data models, or mediator objects, while rectangles represent process modules. Since all process modules are isolated by data models, problems and exceptions encountered by each process module are isolated as well. This makes it easier to trace problems at runtime. Only editor modules are visible to users; all other modules and data are transparent to them.

The PolicyOntologyImporter modules are responsible for parsing the input languages and extracting an ontology model from them. Two PolicyOntologyImporter modules have been developed. The first parses the sentences written in the CNL, the second directly imports an ontology model by loading ontology data from an OWL/RDF file. Finally a combined module may perform both methods by loading an OWL/RDF ontology data file first and then supplementing it with CNL data. The PolicyOntologyExporter modules work through the ontology model and build the access control policy in the chosen target format. The PolicyOntology acts as a media to store the policy in an abstract model, and provides access to both importers and exporters.

Data models are defined by existing standards and application-specific data structures: the Text model is defined by the CNL described in the next section; OWL and RDF are defined by the W3C standard [3]; the PolicyOntology is defined by the ontology proposed in the next section; the PERMISPolicy is defined by the PERMIS Policy schema [4] and the XACMLPolicy is defined by the OASIS standard [5].

These data models act as interfaces between different processing modules. By conforming to these data models, it is easy to modify an existing process module or add a new process module to extend the functionality. If any of these data models evolve or new data models are added, only the processing modules interacting with this data model need to be modified. For example, we only need to update the Text data model if new sentences are added to the CNL; and we only need to update the text PolicyOntologyImporter in order to parse them and import them.
5. IMPLEMENTATION
5.1 Ontology for Access Control Policies

A high level ontology has been defined, based on an enhancement to the standard centralised RBAC model [7] in order to cater for federated environments in which multiple, possibly remote administrators, assign roles (and attributes) to end users. The policy author, who is responsible for controlling access to her resources, must specify who these administrators are, and which roles (or attributes) they are trusted to assign to which groups of end users. This ontology is stored as a template (in OWL/RDF) which is loaded into the system at initialisation time before any author input is allowed. After the user inputs her CNL sentences the TextImporter parses this text policy and populates the ontology template. When the user has completed her policy this ontology is exported to a machine readable policy in the chosen target format. The most important classes in the high level ontology template are as follows:
Policy: the top level class representing an access control policy;

User/User_Domain: the class representing users who perform actions;

Attribute: Attribute is the high level class used to describe users, actions and resources;

Role: Role is a type of attribute, which is associated with users. Roles are assigned by administrators and used in RBAC rules;

Action: the high level action that users can perform on resources;

Resource: the high level resource that users can access;

Administrator: administrators are entities which are trusted authorities who may assign roles to users;

Permission: the high level class represents permission to perform one or more actions on one or more resources. It can be assigned to an entity or an attribute, and indicates that the latter are allowed to perform the specified actions on the specified resources;
Role_Assignment_Permission: a sub class of permission, which can only be associated with administrators, and allows them to assign a role or attribute to a class of user.
There are no explicit rules in the ontology. Instead, the User Assignment rule from RBAC is represented by creating a relationship in the ontology between an Administrator and a Role_Assignment_Permission. Similarly the Permission Assignment rule from RBAC is represented by creating a relationship between a Role and a Permission.
The use of a pre-loaded ontology template means that users do not need to build the whole ontology model from scratch. First, it is very verbose to declare the basic model with a set of statements such as “There are roles. There are attributes. Roles are a type of attribute” etc. Second it is a waste of time to repeat it every time a policy is created. Third it is a way to standardize the security model and the information that is required from users. Fourth, most users lack detailed knowledge about security policies, are not expert or familiar with the RBAC model, and so “Resource” “Permission” and “Role” will not be a natural way to express their policies. Furthermore novice users might use very different vocabulary and formats to express the same idea e.g. “I trust my manager to say who can do what” and “My manager assigns tasks to the roles in my department”. So we need to standardize the model and concepts and allow alternative texts to be used for further processing.
The implementation uses the OWLIM semantic repository [18]. It supports the whole RDF schema and partial OWL-DL semantics. but no rule languages such as SWRL [19]. This means that inferences of sub-classes (e.g. as in resource hierarchies) and transitive properties (e.g. as in the superior-to relation) are automatically supported when querying the ontology repository. However, reasoning like permission inheritance is not supported, so this must be part of the logic of the PDP consuming the exported policies.
5.2 A CNL for Access Control Policies

We have defined a CNL for expressing access control policies using the distributed RBAC paradigm, and developed a parser for it based on the GATE/CLOnE software (see later). The current CNL version provides the ability to express core RBAC and hierarchical RBAC policies, but more sophisticated policies, such as constrained RBAC and RBAC with obligations, are not yet supported.
A policy which is written in this CNL is parsed sentence by sentence. If a sentence fails to parse, the whole sentence is dropped. Hence the policy semantics are defined at the sentence level. Based on the semantics of a sentence, it is categorised into one of three groups.

Policy Elements

These sentences are used to describe elements (i.e. roles, actions, resources, administrators and user domains) of the policy. Here are examples of each sentence, along with their associated semantics:

<sentence> ::= <phrase> “be a type of” <class>

Printers and Files are types of resource.

Printers are a type of resource.

Printer is a type of resource.

The above group of sentences define one or more new classes, and specify the super class at the same time. In the above examples, the Printer and File class are created as a sub class of Resource.

<sentence> ::= <phrase> “be” <class>

Company profile and price list are files.

Read and write are actions.

Manager, staff and guest are roles.

“Resource repository” is a resource.

University of Kent is a user domain.

Bob is an administrator.

The above sentences define instances of existing ontology classes. The class must either be part of the high level ontology or have been defined in a previous sentence, before it can be used to create instances. Examples of newly defined instances are: company profile, price list, read, write, manager, resource repository, staff, guest, University of Kent and Bob.

<sentence> ::= <resource> <can> [“be”] <action>

Files can be read and write.
Web pages can be put, get and post.

Printers can print.

The above group of sentences are used for associating actions with resources, from which permissions can be defined later.
<sentence> ::= <role> “be” <hierarchy> <preposition> <role>

Managers are superior to staff and guests.
Staff are subordinate to group leaders.

These sentences are used to define the role hierarchy, by creating superior and subordinate relationships between roles.

All these sentences are used to define and classify the new policy elements within the underlying policy ontology. New elements will be classified by the CNL engine as either classes or instances of pre-existing ontology classes. Simple relationships and role hierarchies are also defined, so that they can be subsequently used in defining the policy rules.

Permission Assignment Rules

The semantics of the second group of sentences is to create permission assignment rules in the ontology, which assign permissions to roles. Optionally they may also say under what conditions a permission may be assigned, although this feature has not yet been fully implemented. The supported sentence templates along with some example sentences are given below:

<sentence> ::= <subject> <can> <action> <resource>

Managers can update “resource repositories”.

Guests can read the company profile.

<sentence> ::= <subject> <can> <action> <preposition> <resource>

“Staff are allowed to print on all colour printers.”

<sentence> ::= <subject> <can> <action> <preposition> <resource> “if” <condition>

“Students are permitted to print on printers if the number of pages is less than 50.”
All three sentences above shares the same semantic – creating a permission instance associated with corresponding actions on resources, then assigning it to the subject of the sentence (a role).

Role Assignment Rules

The semantic of the sentences in the third group is to create role assignment rules in the ontology. Role assignment rules say who (i.e. which administrator) is trusted to assign which roles to which domain of users. The supported sentence templates along with some example sentences are given below:

<sentence> ::= <administrator> <can> <assign> <role> <preposition> [“user” <preposition>] <userDomain>

Bob can assign the staff role to company users.

Bob can assign staff to users from anywhere.

Bob has permission to allocate the manager role to users from the University of Kent.

<sentence> ::= “I trust” <administrator> <preposition> <say> “who” <role> “be”

I trust Bob to say who staff are.

Both forms express the similar rule of trusting Bob (an administrator) to allocate the staff role to users from some domain. The first three sentences allow the user domain to be specified, namely: “company users”, “anywhere” and the “University of Kent”, whereas the latter sentence does not (meaning that the domain is the entire world signified by the reserved word “anywhere”).

5.3 The CNL Parser

The natural language processing (NLP) component is built on GATE [8] and one of its applications called CLOnE (Controlled Language for Ontology Editing) [9]. CLOnE has been developed to enable users to author OWL conformant ontologies in controlled language, which is easier than writing ontologies in OWL/RDF languages or with tools like Protégé.
In CLOnE, there are two parts: the Java API and the JAPE grammar. The Java API is designed to support ontology operations, such as creating a class or adding a property to the underlying ontology implementation. The JAPE grammar rules are used to match sentences for basic ontology statements, such as defining a class. If a sentence is matched with a defined JAPE grammar or template, then the Java API is called to manipulate the ontology according to the matched words. For example, “There are projects” matches the “There are <CLASSES>” JAPE template. Therefore the word “projects” is extracted and passed to the Java API to create a class named “Project” in the internal ontology model. Words are always formalized into their canonical form during this process, which means singular and title case.

Whilst CLOnE is a good starting point for authoring ontologies in controlled language, in its original form, it is not enough for writing access control policies, since it only supports a limited set of sentence patterns and limited relationships, specifically the “has” relationship. We have enhanced the Java API from CLOnE to enable the writing of more complicated rules and parsing of more complex text within the context of access control policies.
An important feature we have introduced is the generic instance. We sometimes need to be able to associate an instance of one class with the entire set of instances of another class (or simply with the entire class). For example, the Print action, which is an instance of the action class, should be associated with all instances of the Printer class, since all printers support the print action. With the original CLOnE API, it was only possible to relate a single instance of one class to a single instance of another class or one class to another class, but not an instance of one class to another class (or all its instances). Although the hasValue restriction of OWL can be used to serve this purpose, it is not supported by the CLOnE API. Also hasValue cannot be used to relate a single individual of a domain with all the individuals of a range class, e.g. a permission instance on all files, unless we add a reverse property of the original one. Another option is to represent this mapping as SWRL rules, but this is not supported by the CLOnE API.
In our implementation, we invented a generic instance named “All_XXX” which is automatically created for each class XXX when the class is created. Whilst All_XXX is a single instance of XXX in the ontology model, semantically it actually represents all instances of this class, and can be used as a domain or a range interchangeably. It allows the user to create a relationship between a single instance with all the instances of another class, whilst the ontology model thinks the relationship is simply between two single instances. When processing the ontology, the properties held by the generic instance will be applied to all the sibling instances and child instances. The creation of the generic instance happens automatically with the extended API when a class is created or accessed for the first time, e.g. when the “Printer” class is created as a sub class of “Resource”, a generic instance "All_Printer" is automatically created. After associating the generic instance with the action instance "Print" (as in the text “staff can print on printers”) the Print action subsequently applies to all “Printer” instances when they are defined (as in the text “HP Laserjet 4 is a printer”). Another advantage of this approach is that it better fits the natural language process and allows users to directly refer to all resources of a certain type, with sentences like: "David can print on all printers." Since the instance representing "all printers" already exists in the ontology model, the sentence can be parsed successfully.

These changes have been necessary since users typically do not understand the fundamental difference between classes and instances, and typically they use these concepts interchangeably in sentences [10]. A strict ontology modelling tool will not allow them to do this. Our enhancements now mean that users do not need to worry about the differences between instances and classes, and can use the same term interchangeably, when sometimes a class is required and other times an instance is required.
To support the parsing of sentences needed for access control policies, new sentence structures, with appropriate grammar, had to be defined. All classes for parsing texts and generating the ontology are packaged as a jar package called the policy importer. More importantly, error handling takes place in the policy importer package. If the pipeline fails, any information returned from GATE is caught. Firstly, the policy importer package tries to see if there is anything that could be done to recover from the failure, such as resetting the ontology repository. If not, then information about the failure will be wrapped as an exception and returned to the caller.

The exception includes the failure information returned from GATE along with a more human readable description of the failure which can be shown to end users to make them more aware of what they should do next. Also, to make the problem easier to trace from the caller’s side, the line number of the faulty text is attached (if the text passed in has multiple lines).

The policy importer package can be called either from a Java program, or via a command line. A corresponding export package is also required to export the resulting ontology into a policy in one of the supported machine languages.

5.4 Policy Exporters

Policy exporters are designed to output policies in a target machine language format, so that the policies can be loaded and used in the PDPs of access control systems. There is an abstract class named PolicyOntologyExporter, which is the super class of all exporters.

RDF Exporter

A simple RDF exporter (RDFExporter) is provided to output the policy ontology in OWL/RDF format. The RDF exporter allows the user to save a policy ontology, created from CNL input, as RDF triples, which can then be viewed and edited using an ontology editor such as Protege. Currently we use the RDF repository in the OWL standard way, so the result can be saved and loaded as an OWL ontology; but we cannot be certain that more sophisticated sentences in the future will remain fully compatible with OWL. Hence the export format is called RDF rather than OWL.

PERMIS Exporter

A PERMIS XML policy exporter (PERMISExporter) is implemented. PERMIS policies are based on the RBAC model [7], and are written in XML. Further details of the PERMIS policy format can be found in. [4]

[image: image2.emf]PERMIS Policy

<X.509_PMI_RBAC_Policy>

<SubjectPolicy>

<SubjectDomainSpec

ID="University_User"/>

<SubjectDomainSpec ID="All_User">

<Include LDAPDN=""/>

</SubjectDomainSpec>

</SubjectPolicy>

<RoleHierarchyPolicy>

<RoleSpec Type="permisRole"

OID="1.2.826.0.1.3344810.1.1.14">

<SupRole Value="Staff"/>

<SupRole Value="Manager">

<SubRole Value="Staff"/>

</SupRole>

</RoleSpec>

</RoleHierarchyPolicy>

...

Ontology

...

SubjectBuilder

PERMISExporter

RoleBuilder

OtherBuilders...

Figure 2. PEMIS Exporter
A PERMIS policy consists of several parts, namely: SubjectPolicy, ActionPolicy, TargetPolicy, RoleHierarchyPolicy, SOAPolicy, RoleAssignmentPolicy and TargetAccessPolicy. For each part of a PERMIS policy, a builder class is made. A builder class reads ontology instances related to the corresponding part of the policy, then generates XML tags with the names and relations of instances. Figure 2 illustrates how the PERMISExporter works.

Generic instances are treated differently based on the situation. If a generic instance is not used at all, then it doesn’t appear in the exported policy. For example, in the sentence “Alice is allowed to assign the staff role to all users”, the generic instance “All_User” is added to the policy as a subject domain which includes all users (see Figure 2). But in the sentence “Alice is allowed to assign all roles to users from the University”, then “All_Role” is actually replaced with all the defined role instances and “All_Role” is not used in the exported policy. The precise handling of the generic instances depends in part on the semantics of the export format.

XACML Exporter

The XACML exporter is designed and implemented in a similar style of the PERMIS XML exporter, but consists of different building parts. The exporter is based on XACMLv2.0 with the profile for RBAC [11]. An XACML policy consists of a set of targets, rules, policy, and policy sets. All rules and policies are defined in a generic way, and the semantic of each policy/rule depends on its value.
The exporter uses Sun’s implementation of XACML as the internal representation. A set of APIs is provided to construct XACML policies, and encode the policy in memory to XML format so that the exporter doesn’t need to deal with verbose XML tags or consistency checks.
5.5 The CNL APIs
An API is provided to integrate the CNL process with other applications. There are two parts of the API, importers and exporters, as described in the architecture design.

New export language formats can be supported by deriving a sub class from the PolicyOntologyExporter superclass and implementing the abstract methods.
The policy ontology is stored and manipulated using a low level API, which uses SPARQL [20] to query an RDF repository. It is very verbose to use the RDF query API directly and it will generate many duplicate or similar Java programs. Instead, we have developed a higher level API to access the classes and instances in the ontology in a way which is more similar to using classes and instances in Java. In this way namespaces, URIs and SPARQL queries are all wrapped by the higher level API. For example, if we want to query the ontology to ask what permission is associated with a certain role in the ontology, we can simply call the higher level getPermissions method for that role instance (in Java). Without this high level method we would need to query the RDF ontology repository for all http://sec.cs.kent.ac.uk/permis/policy#Role_has_Permission relations associated with that role, and then query the repository again for the range instance of each relation.

Another benefit that comes with this high level API is that all namespaces and names are contained within the API. If there is any change that needs to be made to a namespace, class name or relation name in the ontology, we can make these changes within the API and then these changes will be propagated to all the exporters that use it.

6. THE CNL INTERFACE

In order to provide a Graphical User Interface (GUI) to the CNL packages, we added a new window to the existing PERMIS Policy Editor [21] (see Figure 3). With this GUI screen, users can type and edit policy text in a text area, then convert it to a PEMIS, RDF or XACML policy with a single button click. The GUI wraps all calls to the policy importer and policy exporter. Also, it handles information returned from the CNL package.

 [image: image3.jpg]=il
Fie View Tools Help
port fro =18]|
“Type your policy here (in Engiish): Example:

|84]%|0|6|0 [5|=

My policy has the name with value "Example Policy”.

Files are a type of resource.
Read and write are actions.
Files have read and write.
Company profile and price list are files.

Manager, staff and guest are roles.
Managers are superior to staff and guests.

Guests can read company profile.

Staff are allowed to read company profile and price list.
Managers are permitted to read and write anything.

David is an administrator.
David can assign staff to users from anywhere.

David has permission to allocate the manager role to usex
1 trust anyone to say who guests are.

[|

My policy has the name with value "Example Policy”.

Files are a type of resource.
Read and write are actions.
Files have read and write.
Company profile and price list are files.

Manager, staff and guest are roles.
Managers are superior to staff and guests.

Guests can read company profile.

Staff are allowed to read company profile and price list.
Managers are permitted to read and write anything.

David is an administrator.
David can assign staff to users from anywhere.

David has permission to allocate the manager role to users
1 trust anyone to say who guests are.

syntax

My policy has the name with value [POLICY NAME].

B |

o

Log:
Initializing.
Successfully initialized!

I~ Show diagnostic information

o | _comert_|

Close

Mnimized Windows:

Figure 3. The GUI for the CNL Interface
To make the GUI simple and easy to use, the whole interface is divided into three areas: edit area, guide area and output area. There are three buttons at the bottom, namely Open, Convert and Close. When the Convert button is clicked, the CNL package is called to import the text from the edit area and convert it to its equivalent policy ontology, then export the ontology as a policy in the chosen target format (PERMIS XML, OWL/RDF or XACML) by clicking the drop down arrow attached to the Convert button. If PERMIS XML is selected as the target format, the resulting policy is loaded and shown in the GUI screens of the PERMIS Policy Editor. For other formats, a simple text editor displaying the resulting policy is shown, and this allows the user to view and save the policy in a file of their choice.

During the process of conversion, the edit area is disabled and greyed out, and users cannot make any changes to the text. If any sentence cannot be parsed by the CNL importer, the interface will highlight the offending sentence in the text area before the user has had chance to change it. The user may then edit it straight away.
Users may add new sentences to existing text that has already been converted and then press Convert again. In this case the new sentences will be added to the existing policy ontology. This is actually implemented by removing the existing ontology and converting the entire text again, so that all text changes are captured in the revised ontology. Thus if a user edits any arbitrary text, this change will be captured in the revised ontology. Although it is possible to do this in an incremental way, i.e. keep the existing ontology and only update the changes, we haven’t chosen this way for two reasons. First, the object of the research was not to reason about differences in policies but rather to determine how an RBAC policy could be developed using CNL tools, and what the usability results of this would be. Second, if we were to adopt the incremental way, we should also allow users to delete an existing rule. This can be done in GATE by sentences such as “forget that…”. But we have not used this feature in order to keep the CNL compact and easy to understand.
The output area provides feedback information to the user. Since some stages of the conversion may take seconds to complete, such as initialising the GATE software and converting the sentences, it is necessary to let users know what the current status is. Otherwise, users may get confused as to whether the interface has hung or is still processing. Also, when things go wrong, the output area tells the user what the problem is and what steps may help to fix it. An option is provided, by clicking the Show diagnostic information check box, to provide more technical and verbose information for advanced users, such as exceptions thrown by the GATE system. This makes it possible to troubleshoot problems and bugs in the code at runtime.

7. EVALUATION

In order to prove the effectiveness of the CNL approach, a series of user trails were undertaken. The user trials were based on a hypothetical scenario for which users were asked to formulate their access control policies. The scenario was developed to be compact, easy to understand, and to represent the most fundamental concepts of the RBAC model, such as users, roles and permissions. Each RBAC concept appears at least twice in the scenario to make sure it is not missed by the users. But the RBAC model is not mentioned explicitly, since we did not expect users to have any previous knowledge of RBAC. A picture was used to illustrate the scenario, in order to prevent users from copying the text into the CNL interface. The participants were recruited from undergraduates, postgraduates and administrative staff from different departments of the university, in order to represent a wide population of users.
In order to compare the CNL interface with a traditional GUI, the users were divided into two groups. One group used the CNL interface first and the other the PERMIS RBAC GUI. They both then used the other interface afterwards. The two groups were the same size (10 participants each) and matched in demographic ways such as: gender, age, education and technical experience etc. as far as was possible.
A reference XML policy was produced which implemented the test scenario, and the policies produced by both groups were compared to the reference XML policy, element by element. Only those elements which syntactically and semantically matched the reference policy were counted as correct. The number of matched elements was used to measure and compare the performances of the two interfaces. “Completeness” measured the number of matched elements completed by a user divided by the total number of elements in the reference policy; “accuracy” measured the number of correctly matched elements divided by the number of elements input by the user, whilst “correctness” measured the number of correct user provided elements divided by the total number of elements in the reference policy. Analysis of the results showed that the CNL interface is more effective for first time users than the GUI, and these users created more complete (12% better) and much more accurate (34% better) and correct (28% better) policies than the GUI users. Also, the CNL interface takes less time to learn as its policies were more complete than the GUI produced ones.
We also measured subjective satisfaction of the CNL interface compared with the traditional GUI by using the PSSUQ questionnaire from IBM [12]. Its scale ranges from 1 (no effort to use) to 7 (not usable). The results of overall satisfaction were 3.01 for the CNL interface and 3.87 for the GUI which shows that users were more satisfied with the CNL interface than with the GUI. Not only that, but using the CNL interface first before the GUI actually increased the user satisfaction with the GUI.
The user trials highlighted areas in which improvements still need to be made to the CNL interface. These are due to the very many different ways that natural language can be used to specify the same fact or rule. The current interface only supports the most common subset of these, and the trial users attempted to use sentence structures that were not supported. Therefore more syntaxes and alternate ways of specifying the same access control rules need to be added.
Complex policy rules containing conditions and/or obligations are not yet supported. Since these sentences are more complex than the basic ones that are currently supported, then significantly more time and effort will be needed to develop a CNL interface for these.
8. CONCLUSIONS
In this paper, we have described an approach to authoring access control policies in English using a sub set of language called Controlled Natural Language (CNL). CNL reduces the complexity of natural language and removes ambiguities, thus making it relatively easy for a computer to capture the precise semantics of the policy writer. The CNL policy can then be converted to a machine language format, such as XACML, so that it can be automatically processed by a PDP. At the moment, only the PERMIS XML, RDF and XACML formats are supported but more formats can easily be added in future when required.

The design and implementation of the CNL policy authoring tool have been explained. The design is modular and clearly separates data from the processing modules. A set of APIs have been specified so that new modules can be added or existing modules can be extended in functionality or replaced.

A series of user trials were performed in order to evaluate the CNL interface, and compare it with a traditional GUI. Overall the results were very positive and show that a CNL interfaces can be used to substantially ease the burden of creating basic RBAC security policies compared to a GUI interface. The results also show that users were more satisfied with the CNL interface than with the GUI, and feel it was easier to start by using the CNL interface. With further research and development work, more complex access control policies will be able to be authored in the future. A web edition of the CNL interface will be developed to make it more accessible.
9. REFERENCES

1. D. Gollmann, Computer security: John Wiley & Sons, Inc., 1999.
2. N. E. Fuchs and R. Schwitter, "Specifying Logic Programs in Controlled Natural Language," Technical Report IFI 95.17, University of Zurich, 1995.
3. Web Ontology Working Group. OWL Web Ontology Language, W3C. 10 February 2004.
4. D. W. Chadwick and A. Otenko, "RBAC Policies in XML for X.509 Based Privilege Management," in Security in the Information Society: Visions and Perspectives: IFIP TC11 17th Int. Conf. On Information Security (SEC2002), Cairo, Egypt, May 2005, pp. 39-53.

5. OASIS “eXtensible Access Control Markup Language (XACML) Version 2.0” OASIS Standard, 2005
6. E. Gamma, et al., Design Patterns: Addison-Wesley Professional, November 1994.
7. ANSI. “Information technology - Role Based Access Control”. ANSI INCITS 359-2004
8. H. Cunningham, et al., "GATE: A framework and graphical development environment for robust NLP tools and applications," in Proceedings of the 40th Annual Meeting of the ACL, 2002.
9. A. D. Funk, Brian;et al, "Controlled Language IE Components version 2," Technical Report, SEKT D2.2.1, January 2007.
10. P. Inglesant, et al., "Expressions of expertness: the virtuous circle of natural language for access control policy specification," presented at the Proceedings of the 4th symposium on Usable privacy and security, Pittsburgh, Pennsylvania, 2008.
11. OASIS, "Core and hierarchical role based access control (RBAC) profile of XACML v2.0," OASIS Standard, 2005.
12. Lewis, J. R. "Psychometric Evaluation of the PSSUQ Using Data from Five Years of Usability Studies." International Journal of Human-Computer Interaction 14(3), 2002: 463 - 488.
13. Julie Weeds, et al, "Natural Language Expression of User Policies in Pervasive Computing", LREC Workshop on Ontologies and Lexical Resources in Distributed Environments, 2004.
14. Brodie, C. A., Karat, C.-M., & Karat, J. “An empirical study of natural language parsing of privacy policy rules using the SPARCLE policy workbench”. The Second Symposium on Usable Privacy and Security (pp. 8 - 19). Pittsburgh, Pennsylvania, 2006.
15. Juri Luca De Coi, et al, "Using Natural Language Policies for Privacy Control in Social Platforms", 1st Workshop on Trust and Privacy on the Social and Semantic Web (SPOT2009), 2009.
16. Finin, T, et al, "ROWLBAC: representing role based access control in OWL",13th ACM symposium on Access control models and technologies, 2008.
17. Rodolfo Ferrini and Elisa Bertino, "Supporting RBAC with XACML+OWL", 14th ACM symposium on Access control models and technologies, 2009.
18. OWLIM Semantic Repository, see http://www.ontotext.com/owlim
19. SWRL, http://www.w3.org/Submission/SWRL/
20. SPARQL, http://www.w3.org/TR/rdf-sparql-query/
21. The CNL/GUI combined software is available from here http://sec.cs.kent.ac.uk/permis
22.
23.

PAGE

_1343854193.vsd
XACML Policy Editor

Text Editor

PolicyOntology

PERMISPolicy

OWL/RDF

Text

XACMLPolicy

Ontology Editor

TextImporter

PERMISExporter

PERMIS Policy Editor

RDFImporter

PolicyOntologyImporter

PolicyOntologyExporter

XACMLExporter

RDFExporter

OWL/RDF

Ontology Editor

