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ABSTRACT 

Purpose of this paper:  Firstly, the paper serves as an overview of the emerging field 

of flow-refuelling location, which mainly occurs in the context of locating alternative-fuel 

(hydrogen, electric, liquefied natural gas and hybrid) vehicle refuelling stations.  We aim 

to review and explain models and solution approaches, with a particular focus on 

mathematical programming formulations.  Secondly, we propose a new heuristic for this 

problem and investigate its performance.  

 

Design/methodology/approach:  The subject scope of this paper is the flow-refuelling 

location model (FRLM).  While in most location problems demand arises at customer 

locations, in so-called flow-capturing models it is associated with journeys (origin-

destination pairs).  What makes the FRLM even more challenging is that due to the 

limited driving range of alternative-fuel vehicles, more than one facility may be required 

to satisfy the demand of a journey.  There are currently very few such refuelling stations, 

but ambitious plans exist for massive development – making this an especially ripe time 

for researchers to investigate this problem.  There already exists a body of work on this 

problem; however different authors make different model assumptions, making 

comparison difficult.  For example, in some models facilities must lie on the shortest 

route from origin to destination, while in others detours are allowed.  We aim to highlight 

difference in models in our review.  Our proposed methodology is built on the idea of 

solving the relaxation of the mixed-integer linear programming formulation of the 

problem, identifying promising variables, fixing their values and solving the resulting (so-

called restricted) problems optimally.  It is somewhat similar to Kernel Search which has 

recently gained popularity.  We also use a parallel computing strategy to simultaneously 

solve a number of restricted problems with less computation effort for large-sized 

instances. 

 

Findings:  Our experimental results show that the proposed heuristic can find optimal 

solutions in a reasonable amount of time, outperforming other heuristics from the 

literature.  

 

Value:  We believe the paper is of value to both academics and practitioners.  The 

review should help researchers new to this field to orient themselves in the maze of 

different problem versions, while helping practitioners identify models and approaches 

applicable to their particular problem.  The heuristic proposed can be directly used by 

practitioners; we hope it will spark further works on this area of logistics but also on 

other optimisation problems where Kernel Search type methods can be applied.  

 



Research limitations:  This being the first paper applying a restricted-subproblem 

approach to this problem it is necessarily limited in scope.  Applying a traditional Kernel 

Search method would be an interesting next step.  The proposed heuristic should also be 

extended to cover for more than just one FRLM model: certainly the capacitated FRLM, 

the FRLM with deviation, the fixed-charge FRLM and the multi-period FRLM should be 

investigated.  

 

Practical implications:  Our work adds to a body of research that can inform decision-

makers at governmental or international level on strategic decisions relating to the 

establishment or development of alternative-fuel refuelling station networks.   

 

    

INTRODUCTION 

The flow-refuelling location problem is a logistics problem that mainly occurs in the 

context of locating alternative-fuel (hydrogen, electric, liquefied natural gas and hybrid) 

vehicle refuelling stations.  Alternative-fuel station location is a recent, but very 

applicable research topic within logistics.  In essence, what make the problem of 

determining locations of alternative-fuel refuelling stations different from those of petrol 

stations is the scarcity of current infrastructure.  In fact, alternative-fuel vehicles require 

a very dense refuelling infrastructure, as these vehicle typically have a short driving 

range.  The alternative-fuel industry is suffering from a “vicious circle”: there is little 

appetite for infrastructure investment as there are not a sufficient number of alternative-

fuel vehicles, the automotive industry can only produce these vehicles at high process as 

there are not sufficient economies of scales due to limited demand, and customers are 

discouraged from buying such vehicles due to both their price and the limited refuelling 

infrastructure. This topic is especially timely in the light of the recent European directive 

requiring Member States to provide a minimum coverage of refuelling points for 

alternative fuels (European Commission, 2014).  The directive provides a regulatory 

framework for alternative fuels such as hydrogen, electricity, liquefied natural gas and 

compressed natural gas.  The targets are very ambitious.  Compressed natural gas 

stations and hydrogen stations are to be built along the European TEN-T core network at 

intervals of 400 and 300 kilometres, respectively. The electricity refuelling network is to 

be multiplied significantly, from about 12,000 to 800,000 charging stations.  Thus, this is 

the right time for Logistics researchers to devote their energies to finding optimal or 

near-optimal locations for alternative-fuel refuelling facilities. 

 

We first review the literature of this problem, including the mathematical models 

proposed. Then, we present our new heuristic algorithm and show our numerical 

experimentation with it. Finally, a brief summary and ideas for future research are given.   

 

 

LITERATURE REVIEW 

The flow-refuelling location model (FRLM), introduced by Kuby and Lim (2005), has its 

origins in the flow-capturing location model (FCLM) of Hodgson (1990).  This model is 

based on the concept of “locating facilities on the home-to-work journey” and the 

observation that in some cases it makes more sense to locate facilities near routes that 

customers already take. The author showed that basing locational decisions simply on arc 

flow volumes is not sufficient; instead, models should be based on detailed origin-

destination flow data.  An important aspect of the FCLM is that any flow (origin-

destination pair) is captured by a single facility.  This is sensible as one would not, for 

example, stop at every roadside supermarket on the way home, one stop is sufficient to 

satisfy one’s shopping needs.   

 

The main difference of the FRLM from the FCLM is that a single facility may be unable to 

capture an entire flow. This is due to the issue of “limited range”, namely, that a vehicle 

may not be able to undertake a given origin-destination journey with a single refuelling 

stop. This model is most applicable to vehicles powered by alternative fuels, such as 



hydrogen or electricity. Such vehicles normally can cover a shorter distance on a full tank 

than traditional gas-guzzling vehicles. In addition, the availability of alternative fuel 

refuelling stations is very limited. However, the model is also applicable to the location of 

conventional refuelling stations in developing countries where infrastructure is as yet 

lacking. Likewise, it can be applicable to territories with sparse population (and hence 

sparse refuelling infrastructure).  

 

Kuby and Lim (2005) introduced the FRLM, motivating the new model with the above 

concept of vehicle range. They observe that origin-destination data, rather than simple 

traffic count on edges, is required to model this problem properly. Multiple facilities may 

be required to serve individual journeys. Unlike in the FCLM, it can be shown that it is not 

sufficient to consider only node locations for facilities, thus making the problem harder to 

solve. An integer programming formulation is provided. This, like most subsequent 

formulations, is based on binary decision variables showing whether a station is open at 

a node and whether a given path has its flow refuelled.  However, it also contains a more 

cumbersome variable that shows whether every facility in a given combination is open.  

Unfortunately this formulation requires a massive preprocessing effort.  All facility 

combinations must be checked whether they can refuel each origin-destination journey 

and the resulting coefficients inserted as input into the integer programming model.  This 

takes an immense amount of time, so much so, that the authors could not even generate 

the integer programming model for their benchmark instance, let alone solve it.  

 

While in a large part of the literature the objective is to maximise the flow captured, the 

model of Wang and Lin (2009) aims to minimise costs such that all flows are served. The 

authors devised a “vehicle refuelling logic” that is more involved but also more flexible 

than that of previous models.  Another important difference is that this model requires 

only knowledge of origin-destination distances, but not of origin-destination flow data.  

 

Lim and Kuby (2010) designed some heuristic algorithms for the FRLM. One of their 

motivations for doing so is the complexity of the Kuby and Lim (2005) mathematical 

formulation. There are three heuristics but with a common subroutine to evaluate the 

objective function value: 

• The “greedy-adding” or “add” algorithm simply adds one more facility in each iteration 

so as to maximise the increase in flow capture. 

• The “greedy-adding with substitution” or “add-swap” algorithm also attempts in each 

iteration to replace an existing facility with a potential facility. Thus, each iteration 

consists of an “add” and a “swap” move. 

• The genetic algorithm is based on the chromosome representation of a list of open 

facilities. (As the number of facilities is fixed in advance, this is more reasonable than a 

0-1 representation.) 

Unlike, say, the maximum covering problem, the evaluation of a given solution is not a 

straightforward task. For a given solution, i.e. a set of facilities, the evaluation subroutine 

must evaluate every origin-destination path to see whether it is refuelable – if so, its flow 

is added to the objective function value. We note that all the algorithms are capable of 

handling pre-existing facilities. The authors found that the greedy algorithms perform 

quite well, nearly as well as the genetic algorithms, and are significantly faster.  

 

Capar and Kuby (2012) put forward a more complex mathematical formulation, but 

without the preprocessing requirement of Kuby and Lim (2005). This new formulation is 

in fact as fast as the greedy heuristics of Lim and Kuby (2010).  They replaced the 

decision variables relating to facility combinations with variables that show whether 

vehicle on a given path and refuelling (or not refuelling) at a station candidate site have 

enough fuel remaining to reach the next open fuel station on their path. This is a more 

efficient formulation in that combination pre-generation is eliminated the number of new 

decision variables and new constraints significantly increase the size of the model.  

 



Capar et al. (2013) offered a more efficient formulation than Capar and Kuby (2012).  

While the previous model used a “node-cover/path-cover” logic, the authors propose an 

“arc-cover/path-cover” model.  It is based on the concept that a path can be refuelled if 

all directed arcs on the round-trip path are served.  This eliminates both combination 

pre-generation and the cumbersome refuelling logic variables of Capar and Kuby (2012).   

 

In the model of MirHassani and Ebrazi (2013), the number of facilities is not fixed in 

advance, as it explicitly takes into account their establishment costs.  This version of the 

FRLM is known as the fixed-charge FRLM.  However, their formulation is adapted also for 

the case of fixed number of facilities.  The logic of their formulation is developed from a 

single-path to a multi-path formulation. This necessitates the creation of a so-called 

extended network.  The authors provide this formulation but their computation testing 

was only on the fixed-charge FRLM therefore it is interesting to see how their model 

compares to the Capar et al. (2013) formulation.  

 

Wen et al. (2014) investigated both maximal flow capture and total flow capture models.  

Their formulations are based on set covering and do not require the evaluation of all 

feasible combinations of locations.  Ghamami et al. (2016) considered the particular case 

of locating refuelling stations along a travel corridor, while also allowing for congestion 

and delay at charging stations.  Their formulation is based on the assignment problem. 

The authors have also designed a simulated annealing metaheuristic.  

 

Finally we note that in this brief review it was not possible for us to describe all variants 

of the FRLM.  Of particular note is the FRLM with deviation.  While in the above models it 

is assumed that in order to capture a flow, a facility must lie on the origin-destination 

path, it may also be reasonable to assume, especially if the network of facilities is very 

sparse, that drivers would make some reasonable detours to visit a facility.  The reader is 

referred to Berman et al. (1995), Kim and Kuby (2012), Yildiz et al. (2016) and Lin and 

Lin (2016).  Another interesting problem is the multi-period FRLM, see Miralinaghi et al. 

(2017).   

 

 

A NEW HEURISTIC FOR THE FRLM  

The idea of using the optimal solution obtained by relaxing the integrality constraints of 

the mixed-integer linear programming (MILP) problems to generate a set of initial 

solutions for meta-heuristic algorithms is well-known.  Recently, the idea of using the 

information of the optimal solution to support search process further – namely, to 

establish a set of promising candidate variables – was developed by Angelelli et al. 

(2010).  This method, known as Kernel Search, identifies subsets of decision variables for 

the MILP problem by solving the relaxation problem and then solves the restricted 

problems to optimality by commercial MILP solvers. It has been successfully applied for 

several optimisation problems, including logistics applications.  For example, Guastaroba 

and Speranza (2012, 2014) solved the multi-source and the single-source capacitated 

facility location problems, respectively.  We develop here an efficient heuristic algorithm, 

based on the concept of restricted subproblems, for solving the alternative-fuel station 

location problem.  Compared with Kernel Search algorithm, our algorithm has some small 

differences as follows: 

• Although there are two sets of binary variables in the problem, we only explicitly 

restrict on the location variables. The number of path variables is determined based on 

the restricted location variables.  Thus, there is implicit restriction.  Restricting on one set 

of binary variable may help the proposed algorithm obtain the good balance of solution 

quality and CPU time, instead of restricting on all the sets of binary variables as in Kernel 

Search algorithm. 

• The size of the restricted subproblems equals to the number of location variables with 

positive value.  In Kernel Search algorithm, size of the restricted subproblems is usually 

a given arbitrary parameter. As a result, initial promising variable set may include 



variables with zero relaxed value or remove variables with positive relaxed value.  This 

may lead to spend additional CPU time to find the best solutions. 

• A 2-exchange neighbourhood is used to generate a pool of the restricted subproblems 

for parallel computing strategy. 

 

We use the formulation of Capar et al. (2013) as the basis.  Solving the relaxation of this 

yields us the set of promising nodes – those with non-negative relaxed values.  To 

further reduce the size of the subproblems to be solved, we remove paths that cannot be 

refuelled by a set of restricted nodes.  Then, we generate a set of restricted subproblems 

by performing 2-exchange on the set of promising nodes.  These can be grouped and 

each group allocated to a CPU core to enable parallel processing.   

 

In more detail, the algorithm can be described as follows:  

1.  Solve the original problem relaxed on the constraints of binary variables.  If solution 

is integer, stop.  

2.  Set upper bound and classify vertices into promising nodes N* (those with positive 

value) and other nodes N0 (those with zero value).  

3.  Determine restricted set of paths based on N*.  Solve restricted subproblem and 

update bounds.  If bounds sufficiently close to each other, stop.  

4.  Create several sets of restricted nodes by exchanging 2 nodes between N* and N0.  

Allocate these to parallel CPU cores and solve restricted subproblems simultaneously. 

Update upper and lower bounds.  

5.  If bounds are close to each other or all restricted problems have been solved or a 

given number of restricted problems have been solved, stop; else return to Step 4.  

 

 

COMPUTATIONAL EXPERIENCE 

In this section, we investigate the computational efficacy of solving the FRLM with the 

heuristic algorithm proposed.  We evaluate the performance of the heuristic algorithm on 

two well-known benchmark datasets and then compare the obtained results with the 

optimal solutions from CPLEX solver as well as other heuristic algorithms.  The models 

and the proposed algorithm were implemented in Visual C++; the models were built and 

solved using the IBM ILOG CPLEX version 12.4.  

 

The computational experiments were run on two well-known benchmark datasets: 

• Hodgson dataset (Hodgson, 1990): This is a 25-node alternative-fuel station location 

network. The flow volumes in the 25 × 25 origin-destination matrix are estimated using a 

gravity model. The flows are then assigned to their shortest paths. The candidate sites 

are limited to the 25 nodes of the network. The network has 300 origin-destination pairs. 

• Florida dataset (Kuby et al., 2009): This is a Florida state highway network consisting 

of 302 nodes (i.e. junctions) and 495 arcs.  Each of the nodes serves as a candidate site.  

Of the 302 candidate sites, there are 74 origin-destination nodes for trips.  Since the 

return trip is assumed to be refuelable, the network of 74 origin-destination nodes only 

requires 2701 unique origin-destination pairs.   

For the evaluation of computational experiments, a set of scenarios are generated by 

changing the range of vehicles R and the number of stations to be located p.  R = 4, 8, 

and 12 are used for Hodgson network and R = 100 is used for Florida network. Both are 

tested with p = 5, 10, 15, 20 and 25.  

 

The instances were solved using the formulations of Capar and Kuby (2012) [CK], Capar 

et al. (2013) [CKLT], MirHassani and Ebrazi (2013) [ME], the genetic and greedy 

algorithms of Lim and Kuby (2010) [LKGenA and LKGreA] and our heuristic [HA].  

Results are presented in Tables 1 and 2.  Note ∆ stands for percentage deviation from 

optimum and time is given in seconds. Lim and Kuby (2010) did not give computing 

times for the Hodgson dataset.  
 
 



Table 1: Comparison for the formulations and the algorithms on Hodgson instances.  
 

  CK CKLT ME LKGenA     LKGreA HA 

R p ∆ time ∆ time ∆ time ∆ time ∆ time ∆ time 

4 5 0 0.24 0 0.12 0 0.13 0 - 0 - 0 0.12 

 10 0 0.20 0 0.14 0 0.12 0 - 10.75 - 0 0.13 

 15 0 0.18 0 0.08 0 0.10 0 - 0 - 0 0.05 

 20 0 0.18 0 0.08 0 0.10 0 - 0 - 0 0.05 

 25 0 0.16 0 0.10 0 0.10 0 - 0 - 0 0.05 

8 5 0 0.28 0 0.14 0 0.14 0 - 0.49 - 0 0.15 

 10 0 0.32 0 0.18 0 0.18 0 - 0.93 - 0 0.26 

 15 0 0.28 0 0.14 0 0.15 0 - 0 - 0 0.27 

 20 0 0.20 0 0.12 0 0.11 0 - 0.15 - 0 0.05 

 25 0 0.18 0 0.10 0 0.10 0 - 0 - 0 0.06 

12 5 0 0.84 0 0.16 0 0.44 0 - 0 - 0 0.21 

 10 0 0.30 0 0.16 0 0.16 0 - 0 - 0 0.07 

 15 0 0.24 0 0.14 0 0.13 0 - 0 - 0 0.07 

 20 0 0.28 0 0.14 0 0.14 0 - 0 - 0 0.07 

 25 0 0.20 0 0.12 0 0.11 0 - 0 - 0 0.07 

Average 0 0.27 0 0.13 0 0.15 0 - 0.82 - 0 0.11 
            

Table 2: Comparison for the formulations and the algorithms on Florida instances.  
 

  CK CKLT ME LKGenA LKGreA HA 

R p ∆ time ∆ time ∆ time ∆ time ∆ time ∆ time 

100 5 0 148 0 34 0 76 0.71 182 0 33 0 28 

 10 0 210 0 29 0 101 0.41 1352 0.43 174 0 29 

 15 0 341 0 32 0 165 0.16 2412 0.50 456 0 30 

 20 0 492 0 75 0 251 0.10 5800 0.31 1132 0 74 

 25 0 999 0 138 0 512 0.10 10646 0.38 1800 0 129 

Average 0 438 0 62 0 221 0.30 4078 0.32 719 0 58 
            

Both tables confirm the efficiency of our heuristic algorithm.  It finds the optimal solution 

for all the instances tested above, with computing times on most instances slightly below 

those of Capar et al. (2013).  Our algorithm significantly outperforms both heuristics of 

Lim and Kuby (2010) in terms of solution quality and CPU time.  For example, we only 

need 129 seconds to find the optimal solution for the Florida instance (R=100, p=25), 

while LKGenA and LKGreA take about 3 hours and about half an hour respectively, yet do 

not find the optimal solution.  As an additional observation, we can see that the 

MirHassani and Ebrazi (2013) formulation is slightly less efficient than the Capar et al. 

(2013) formulation – these have not previously been compared to each other.    

 

 

CONCLUSIONS AND SUGGESTIONS 

The design of a heuristic algorithm for the alternative-fuel station location problem is an 

important issue that has not received appropriate attention in the research.  In the 

paper, we thus develop an efficient heuristic algorithm to locate optimal refuelling 

stations for the maximisation of round-trip traffic volume.  The algorithm is constructed 

on solving the sequence of restricted problems by a set of promising station candidates, 

and by a number of the best promising stations to be located.  To determine the initial 

set of candidates we solve a relaxation model of the original problem with the constraints 

of integer variables relaxed, and then update the set in next iterations by performing 2-

exchange between the set of promising candidates and the remaining station set.  As 

solving the restricted problems, we locate the best stations in the set of promising 

candidates to improve the computation time of the algorithm.  Besides that, we use a 

parallel computing strategy to simultaneously solve a number of restricted problems with 

less computation effort for large-sized instances.  Experimental results show that the 

proposed algorithm can obtain the optimal solutions with less computation time 



(compared with CPLEX solver), and outperforms the other compared algorithms (i.e., 

genetic algorithm and greedy algorithm) with respect to solution quality as well as 

computation time.    

 

From the successful results obtained, we can extend the heuristic algorithm to handle 

other interesting alternative-fuel station location problems, such as: 

• The FRLM with deviation (Kim and Kuby, 2012, Lin and Lin, 2016), 

• The fixed-charge FRLM (MirHassani and Ebrazi, 2013), 

• The multi-period FRLM (Miralinaghi et al., 2017). 

It would be very interesting to apply our algorithm to practical applications, which we 

believe may arise in the near future, especially in the light of the recent EU directive on 

the establishment of a Europe-wide alternative fuel infrastructure (European 

Commission, 2014).  In this respect, the reader is referred to the recent application 

study by Kuby et al. (2017), focusing on natural gas refuelling stations in the E.U.  

Another possible application would be for the location of alternative fuel stations for the 

railways.  While the algorithms presented in the literature could be just as applicable to 

rail transport as to automobiles, most papers tackle the FRLM in the context of 

automobile refuelling stations.  Yet, as Kuby and Lim (2005) has already pointed out, 

there is much better origin-destination flow data available for railways, making this mode 

of transport an ideal field of applying FRLM models. 
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