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BLGAN: Bayesian Learning and Genetic
Algorithm for Supporting Negotiation
With Incomplete Information

Kwang Mong Sim, Senior Member, IEEE, Yuanyuan Guo, and Benyun Shi

Abstract—Automated negotiation provides a means for resolv-
ing differences among interacting agents. For negotiation with
complete information, this paper provides mathematical proofs
to show that an agent’s optimal strategy can be computed using
its opponent’s reserve price (RP) and deadline. The impetus of
this work is using the synergy of Bayesian learning (BL) and
genetic algorithm (GA) to determine an agent’s optimal strategy
in negotiation (V) with incomplete information. BLGAN adopts:
1) BL and a deadline-estimation process for estimating an op-
ponent’s RP and deadline and 2) GA for generating a proposal
at each negotiation round. Learning the RP and deadline of an
opponent enables the GA in BLGAN to reduce the size of its search
space (SP) by adaptively focusing its search on a specific region
in the space of all possible proposals. SP is dynamically defined
as a region around an agent’s proposal P at each negotiation
round. P is generated using the agent’s optimal strategy deter-
mined using its estimations of its opponent’s RP and deadline.
Hence, the GA in BLGAN is more likely to generate proposals
that are closer to the proposal generated by the optimal strategy.
Using GA to search around a proposal generated by its current
strategy, an agent in BLGAN compensates for possible errors in
estimating its opponent’s RP and deadline. Empirical results show
that agents adopting BLGAN reached agreements successfully,
and achieved: 1) higher utilities and better combined negotiation
outcomes (CNOs) than agents that only adopt GA to generate their
proposals, 2) higher utilities than agents that adopt BL to learn
only RP, and 3) higher utilities and better CNOs than agents that
do not learn their opponents’ RPs and deadlines.

Index Terms—Automated negotiation, Bayesian learning (BL),
genetic algorithms (GAs), intelligent agents, negotiation agents.

I. INTRODUCTION

N SYSTEMS involving the interactions of artificial or hu-
man agents, automated negotiation [1] provides a means for
agents to resolve differences and conflicting goals. Although
designing negotiation agents that only optimize utility (e.g.,
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buyer agents negotiating for the lowest possible price) may
be sufficient for generic e-commerce applications [2], [3], in
some applications (e.g., Grid resource management [4]-[9]),
negotiation agents should be designed such that they are more
likely to acquire resources more rapidly and perhaps with more
certainty (in addition to optimizing utility). For instance, in a
Grid computing environment, failure to obtain the necessary
computing resources before a deadline will lead to a delay in
job executions.

Whereas [10], [11] devised negotiation models for bilateral
negotiation and proved that the strategies optimize the utilities
of agents, this work devises negotiation strategies that attempt
to optimize the combined negotiation outcomes (CNOs) of
agents in terms of their average utilities, success rates, and ne-
gotiation speed (measured in negotiation rounds) in negotiation
with incomplete information.

While game-theoretic models (e.g., [12]-[17]) have long
been used as mathematical tools for modeling and analyz-
ing negotiation processes, this work contributes to the lit-
erature in automated negotiation by developing a procedure
called BLGAN that uses the synergy of Bayesian Learning
(BL) and Genetic Algorithm (GA) for generating Negotiation
solutions. Game-theoretic models for negotiation are gen-
erally categorized into the following: 1) negotiation with
complete information in which agents know other agents’
parameters (e.g., their reserve prices (RPs) and deadlines)
and 2) negotiation with incomplete information in which ne-
gotiation agents are not endowed with complete information
about their opponents (e.g., their RPs and deadlines). This
work deals with the more difficult problem of finding solu-
tions for negotiation with incomplete information when agents
can only deduce the private information of their opponents
by studying their moves. The novel feature of this work is
that, whereas a Bayesian updating method (Section III-A)
and a deadline-estimation process (Section III-B) are adopted
for estimating an opponent’s RP and deadline which guide
an agent in evolving its strategy (Section III-C), its CNO is
enhanced by using GA to search for a possibly better proposal
(Section III-D).

In some game-theoretic models of negotiation with incom-
plete information (e.g., [18]), it is assumed that agents only have
probabilistic information about the private information of other
agents. These models generally adopt the assumption that all
agents start with the same probability distribution on the private
information about other agents, and this probability distribution
is known to all agents [11, p. 22]. For instance, assuming that
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the probability distribution over agents’ deadlines is known to
all agents, Sandholm and Vulkan [10] addressed the problem
of splitting the price—surplus between two negotiating agents.
Negotiation agents in [10] adopt the “sit-and-wait” strategy,
and it is assumed that both agents know the price—surplus.
It was shown in [10] that an agent’s optimal strategy is to
wait until the first deadline of both agents, at which the agent
with the shorter deadline concedes everything (giving the entire
price—surplus) to the other agent with longer deadline. Hence,
in [10], agents only make two proposals: demanding either
the entire surplus or no surplus. By adopting the “sit-and-
wait” strategy, the deadline effect almost always suppresses
the time-discounting effect (i.e., the devaluation of goods over
time). For the negotiation model in this work, the price—surplus
can be described as the difference between the reserve prices,
RPp and RPs, of two agents, a buyer agent B and a seller
agent S, such that RPg — RPs if RPg > RPs; otherwise,
if RPp < RPg, there is no price—surplus between B and S.
If both B and S know RPgp and RPg, the “sit-and-wait”
strategy is also an optimal strategy based on the results in [10].
However, to apply the “sit-and-wait” strategy to agents in this
work, one needs to assume that RPg and RPg are known to
both B and S. For instance, suppose that RPs € [I P, RPg|,
RPg € [RPs,1Ps], and 75 > 75 (where 75 and 7g are the
deadlines of B and S, respectively, and I Pg and I Pg are their
initial prices). If both B and S adopt the “sit-and-wait” strategy
when 7g is reached, S will give up the entire price—surplus (i.e.,
propose RPs). However, if B does not know R Pg, it will still
maintain its proposal I Pp at 75. Hence, if I P < RPg, then B
and S may not reach an agreement. To optimize utility and yet
guarantee successful negotiation, it is necessary for the agent
with the longer deadline (i.e., B) to concede to the RP of its
opponent (i.e., S) when its opponent’s deadline is reached.

Similar to [11], this paper devises a set of optimal negotiation
strategies for bilateral negotiation that takes into consideration
the uncertainty of deadlines and RPs of both agents and models
time discounting (Section II). In [11], there are three classes
of strategies: Boulware (maintaining the initial price until
an agent’s deadline is almost reached), Conceder (conceding
rapidly to the RP), and Linear (conceding linearly). Whereas
[11] showed that there is an optimal strategy class for different
scenarios, the question of “what specific optimal strategy should
an agent adopt to optimize its utility and still guarantee suc-
cessful negotiation?” has not been answered. Based on the RP
and deadline of B (respectively, S), this work determines the
specific strategy Ag (respectively, Ap) that S (respectively, B)
should adopt. For negotiation with complete information, it is
proven in Section II that the A\g (respectively, Ap) optimizes the
utilities of S (respectively, B) and guarantees that agreements
are reached.

For negotiation with incomplete information, the following
scenarios are studied empirically: 1) when S adopts BLGAN
to learn RPp only and uses GA to search for an appropriate
proposal, taking into consideration RPpg, 2) when S adopts
BLGAN to learn both RPp and 7 and uses GA to search
for an appropriate proposal, taking into consideration both
RPp and 7, and 3) both agents do not have an estima-
tion of each other’s RP and deadline (Section IV). Experi-

ments have also been conducted to compare the performance
between agents adopting BLGAN and negotiation agents in
other works that adopt: 1) BL (e.g., [19]) and 2) GA (e.g.,
[20]) (see Section IV). Empirical results in Section IV show
that agents adopting BLGAN achieved: 1) much higher aver-
age utilities and much better CNOs than negotiation agents
that adopt only GA to generate their proposals (e.g., [20]),
2) higher average utilities than negotiation agents that adopt
only BL to learn RP [19], and 3) much higher average utilities
and generally much better CNOs than agents that do not learn
their opponents’ RPs and deadlines.

II. OPTIMAL NEGOTIATION STRATEGIES

To analyze negotiation with complete information between
two agents B and S, it is assumed that RPs € [I Pp, RPg]
and RPp € [RPg,IPg)]. This is because if RPg < RPs, no
agreement can be reached regardless of the strategies that both
agents adopt. Let D be the event in which agent A € {B, S}
fails to reach an agreement with its opponent. The utility func-
tion of A is defined as U, : [I P4, RP4) U D — [0, 1] such that
UA(D) =0 and for any [ 4 € [IPA,RPA], UA<ZA) > UA(D).
Furthermore, if A = B, we have Ug(l}) > Up(I%) whenl} <
1%; and if A=, then we have Ug(l}) < Ug(I%) whenl§ < [%.

This section devises a set of optimal strategies that maxi-
mizes the utilities of agents while ensuring that agreements are
successfully reached because not reaching an agreement is the
worst outcome for both B and S [21]. In this work, an optimal
strategy is defined as follows.

Definition (Optimal Strategy): Let O, be the final agreement
price of agent A that results from its strategy A4 at agreement
time t. A4 is the optimal strategy for agent A if it maximizes
the final utility U (O;).

In this work, both agents adopt the time-dependent strategies
in [22], such that the proposal of agent A attime ¢,0 < ¢t < 74,
is determined as follows:

Aa

PA=1P,+ (:) (RPs — IPy) (1)
A

where 0 < A4 < oo.

Using (1), an agent concedes to its RP at its deadline, i.e., A
will make a proposal RP, at time ¢ = 74 as follows: P/} =
1Py + (TA/TA)AA(RPA — IPA) = RP,. Initially, at ¢t =0,
P64 = 1Py + (O/TA)/\A(RPA — IPA) = IPy4.

In negotiation with complete information, an agent knows its
opponent’s RP and deadline. Hence, finding an optimal strategy
for A is to find an exact value of A 4 such that A’s final utility is
maximized. The problem of finding an optimal strategy for an
agent can be analyzed by considering two cases as follows.

Case 1—(1p > 75): In this case, B’s strategy determines
whether both agents can reach an agreement before their dead-
lines. Since S will propose RPs at 7, B must propose a
price which is higher than or equal to RPg at or before 75
to ensure that an agreement is reached. Hence, it follows that
PB > RPg, and hence

A
1Py + CS) (RPg — IPg) > RPs.
B
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Consequently, A p must satisfy the condition

RPs —IPp
0<Ap<logrs ————F—
=B =8 RPp — 1P
to guarantee a successful negotiation.
Theorem 1: Agent B achieves maximal utility when it adopts
the strategy

o, BPs—1Pg
B =08 B Py

Proof: B’s utility function is monotonically decreasing.
Hence, to maximize its final utility, B needs to minimize its
final agreement-price.

The minimal possible agreement-price for B is RPs.
B knows that S must concede to RPg at T because S makes
concession following (1). Therefore, it is advantageous for B
to propose a price RPg at 7g. This is because of the following:
1) if B proposes RPs before Tg, its proposal at 7g will be
higher than RPgs and 2) if B proposes RPg after 7g, it will
fail to reach an agreement with S. Hence, it follows that the
optimal strategy for agent B satisfies PTB; = RPsg, ie., A\p =
log(rs/‘rB)(RPS — IPB)/(RPB — IPB)

Since 75 > Tg, B’s strategy will determine if an agreement
can be reached regardless of S’s strategy. The strategies that
S can adopt are as follows: 1) S can adopt the “sit-and-wait”
strategy [10] by making its initial proposal at I Ps, maintaining
the same proposal until 7g, and conceding to RPg at 7g; 2) .S
makes its initial proposal at RPg, then “sit-and-wait” until 7g;
3) S adopts Ag, 1 < Ag < oo (maintaining [ Pg until almost
Ts); 4) S adopts Ag = 1 (conceding linearly); and 5) .S adopts
As, 0 < Ag < 1 (conceding rapidly to RPg). However, like
the analysis in [10] where the agent with the shorter deadline
concedes the entire surplus to the agent with the longer dead-
line, regardless of the strategy that .S adopts, if an agreement is
reached, the agreement price for .S will always be RPs.

Case 2: (Tg < Tg): In this case, S’s strategy determines
whether both agents can reach an agreement before their dead-
lines. Using a similar analysis as in case 1, the following
theorem is established.

Theorem 2: Agent S obtains the maximal utility when it
adopts the strategy

e 1oy, [Ps—RPp
5= 8L Tp RPg

Symmetrically, regardless of the strategy that B adopts, if an
agreement is reached, its agreement price will always be RPg.

Theorem 1 (respectively, Theorem 2) specifies and proves
the optimal strategy of a buyer (respectively, seller) agent for
negotiation in complete information (where an agent knows its
opponent’s RP and deadline). The idea of the optimal strategy
derived using Theorems 1 and 2 can be adopted to devise new
negotiation strategies for bilateral negotiation with incomplete
information (i.e., when agents only have estimated values of
its opponent’s RP and deadline through learning). Section III
presents an algorithm for estimating an opponent’s RP and
deadline and evolving an agent’s strategy during negotiation for
bilateral negotiation with incomplete information.

III. BLGAN ALGORITHM

BLGAN has two main procedures for generating an agent’s
next proposal: a BL-procedure and a GA-procedure (see
Fig. 1). In the BL-procedure, a Bayesian updating method
is adopted for estimating an opponent’s RP (Section III-A).
Additionally, there is also a process for estimating an op-
ponent’s deadline (Section III-B). Based on the estimated

—B —5
reserve price RP, (respectively, RP,) and deadline 7

(respectively, 7;°), S (respectively, B) adjusts its strategy
A7 (respectively, AP) and generates a possible proposal P
(Section III-C). To compensate for possible errors in es-
timating fil\Df (respectively, }/Eﬁf ) and deadline 772 (re-
spectively, 77), an agent in BLGAN adopts a GA-procedure
to search for a possibly better proposal P/* within a dy-
namic search space (SP) confined to an area around P}
(Section ITI-D). Then, the better of the two proposals (PP and
P?%) is adopted as the new proposal P (respectively, PP)
(Section III-E). The negotiation process terminates when an
agreement is reached or if either agent’s deadline is reached.

A. Learning Opponent’s RP

The BL-procedure (based on [21]) for learning an oppo-
nent’s RP is shown in Fig. 2. Suppose that the price range is
[MINp, MAXp]. An agent forms H hypotheses of its oppo-
nent’s RP, where H = MAXp — MINp. The ith hypothesis of
an opponent’s RP is denoted as RP;"P, the estimated RP of
an opponent at round ¢ as El\ipp, and the opponent’s proposal
at round ¢ as P/"P. Denoting the prior probability of RP;*?
as P(RP/P") and the conditional probability of P;*" given
RP?P? as P(P/PP|RP{""), the objective here is to compute
P(RPPP|PSPP) (the conditional probability of RP " given
PPPP also called the posterior probability, because it is derived
from or depends on the specified value of P;P).

Initially, it is assumed that the hypotheses follow a uniform
distribution [Fig. 2, step 1.b.i.]. Attime ¢ (¢ > 0), when an agent
receives PP from its opponent, it will update its belief about
P/PP [Fig. 2, steps 1.b.iii. and 1.b.iv.]. The Bayesian updating
formula is as follows:

P (Rpowo|porey — _Fe1 (REZT) X P (PP IREE™)

Pr1 (RP™) x P (P{™ |RP™)
=1
2)

7

where
Pi_1 (RP™) = P (RP™?|P*Y) &)

and P(P/PP’|RP/"") is assumed to be following a normal
distribution N (p;,1). The conditional probability of PP,
given RP;PP [Fig. 2, step 1.b.ii.], can be computed as follows:

2
op
(Pt N “i)

1 - 2

V2w €
i)

MAXp 1 _ (7

MINp vor¢ 2

pi =RPPP x [1+ (1) x a(t)]  (5)

P(FPP|RPPP) = Q)
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1. Set the rounds counter ¢ =0.
2.8 generates its proposal P° using its initial A, and sends

POS to B.

3.If B accepts P’ , EXIT.
Else, B generates its proposal POE using its initial A, , and
sends P’ to S.

4.Increment ¢ by 1.

5.1f S accepts P, EXIT.
Else, S generates its proposal PIS using its initial ls , and
sends P*to B.

6.1f B accepts P,° , EXIT.
Else, B generates its proposal Pl” using its initial 4, , and
sends B”to S.

7.Increment ¢ by 1.
8. While the negotiation process has not terminated,

a. IfSaccepts Pfl , EXIT.
b. IfSisnot programmed to learn, generate proposal
P’ using (16) Else,

3
1. Execute BL-procedure to obtain an estimated

%)

—~B
value of B’s reserve price RP; .
II. Compute an estimated value of B’s deadline 7?

using (10).

IIl. Compute anew A° using (15).

IV. Generate a possible proposal P” using (16).

V. Define a search space SES .

VL. Execute GA-procedure on SP°, and return a
new proposal p3.

VIL.  Set p* to be the better proposal between

P=and p*.

c. Revise the new proposal ¥ (see III-E).
d. Send p* toagent B.

e. If Baccepts P, EXIT.

f. If B is not programmed to learn, generate

proposal P” using (16) Else,
1. Execute BL-procedure to get an estimated
value of S’s reserve price I/@f .
I1. Compute an estimated value of S’s deadline
7% using (12).
III. Compute a new }f using (14).
IV. Generate a possible proposal P using (16).
V. Define a search space SP”.
VI. Execute GA-procedure on SEB ,and return a
new proposal Ps°.
VIL Set P? to be the better proposal between ps
and p”.
g. Revise the new proposal EB (see III-E).
Send EB to agent S.

i.  Increment ¢ by 1.

Fig. 1. BLGAN algorithm.

where a(t)=|1—P PP x[1 4+ (—1)% x a(t — 1)]/P;"P| when
t >0, a(0) =|1— PyP?/Pg™™| (Pg™™ represents the agent’s
own proposal at round ¢t = 0) and 8 = 1 for S (8 = 0 for B).

L. For each hypothesis RP*”,
a. If RP*is impossible, set P(RP") =0.
b.Else,
i. If =0, compute P(RP™") using a uniform

distribution.
ii. Else,
I. Compute g using (5).

1. Compute P(P*" | RP" )using (4).
iii. Update P(RP™ | P*") using (2).
iv. Update P(RP*") using (3).
2. Compute £, (t) using (6).
3. Set E. (1) as rRP".

Fig. 2. BL-procedure.

Using (5), it is assumed that, initially, it is very likely for an
agent to generate a proposal that is far from its RP. As time
passes, it will generate a proposal that is closer to its RP. It
should be noted that, in some cases, P(RP?|P{*") is zero.
For example, suppose B learns S’s RP, then P(RP;"?|P/*P)
is equal to zero when P2, < RPP®* < MAXp, because
P(P/PP|RPPP) =0 when P2, < RPP® < MAXp (from
B’s perspective, S will not generate a proposal that is lower
than its RP). Similarly, if S is programmed to learn
its opponent’s RP, P(RP""|P/*®)=0 when MINp <
RPPP < PP L.

Then, an expected value of RP°PP at round ¢ can be com-
puted (Fig. 2, step 2) by

Egrp(t) =Y  RP{™ x P(RP{™®|P{™P). (6)
t

When ¢ =0, P(RP;/™P) is used instead of P(RP;’’|P/*P)
in (6).

B. Estimating Opponent’s Deadline

This section discusses how an agent estimates its opponent’s
deadline. Suppose agent S is programmed to learn agent B’s
deadline. In BLGAN, both agents (B and S) generate their
proposals as follows: P, = P, 1 + (—1)” x (t/7)* x |RP —
P,_4|, where 8 = 1 for S (8 = 0 for B). Since both agents use
the same model for generating proposals, it is plausible for S
to assume that B uses the same model to generate proposals as
follows:

AB
t
PtB_PtBlz[TB} X}RPB—PEJ. @)

Equation (7) follows the form in (1) (see Section II) by re-
placing initial price (IP4) in (1) by B’s proposal P2, at the
previous round (i.e., at round ¢t — 1). The rationale is that, at
every round ¢ when B adjusts its strategy, it starts a “new”
negotiation process by treating P2 as its new “initial price”
(see Section III-C).
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For a series of three negotiation rounds ¢ — 2, ¢ — 1, and
t(t > 2), the following equations can be obtained from (7):

t—117®

PtEEI_Pt]i2: [ } X‘RPB_P32| 3
B
t e

PB —pB, = LB} x |RPg — P2,]. 9)

In negotiation with incomplete information, S does not know
RPg. Hence, R/P\B (an estimated value of RPp obtained from
the BL-procedure) can be used to replace RPp in (8) and
(9). From (8) and (9), %tB (an estimated value of 73) can be
computed by substituting 75 with 72 and RPp with ﬁPTg as
follows:

t
~B
= 10
Tt PthptB_l 1/A5 ( )
RPp—PP
where \p is determined as follows:
—_— B
PB _PB ‘RPB_Pt71‘
Ap = l1og 1 R (11)
(<) PtB — Pt]il

’RPB fP,EQ‘

However, at both t = 0 and ¢t = 1, .S (respectively, B) gen-
erates its proposals using its initial strategy Ag (respectively,
Ap) and waits until ¢ = 2 before it can start to estimate B’s
(respectively, S’s) deadline and adjust its own strategy (see
Fig. 1, steps 2-7). If P, = PB,, or PP = PB,, or PP, =
EP\B, or P£2 = EP\B, (i.e., (10) and (11) have no solution),
then the previous estimated value of 75 is used.

Similarly, when B is programmed to learn S’s deadline,
it follows the same computation method given earlier. An
estimated value of 7g can be computed by substituting 75 with
#5 and RPg with RPs as follows:

.5 t

= 12
Tf, Ptsil_PtS 1/)\5 ( )
‘EP\S—Pgly

where ]?F\’s is an estimation of S’s RP and \g is determined as
follows:

P —Pﬁl ’RPS*Pts—l‘

pﬁl_PtS

>\S = log(%) (13)

[
If Py =P, or PF=P3,, or PY, = RPg, or PS, =

RPsg, (ie., (12) and (13) have no solution), then the previous
estimated value of 74 is used.

C. Adjusting Negotiation Strategy

B adjusts its strategy as follows. At each round R; = ¢, if an

_——S
agreement is not reached, B will first estimate S’s RP, RP, ,

(Section ITI-A) and deadline 7;° using previous proposals of
S (Section III-B). Using these estimated parameters of .S and

) —S .
under the assumption that RP, € (P2, RPp), B treats its
proposal PP, att — 1 as its new “initial price” and adjusts its

strategy by setting AP to
—s
RP, - PB,
RPy — PP,

to start a new negotiation process. However, there are two

log 25 Ryt1
TR

—5 —5
special cases for the estimated value RP, of agent S, RP, <
—5
Pf 1 and RP, > RPp, that need to be considered.
—=5 : —==5 .
1) RP, < PP,. In this case, the value (RP, — PB,) is
—5
negative. To deal with this situation, (RP, — P2) is
—5
set to max{0, (RP, — P2,)}. Hence, at round R; = t,
—5
when RP, < PP, the value of AP can be determined as
log(ftsztH)/(TBthH) 0 = +o00, i.e., B adopts the “sit-
and-wait” strategy. Since the minimal possible agreement
_—9
price for B is S’s RP, if RP, < PP, B can maintain
its previous proposal P2 | and wait for S to decrement its

price to PP, . This is because B believes that S may still
decrease its price to a price that is equal to or lower than

—S
PP | because B’s estimation of S’s RP, RP, , is equal to
or lower than P2,.

2) ]/%I\Df > RPg. If the exact RP, RPs, of S is higher than
RPp, S and B can never reach an agreement. The best
course of action for B is to terminate the negotiation
immediately to avoid wasting computational resources
in haggling in a fruitless negotiation. However, when

—5

RP, > RPp, itis still possible that the exact RP of S is
in the price range of B, i.e., RPs € [I P, RPg]. Hence,
in this case, the absolute value of /\tB is adopted, i.e.,

—9
RP, — PE 1
RPgp —PB, ||
Hence, at each round R; = ¢, /\f can be calculated by
—5
RP, — PE
0, ———1 . (14

.. . . =58
Similarly, using the estimated parameters of B, RP, , and
78 and treating P as S’s new “initial price,” \{ can be

determined as follows:
—B
P°, — RP
max< 0, ==t -t . (15

An agent determines its next proposal as follows:

B _
AL = 10g+ts_Rt+1

Tp—R¢+1

B _
AL = 10g+t3_Rt+1

TERFT

S
)‘t = 10g+tB—Rt+1

Tg—Ret1

1 A
P,=pP_ -1 x K, - 16
t -1+ (—1)7 % tx(T—t+1> (16)
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Define the search space SP,.
Set the generations counter g=0.
Set the population size V.
Initialize the population P(g).
Calculatc the fitness for cach individual in P(g).
While g is smaller than the maximum number of
generations,

a. Copy all the individuals to a temporary
population 7P(g).
Perform crossover on 7P(g).
Perform mutation on 7P(g).
Calculate the fitness of each individual in 7P(g).
Use tournament selection to select N individuals
from 7P(g) and P(g), to form a new population
P(g+1).

f.  Increment g by 1.

7. Return the best individual in the last gencration.

AR W=

o po o

Fig. 3. GA-procedure.

where § =1 for S (8 =0 for B), and K; = |[RP — P,_1]| is
the difference between its RP and its proposal at ¢ — 1. Equation
(16) follows the form in (1) (see Section II) by substituting I P4
(initial price of an agent) in (1) with P;_4, since an agent treats
its proposal PP, at t — 1 as its new “initial price.” Since an
agent starts a “new” negotiation at t — 1, (t/74)* in (1) (where
T4 is agent A’s deadline) is substituted by ((¢ — (¢t —1))/
(r— (t— D)) = (1/(r — t+ D)

D. GA-Procedure

The GA-procedure is shown in Fig. 3. Using a real coding
mechanism, each individual (representing a possible proposal)
is a real number in the SP. For S (respectively, B) at the
beginning of each execution of GA, the SP, SPtS , (respectively,
SPP) is (dynamically) defined after PP is calculated using
(16) (in the negotiation process at each negotiation round ¢). For
B, the SP at round ¢ is [max{ P2, P! — §}, min{P? ,, P +
§, RPg}]. For S, the SP at round t is [max{PZ,, P —
8, RPs}, min{ P2, P"' + &}]. Hence, at different negotiation
rounds, the SP for agent S (respectively, B) is dynamically
changed to an area around P?'. Based on experimental tuning,
for PP € [1,100], § is set to 10.

Let an individual represent a proposal value P° of an agent.
Denoting the agent’s opponent’s proposal as P°PP, the fitness
of P¢ is determined as follows:

fitness(P°) =w(t) x U (P°)+[1—w(t)] x [1 - Dist(P°, P°PP)]

where U(P°) determines the utility generated by P° (see
Section IV for the definition of utility function in this work),
w(t) is a weight parameter computed by w(t) =« x [1 —
(t/7)?], t is the number of rounds, 7 is the agent’s deadline,
and Dist(P°, P°PP) is the normalized distance between P° and
PePP_Dist(P°, P°PP) is computed as follows:

Ppe — pepp
Dist(P?, P°PP) = P = PovR]
MAXp — MINp
where [MIN p, MAX p| is the price range of an agent.
By varying o (where a € [0, 1]), w(t) can be used to control
different proposals (individuals) with different negotiation out-

comes to be generated. With a larger o (and correspondingly
w(t)), proposals that achieve higher utilities for an agent are
more likely to be generated (see Section IV). When « is small,
proposals that are closer to an opponent’s proposal are more
likely to be generated—i.e., striving to enhance negotiation
success rates by placing more emphasis on Dist(P?, P°PP).
Furthermore, empirical results reported in [21] show that this
also facilitates reaching faster agreements.

E. Revising Possible Proposals

For each possible proposal P of S, it is prudent to set P to
be higher than or equal to its own RP and B’s last proposal P,
and to be lower than or equal to its own last proposal P ;. That
is, it is prudent to set P in the region [max(PZ, RPs), P2 ,].
Similiarly, for B, it is prudent to set each possible proposal
PP in the region [P2 |, min(P} |, RPg))). If P (respectively,
PP) exceeds the edge points of [max(P2,, RPs), P2 ] (re-
spectively, [P2,, min(P2,, RPg)]), it should be set to the
value of the nearest edge point.

IV. EMPIRICAL RESULTS

To evaluate BLGAN empirically, three sets of experiments
were carried out between two negotiation agents B and S to
compare negotiation with incomplete information that adopts
BLGAN to adjust an agent’s strategy with the following
negotiation scenarios:

1) Negotiation with complete information in which an agent
adopts its optimal strategy (determined using Theorems 1
and 2) and negotiation with incomplete information in
which an agent does not learn its opponent’s RP and
deadline (called the “no-learn” strategy).

2) Negotiation with incomplete information in which an
agent adopts BL [19] to learn its opponent’s RP and
adjusts its proposals based on its estimations of its op-
ponent’s RP.

3) Negotiation with incomplete information in which an
agent adopts GA [20] to generate its best proposal.

BLGAN versus “no-learn” Strategy: In the first set of exper-
iments, the following scenarios were studied.

1) “Completelnfo”: B and S know each other’s RP
and deadline, and they adopt the optimal strategy in
Theorems 1 and 2, respectively.

2) “Incompletelnfo”: B and S adopt the “no-learn” strategy,
i.e., they do not know each other’s RP and deadline, and
their strategies Ap and A\g remain fixed throughout the
negotiation.

3) “BLGAN-S-learns-RP”: S adjusts Ag by adopting
BLGAN to learn RPpg, and B’s strategy A\ remains fixed
throughout the negotiation.

4) “BLGAN-S-learns-RP-deadline”: S adjusts \g by adopt-
ing BLGAN to learn RPp and 7p, and B’s strategy
Ap remains fixed throughout the negotiation. This was
compared with scenarios 1) and 2).

Nevertheless, bilateral negotiation with complete informa-
tion (i.e., both agents know each other’s deadline and RP) is an
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ideal scenario that is extremely rare in real world situations. It is
NOT the intention of this paper to compare BLGAN strategy in
bilateral negotiation with incomplete information with the opti-
mal strategy in bilateral negotiation with complete information.
Instead, in Fig. 4, the empirical results of the optimal strategy
in bilateral negotiation with complete information (i.e., “Com-
pletelnfo”) is used as a yardstick for comparing and evaluating
the empirical results of the following: 1) “BLGAN-S-learns-RP-
deadline,” 2) “BLGAN-S-learns-RP,” and 3) “Incompletelnfo.”

BLGAN versus BL: In the second set of experiments, the
following scenarios were studied.

1) “BL-S-learns-RP”: S adjusts Ag by adopting the BL in
[19] to learn RPg, and B’s strategy Ap remains fixed
throughout the negotiation.

2) “BLGAN-S-learns-RP-deadline” (as described above).

BLGAN versus GA: In the third set of experiments, the
following scenarios were studied.

1) “GA-S”: S adopts the GA in [20] to generate a proposal at
each negotiation round, and B adopts a strategy Ap that
remains fixed throughout the negotiation.

2) “BLGAN-S-learns-RP-deadline” (as described above).

Implementation: The experiments were carried out using a
testbed implemented using C++. The testbed consists of two
negotiation agents, and each agent was coded as an instance of
a user-defined class. Besides its private information (RP and
deadline), each agent was also designed to record historical
proposals of its opponent. To evaluate the BLGAN algorithm,
the following software components were developed for each
agent: 1) a component for learning its opponent’s RP, 2) a
component for estimating its opponent’s deadline, and 3) a
component for generating its proposal based on the learning
results (this includes adjusting the negotiation strategy of the
agent and revising possible proposals).

Experimental Settings: In each of the three sets of experi-
ments, 50 random runs for each scenario were carried out, and
in each run, S (respectively, B) was programmed with the same
deadline, RP, and initial price for all the scenarios. Initially,
Ap and \g were randomly selected from [0.2, 10]. In the BL-
procedure, the range of possible prices for each agent’s proposal
and RP is from 1 to 100 units, and both agents’ deadlines 75 and
Tg are between 9 to 100 rounds. The GA-procedure executes for
a maximum number of 200 generations with a population size
of 50, a tournament size of 7, and crossover and mutation rates
of 0.8 and 0.1, respectively. Through experimental tuning, « is
set to be 0.9 when only S learns (see the Appendix).

Performance Measures: The following four performance
measures were used: 1) Success Rate (Rsyccess), 2) Average
Negotiation Speed (ANS), 3) Average Utility (AU), and 4) CNO.
Whereas ANS is measured by the average number of rounds
needed to reach an agreement, Rguccess = Nsuccess/Ntotals
where Ngyccess 1S the number of successful deals and Niota 1S
the total number of deals. An agent’s utility function is defined
as follows. Let I, and lyax (respectively, lax and lyi,) be
the initial and RPs, respectively, for B (respectively, S), and [,

be the price that a consensus is reached by B and S. An agent’s
utility U () for reaching a consensus at [.. is given as follows:

U(l )_ umin+(1_umin)[(lmax_lc)/(lmax_lmin)] 9 for B
e umin"’(1_Umin)[(lc_lmin)/(lmax_lmin)]a fOI'S

where i, is the minimum utility that an agent receives for
reaching a deal at its RP. For experimentation purpose, the
value of u,;, is defined as 0.1. Assigning zero or a value that
is too close to zero does not distinguish the utilities between
deals and no deals (since an agent receives a utility of zero if
negotiation fails). However, assigning a value that is too high
may not significantly distinguish the preference orderings of
agents.1

Hence, AU = (1/Nauccess) S0 U (l,.).

An agent’s CNO is determined by CNO = Rgyccess X
AU x (NNS)~! where NNS is an agent’s normalized ANS
defined as follows. In a single negotiation process, if an agent
S (respectively, B) reaches a consensus with its opponent B
(respectively, .S) at round ¢., then the normalized negotiation
speed is t./(min{rs, 75 }). Hence, for Ny, negotiation, NNS
is determined as follows:

1 Niotal

Nsuccess

t;

NNS = “~ min {Tg,T}B}'

Results: Empirical results recorded from S’s perspective are
shown in Figs. 4-6. From these results, five observations are
drawn as follows.

Observation 1: S in “BLGAN-S-learns-RP” achieved:
1) much higher average utilities and better CNOs than S in
“Incompletelnfo,” and 2) faster ANS than S in “Completelnfo.”

Analysis: Fig. 4(a)—-(d) show the comparison of “BLGAN-
S-learns-RP” (and “BLGAN-S-learns-RP-Deadline”) with
“Completelnfo” and “Incompletelnfo,” and it is observed that,
in “BLGAN-S-learns-RP,” S generally achieved a 100% suc-
cess rate (except for very short deadlines, i.e., 9 to 20 rounds)
[Fig. 4(a)] and much higher average utilities and better
combined outcomes than in the “Incompletelnfo” situation
[Fig. 4(b) and (d)]. With a larger o (see Section III-D),
S in “BLGAN-S-learns-RP” strives to achieve higher av-
erage utilities at the expense of using more negotiation
rounds than in the “Incompletelnfo” situation to reach agree-
ments. On the other hand, the average utilities and combined
outcomes of S in “BLGAN-S-learns-RP” were better than
the “Incompletelnfo” situation and closer to the optimal re-
sults in the “Completelnfo” situation (proven in Section II).
In “BLGAN-S-learns-RP,” S achieved much faster ANS
than in the “Completelnfo” situation [Fig. 4(c)]. This is be-
cause, in the “Completelnfo” situation, S will only reach
an agreement either at its own deadline or the deadline of
B, whichever is shorter, while S in “BLGAN-S-learns-RP”
can reach an agreement earlier than the shorter deadline
of Band S.

The authors acknowledge that the utility function used in this work is
simple. However, the intention of this work is to focus on designing a learning
method for negotiation in the presence of incomplete information, and not on
the utility function per se.
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Fig. 6. BLGAN versus GA.

Observation 2: S in  “BLGAN-S-learns-S-Deadline”
achieved the following: 1) much higher average utilities and
better CNOs than S in “Incompletelnfo,” and 2) faster ANS
and better combined outcomes (for longer deadlines) than S in
“Completelnfo.”

Analysis: It can be observed from Fig. 4(a)-(d) that, in
“BLGAN-S-learns-RP-Deadline,” S generally achieved a 100%
success rate (except for very short deadlines, i.e., 9 to
20 rounds) [Fig. 4(a)] and much higher average utilities,
and generally, much better combined outcomes than in the
“Incompletelnfo” situation [Fig. 4(b) and (d)]. Similar to
“BLGAN-S-learns-RP,” with a larger «, S in “BLGAN-S-
learns-RP-Deadline” strives to achieve higher average utilities
at the expense of using more negotiation rounds than in the
“Incompletelnfo” situation to reach agreements. For the same
reason described in “BLGAN-S-learns-RP,” in “BLGAN-S-
learns-RP-Deadline,” S also achieved much faster ANS than in
the “Completelnfo” situation [Fig. 4(c)]. Furthermore, for lon-
ger deadlines, S in “BLGAN-S-learns-RP-Deadline” achieved
better combined outcomes than S in “Completelnfo.”

Observation 3: S in  “BLGAN-S-learns-RP-Deadline”
achieved higher average utilities and better CNOs than S in
“BLGAN-S-learns-RP.”

Analysis: It can be observed from Fig. 4(b) and (d) that
S in “BLGAN-S-learns-RP-Deadline” achieved higher aver-
age utilities and better CNOs than S in “BLGAN-S-learns-
RP.” From Fig. 4(a) and (c), it is observed that both S in
“BLGAN-S-learns-RP-Deadline” and S in “BLGAN-S-learns-
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RP” generally achieved a 100% success rate (except for short
deadlines) and used the same number of negotiation rounds to
reach agreements. These observations show that an agent adopt-
ing BLGAN achieved better performance when it learns more
private information about its opponent. By having estimations
of both the RP and deadline of its opponent, S (respectively, B)
is more likely to adjust its strategy \;’ (respectively, AZ) in each
negotiation round to a value that is closer to the optimal strategy
for complete information negotiation (proven in Section II)
than when it only has an estimation of its opponent’s RP [21].
Theorems 1 and 2 (Section II) show that B (respectively, S)
achieves the optimal utility if it adopts a strategy A\p (respec-
tively, Ag) determined using a formula that depends on both the
RP and deadline of B’s (respectively, S’s) opponent. On this
account, this paper has enhanced the work in [21] by obtaining
significantly better empirical results.

Observation 4: S in  “BLGAN-S-learns-RP-Deadline”
achieved much higher average utilities and much better CNOs
than .S in “BL-S-learns-RP.”

Analysis: Fig. 5(a)-(d) show the comparison of “BLGAN-
S-learns-RP-Deadline” with “BL-S-learns-RP.” It is observed
that, in “BLGAN-S-learns-RP-Deadline,” S generally achieved
a 100% success rate (except for very short deadlines, e.g., 9 to
20 rounds) [Fig. 5(a)], much higher average utilities and much
better combined outcomes than in “BL-S-learns-RP” [Fig. 5(b)
and (d)]. “BL-S-learns-RP” achieved much lower average util-
ities (between 0.2 and 0.3) as compared to between 0.7 and
0.8 for S in “BLGAN-S-learn-RP-Deadline” [Fig. 5(b)]. This

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on January 9, 2009 at 21:14 from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

SIM et al.: BLGAN: BL AND GA FOR SUPPORTING NEGOTIATION WITH INCOMPLETE INFORMATION 207

is because, in [19], S generates its proposal Prog between its
own RP, RPg, and the estimated value }/%1\3 p of its opponent’s
RP as follows: Prog = § x ]/%]\33 + (1 —=6)RPs.In[19,p. 18],
0 was set to 0.1, and the experimental settings in this work
followed the same settings given in [19, p. 18]. This means that
Prog = 0.1 x RPp + (1 — 0.1)RPg and the proposals of S in
“BL-S-learns-RP” are close to its own RP, and hence, this also
means that it made very large amounts of concessions. Even
though S in “BLGAN-S-learns-RP-Deadline” used fewer nego-
tiation rounds than S in “BL-S-learns-RP” to reach agreements
[Fig. 5(c)], the authors acknowledge that agents in [19] are
designed for enhancing joint utilities and negotiation speed of
both agents by learning each other’s RP using BL. Experiments
in this work were also conducted to compare the following
scenarios: 1) when both agents (B and S) adopt BLGAN to
learn RP and deadline with 2) when both B and S adopt BL to
learn each other’s RP. Whereas space limitation precludes these
empirical results from being included here, the authors would
like to summarize that, when B and S learn each other’s private
information, agents in [19] achieved faster negotiation speed
and better CNOs than BLGAN agents. When both BL agents in
[19] make large amounts of concessions, they are more likely
to reach faster agreements (at the expense of achieving lower
average utilities). However, in [23, p. 145], it was noted that
if an agent concedes too much, it “wastes” some of its utility,
and this is inefficient. Hence, BLGAN agents are designed to
maintain a balance among: 1) optimizing utilities, 2) obtaining
reasonably good negotiation speed (even though when both B
and S learn about the opponent’s private information, they used
more negotiation rounds than agents in [19]), and 3) reaching
agreements successfully.

Observation 5: S in  “BLGAN-S-learns-RP-Deadline”
achieved much higher average utilities and much better CNOs
than S in “GA-S.”

Analysis: Fig. 6(a)—(d) show the comparison of “BLGAN-
S-learns-RP-Deadline” with “GA-S,” and it is observed that,
in “BLGAN-S-learns-RP-Deadline,” S generally achieved a
100% success rate (except for very short deadlines, i.e., 9 to
20 rounds) [Fig. 6(a)], much higher average utilities and much
better combined outcomes than in “GA-S” [Fig. 6(b) and (d)].
With a larger « (see Section III-D), S in “BLGAN-S-learns-
RP-Deadline” strives to achieve high utilities, but in this case,
it used almost the same average number of negotiation rounds
as “GA-S” to reach agreements [Fig. 6(c)]. At each negotiation
round ¢, S in “BLGAN-S-learns-RP-Deadline” confined its SP
only to the possible proposals around the proposal computed
from its strategy A determined using the estimated values of
an opponent’s deadline and RP. )7 is derived from the same
formula as the agent’s optimal strategy (Theorem 2, Section II)
by replacing its “initial price” with its proposal in round ¢ — 1.
By treating its current proposal as its “initial price,” at each
round ¢, S starts a “new” negotiation process by attempting to
adjust \? to its optimal strategy based on its updated estimation
of its opponent’s RP and deadline. Hence, if agreements are
reached at S’s proposals determined using BLGAN, then S is
more likely to obtain higher average utilities since the proposals
generated using BLGAN are more likely to be closer to the
proposal generated using S’s optimal strategy. On the other

hand, the GA of S in “GA-S” searched the entire SP of all
possible proposals in the interval between .S’s proposal at round
t — 1 and B’s proposal at round ¢ — 1. Hence, it is compara-
tively less likely than S in “BLGAN-S-learns-RP-Deadline” to
generate proposals that are close to the proposal generated by
S’s optimal strategy.

V. RELATED WORK

The literature that relates to this work includes the fol-
lowing: 1) negotiation agents adopting GA [20], [24]-[27]
(Section V-A) and 2) negotiation agents adopting BL [19],
[28], [29] (Section V-B). Space limitation precludes all these
works from being introduced here, and this section only dis-
cusses some of the more closely related works (e.g., [19], [20],
[24]-[27]).

A. Negotiation Agents Adopting GA

In the literature on applying GA to enhancing automated
negotiation, GAs are used to: 1) evolve the best strategies [24],
2) generate proposals at every round [20], 3) track shifting
tactics and changing behaviors [25], and 4) learn effective rules
for supporting negotiation [26]. Furthermore, [27] presented a
novel GA with a new genetic operator for concession making in
negotiation.

Reference [24] utilized GA for learning the most successful
class of bargaining strategies in different circumstances (e.g.,
when an agent is facing different opponents). In their negoti-
ation model, an agent’s strategy is based on time-dependent,
resource-dependent, and behavior-dependent negotiation de-
cision functions (NDFs). An agent adopting time-dependent
NDFss considers both deadlines and time preferences. Whereas
resource-dependent NDFs generate proposals based on how a
resource (e.g., remaining bandwidth) is being consumed; in
behavior-dependent NDFs, an agent generates its proposal by
replicating (a portion of) the previous attitude of its opponent.
Represented as a gene in [24], an agent’s strategy is based
on a combination of the time-dependent, resource-dependent,
and behavior-dependent NDFs. By placing different weight-
ings on the time-dependent, resource-dependent, and behavior-
dependent NDFs, different strategies can be composed. The
basic genetic operators: reproduction, crossover, and mutation
were used in [24] for generating new (and better) strategies. In
their GA, tournament selection is used to create the mating pool
of the genes that form the basis for the next population. While
GA is used in [24] for evolving the most successful strategy
classes against different types of opponents in different environ-
ments, this work uses the synergy of GA and BL for determining
an agent’s optimal strategy and generating the best proposal
at each negotiation round. In this work, an agent determines
its optimal strategy using its estimations of an opponent’s RP
and deadline using a BL-procedure and a deadline-estimation
process, respectively. To compensate for possible errors in the
BL-procedure and the deadline-estimation process, GA is used
to search for a possibly better proposal within a dynamic SP
confined to an area around a proposal generated by an agent’s
current strategy determined using the estimated values of an
opponent’s deadline and RP.
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Reference [20] devised an evolutionary learning approach
for designing negotiation agents. Negotiation agents in [20]
are designed not only to optimize an agent’s individual payoff
but also to strive to ensure that a consensus is reached. A
subset of feasible offers at a negotiation round is represented
as a population of chromosomes, and each chromosome en-
codes an offer using a fixed number of fields. In their GA,
the effectiveness of a negotiation solution is evaluated using
a fitness function that determines both the following: 1) the
similarity of a negotiation solution to an opponent’s proposal
according to a weighted Euclidean distance function and 2) the
optimality of the negotiation solution. Similar to [24], the GA
in [20] utilizes reproduction, crossover, and mutation, and at
each iteration, either tournament or Roulette-wheel selection
is used to select chromosomes from the current population
for creating a mating pool. Empirical results in [20] seem to
indicate that their GA-based negotiation agents can acquire
effective negotiation tactics. Whereas the GA in [20] searches
the entire SP of all possible proposals in the interval between
an agent’s proposal and its opponent’s proposal, the GA in this
work focuses its search only around the proposal generated by
an agent’s strategy derived from the same formula as the agent’s
optimal strategy. This enables the GA in this work to focus its
search on a specific region in the SP with proposals that are
more likely to be closer to the proposal that is generated by
the optimal strategy. In doing so, empirical results (Section IV)
have shown that agents in this paper are more likely to achieve
higher average utilities than agents in [20].

In the adaptive negotiation agents (ANAs) by Krovi et al.
[25], decision making of a negotiator is modeled with com-
putational paradigms based on GA. GA is used for tracking
the shifting negotiation tactics and changing preferences of
negotiators. Novel features of ANA are as follows: 1) adopting
different tactics in response to opponents’ tactics, 2) modeling
the knowledge of opponents’ preferences, 3) considering the
cost of delaying settlements, 4) achieving different levels of
goals in negotiation, and 5) considering the different mag-
nitudes of initial offers. The GA-based negotiation mecha-
nism was used to model the dynamic concession-matching
behavior arising in bilateral-negotiation situations. Represent-
ing the set of feasible offers of an agent as a population
of chromosomes, the “goodness” of each chromosome (i.e.,
each feasible offer) was measured by a fitness function de-
rived from Social Judgment Theory (SJ7). With a predefined
number of iterations, reproduction, crossover, and mutation
were used to operate on the population of chromosomes,
and the fittest chromosome from the current population was
selected as tentative solution which represents the counter-
offer. However, since the fitness function of ANA is based on
SJT, an agent’s evaluation of its opponent’s counteroffer(s) may
be subjective.

Reference [26] is one of the earliest works that utilize a
GA for bolstering negotiation support systems. In [26], GA is
used to learn effective rules for bolstering a bilateral negoti-
ation process. Unlike the work in [20], [24], and [25] where
chromosomes are used to encode strategies and offers, respec-
tively, chromosomes in [26] represent (classification) rules. In
[26], the fitness of a rule (chromosome) is determined by the

frequency that it is used to contribute to a successful negotiation
process (i.e., the number of times the rule is used to contribute
to reaching a consensus). The basic genetic operators of repro-
duction, crossover, and mutation were used. Empirical results
seem to indicate that genetically learned rules are effective
in supporting users in several bilateral negotiation situations.
The results in [26] also show that, in a bargaining process,
an effective negotiation rule is one that prescribes small step
concessions and introduces new issues into the negotiation
process. On this account, [26] and this paper have different
focuses and adopt different approaches.

Trade GA [27] is an approach that employs GA for find-
ing solutions for multilateral negotiation involving multiple
attributes. Trade GA is characterized by having a new genetic
operator called Trade (in addition to crossover and mutation)
for addressing problem-specific characteristics. Trade models a
concession-making mechanism that is often used in negotiation
systems and simulates the exchange of a resource of one
negotiator for a resource of another negotiator. By applying the
trade operator, negotiators and resources are randomly selected
based on their willingness to trade. Empirical results seem to
suggest that Trade GA outperformed all the other approaches
such as traditional GA, random search, hill-climbing algorithm,
and nonlinear programming.

B. Negotiation Agents Adopting BL

The work in [19] attempted to demonstrate that learning an
opponent’s RP is beneficial in bilateral negotiation. A BL algo-
rithm is used during a negotiation process to update an agent’s
belief of its opponents RP. Two performance measures were
used: joint utility (JU) and number of proposals exchanged
(NPEs) during negotiation. Similar to this work, three scenarios
were simulated in [19]: 1) when only one agent learns its
opponent’s RP, 2) when both agents learn each other’s RP,
and 3) neither agent learns. During negotiation, each learning
agent makes a proposal computed from a linear combination of
its own RP and the expected value of the opponent’s RP. An
agent that does not learn will change its proposal with a fixed
percentage but above (respectively, below) its RP for a seller
(respectively, buyer) agent. For simplicity, [19] designated a
distribution function to each element (prior probability or con-
ditional probability) in the Bayesian updating rule. Empirical
results showed that agents obtain the most favorable JU when
both agents learn [scenario 2)], less favorable JU when neither
agent learns [scenario 3)], and the least favorable JU when only
one agent learns [scenario 1)]. Scenario 2) has the smallest
NPEs, scenario 1) a larger NPEs, and scenario 3) the largest
NPEs. While [19] showed that adopting BL to estimate the
RPs of their opponents enhances agents’ negotiation speed and
joint utilities, this work has shown that agents adopting BLGAN
achieved an almost 100% success rate in negotiation and ob-
tained higher utilities and much better combined outcomes
than agents without learning capabilities. Whereas agents in
[19] used BL to learn their opponents’ RPs, an agent adopting
BLGAN learns both the RP and deadline of its opponent.

The work in [28] attempted to construct a Bayesian Classifier
from past exchanges of messages for updating an agent’s beliefs
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of other agents’ preferences in multilateral negotiation. On this
account, Bui er al. [28] have quite different focuses from this
work. In [28], all possible agreements of a negotiation are repre-
sented as nodes of an agreement tree. Negotiation is considered
as a coordinated search through the agreement tree to find a
leaf (agreement) that is acceptable to all agents. The distributed
meeting schedule domain was chosen to test the performance of
their learning agents. Two-agent and three-agent negotiations
were simulated. Performance measures in their work are as
follows: group utilities of the final agreements, number of
messages needed for reaching agreements in each run, average
prediction error, and entropy of the learned probabilities for the
learning agents. Experimental results seem to suggest that their
learning agents are able to either reach agreements with equal
utilities but fewer number of messages exchanged or make
better predictions but with less uncertainty over time.

VI. CONCLUSION

Based on the theoretical results obtained in Section II for
finding an optimal strategy for negotiation with complete in-
formation, this work has devised a procedure called BLGAN
to search for solutions that are close to optimal solutions in
negotiation with incomplete information.

For negotiation with complete information, this work deter-
mines the specific strategy (i.e., the exact value of A\*) that an
agent A should adopt and proves that A* maximizes the utility
of A and guarantees that agreements are reached (Theorems
1 and 2, Section II). This contribution distinguishes this work
from [11] which only showed that there is an optimal strategy
class [among three strategy classes: Boulware (A > 1),
Linear (M =1), and Conceder (A < 1)] for different
scenarios.

The main and novel contribution of this work is that BLGAN
is one of the earliest works that use the synergy of GA and BL
to deal with the difficult problem of determining an agent’s
optimal strategy in negotiation with incomplete information
by learning the private information of its opponent. Since an
opponent’s RP and deadline (which are unknown to another
agent) are used as two of the variables for computing an
agent’s optimal strategy (Section II), any error in learning an
opponent’s RP or deadline would mean that an agent will
generate a proposal that deviates from the proposal that cor-
responds to its optimal strategy. To compensate for possible
errors in estimating an opponent’s RP using the BL-procedure
and in estimating an opponent’s deadline (Section III-A and
B), the GA-procedure (Section III-D) is used to search for
a possibly better proposal within a dynamic SP confined to
an area around a proposal generated by an agent’s current
strategy determined using the estimated values of an opponent’s
deadline and RP. On the other hand, the BL procedure and
the deadline-estimation process are used to allow an agent to
adaptively focus its search only on an appropriate area in the
SP of the GA-procedure. As time passes and as both agents
exchange more proposals, an agent is more likely to obtain
better estimations of the RP and deadline of its opponent. This
in turn enables the GA-procedure in BLGAN to reduce the size
of its SP by adaptively focusing its search on a specific region

in the space of all possible proposals [dynamically defined by
each proposal generated by an agent at each negotiation round
using its revised estimations of an opponent’s RP and deadline
(see Section III-D)]. In doing so, empirical results have shown
that agents adopting BLGAN are more likely to achieve much
higher average utilities and much better CNOs than agents that
adopt only GA for generating their proposals (e.g., [20]) (see
the analysis of observation 5 in Section IV). This is because the
GA-procedure in BLGAN focuses its search around a proposal
generated by an agent’s strategy that is derived from the same
formula as the agent’s optimal strategy (proven in Section II).
At each negotiation round ¢, an agent adopting BLGAN attempts
to adjust its strategy to the optimal strategy using its updated
estimations of its opponent’s RP and deadline and by treating
its proposal at round ¢ — 1 as its “initial price” (Section III-C).

Whereas [19] showed that adopting BL to estimate the RPs
of their opponents enhances agents’ negotiation speed and
joint utilities, empirical results in Section IV show that agents
adopting BLGAN achieved higher average utilities than agents
in [19]. This is because an agent in BLGAN compensates for
possible errors in estimating an opponent’s RP and deadline by
using GA to search around a proposal generated by its current
strategy (derived from the same formula as its optimal strategy).

For negotiation with incomplete information, empirical
results in Section IV have shown that agents adopting BLGAN
were highly successful in reaching agreements and achieved
much higher average utilities and generally much better
CNOs than agents that do not learn their opponents’ RPs and
deadlines.

Moreover, this work has considerably and significantly
enhanced the authors’ preliminary work in [21] as follows.

1) Whereas agents in [21] only learn the RPs of their oppo-
nents, agents in this paper are programmed to learn both
the RPs and deadlines of their opponents. In particular,
this work extends [21] by enhancing the BLGAN proce-
dure (Fig. 1 in Section III) with a deadline-estimation
process (Section III-B) and provides a more detailed
analysis of the process for adjusting an agent’s strategy
by considering two special cases (Section III-C). The
BL-procedure and the GA-procedure in Figs. 2 and 3
(Section III) have also been improved, and more detailed
descriptions for both these procedures have been added in
Section III-A and D, respectively.

2) Empirical results in Section IV also show that an agent
adopting BLGAN achieved better performance when it
learns both the RP and deadline of its opponent (in this
work) than just learning its RP (in the preliminary work in
[21]). By having estimations of both the RP and deadline
of its opponent, an agent A is more likely to adjust \* to a
value that is closer to its optimal strategy, since its optimal
strategy is determined using both the RP and deadline of
its opponent.

3) Whereas [21] only compared BLGAN with the follow-
ing negotiation scenarios: a) negotiation with complete
information when agents adopt the optimal strategy
and b) negotiation with incomplete information when
agents do not learn their opponents’ private information,
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this work conducted considerably and significantly much
more empirical studies (Section IV) than the preliminary
results in [21]. The more extensive empirical results in
this paper compare the relative performance of agents
in BLGAN with that of the following: i) agents that do
not learn their opponents’ private information, ii) agents
adopting only GA [20], and iii) agents adopting only
BL [19].

4) In comparison with [21], this paper has provided much
more detailed discussions of related works on negotiation
agents adopting GA and BL (Section V).

While there is an enormous volume of works on game-
theoretic models of bargaining (e.g., [12]-[18]), there are com-
paratively fewer works on applying evolutionary computation
techniques (e.g., GA) and BL for finding solutions in negotiation
problems. On this account, this work does not compete with
the existing related literature but, rather, it supplements the
very few works on applying GA and BL to solving negotiation
problems by providing a novel approach that is a hybrid of GA
and BL.

Nevertheless, the authors acknowledge that, in its present
form, this work only considers bilateral negotiation. A future
agenda of this paper is to apply BLGAN to enhancing the
performance of adaptive bargaining agents that consider outside
options [30]-[32] in multilateral negotiation.

APPENDIX

The results obtained from experimental tuning to determine
an appropriate value of o when only S learns are shown in
Fig. 7. From Fig. 7, it can be concluded that .S achieved a
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higher CNO with an increase in the value of «. It is reminded
that CNO is a function of the following: 1) Rgyccess, 2) AU,
and 3) ANS. It can be observed from Fig. 7 that, whereas both
Rgyccess and ANS are not significantly influenced by an increase
(or decrease) in the value of «, .S achieved a higher AU with an
increase in the value of «. Furthermore, since CNO is directly
proportional to AU, an increase in value in CNO is attributed to
the increase in AU as « increases.
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