
Fatema, Kaniz, Chadwick, David W. and Lievens, Stijin F. (2011) A Multi-privacy
Policy Enforcement System. In: Fischer-Hubner, Simone and Duquenoy,
Penny and Hansen, Marit and Leenes, Ronald and Zhang, Ge, eds. Privacy
and Identity Management for Life. IFIP Advances in Information and Communication
Technology, 352 (2011). Springer, Boston, pp. 297-310. ISBN 978-3-642-20768-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/31982/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-642-20769-3_24

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/31982/
https://doi.org/10.1007/978-3-642-20769-3_24
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Multi-Privacy Policy Enforcement System
Kaniz Fatema, David W Chadwick and Stijn Lievens,

 University of Kent, Canterbury, Kent, UK

{k.fatema, D.W.Chadwick, S.F.Lievens}@kent.ac.uk

Abstract.With the increase in the number of electronic services and the number

of users, concerns about the privacy protection of electronic data are growing

day by day. Organisations are facing a huge pressure to assure their users about

the privacy protection of their personal data. Organisations need to include the

privacy policies of their users when deciding who should access their personal

data. The user’s privacy policy will need to be combined with the

organisation’s own policy, as well as policies from different authorities such as

the issuer of the data, and the law. The authorisation system will need to ensure

the enforcement of all these policies. We have designed a system that will

ensure the enforcement of multiple privacy policies within an organisation and

throughout a distributed system.

Keywords: Privacy Policy, AIPEP, Master PDP, Conflict Resolution, Sticky

Policy.

1 Introduction

Many web sites today collect PII (Personal Identity Information) such as name and

address from users through online registration, surveys, user profiles, and online order

fulfilment processes etc. Also different personal data such as educational record,

health data, credit card information and so on are collected by different organisations

in order to provide consumers with services. An example of such service is an online

job agency where people post their CV in order to get the opportunity to hunt for jobs

worldwide. Once released, users lose control over the fate of their personal data. But

personal data items like CVs which contain sensitive personal information may invite

not only job offers but also unwanted ID theft. Losing PII has serious consequences

from significant financial loss to becoming a suspect of a worldwide crime which is

committed with stolen ID. It is not uncommon for someone to get arrested due to a

crime committed by an identity thief using that person’s ID [1]. In the UK, the

number of ID thefts is an alarming 19.86% higher in the first quarter of 2010 [2]

compared with the same period in 2009. About 27,000 victims were recorded by

CIFAS member during the first 3 months of 2010 [2]. As a consequence concerns for

the privacy of electronic private data are also rising day by day [3, 4]. Hence the

necessity for more technical control over personal data collected online in order for

users to gain more confidence and trust about the use of their personal data. Technical

controls will also help to protect personal data from being misused and as well as

enforce privacy laws so that personal data loss from reputed organisations like HSBC

bank [5] or Zurich Insurance [6] may be avoided.

 Policy based systems are now well established [7, 8]. They rely on an application

independent policy decision point (PDP) to make authorization decisions, and an

application dependent policy enforcement point (PEP) to enforce these decisions. The

model assumes that all the policies are written in the same language and are evaluated

by a single PDP. However in a federated identity management system we cannot

assume that every service provider (SP) and identity provider (IdP) will use the same

policy language for specifying their rules. This is because different policy languages

support different rule sets and hence support different requirements. Today we have

many examples of different policy languages e.g. XACMLv2 [9], XACMLv3 [10],

PERMIS [11], P3P [12], Keynote [13] etc. and even more PDP implementations.

Differences between languages are for example that XACMLv2 does not support

delegation of authority whilst XACMLv3 and PERMIS do. The XACML policy

language assumes a stateless PDP hence cannot support state based policy rules such

as separation of duties (SoD), whilst PERMIS is state based and can support both

dynamic and static SoD. No version of XACML supports credentials (the concept is

simply not mentioned in the standard), whereas Keynote does and uses the same

language to describe both credentials and policy rules. PERMIS also supports

credentials and has a credential validation service [14]. P3P is designed specifically

to express privacy policies, whereas the others were designed as access control or

authorization policy languages. It is simply not possible to construct policies that

satisfy every requirement using a single policy language or PDP. Therefore we need

an infrastructure that can support multiple PDPs and multiple policy languages.

Obligations are actions that must be performed when a certain event occurs.

When the event is an authorization decision, then the obligations are actions that must

accompany this decision. Some obligations need to be performed before the decision

is enforced, some after the decision has been enforced, and some along with the

enforcement of the authorization decision [15]. We propose an obligations service

with a standard interface that can be called from multiple places in an application,

with one of these places being the application independent authorization

infrastructure.

Private data should be protected by the policy of its owner. We have used the

sticky policy paradigm [16] to ensure that the private data is stuck with the policy not

only within the system but also while leaving the system. In attribute based access

control (ABAC), the PDP makes its decisions based on the attributes of the subject,

requested action, resource and environment. We propose a credential validation

service (CVS) [14] that is responsible for validating subject credentials, extracting the

valid attributes from them and discarding the rest.

Finally, we need to keep authorisation decision making as simple as possible for

application developers. The complexity should be hidden behind a standard interface

and orchestration of the different authorisation components should be done by the

infrastructure itself. We propose an application independent PEP (AIPEP) for this.

In this paper we propose an advanced multi-policy authorization infrastructure

that will provide privacy of personal data. The rest of the paper is structured as

follows. Section 2 reviews related research. Section 3 discusses the architecture and

components of the proposed system. Section 4 discusses the Sticky Policy

implementation strategy and Section 5 describes the conflict resolution policy. Some

use case scenarios are provided in Section 6. Details of our implementation to date are

provided in Section 7 and finally Section 8 concludes by discussing our future plans.

2 Related Research

IBM’s security research group has performed research on privacy protection of

customer's data collected by enterprises [17-21]. They used the sticky policy

paradigm where personal data is associated with its privacy policy and they are passed

together when exchanging data among enterprises [17-19,21]. But they did not

provide a way to accommodate different policy languages. Also the obligations they

are providing are just activity names such as ‘log’, ‘notify’, ‘getConsent’ etc. [8].

They also did not provide a way to actually enforce the obligation which our system

does.

HP [22, 23] have also been working on providing privacy to PII by enforcing

obligations. They have also provided a way of transmitting encrypted confidential

data with obligations to other parties by obfuscation of the data [22]. Nevertheless, the

work has only described obligations related to privacy and does not provide a uniform

solution to both access control and privacy. Their work does not consider policies

from different authorities nor does it integrate multiple policy languages.

Qun Ni et al [24, 25] have defined the privacy related access control model P-

RBAC to support privacy related policies. This model theoretically associates data

permissions with purposes, conditions and obligations. However, the model is too

complex to be implemented practically.

While private data can move between organizations with its sticky privacy policy,

the enforcement of the privacy policy is only ensured if either all the organizations

support the same policy language, which is not feasible in practice, or the

organizations have support for multiple policy languages. Our model supports

multiple policy languages as well as policies from different authorities.

It has been claimed [26, 27] that the privacy policy defined by the owner of data

should have the highest priority. But the fact is that the Law should have the highest

priority. No one should be able to break the Law. No other previous work has

focused on this issue. In our system we have implemented the Law PDP by

converting the legal requirements into an XACML policy and this Law PDP is always

given the highest priority. For example if there is a court order for seeing someone’s

personal data neither the person nor the data controller can deny access to the data. To

the best of our knowledge, no previous work has been concerned with integrating the

policies of the law, data subject or data controller which is done by our system.

3 The Authorisation System

In order to satisfy the various requirements presented above we introduce several new

components into the privacy preserving advanced authorization infrastructure.

Firstly we introduce an application independent policy enforcement point, the

AIPEP. The AIPEP is responsible for coordinating the actions of the various

components of the application independent authorization infrastructure. When the

AIPEP receives either an authorization decision query message (step 1 in figure 1), it

first calls the CVS to validate any credentials that are contained in the message (step 2

in figure 1). If the message contains a sticky policy/ies (see figure 2) then this/these

will be stored in the policy store. The AIPEP retains a manifest which records which

CVSs and PDPs are currently spawned and which policies each is configured with.

The AIPEP tells the Master PDP which set of spawned PDPs to use for a particular

authorization decision request.

The Credential Validation Service (CVS) is the component that validates

credentials by checking that each credential issuer is mentioned in the credential

validation policy directly, or that the credential issuer has been delegated a privilege

by a trusted Attribute Authority (AA) either directly or indirectly (i.e. a chain of

trusted issuers is dynamically established controlled by the Delegation Policies of the

Source of Authority and the intermediate AAs in the chain). The Credential

Validation Policy, written by the SOA, contains rules that govern which attributes

different AAs are trusted to issue to which user group, along with a Delegation Policy

for each AA.

In order to evaluate multiple authorization policies in different languages we

introduce a new conceptual component called the Master PDP. The Master PDP is

responsible for calling multiple PDPs (step 7) as directed by the AIPEP, obtaining

their authorization decisions (step 8), and then resolving any conflicts between these

decisions, before returning the overall authorization decision and any resulting

obligations to the AIPEP (in step 9). Each of the policy PDPs supports the same

interface, which is the SAML profile of XACML. This allows the Master PDP to call

any number of subordinate PDPs, each configured with its own policy in its own

language. This design isolates the used policy languages from the rest of the

authorization infrastructure, and the Master PDP will not be affected by any changes

to any policy language as it evolves or by the introduction of any new policy

language. Of course, new policy languages will require new PDPs to be written to

interpret them, and these new PDPs will require new code in the PDP/CVS factory

object so that it knows how to spawn them on demand. But this is a one-off

occurrence for each new policy language and PDP that needs to be supported by the

infrastructure.

The policy store is the location where policies can be safely stored and retrieved.

If the store is trusted then policies can be stored there in an unsecured manner. If the

store is not trustworthy then policies will need to be protected e.g. digitally signed

and/or encrypted, to ensure that they are not tampered with and/or remain

confidential. When the AIPEP stores a policy in the policy store, it provides the store

with the StickyPolicy element, see Figure 2, and is returned a locally unique storage

reference to the policy, called the policy store handle (PSH). The AIPEP can

subsequently use this handle to pass the policy to the PDP/CVS factory in order to

spawn a new PDP or CVS. This design cleanly separates the implementation details

of the policy store from the rest of the infrastructure, and allows different types of

policy store to be constructed e.g. built on an LDAP directory or RDBMS.

Fig. 1. The privacy preserving advanced authorization system

Obligations may be required before the user’s action is performed, after the user’s

action has been performed, or simultaneously with the performance of the user’s

action [15]. We call this the temporal type of the obligation. Examples are as follows:

before the user is given access get the consent of owner; after the user has been given

access, email the data owner that his/her data is accessed; simultaneously with the

user’s access, write on the log the activities he/she is doing.

According to the XACML model, each obligation has a unique ID (a URI). We

follow this scheme in our infrastructure. Each obligations service is configured at

construction time with the obligation IDs it can enforce and the obligation handling

services that are responsible for enacting them. It is also configured with the temporal

type(s) of the obligations it is to enforce. When passed a set of obligations by the

AIPEP, the obligations service will walk through this set, ignore any obligations of

the wrong temporal type or unknown ID, and call the appropriate obligation handling

service for the others. If any single obligation handling service returns an error, then

the obligations service stops further processing and returns an error to the AIPEP. If

all obligations are processed successfully, a success result is returned. Each of the

obligations enforced by the AIPEP must be of temporal type before. The Ontology

Mapping Server is a service which returns the relationship between two different

terms. The ontology is held as a lattice, and the server will say if one term dominates

the other in the lattice or if there is no domination relationship between them. The

Master PDP will call this server to determine the relationship of the subjects / roles of

PDP rule so that the specificOverrides DCR (see later) can be implemented.
<xs:element name="StickyPad" type="StickyPADType"/>

<xs:complexType name="StickyPADType">

 <xs:sequence>

 <xs:element ref="DataResource"/>

 <xs:element name="DataResourceTypes" type="ResourceTypes"/>

 <xs:element ref="StickyPolicy" maxOccurs="unbounded"/>

 <xs:element ref="ds:Signature" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="ResourceTypes">

 <xs:sequence>

 <xs:element name="ResourceType" type="xs:anyURI" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

<xs:element name="StickyPolicy" type="StickyPolicyType"/>

<xs:complexType name="StickyPolicyType">

 <xs:sequence>

 <xs:element name="PolicyAuthor" type="saml:NameIDType"/>

 <xs:element name="PolicyResourceTypes" type="ResourceTypes" />

 <xs:element ref="PolicyContents"/>

 </xs:sequence>

 <xs:attribute name="PolicyID" type="xs:anyURI" use="required"/>

 <xs:attribute name="PolicyLanguage" type="xs:anyURI" use="required"/>

 <xs:attribute name="PolicyType" type="xs:anyURI" use="required"/>

 <xs:attribute name="TimeOfCreation" type="xs:dateTime" use="required"/>

 <xs:attribute name="ExpiryTime" type="xs:dateTime" use="optional"/>
</xs:complexType>

 <xs:element name="PolicyContents" type="AnyXMLType"/>

<xs:element name="DataResource" type="AnyXMLType"/>

<xs:complexType name="AnyXMLType" mixed="true">

 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##any"

processContents="lax">

 <xs:annotation>

 <xs:documentation>

 Any xml content is allowed in this element.

 </xs:documentation>

 </xs:annotation>

 </xs:any>

 </xs:sequence>

</xs:complexType>

</xs:schema>

Fig. 2. Sticky Policy and StickyPAD Schema

4 Sticky Policy Implementation

Figure 2 provides a schema for sticky policies. A sticky policy comprises:

- The policy author i.e. the authority which wrote the policy.

- The globally unique policy ID

- The time of creation of the policy and optional expiry time.

- The type(s) of resource(s) that are covered by this policy.

- The type of policy this is (see Figure 3).

- The policy language.

- The policy itself, written in the specified policy language.

Any number of sticky policies can be stuck to a data resource in either an

application dependent manner e.g. as a <Condition> in a SAML attribute assertion, or

by using the StickyPAD (sticky policy(ies) and data) XML structure that we have

defined in Figure 2. The policies should be stuck to the data by using a digital

signature. This could be by using the XML <ds:Signature> structure in the

StickyPAD and SAML attribute assertion, or it could be externally provided e.g. by

using SSL/TLS when transferring the data and policy across the Internet. It is the

responsibility of the sending PEP to create the equivalent of the StickyPAD structure

when sending data with a sticky policy attached, and the receiving PEP to validate its

signature when it receives the message in step 0 of figure 1. The PEP should then

parse and unpack the contents and pass the sticky policy to the AIPEP along with the

authorization decision request (step 1 of figure 1).

The sticky store holds the mapping between sticky policies and the resources to

which they are stuck. This is a many to many mapping so that one policy can apply to

many resources and one resource can have many sticky policies applied to it. The

design requires that each policy has a globally unique Policy ID (PID) and each

resource has a locally unique resource ID (RID). The PID was chosen to be globally

unique for performance reasons, so that when a sticky policy is moved from system to

system, the receiver can determine if it needs to analyse each received policy or not.

Already known PIDs don’t need to be analysed, whereas unknown PIDs will need to

be evaluated to ensure that they can be supported, otherwise the incoming data and

sticky policy will need to be rejected. The RID is locally unique and may be

constructed by applying a one way hash function such as SHA1 to the resource. We

currently do not have a requirement to pass the RID from system to system so each

system can compute its own.

5 Conflict Resolution Policy

Our system will include many different PDPs each with policies from different

authorities and possibly written in different languages. As a consequence a

mechanism is needed to combine the decisions returned by these PDPs and resolve

any conflicts between them. We propose a Master PDP which is the component

responsible for combining the decision results returned by the subordinate PDPs and

resolving the conflicts among their decisions.

The Master PDP has a conflict resolution policy (CRP) consisting of multiple conflict

resolution rules (CRRs). The default CRP is read in at program initialisation time and

additional CRRs are dynamically obtained from the subjects’ and issuers’ sticky

policies. Each conflict resolution rule (CRR) comprises:

- a condition, which is tested against the request context by the Master PDP, to see if

the attached decision combining rule should be used,

- a decision combining rule (DCR),

- optionally an ordering of policy authors (to be used by FirstApplicable DCR)

- an author and

- a time of creation.

A DCR can take one of five values: FirstApplicable, DenyOverrides, GrantOverrides,

SpecificOverrides or MajorityWins which applies to the decisions returned by the

subordinate PDPs. The DCRs will be discussed shortly.

The Master PDP is called by the AIPEP and is passed the list of PDPs to call and

the request context. From the request context it will get the information such as

requester, requested resource type, issuer and data subject of the requested resource.

The Master PDP has all the CRRs defined by different authors as well as a default

one. From the request context it knows the issuer and data subjects and so can

determine the relevant CRRs. It will order the CRRs of law, issuer, data subject and

holder sequentially. For the same author the CRRs will be ordered according to the

number of conditions. For example the order of CRRs for a data subject can be

CRR1= if (resourceType=PII, requester=myfriend, requestDate > 10.12.2010) DCR=

DenyOverride

CRR2=if (resourceType=PII, requester=myemployer) DCR=GrantOverride

CRR3=if (resourceType=PII) DCR=MajorityWins

Here the CRR with the most conditions will come first. All the conditions of a

CRR need to match with the request context for it to be applicable. The CRR from the

ordered CRR queue will be tested one by one against the request context. If the CRR

conditions match the request context the CRR is chosen. If the CRR conditions do not

match the request context the next CRR from the queue will be tested. The default

CRR (which has DCR=DenyOverrides) will be placed at the end of CRR queue and it

will only be reached when no other CRR conditions match the request context. The

PDPs are called according to the DCR of the chosen CRR.

Each PDP can return 5 different results –Grant, Deny, BTG, NotApplicable and

Indeterminate. NotApplicable means that the PDP has no policy covering the

authorisation request. Indeterminate means that the request context is either mal-

formed e.g. a String value is found in place of an Integer, or is missing some vital

information so that the PDP does not currently know the answer.

BTG (Break the Glass) [28] means that the requestor is currently not allowed

access but can break the glass to gain access to the resource if he so wishes. In this

case his activity will be monitored and he will be made accountable for his actions.

BTG provides a facility for emergency access.

If DCR=FirstApplicable the CRR is accompanied by a precedence rule

(OrderOfAuthors) which says the order in which to call the PDPs. For example, if

(resourceType=PII, requestor=data subject) DCR=FirstApplicable,

OrderOfAuthor=law, dataSubject, holder. The Master PDP calls each subordinate

PDP in order (according to the order of authors), and stops processing when the first

Grant or Deny decision is obtained.

For SpecificOverrides the decision returned by the PDP containing a rule with a

more specific subject/ resource has priority over the PDP with a rule containing less

specific subject/resource. As the master PDP does not have the rule the PDP needs to

return the rule together with the decision in order to determine which PDP has the

most specific subject/resource. The Master PDP will call the Ontology Mapping

Server to determine which of the returned rules has the most specific subject first. If

multiple PDP rules have the most specific subject the Master PDP will call the

Ontology Mapping Server again to find the most specific resource among the rules

having the most specific subjects. If multiple PDP rules have the same most specific

subject and resource the decision of PDP with the latest creation time will be chosen.

If any of the PDP does not return a rule but a decision only then it is not possible to

implement SpecificOverrides as there is no way to determine whether the non rule

returning PDP had the most specific subject or not. In that case a default rule (Deny

Override) will be implemented as a fallback strategy.

 For DenyOverrides and GrantOverrides the Master PDP will call all the

subordinate PDPs and will combine the decisions using the following semantics:

- DenyOverrides – A Deny result overrides all other results. The precedence of

results for deny override is Deny>Indeterminate>BTG>Grant>NotApplicable.

- GrantOverrides – A Grant result overrides all other results. The precedence of

results for grant override is Grant>BTG>Indeterminate>Deny>NotApplicable

When a final result returned by the Master PDP is Grant (or Deny) the obligations of

all the PDPs returning a Grant (or Deny) result are merged to form the final

obligation.

For MajorityWins all the PDPs will be called and the final decision (Grant/Deny)

will depend on the returned decision of majority number of PDPs. If the same

numbers of PDP return Grant and Deny then Deny will be the final answer. If none of

the PDP return Grant/Deny then Indeterminate will override NotApplicable.

Initially the system will have the law and controller PDPs running as these two are

common for all request contexts. Based on the request context the issuer and the data

subject’s PDP may be started.

6 Use Case Scenarios

Mr K wants to get service from the X-Health Centre and for that he has to be

registered at the X-Health Centre by authenticating himself with his ID. During the

registration process he is also presented with a consent form where he indicates with

whom he is prepared to share his medical data. This form includes tick boxes such as:

1. Registered Dr/Consultant of other Organisation and a place where the name

of the doctor can be written if it is known. If this box is ticked and no Dr’s

name is specified then the consent will be for any Dr in general.

2. Health Insurance Company (with a place for specifying the names of the

company or can say all)

3. Research organisation/ researcher. (A note will say that all the medical data

used for research purpose will be anonymised or encoded.)

4. Other organisations for promotional offers. Other organisations can for

example be organisations offering samples and promotions for new born

babies and their parents. In this case not all of the medical record will be

available to the interested companies. It may be only the information that this

person has recently become a parent. What portion of medical data will be

available will be determined by the organisation’s policy.

5. Other person (a place for specifying the name of the person.)

Mr K has done registration with a Health Insurance Company (HIC1) to share his

treatment cost. So he puts a tick on box 2 only and mentions HIC1 there and finishes

his registration with X Health Centre.

Here it is mentionable that the Health Insurance Company will not have access to all

medical records of the patient. The policy of Health Centre will decide about what

portion of the medical data is sufficient and available to Health Insurance Company.

The HIC1 submits a request for the medical record of the data subject to the X-

Health Centre. The Master PDP of X-Health Centre’s authorisation system consults

the CRRs of Law, issuer, data subject and holder sequentially. A law CRR says if

resourceType=MedicalData then the DCR is DenyOverride. So this DCR is chosen

and all the PDPs are consulted:

� The law PDP returns decision N/A.

� The issuer (health Centre) PDP returns decision N/A.

� The data subject PDP returns decision grant.

The final result is thus grant. The medical data is passed to HIC1 together with

the policies from the data subject and the issuer. The issuer has two PDPs. One PDP

has the internal access control rules such as only doctors are allowed to view the

treatment files and doctors are not allowed to view the billing info and administrative

persons are allowed to view the billing info only and no treatment info and another

PDP says which external person are allowed to view the data such as the patient,

doctors from another organisation so on. The PDP rules of data subject along with the

issuer's PDP rules containing only the external rules are sent to HIC1.

After receiving the medical data and PDP rules the receiving application will

make a call to the authorisation system of HIC1 to see whether it can store the data.

The authorisation system will reply grant with the obligation to start two new PDPs

with the received policies and as a result the data is stored and the two new PDPs are

started at HIC1's site, one for the data subject (Mr. K) and one for the issuer (X

Health Centre). At HIC1's site the law and holder's (HIC1) PDPs already exist.

HIC1 updates its records periodically and whenever the patient contacts it for

clearing a payment. If the patient changes his PDP rules in the meantime by changing

his preferences at the Health Centre the new policies are transferred to the HIC1 while

transferring the data.

Mr K did not allow researcher to view his medical record now. The researcher

Mr R asks for medical record at the HIC1's system and is rejected by the data subject's

PDP.

Mr K now changes his rules at the site of X-Health Centre and ticks at the box 3

to allow access to data by the researcher. Mr K’s PDP at the X-Health Centre is

updated with the new rules saying researchers are allowed to view his medical data

and there will be an “before” obligation added to it saying the data to be anonymised.

When the HIC1 updates the data also gets the new PDP rules with it and updates the

PDP rules at its site. If a researcher now asks for access at the HIC1’s site all other

PDPs will return N/a and data subject's PDP will return grant with a “before”

obligation to anonymise the data. This obligation will be passed to the Obligations

Service of PEP. If this obligation can be enforced successfully a grant decision will be

returned and the anonymised data will be passed to the researcher. If the obligation to

anonymise the data can’t be enforced a deny decision will be returned to the

researcher. It is mentionable that a researcher should be authenticated before granting

access to the data. To be authenticated the researcher should have a “researcher” role

provided by a trusted research organisation (eg. a University).

7 Implementation Details

Our advanced authorization infrastructure is implemented in Java, and is being used

and developed as part of the EC TAS³ Integrated Project (www.tas3.eu). The first beta

version is available for download from the PERMIS web site1. This contains the

AIPEP, CVS, the Obligations Service, a stub Master PDP, a policy store, and multiple

PDPs of different types.

A number of different obligation handling services have been written that are

called by the obligations service, and these can perform a variety of tasks such as

write the authorization decision to a secure audit trail, send an email notification to a

security officer, and update the internal state information (called retained ADI in

ISO/IEC 10181-3 (1996)). We have implemented state based Break The Glass (BTG)

policies [27] using the AIPEP, the obligations service and a stateless PDP. A live

demo of BTG is available at http://issrg-testbed-2.cs.kent.ac.uk/. The performance of

the obligation state handling BTG wrapper adds between 10% and 200% overhead to

the performance of a stateless PDP that does not support BTG. The large overhead is

caused because the stateless PDP has to be called more than once in some

circumstances. A paper presenting the complete results is currently under preparation.

We have constructed an ontology mapping server, which, when given two class

names (such as Visa card and credit card) will return the relationship between them.

The output says if either node is more specific than the other or if no such relationship

exists between them. The Master PDP will call this ontology mapping server to

determine the relationship of the subjects / roles of PDP rule so that specificOverrides

DCR can be implemented.

 The authorization infrastructure has been tested with three different PDPs: Sun’s

XACML PDP2, the PERMIS PDP3 and a behavioral trust PDP from TU-Eindhoven4.

Each of these PDPs uses a different policy language. Sun’s PDP uses the XACML

1 Advanced authz software available from

http://sec.cs.kent.ac.uk/permis/downloads/Level3/standalone.shtml
2 Sun’s XACML PDP. Available from http://sunxacml.sourceforge.net/.
3 PERMIS PDP. Available from http://sec.cs.kent.ac.uk/permis
4 TU-Eindhovens PDP. Available from

http://w3.tue.nl/en/services/dpo/education_and_training/inleiding/pdp/

language, the PERMIS PDP uses its own XML based language whilst TU-

Eindhoven’s PDP uses SWI-Prolog. The next step is to write a full Master PDP so

that all these PDPs can be called together in parallel and their decisions resolved into

one final decision using either a configured or dynamically pushed conflict resolution

policy.

8 Discussion, Conclusions and Future Plans

Our authorization infrastructure does not obviate the need for trust. Our infrastructure

still requires trust between the various parties. It is not a digital rights management

(DRM) system that assumes the receiving party is untrustworthy and wants to steal

any received information from the sender. On the contrary, our infrastructure

assumes that the various parties do trust each other to the extent that they want an

automated infrastructure that can easily enforce each other’s policies reliably and

automatically, and if it cannot, will inform the other party of the fact. Consequently

data subjects must trust the organizations that they submit their PII to, so that when an

organization says it will enforce a subject’s sticky policy, the subject can trust that it

has every intention of doing so. Our system provides organizations with an

application independent authorization infrastructure that makes it easy for them to

enforce a subject’s privacy policy without having to write a significant amount of new

code themselves. Furthermore the user has the potential for more complete control

over his/her privacy than now, in that the infrastructure allows the user to specify a

complete privacy policy including a set of obligations which can notify the user when

his/her data is accessed or transferred between organizations e.g. by using an after

obligation when giving permission for the transfer of her PII to go ahead or a before

obligation before giving permission for the PII to be read. However we expect the

user interfaces for such full privacy policy creation to be too complex for most users

to handle, and consequently organizations are more likely to provide their users with a

policy template and a limited subset of options and boxes to tick, making the user’s

task much easier. This also reduces the burden on the organization, since it won’t be

sent user privacy policies that it cannot handle. The benefit of our infrastructure is that

it does not constrain organizations in setting their privacy policy templates, as the

infrastructure will enforce whatever combinations they choose.

Organizations must also trust each other to honor the sticky policies that are passed

to them when they transfer data between themselves. An untrustworthy organization

can always discard any sticky policies it receives and never need access the

authorization infrastructure to ask for permission to receive the data, but we assume

that legally binding contracts between the organizations will require them to support

any sticky policies that are transferred between them. Our authorization infrastructure

makes it much easier for them to do this.

Our final step is to implement the complete Master PDP and PDP/CV factory and

then to perform user trials with two application demonstrators, one for the privacy

protection and access to electronic medical records, the other for e-portfolios. Both of

these applications require access to distributed personal information that is stored in a

variety of repositories at different locations, and so a distributed sticky policy

enforcement infrastructure is needed.

Acknowledgements. The research leading to these results has received funding from

the European Community's Seventh Framework Programme (FP7/2007-2013) under

grant agreement n° 216287 (TAS³ - Trusted Architecture for Securely

SharedServices)5.

References
[1] BBC news on 18 June 2001, http://news.bbc.co.uk/1/hi/uk/1395109.stm

[2] CIFAS, http://www.cifas.org.uk/default.asp?edit_id=1014-57

[3] Msnbc report on 16 Jan 2008, http://www.msnbc.msn.com/id/22685515/

[4] Voice of America news report on 29th April 2008 ,

http://www1.voanews.com/english/news/science-technology/a-13-2008-04-

29-voa44.html

[5] BBC news on 22 July 2009,

http://news.bbc.co.uk/1/hi/business/8162787.stm

[6] BBC news on 24 August 2010, http://www.bbc.co.uk/news/business-

11070217

[7] Zhu, Y., Keoh, S., Sloman, M., Lupu, E., Dulay, N.,Pryce, N.:A Policy

System to Support Adaptability and Security on Body Sensors. In 5th

International Summer School and Symposium on Medical Devices and

Biosensors, pp.97—100. Hong Kong (2008)

[8] Wu, J., Leangsuksun, C. B., Rampure, V., Ong, H.: Policy-based Access

Control Framework for Grid Computing. In: Proceedings of the sixth IEEE

International Symposium on Cluster Computing and the Grid pp. 391-394.

CCGRID, (2006)

[9] OASIS XACML 2.0. eXtensible Access Control Markup Language

(XACML) Version 2.0, Oct, 2005. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml#XACML20.

[10] OASIS XACML 3.0. eXtensible Access Control Markup Language

(XACML) Version 3.0, 16 April, 2009. http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-en.html

[11] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Su, L. and Nguyen, T. A.:

PERMIS: a modular authorization infrastructure. In: Concurrency And

Computation: Practice And Experience, vol 20, issue 11, pp 1341-1357.

(2008)

[12] W3C: The Platform for Privacy Preferences 1.0 (P3P 1.0). Technical

Report. 2002.

[13] Blaze, M., Feigenbaum, J., Ioannidis, J.: The KeyNote Trust-Management

System Version 2. RFC 2704 (1999)

[14] Chadwick, D. W., Otenko, S. and Nguyen, T.A.: Adding Support to

XACML for Multi-Domain User to User Dynamic Delegation of Authority.

J. International Journal of Information Security. 8, 137--152 (2009)

[15] Chadwick, D. W., Su, L., Laborde, R.: Coordinating Access Control in Grid

Services. J. Concurrency and Computation: Practice and Experience. 20,

1071--1094 (2008)

[16] David W Chadwick, Stijn F. Lievens. "Enforcing “Sticky” Security Policies

throughout a Distributed Application". MidSec 2008. December 1-5, 2008,

Leuven, Belgium

[17] Karjoth, G., Schunter, M., Waidner, M.: Privacy-enabled services for

enterprises. In: 13th International Workshop on Database and Expert

Systems Applications, pp. 483-- 487. IEEE Computer Society, Washington.

DC (2002)

[18] Karjoth, G., Schunter, M., Waidner, M.: Platform for Enterprise Privacy

Practices: Privacy-enabled Management of Customer Data. In: 2nd

Workshop on Privacy Enhancing Technologies , San Francisco (2002).

[19] Karjoth, G., Schunter, M.: A Privacy Policy Model for Enterprises.In: 15th

IEEE Computer Foundations Workshop (2002).

[20] Nelson, R., Schunter, M., McCullough, M. R., Bliss, J. S.:Trust on Demand

— Enabling Privacy, Security, Transparency, and Accountability in

Distributed Systems. In: 33rd Research Conference on Communication,

Information and Internet Policy (TPRC). Arlington VA, USA (2005).

[21] Schunter, M. and Berghe, C. V.:Privacy Injector — Automated Privacy

Enforcement through Aspects. In: 6th Workshop on Privacy Enhancing

Technologies, Robinson College, Cambridge, United Kingdom (2006), to

be published as Lecture Notes in Computer Science, Springer Verlag, 2006.

[22] Mont, M. C.: Dealing with Privacy Obligations: Important Aspects and

Technical Approaches.In: International conference on trust and privacy in

digital business No1, Zaragoza (2004).

[23] Mont, M. C., Pearson, S., Bramhall, P.: Towards Accountable Management

of Identity and Privacy: Sticky Policy and Privacy. Technical

report,Trusted System Laboratory, HP Laboratories, Bristol, HPL-2003-49,

(2003)

[24] Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy aware role based

access control. In: SACMAT’07, Sophia Antipolis, France (2007).

[25] Ni, Q., Bertino, E., Lobo, J.: An Obligation Model Bridging Access Control

Policies and Privacy Policies. In: SACMAT'08, , Estes Park, Colorado,

USA (2008)

[26] Mont, M. C.: Dealing with Privacy Obligations: Important Aspects and

Technical Approaches. In: International conference on trust and privacy in

digital business No1, Zaragoza (2004)

[27] Mont, M. C., Beato, F., On Parametric Obligation Policies:Enabling

Privacy-aware Information Lifecycle Management in Enterprises. In:

Eighth IEEE International Workshop on Policies for Distributed Systems

and Networks (2007)

[28] Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zhao, G., Chilro, R.,

Antunes, L.:How to securely break into RBAC: the BTG-RBAC model.In:

Annual Computer Security Applications Conference, pp23-3,Honolulu,

Hawaii, (2009)

