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Javier Polimón∗, Julio C. Hernández-Castro, Juan M. Estévez-Tapiador and Arturo Ribagorda
Computer Science Department, Carlos III University of Madrid, 28911 Leganes, Madrid, Spain

Abstract. In this paper, we present a general framework for the automated design of cryptographic block ciphers by using
Genetic Programming. We evolve highly nonlinear and extremely efficient functions that can be used as core components of any
cryptographic construction. As an example, a new block cipher named Raiden is proposed. We present a preliminary security
analysis of our proposal and a comparison in terms of performance with similar block ciphers such as TEA. The results show that
automatically-obtained schemes, such as the one presented here, could be competitive both in security and speed.

1. Introduction

Block ciphers are key components of nearly all cryptographic protocols, and of many security applications.
Common usage scenarios abound, because block ciphers are used (together with stream ciphers) whenever a given
degree of confidentiality is to be provided. They are a very basic cryptographic primitive, as they could also be
used to build or derive hash functions, stream ciphers, pseudorandom number generators and message authentication
codes (MACs).

1.1. Overview of the rest of the paper

The paper is organized as follows. Section 2 introduces some theoretical background about block ciphers,
including concepts such as Feistel networks and the avalanche effect, and presents the TEA block cipher. In Section 3
we present the approach used to search for lightweight functions with a nearly optimal degree of avalanche effect.
Our results, including the final design of a block cipher, are presented in Section 4. In Section 5 we provide a
analysis of our proposal, both in terms of speed and security. Finally, Section 6 concludes the paper presenting our
main conclusions and future research directions.

2. Theoretical background

For completeness and readability, we first introduce some basic concepts and cryptographic constructions that will
be extensively used throughout this paper.
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2.1. Block-cipher design

A block cipher consists of two related algorithms, one for encryption, E and another for decryption, E −1, that
operate over two inputs: a data block of size n bits and a key of size k bits, yielding an n-bit output block. For every
fixed key k and message M , decryption is the inverse function of encryption, so it should hold:

E−1
k (Ek(M)) = M

For each key k, Ek should behave as closely as possible to a random permutation (a bijective mapping) over the
set of input blocks. Each key selects one permutation among the 2 n! possibilities. Typical key sizes used in the past
have been 40, 56, and 64 bits. Today, 128 bits is normally taken as the minimum key length needed to prevent brute
force attacks.

Most block ciphers are constructed by repeatedly applying a simpler function. Ciphers using this approach are
known as iterated block ciphers. Each iteration is generally termed a round, and the repeated function is called the
round function; Most modern block ciphers use between 8 and 32 rounds.

2.1.1. Feistel networks
A Feistel network is a general structure invented by IBM cryptographer Horst Feistel, who introduced it in 1973

in the design of the block cipher Lucifer [1]. A large number of modern block ciphers are based on Feistel networks
due to several reasons: First, the Feistel structure presents the advantage that encryption and decryption are nearly
identical (requiring only a reversal of the key schedule), thus minimizing the size of the code and circuitry required to
implement the cryptosystem. Examples of well-known block ciphers based on this structure are: DES [2], FEAL [3],
GOST [4], LOKI [5], CAST [6], Blowfish [7], and RC5 [8], among others.

Feistel networks gained much popularity after the adoption of DES as an international standard. As a consequence,
they have been extensively studied and some important theoretical results regarding precise bounds for their security
have been obtained. In particular, Michael Luby and Charles Rackoff proved [9] that if the round function F is
a cryptographically secure pseudorandom number generator, with K i (a parameter derived from the key, usually
termed the i-round subkey) used as the seed, then 3 rounds are sufficient to make the block cipher secure, while
4 rounds are sufficient to make the block cipher strongly secure (i.e. secure against chosen-ciphertext attacks). In
a similar vein, in [10] the author improves the proven security bounds for random Feistel schemes with 5 rounds,
showing that there is no adaptive chosen plaintext/chosen ciphertext attack on then where an attacker with unlimited
computer power but limited to m queries can have any success, with m significantly less than 2 n queries.

In a classical Feistel network half of the bits operate on the other half. As pointed out by Bruce Schneier and John
Kelsey [11], there is no inherent reason that this should be so. Later works have generalized and extended this basic
structure, but in this preliminary study we shall focus our attention exclusively in the classical Feistel scheme.

2.1.2. Construction details
One of the fundamental building blocks of a Feistel network is the F -function, usually known as the round

function. This is a key-dependent mapping of an input block onto a output block:

F : {0, 1}n/2 × {0, 1}k → {0, 1}n/2

Here, n is the size of the block. Thus, F takes n/2 bits of the block and k bits derived from the key (usually known
as the round subkey) and produces an output block of length n/2 bits. F should be a highly nonlinear function, and
the Feistel construction allows it to be non-invertible.

The general scheme of a Feistel network consists of j rounds in which the same scheme is repeated. X i−1 is the
input to the i-th round, and the output, X i, serves as input for the next one. The basic operation of each round is as
follows. The input block at round i is split into two equal pieces:

Li = msbn/2(Xi)

Ri = lsbn/2(Xi)

where lsbu(x) and msbu(x) select the least significant and most significant u bits of x, respectively. In this way,
Xi = (Li‖Ri). For encryption, the basic computation is the following:
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Li = Ri−1

Ri = Li−1 ⊕ F (Ri−1, Ki)

where ⊕ indicates modulo-2 addition and K i is the subkey for round i. For decryption, the same scheme can be
applied to the ciphertext without being necessary to invert the round function F . The only difference is that the
subkeys have to be used in reverse order:

Ri−1 = Li

Li−1 = Ri ⊕ F (Li, Ki)

The subkeys Ki, i = 1, . . . , j are obtained from applying a key schedule (also known as key expansion) algorithm
to the input key K .

2.2. Highly-nonlinear functions and the avalanche effect

The avalanche effect is a mathematical property that tries, to some extent, to abstract the intuitive idea of high-
nonlinearity: a very small difference in the input should produce a high change in the output, hence an avalanche of
changes.

Mathematically, F : 2m → 2n has the avalanche effect if it holds that:

∀x, y|H(x, y) = 1, Average
(

H(F (x), F (y))
)

=
n

2

So if F is to have the avalanche effect, the Hamming distance between the outputs of a random input vector and
one generated by randomly flipping one of the input bits should be, on average, n/2. That is, a minimum input
change (one single bit) produces, on average, the change of half of the output bits.

This definition also tries to abstract the more general concept of output independence from the input. Although it
is clear that this independence is impossible to achieve (a given input vector always produces the same output), the
ideal round function F will resemble a perfect random function where inputs and outputs are statistical unrelated.
Any such F would have perfect avalanche effect, so it is natural to try to obtain such functions by optimizing the
amount of avalanche.

In fact, we will use an even more demanding property that has been called the Strict Avalanche Criterion [12]
which, in particular, implies the Avalanche Effect, and that could be mathematically described as:

∀x, y|H(x, y) = 1, H(F (x), F (y)) ≈ B

(
1
2
, n

)

where B denotes a binomial distribution. It is interesting to note that the previous expression implies the avalanche
effect, as the average of a binomial distribution with parameters 1/2 and n is exactly n/2.

Furthermore, the amount of proximity of a given distribution to another (a B(1/2, n) in this case) can be easily
measured by means of a χ2 goodness-of-fit test.

Having a good degree of avalanche effect is more than a desirable property for many cryptographic primitives.
A block cipher or a hash function which does not have a significant avalanche effect makes a poor diffusion of its
input, and as a consequence some forms of cryptanalysis can be successfully applied.

In some cases, this fact can be enough to completely break the primitive. For this reason constructing a primitive
with a substantial degree of avalanche is a primary design goal.

2.3. TEA and XTEA: Tiny encryption algorithms

TEA [13] is a block cipher designed by David Wheeler and Roger Needham, of the Cambridge Computer Security
Laboratory, and presented at the 1994 Fast Software Encryption Workshop.

TEA follows a Feistel-like scheme that obtains its robustness by combining the use of addition and xor operations
to achieve a high degree of nonlinearity. The use of shifts, additionally, makes that key bits are mixed with input bits
twice in each round.
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Every TEA cycle has two rounds, and its authors state that in the worst possible scenario six cycles are needed
to ensure that a 1 bit change in the key or input bits generates around 32 changes in the 64 bit output. The authors
recommend the use of 32 cycles (thus, 64 rounds) to ensure an adequate security level. TEA operates over 64 bit
blocks, with 128 bit keys.

TEA code is extremely simple: It can be written in a few lines and it is even easy to memorize:

/************************************************/
/* TEA Block Cipher */
/************************************************/
void encrypt(unsigned long* v, unsigned long* k) {
unsigned long v0=v[0], v1=v[1], sum=0, i;
unsigned long delta=0x9e3779b9;
unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3];
for (i=0; i < 32; i++) {
sum += delta;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1);
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3);
}
v[0]=v0; v[1]=v1;
}

It does not use S-boxes nor a complex key-schedule and, in fact, this last feature has turned out to be one of its
major weaknesses, becoming a key player in most of the cryptanalytic attacks proposed so far.

The two most important attacks against TEA are:
Related-key attacks: Pointed out by John Kelsey, Bruce Schneier, and David Wagner, in [14].
Existence of equivalent keys: In TEA, every key is equivalent to another three keys. This reduces its effective key

size from 128 to 126 bits.
There are, however, more published attacks that, although only applicable to reduced-round versions of the

algorithm, cast a doubt on its overall security [15].
At the present time, the cryptographic community has mostly shifted its interest to ciphers with 128 bits of block

and key lengths, but for historical reasons, as well as for allowing fair comparisons with the TEA algorithm, we are
focusing in this paper on 128 bit keylengths and 64 bit blocks. However, the described method is easily applicable
to obtain block ciphers of any block and key length.

In order to solve some of the most important TEA weaknesses, its authors designed a new version called XTEA
(eXtended TEA) where the simple TEA key schedule was changed by a more complex one:

/************************************************/
/* XTEA Block Cipher */
/************************************************/
void encipher(unsigned int num_rounds, unsigned long* v,
unsigned long* k)
{
unsigned long v0=v[0], v1=v[1], i;
unsigned long sum=0, delta=0x9E3779B9;
for(i=0; i<num_rounds; i++)
{
v0 += ((v1 << 4 ˆ v1 >> 5) + v1)ˆ(sum + k[sum & 3]);
sum += delta;
v1 += ((v0 << 4 ˆ v0 >> 5) + v0)ˆ(sum + k[sum>>11 & 3]);
}

v[0]=v0; v[1]=v1;
}

XTEA, however, has not achieved a success comparable to that of TEA, in part because it is much slower than
TEA and because soon after its proposal some additional weaknesses were published. Some results even suggest
that it is, in fact, weaker than its predecessor with respect to many attacks [16–18].

TEA has been implemented in a huge number of different programming languages and has been used in many
applications: It was the basis of the hash function used in the XBOX (which turned out to be a bad idea), it is widely
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used for confidentiality in IRC channels, and also for encryption in PDAs and other mobile devices due to its very
high speed and portability.

Its success, specially before the appearance of the two main cryptanalytic attacks, justifies the need for a secure
alternative that should enjoy all its main properties (i.e. speed, short code, low gate count, easy to remember and to
implement, high portability) but having increased security.

3. Methodology and experimentation issues

At the core of our work is the idea of designing functions with a (nearly) optimal amount of avalanche effect.
These functions can be easily adapted to work as good components of cryptographic constructions, such as the round
function or the key schedule algorithm of a block cipher. However, instead of using predesigned structures for such
functions, we make use of a general approach to automatically find appropriate constructions: Genetic Programming.

Genetic Programming is a stochastic population-based search method devised in 1992 by John R. Koza [19]. It
is inspired by Genetic Algorithms, the main difference with them being the fact that in the latter, chromosomes are
used for encoding possible solutions to a problem, while GP evolves whole computer programs. Within the scope
of Evolutionary Algorithms, this is the main reason for using GP in this problem: A block cipher is, in essence, a
computer program, so its size and structure are not defined in advance. Thus, finding a flexible codification that can
fit a GA is a non-trivial task. Genetic Programming, nevertheless, does not impose restrictions to the size or shape
of evolved structures. An additional advantage of GP is that some domain knowledge can be injected by selecting
the most relevant primitives, whereas other Machine Learning methods use a predefined, static set (neurons in NN,
attribute comparisons in ID3, etc.).

GP has three main elements:

– A population of individuals. In this case, the individuals codify computer programs or, alternatively, mathemat-
ical functions. They are usually represented as parse trees, made of functions (with arguments), and terminals.
The initial population is made of randomly generated individuals.

– A fitness function, which is used to measure the goodness of the given computer program represented by the
individual. Usually, this is done by executing the codified function over many different inputs, and analyzing
its outputs.

– A set of genetic operators. In GP, the basic operators are reproduction, mutation, and crossover. Reproduction
does not change the individual. Mutation changes a function, a terminal, or a complete subtree. The crossover
operator exchanges two subtrees from two parent individuals, thereby combining characteristics from both of
them into the offspring.

The GP algorithm starts a cycle consisting on fitness evaluation and application of the genetic operators, thus
producing consecutive generations of populations of computer programs, until an ending condition is reached
(generally, a given number of iterations/evaluations or a global maximum in the fitness function).

In terms of classical search, GP is a kind of beam search, the heuristic being the fitness function. A typical
GP implementation has many parameters to adjust, like the size of the population and the maximum number of
generations. Additionally, every genetic operator has a given probability of being applied that should be adjusted.

3.1. Experimentation

We have used the lil-gp genetic programming library [20] as the base for our system Lil-gp provides the
core of a GP toolkit, so the user only needs to adjust the parameters to fit his particular problem. In this section, we
detail the changes needed in order to configure our system.
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3.1.1. Function set
Firstly, we need to define the set of functions: This is critical for our problem, as they are the building blocks

of the algorithms we would obtain. Efficiency being one of the paramount objectives of our approach, it is natural
to restrict the set of functions to include only very efficient operations, both easy to implement in hardware and
software, such as those included in the TEA round function:

y += (z<<4)+ a ˆ z + sum ˆ (z>>5) + b

So the inclusion of the basic binary operations such as vrotd (right rotation), vroti (left rotation), xor (addition
mod 2), or (bitwise or), not (bitwise not), and and (bitwise and) are an obvious first step.

Other operators as the sum (sum mod 232) are necessary in order to avoid linearity, being itself quite efficient.
We introduced at first the mult (multiplication mod 232) operator but, although the individuals thus obtained

enjoyed a high degree of nonlinearity, they could not compete against the TEA round function in terms of speed.
This, however, highly depends on the particular architecture used, so the multiplication of two 32 bit values could
cost up to fifty times more than an xor or an and operation (although this happens in certain platforms, its nearly a
worst case: 14 times [21] seems to be a more common value).

After many experiments, we decided to introduce the substraction operator resta and to substitute the rotation
operators vrotd, vroti for shift operators rotd, roti which were much faster and generated individuals of similar
nonlinearity.

3.1.2. Terminal set
The set of terminals in our case is relatively easy to establish provided that we are looking for a block cipher that

operates on blocks of 64 bits with keys of 128 bits. Firstly, it is mandatory for the key schedule algorithm to operate
with the 128 bits of the key, in our case expressed as four 32-bit integers. Second, the round function should accept
as input the 32 bits of the different round subkeys and half the 64-bit input block. Thus, the terminals used by the
GP system in this case will be represented, for the round function, by two 32-bit unsigned integers a 0, and sk; for
the key schedule we need four 32-bit integers represented by four 32-bit terminals named a 0, a1, a2, and a3.

Finally, we included Ephemeral Random Constants (ERCs) for completing the terminal set. An ERC is a constant
value that GP uses to generate better individuals (for a more detailed explanation on ERCs, see [19]). In our problem,
ERCs are 32-bits random-values that can be included in the building blocks of the cipher as constants to operate
with. The idea behind this operator was to provide a constant value that, independently from the input, could be
used by the operators of the function, an idea suggested by [13].

3.1.3. Fitness function
We have used the same fitness function for the two main tasks to be accomplished for developing a block cipher

following the Feistel scheme: finding a key schedule algorithm, and a round function. An additional idea was
to make the key schedule more efficient than the round function, but complex and robust enough to avoid simple
related-key attacks as those published against ciphers with simple key expansion mechanisms [14]. To achieve this,
we used the following fitness function

Fitness = 106/χ2

where χ2 is calculated as follows:

χ2 =
h=32∑
h=0

(Oh − Eh)2

E2
h

and

Ek = 2048 ∗ Pr
(
B(1/2, 32) = k

)
So the fitness of every individual is calculated as follows: First, we use the Mersenne Twister generator [22] to

generate an adequate number of 32-bit random values. Those values are assigned to (a 0, a1, . . . ai). The value of
our key schedule or round function candidate over this input o 0 is stored. Then, we randomly flip one single bit
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Table 1
Average avalanche and execution time comparison

Function Average Hamming Value Execution Time (ms.)

Raiden Round Function 6.22 0.87
TEA Round Function 5.13 0.84

of one of the input values, and we run the algorithm again, obtaining a new value o 1. Now, we compute and store
the Hamming distance H(o0, o1) between those two output values. This process is repeated a number of times
(2048 was experimentally found to be enough to give an adequate precision of the measurement, and quick enough
to allow for rapid fitness computation) and each time a Hamming distance among 0 and 32 is obtained and stored.
For a perfect Avalanche Effect, the distribution of the Hamming distances should be consistent with the theoretical
Bernoulli probability distribution B(1/2,32). Therefore, the fitness of each individual is calculated by using the
chi-square (χ2) statistic that measures the distance of the observed distribution of the Hamming distances from the
theoretical Bernoulli probability distribution B(1/2,32). Thus, our GP system tries to minimize the χ 2 statistic in
order to maximize the expression for the fitness function shown above.

We should note that we are computing the value of the χ2 statistic without the commonly used restriction of adding
up only the values when Ek > 5.0, for amplifying the effect of a ‘bad’ output distribution and, thus, the sensitivity
of our measure.

3.1.4. Tree size limitations
When using genetic programming approaches, it is necessary to put some limits to the depth and/or to the number

of nodes the resulting trees could have. We tried various approaches here, both limiting the depth and not limiting
the number of nodes, and vice versa. The best results where consistently obtained using the latter option.

As we were interested in a fast key schedule function, we limited the number of nodes to 10. On the other hand,
we allowed the round function to use up to 15 nodes to try to assure a high degree of avalanche effect and robustness
against differential and lineal cryptanalysis. We did not put a limit (other that the number of nodes itself) to the tree
depth. This was a very important step for determining the overall efficiency of the resulting block cipher algorithm.

In both cases, each run of the GP system consisted of 5000 generations of a population of 800 individuals, with
the crossover probability being 0.8, and 0.2 for reproduction.

4. Results

The best function fr found when searching for a round function algorithm is shown in Fig. 1 in the classic Lisp-like
notation provided by lil-gp. This is an algorithm with an avalanche effect of 6.22 (so when randomly flipping
one input bit, the 32 bit output changes 6.22 bits, on average). This is a good result, specially when compared with
the value associated with TEA’s round function which is limited to 5.13, while both have a similar speed.

On the other hand, the tree corresponding to the best individual found when looking for the key schedule (f k) is
also depicted in Fig. 1. This key schedule algorithm provokes an avalanche effect of 2.94, which is more than one
unit higher than the associated value of the TEA key schedule of 1.83.

4.1. The Raiden block cipher

These two new functions have been used as the key components of a new block cipher named Raiden.
The result is a classic Feistel network wherein each round operates according to the Feistel structure. Further

possibilities will be explored in future works.
The C code including both functions and implementing the full code of the Raiden block cipher is shown below:

/************************************************/
/* Raiden Block Cipher */
/************************************************/
void raiden(unsigned long *in,unsigned long *res,unsigned long *key)
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Function f r Function f k

(sum (sum a0 a1)
(xor (resta a2 a3)
(roti a0 a2)))

(xor (roti (resta sk a0) 9)
(xor (resta sk a0)
(rotd (sum sk a0) 14))))

Fig. 1. Best individuals found.

{ unsigned long b0=in[0],b1=in[1],i,k[4]={key[0],key[1],key[2],key[3]},sk;
for(i=0; i< 16; i++)
{
sk=k[i%4]=((k[0]+k[1])+((k[2]-k[3])ˆ(k[0]<<k[2])));
b0 += ((sk+b1)<<9)ˆ((sk-b1)ˆ((sk+b1)>>14));
b1 += ((sk+b0)<<9)ˆ((sk-b0)ˆ((sk+b0)>>14));
}
res[0]=b0;
res[1]=b1;
}

As the number of rounds is an adjustable parameter, we will use the notation Raiden-Rn to denote the cipher with
n rounds. In our preliminary analysis (see below) Raiden has proven to be strong enough with 8 cycles. However,
we strongly recommend using at least 16 cycles (32 rounds) to ensure an adequate security margin.

5. Analysis

We have performed a preliminary analysis of our proposal, both in terms of speed and security. The results are
provided in what follows.

5.1. Security

The repeated mixing of 32-bit addition (which is nonlinear over Z 2) and xor (which is nonlinear in Z32), is
intended to provide for a good resistance against both differential [?] and linear cryptanalysis [?].

Additionally, other operations such as rotation, are included to give adequate diffusion by extending changes from
high significant bits to low significant bits, and vice versa. All in all, after the proposed 16 cycles, we conjecture
that Raiden is secure against both linear and differential cryptanalysis, so that no attacks significantly faster than
exhaustive key search exist.

Moreover, the combined use of the proposed operations makes the existence of weaknesses against Mod n
cryptanalysis highly unlikely, as addition and rotation (two of the most vulnerable operations) are not used alone but
together with xor, as proposed in [?] (authors claim that both xor and multiplication mod 2 32 are very difficult to
approximate mod 3) to increase strength against this kind of attack.

A major advantage of not using the multiplication mod 2 32 operation comes with respect to timing attacks where
the input-dependent time used to perform this operation (due to optimizations) could leak some information [?].
Other operations that are usually prone to timing attacks and that we have avoided by construction are data-dependent
rotations (only fixed-amount rotations are used), and s-box lookups (Raiden doesn’t obtain its non-linearity by the
use of s-boxes).

Timing attacks will, then, not work against Raiden. For more insights on the subject, the reader should refer to
the excellent discussion in [?].

Furthermore, the key schedule algorithm has been deliberately chosen to be complex enough to avoid related-key
attacks [?] to which algorithms with simpler key schedules are prone. The fact that the proposed key schedule
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Table 2
Tests results obtained with ENT

TEA Raiden

Entropy 7.999994 bits/byte 7.999994 bits/byte
Compression Rate 0.00% 0.00%
χ2 Statistic (25%) (50%)
Arithmetic Mean 127.4946 127.5125
Monte Carlo π estimation (0.01%) (0.01%)
Serial correlation coefficient 0.000076 0.000044

Table 3
Overall p-values obtained
with the DIEHARD suite

p-value(s)
Test Raiden TEA

1 0 0
2 0 0
3 0.6295 0
4 0.6819 0.4251
5 0.1727 0.6344
6 0.8949 0.3825
7 0.6066 0.6524
8 0.5384 0.3358

16 0.4253 0.8230
32 0.4034 0.9637

achieves a high degree of avalanche ensures, to a certain extend, that no trivial input differences will produce output
differences that could be used to mount a cryptanalytic attack, and that no equivalent nor weak keys exist.

In particular, and following the advice presented in the Prudent Rules of Thumb for Key-Schedule Design section
in [?], and in the Designing Strong Key Schedules section at [?] (where authors suggest “[...] we recommend that
designers maximize avalanche in the subkeys [...]”) we have avoided linearity in the design, and we have additionally
avoided the generation of independent round subkeys.

5.2. Statistical properties

An additional analysis consists in examining the statistical properties of the output over a very low-entropy input.
In our case, we have generated a large battery of low-entropy inputs by ANDing and ORing random numbers multiple
times. Following this scheme, we have produced a number of files to be used as input for test batteries.

The resulting ciphertext has been analyzed with four batteries of statistical tests, namely ENT [?], Diehard [?],
NIST [?] and SEXTON [?]. The results obtained are presented in the following Tables.

From this we can conclude that Raiden successfully passes the ENT randomness battery (results shown in Table 1),
as all of the obtained statistics are well within the confidence interval that should correspond to a random variable.
Additionally, this is confirmed by the fact that TEA obtains similar results to those of Raiden.

In Table 3, we show the overall p-value that Diehards gives after the computation of all its 229 tests. From this we
can conclude that Raiden successfully passes the Diehard test battery, as all of the obtained statistics are well within
the confidence interval that should correspond to the measure of a random variable, which is approx. (0.05, 0.95).
Additionally, this is confirmed by the fact that TEA obtains similar (but slightly worse) results than those of Raiden.

In Table 4, we can observe the results of both Raiden and TEA over the NIST statistical test, where the most
meaningful columns are those that show the proportion of tests passed. It is generally considered that if for any
test this proportion of successfully passed tests is lower than 0.96, the overall NIST test should be considered as not
passed. From that we can conclude that TEA does not pass all the tests (it fails the Runs, Non-periodic Templates
and Random. Excursion Variant tests) while Raiden successfully passes them all.

Finally, we will analyze the results obtained over the SEXTON battery of tests presented in Table 5: Here we can
observe that the results of Raiden and TEA are even better than those obtained by two well-known ciphers RC-4 and
Snow. This test battery comprises 70 different tests, adjusted so not all of them could be passed even by a random
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Table 4
NIST’s battery results

Test Raiden Raiden TEA TEA
p-value proportion p-value proportion

Frequency 0.671 1.000 0.739 0.969
Block Frequency 0.350 1.000 0.804 1.000
Cumulative Sums 0.732 0.969 0.736 0.969
Runs 0.468 1.000 0.534 0.937
Longest Run 0.253 0.969 0.299 0.969
Rank 0.350 0.969 0.464 1.000
FFT 0.739 0.969 0.011 0.969
Nonperiodic Templates 0.213 1.000 0.299 0.937
Overlapping Templates 0.407 1.000 0.862 1.000
Universal 0.468 1.000 0.534 1.000
Apen 0.804 1.000 0.804 1.000
Random Excursions 0.331 1.000 0.306 1.000
Rand. Ex. Variant 0.437 1.000 0.275 0.954
Serial 0.581 1.000 0.602 1.000
Linear Complexity 0.862 1.000 0.534 0.969

Table 5
Sexton’s battery results

Result Raiden TEA RC4 Snow Random Variable

Passed tests 53 53 55 58 56
Failed (1 order) 16 17 14 11 12
Failed (2 orders) 1 0 1 1 2
Failed (3 orders) 0 0 0 0 0
Failed (4 orders) 0 0 0 0 0

variable. When not passed, the SEXTON test battery observes the amount of the distance to the expected confidence
interval, thus assigning different failure "orders". Typical non cryptographic generators usually fail one or more of
these tests with 3 and 4 orders of error. Together with the NIST test, the SEXTON test is one of the most stringent
test batteries.

Although authors acknowledge that statistical tests are not very meaningful, and do not pretend to prove the
security of any cryptographic primitive by showing that its output (even over very low-entropy inputs) passes a
number of batteries of tests, we believe that these results are useful to show that no trivial weaknesses exist in the
proposed constructions nor in their implementations, so they deserve the scrutiny of the academic community.

6. Conclusions and future work

The results described in this paper show that paradigms such as Genetic Programming can be successfully applied
to design competitive (in terms of security and speed) cryptographic primitives. In this respect Raiden, which has
proven to be even better than TEA in some tests, can be thought as an instance of an entire family of designs. In
particular, different proposals could have been obtained by repeating the experimentation.

We believe that the proposed scheme incorporates robustness against most of the currently-known attacks by
construction. However, further work has to be done before considering these new cryptographic primitive as secure
enough.

We do not pretend to prove any kind of security properties just by analyzing the results of a battery of statistical
tests (even if they include very stringent tests over very low-entropy inputs). However, we believe that these results
show that no trivial weaknesses exist in the proposed constructions nor in their implementations, so they deserve the
scrutiny of the academic community.

From the authors’ point of view, the possibility of automatically obtaining cryptographic primitives could have
interesting additional implications (to fields like Governmental policies on Cryptography, Controls on Cryptographic
Research and Export, etc.) which should be tackled by future works.
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7. Raiden decryption routine C code

void raiden-decypher(unsigned long *data, unsigned long
*res, unsigned long *key)
{ unsigned long b0=data[0],b1=data[1],i, k[4]={key[0],key[1],key[2],key[3]}, keys[16];
for(i=0;i<16;i++) {
//Round subkeys computation
k[i%4]=((k[0]+k[1])+((k[2]+k[3])ˆ(k[0]<<k[2])));
keys[i]=k[i%4];

}
for(i=16; i!=-1; i--) {
//Round subkeys are applied in reverse order
b1 -= ((keys[i]+b0)<<9)ˆ((keys[i]-b0)ˆ((keys[i]+b0)>>14));
b0 -= ((keys[i]+b1)<<9)ˆ((keys[i]-b1)ˆ((keys[i]+b1)>>14));

}
res[0]=b0; res[1]=b1; }
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