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ABSTRACT
�is paper introduces MYRA, an open-source Java framework that
provides the implementation of several ant colony optimization clas-
si�cation algorithms. �e algorithms are ready to be used from the
command-line or can be easily called from custom Java code. �e
framework is implemented using a modular architecture, therefore
algorithms can be easily extended to incorporate di�erent proce-
dures and/or use di�erent parameter values. �e paper gives par-
ticular a�ention to the common architecture from which the algo-
rithms are built on, highlighting the shared classes among the di�er-
ent implemented algorithms. �e source code and documentation of
MYRA are available for download at h�ps://github.com/febo/myra.
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1 INTRODUCTION
�e advances in computer technologies, allowing the storage of
virtually any kind of data, have led to an exponential growth of
available information and, consequently, to an increased interest
in (semi-)automated data analysis techniques. �e research area
concentrated in applying computation models to extract knowledge
from real-world structured data is called data mining [5]. One of
the most studied data mining tasks in the literature is the classi�-
cation task. In essence, the classi�cation task consists of learning
a predictive relationship between input values and a desire out-
put. Each instance (data point) is described by a set of a�ributes
(features)—referred to as predictor a�ributes—and a class a�ribute.
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Given a set of instances, a classi�cation algorithm aims at creating
a model, which represents the relationship between predictor at-
tributes values and class values, capable of predicting the class of
an instance based on the values of its predictor a�ributes.

Since the goal of a classi�cation algorithm is to �nd the best pre-
dictive model, a classi�cation problem can be cast as an optimisation
problem. A wide range of techniques have been used to design
classi�cation algorithms—e.g., statistical algorithms, arti�cial neu-
ral networks, evolutionary algorithms, ant colony optimization,
among others. A good collection of machine learning algorithms
for classi�cation task can be found in the Waikato Environment for
Knowledge Analysis (WEKA) workbench [6], probably the most
popular open source data mining tool.

Ant colony optimization (ACO) [4] is a metaheuristic inspired
by the behaviour of real ant colonies. Many ant colonies are able
to cooperate to perform complex tasks despite the lack of a central
control mechanism and a relative simple individual behaviour—e.g.,
there are ant species with limited or no vision that are able to �nd
the shortest path between the nest and a food source. All interaction
between individual ants, and between the environment, is accom-
plished in an indirect way by dropping pheromone on the ground
to create a pheromone trail. Trails with higher pheromone concen-
tration are more likely to be followed by ants. Since the shorter
trail is traverse faster, its pheromone concentration is higher, which
eventually will result in the colony converging to using predomi-
nantly the shorter path. ACO algorithms mimic the behaviour of
ant colonies to perform a global search, where the search is guided
to be�er regions of the search space based on the quality of the
solutions. In the context of the classi�cation task in data mining,
ACO algorithms have the advantage of performing a �exible robust
search for a good combination of predictor a�ributes, less likely to
be a�ected by the problem of a�ribute interaction [7].

Parpinelli et al. [24] proposed the �rst ACO algorithm for clas-
si�cation, called Ant-Miner, to create IF-THEN classi�cation rules.
�e IF part corresponds to the antecedent of the rule and it con-
tains (a�ribute, value) terms representing tests on a�ributes’ val-
ues; the THEN part corresponds to the consequent of the rule
and it contains a class value prediction. An instance that satis-
�es all terms in the antecedent of a rule is said to be covered by
the rule and it has the class value in the consequent of the rule
predicted. A�er the introduction of Ant-Miner, research on ACO
classi�cation algorithms a�racted greater a�ention—the original
Ant-Miner paper has more than 990 citations according to Google
Scholar—and a large number of variations have been proposed
in the literature [14]. While the vast majority ACO algorithms
for classi�cation are focused on creating classi�cation rules, there
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are also works focused on creating decision trees [2, 22], hierar-
chical classi�cation [18, 21], learning bayesian network classi�ers
[25] and training arti�cial neural networks [1]. Despite the large
number of publications proposing ACO classi�cation algorithms,
the algorithms’ implementations are not publicly released in most
cases. �e few exceptions to the best of our knowledge are Ant-
Miner (h�ps://sourceforge.net/projects/guiantminer/), AntMiner+
[13] (h�p://www.antminerplus.com) and PSO/ACO2 [10] (h�ps:
//sourceforge.net/projects/psoaco2)—although PSO/ACO2 is not
a pure ACO algorithm, since it combines an ACO and a particle
swarm optimization procedures.

�is paper introduces MYRA, a freely available, open source,
object-oriented so�ware framework for ACO classi�cation algo-
rithms, wri�en in Java. �e framework provides the implementa-
tion for several ACO classi�cation algorithms: Ant-Miner, cAnt-
Miner [19, 20], cAnt-MinerPB [23], Unordered cAnt-MinerPB [16,
17] and Ant-Tree-Miner [22]. MYRA has generated 8,950 downloads
to date, since its �rst version released in 2008. �e framework has
been through two major refactorings—the last one on June 2015—in
order to improve its modularity and computational time. �e most
recent version is 4.5 and it is the one discussed in this paper. �e
paper gives particular a�ention to the common architecture from
which the algorithms are built on, highlighting the shared classes
among the di�erent implemented algorithms. While the framework
has been exclusively used to design classi�cation algorithms, there
are architectural and design elements that can be used in the de-
sign of ACO algorithms for other problems. MYRA source code,
documentation and a binary package are available for download at
h�ps://github.com/febo/myra, licensed under the Apache License
(version 2.0).1 �e framework is self-contained—only depends on
standard Java libraries—and requires Java version 1.7+. Javadoc is
used throughout the source code and Apache Maven2 is used to
manage the framework’s build, reporting and documentation. Note
that this paper does not provide a discussion of the results achieved
by the algorithms—a detailed statistical analysis can be found in the
algorithms’ original publications, where they have been compared
against state-of-the-art algorithms from the literature.

�e reminder of the paper is structured as follows. Section 2 dis-
cusses the core ACO classes of the framework. Section 3 discusses
the implementation of ACO classi�cation algorithms included in
MYRA. Instructions on how to run the algorithms and visualise
their output are given in Section 4. Finally, Section 5 presents
conclusions and future development ideas.

2 ACO ALGORITHMIC COMPONENTS
In this section, we discuss the core ACO classes present in MYRA
and the rationale for their design choice. ACO algorithms have three
main caracteristics [12]: (i) they are population-based algorithms,
where m ants create solutions to the problem at hand, mimicking a
colony of ants; (ii) solutions are created by a probabilistic procedure,
where solution components are selected based on pheromone and
heuristic information values; (iii) pheromone values are updated

1Previous MYRA 1.x, 2.x and 3.x versions can be found at h�ps://sourceforge.net/
projects/myra/. Readers interested in hierarchical classi�cation algorithms [18, 21]
(MYRA 3.x) should check this repository.
2h�p://maven.apache.org

1. Initialise();
2. while termination condition not met do
3. ConstructAntSolutions();
4. ApplyLocalSearch();
5. UpdatePheromones();
6. end while

Figure 1: High-level pseudocode of an ACO algorithm.

at each iteration using the quality of the candidate solutions as
(positive) feedback.

Figure 1 presents the high-level pseudocode of an ACO algorithm.
�ere are four main operations:

(1) Initialise: this procedure is responsible to initialise all data
structures (e.g., pheromone values, heuristic information)
and parameters of the algorithm;

(2) ConstructAntSolutions: this procedure mimics the move-
ment of arti�cial ants over the construction graph to create
candidate solutions. Solutions are created in a probabilistic
fashion, where solution components are selected based on
pheromone and heuristic information values—the higher
the values, the more likely is the selection probability;

(3) ApplyLocalSeach: this is an optional procedure used to
further re�ne candidate solutions. Its main purpose is
to introduce small modi�cations to solutions in order to
explore neighbouring solutions. Modi�cations that lead to
a decrease in quality are usually discarded;

(4) UpdatePheromones: this procedure updates the pheromone
associated with solution components. �ere are two stages
in the update: (i) pheromone values are decreased due to
evaporation, allowing ants to forget choices made at earlier
stages of the search; (ii) pheromone values of the best
candidate solution(s) are updated to increase the selection
probability of good components (positive feedback).

�e basic structure of an ACO algorithm, shown in Figure 1, is rep-
resented by the Scheduler class (package myra) in the framework.
A Scheduler implementation is inspired by a template method de-
sign pa�ern [9], where the order of operations is de�ned but their
individual implementations are delegated to the Activity interface.
�erefore, the implementation of an ACO algorithm is de�ned by an
Activity, which is then executed by the Scheduler. A Scheduler
will execute an Activity in its run method:

public void run() {
initialise();

while (!terminate()) {
create();

search();

update();
}

}

https://sourceforge.net/projects/guiantminer/
http://www.antminerplus.com
https://sourceforge.net/projects/psoaco2
https://sourceforge.net/projects/psoaco2
https://github.com/febo/myra
https://sourceforge.net/projects/myra/
https://sourceforge.net/projects/myra/
http://maven.apache.org
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Each method on the Scheduler (initialise, terminate, create,
search and update) will delegate the call to the encapsulated
Activity object. As can be seen in the code listing, the run method
closely implements the pseudocode shown in Figure 1.

One motivation for decoupling the implementation of the op-
erations and the structure (order of operations) of the algorithm
is that di�erent Scheduler implementations can be used to exe-
cute the same Activity. For example, the framework includes a
ParallelScheduler that executes an Activity in a parallel fash-
ion, taking advantage of multi-threading environments—the only
requirement is that the implementation of the Activity is thread-
safe. �e Activity interface de�nes the following methods:

public interface Activity<T extends Comparable<T>> {

// creates a single solution to the problem
public T create();

// applies local search to candidate solutions
public boolean search(Archive<T> archive);

// performs the initialisation step
public void initialise();

// indicates if the algorithm should stop
public boolean terminate();

// updates the state of the activity
public void update(Archive<T> archive);

}

�e generic parameter type T is the type of the solution created
by the algorithm; and an Archive holds the solutions ordered by
quality—if adding a new solution exceeds its capacity, the new so-
lution is only added if it is be�er than the lowest solution in the
archive. �e framework provides an abstract Activity implemen-
tation, the IterativeActivity class. �is class can be used as a
base class for algorithms that are controlled by a maximum number
of iterations. It provides an implementation for the terminate and
update methods: in the terminate, it checks whether the maxi-
mum number of iterations has been reached; and in the update, it
increments the number of iterations.

�e ParallelScheduler is a subclass of the Scheduler and it
overrides its createmethod implementation. While the Scheduler
implementation creates a solution for each ant in the colony se-
quentially by iterating over the number of ants calling the create
method of the encapsulated Activity, the ParallelScheduler
uses a CountDownLatch (package java.util.concurrent) to ex-
ecute the creation in parallel. In a CountDownLatch, multiple op-
erations are executed in threads while the current (main) thread
awaits. �e rationale of using a CountDownLatch is to encapsulate
each call to the create method as a Runnable object and use a
set of threads to execute them. Note that only the create method
perform parallel operations—i.e., only the creation of solutions is

Input: Training Instances
1. RuleList← {};
2. while |Instances| > threshold do
3. Rule← LearnOneRule(Instances);
4. Instances← Instances − Covered(Rule, Instances);
5. RuleList← RuleList ∪ Rule;
6. end while

Figure 2: High-level pseudocode of the iterative rule learn-
ing process.

in parallel. �is is a straightforward way to parallelise ACO al-
gorithms and more complex strategies are likely to deliver be�er
performance gains. �e choice between the sequential Scheduler
and ParallelScheduler is done as a command-line argument, as
it is the number of executor threads.

While MYRA was not designed to be a generic ACO framework,
a Scheduler can execute any ACO algorithm, as long as it is imple-
mented as an Activity; the Archive can store any type of solution,
as long as the class representing the solution type implements the
Comparable interface so the Archive is able to maintain the order
of solutions.

3 CLASSIFICATION ALGORITHMS
�is section discusses the implementation of ACO classi�cation
algorithms included in MYRA. �e algorithms presented can be
divided into three categories in terms of their strategy to cre-
ate a classi�cation model: iterative rule learning (Ant-Miner and
cAnt-Miner), Pi�sburgh-based rule learning (cAnt-MinerPB and Un-
ordered cAnt-MinerPB) and decision tree learning (Ant-Tree-Miner).
An overview of the di�erent strategies is presented together with
the details of the algorithms’ implementations.

A classi�cation algorithm is represented as a subclass of the
Classifier class (package myra.datamining). It aims at training
a classi�cation model (Model interface). �e Classifier class is an
abstract class—subclasses are required to implement the descrip-
tion and train methods. A Dataset object is given as a parameter
to the train method, representing the input (training) data. It con-
tains a collection of Instance objects, each describing the values
of the predictor and class a�ributes (Attribute class). �e train
method is responsible for executing an Activity, which represents
the ACO procedure.

3.1 Iterative rule learning
Both Ant-Miner and cAnt-Miner follow an iterative rule learning

approach to create classi�cation rules from the training data. In
this approach, a list of rules is created in a sequential covering
fashion: at each iteration a rule that covers some training instances
is created; training instances covered by the rule are removed and
the rule is added to the list; the process is then repeated until the
number of training instances is lower than a user-speci�ed thresh-
old. Figure 2 presents the high-level pseudocode of the iterative
rule learning. In Ant-Miner and cAnt-Miner, the LearnOneRule
procedure is implemented as an ACO procedure to search for the
best rule given a set of instances.
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In MYRA, the SequentialCovering class (package myra.ru-
le.irl) implements the iterative rule learning approach. �e rule
creation procedure is implemented as FindRuleActivity, which
is a subclass of the IterativeActivity class, and it is executed
by a Scheduler at each iteration of the sequential covering. Each
iteration is actually executing an independent ACO procedure to
create a classi�cation rule and, since the training instances are
di�erent, they create di�erent classi�cation rules.

�e FindRuleActivity makes use of four important compo-
nents: (1) Graph, representing the ACO construction graph from
where ants choose solution components; (2) RuleFactory, repre-
senting the probabilistic procedure to select components from the
construction graph to create a rule; (3) PheromonePolicy, repre-
senting the strategy to control pheromone values during the ACO
execution; and (4) Pruner, representing a procedure to remove
irrelevant terms from the antecedent of rules.

�e Graph (package myra.rule) is created using the informa-
tion from the predictor a�ributes. Given a set of nominal a�ributes
X = {x1, . . . ,xn }, where the domain of each nominal a�ribute xi is
a set of valuesVi = {vi1, . . . ,vidi } (where di equals to the number
of values in the domain of a�ribute xi ), the construction graph con-
sists of an almost fully connected graph. For each pair of nominal
a�ribute xi and value vi j (where xi is the i-th nominal a�ribute
and vi j is the j-th value belonging to the domain of xi ), a vertex
representing the term xi = vi j is added to the construction graph.
�en, vertices are connected by edges to every other vertex of the
construction graph, with the restriction that there are no edges
between vertices referring to the same a�ribute to avoid inconsis-
tent terms such as ‘gender = male AND gender = female’ being
included in the same rule; otherwise the rule would cover no exam-
ples. Ant-Miner only copes with nominal a�ributes, therefore any
a�empt to load a dataset with continuous a�ributes will generate
an exception. cAnt-Miner, on the other hand, can cope with both
nominal and continuous a�ributes. For each continuous a�ribute
yi , a vertex is added to the graph representing the term yi . �en,
the newly created vertex yi is connected to all previous vertices of
the construction graph. Note that the Graph class supports both
nominal and continuous vertices, therefore there is a single Graph
implementation in the framework. Each vertex has associated a
pheromone and heuristic values (as double values). Heuristic in-
formation can be speci�ed implementing the Heuristic interface.

�e RuleFactory (package myra.rule.irl) is a probabilistic
procedure to select vertices from the construction graph to create a
rule, mimicking the action of an ant traversing the graph. Each ant
starts with an empty rule—i.e., a rule with an empty antecedent—
and iteratively selects vertices to add to its partial rule based on their
values of the amount of pheromone τ and a problem-dependent
heuristic information η. �e probability of ant k selecting a partic-
ular vertex ci at each iteration of the rule construction process is
given by

pkci =
[τci ]α · [ηci ]β∑

c j ∈ N k
[τc j ]α · [ηc j ]β

, if ci ∈ N k , (1)

where τci and τc j are the amount of pheromone associated with
neighbouring vertices ci and c j ; ηci and ηc j are the values of heuris-
tic information associated with neighbouring vertices ci and c j ;

N k is the feasible neighbourhood of ant k—i.e., the set of vertices
that (1) the ant k has not visited and (2) do not correspond to terms
associated with a�ributes already used by current terms in the
antecedent of ant k ; α and β are user-de�ned weight parameters
that indicate the relative importance of the pheromone and heuris-
tic information. �is process is repeated until all feasible vertices
have been visited or any vertices added to the antecedent would
make the rule cover fewer training instances than a user-de�ned
minimum value. �e la�er restriction is used to avoid too speci�c
and unreliable rules.

A�er a Rule (package myra.rule) is created, it undergoes a
pruning procedure (Pruner class). �e pruning aims at removing
irrelevant terms from the antecedent of a rule, added as a con-
sequence of the probabilistically nature of the rule construction.
Terms are removed while the quality of the rule does not decreases.
�e pruning procedure can be seen as an ACO local search operator.
�ere are two pruning procedures implemented in the framework:
a greedy pruner (GreedyPruner class), which removes one-term-
at-a-time term of the rule until the rule quality decreases [24]; and a
backtrack pruner (BacktrackPruner class), which removes the last
term of the rule until the rule quality decreases [20]. �e quality of
a rule is determined using an evaluation function represented by a
RuleFunction object—the framework provides several implementa-
tions of evaluation function in the myra.rule.function package.
�e PheromonePolicy (package myra.rule.irl) is responsible
for the pheromone update and evaporation. Pheromone update
is implemented by increasing the pheromone values by a value
proportional to the quality of the iteration-best rule. Pheromone
evaporation is implemented by normalising pheromone values a�er
the update—values that have not been increased during the update
will decrease as a result of the normalisation.

At the end of the FindRuleActivity, usually controlled by a
maximum number of iterations, the best rule created by the ACO
procedure is returned to the iterative rule learning procedure. Given
the modular architecture of the framework, any of these implemen-
tation classes can be easily replaced by custom ones. �erefore, it
is straightforward to create variations of the algorithms. Figure 3
presents a simpli�ed class diagram illustrating the dependencies
among main classes used in Ant-Miner and cAnt-Miner implemen-
tation.

3.2 Pittsburgh-based rule learning
As aforementioned, the creation of each rule is an independent
execution of an ACO procedure in the iterative rule learning. In
a Pi�sburgh-based approach, a complete list of rules is created by
each ant instead of single rule. It has two main advantages when
compared to iterative rule learning: (i) it copes be�er with rule
interaction problem3; (ii) the ACO algorithm is guided by the qual-
ity of a complete list of rules. MYRA includes the implementation
of two Pi�sburgh-based classi�cation algorithms: cAnt-MinerPB
and Unordered cAnt-MinerPB. While both algorithms follow a
Pi�sburgh-based strategy, as their name suggest, they di�er on the

3�e problem of rule interaction in iterative rule learning derives from the order in
which rules are created—the outcome of a rule in�uences the rules that can be created
by subsequent iterations [8].
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model representation: cAnt-MinerPB produces a RuleList (pack-
age myra.rule), where the order of rules is important to make pre-
dictions; Unordered cAnt-MinerPB produces a RuleSet, where the
order of rules is not important. �ese algorithms are implemented
reusing many classes from the cAnt-Miner implementation—the
main di�erence is on their Activity implementation.

Ordered Rules. �e cAnt-MinerPB procedure to create a com-
plete list of rules is implemented by the FindRuleListActivity
class (package myra.rule.pittsburgh). Di�erently than the iter-
ative rule learning approach, the ACO procedure implemented by
FindRuleListActivity is responsible to create a complete list of
rules. �erefore, no multiple executions of the ACO procedure are
required. A FindRuleListActivity works in a sequential cover-
ing fashion, but rules created at each iteration do not necessarily cor-
respond to the best rule. �erefore, the LearnOneRule is replaced
by a probabilistically construction process (LevelRuleFactory
class) that is not optimised to create the best possible rule since the
list of best rules is not necessarily the best list of rules. �e quality
quality of the individual rules is not important in cAnt-MinerPB,
as long as the quality of the list of rules improves, since the entire
list is created at once and the best list is chosen to guide the ACO
search. �e FindRuleListActivity uses a LevelRuleFactory to
create rules at di�erent positions (levels) of the list. In essence, a
LevelRuleFactory works as a RuleFactory, with the di�erence
that it uses pheromone values indexes by the position of the rule—
i.e., the �rst rule uses pheromone values at index 0, the second at
index 1 and so forth. In this way, ants are able to identify good
vertices for multiple rules.

Given the use of multiple pheromone values, a LevelPheromo-
nePolicy class is used. It updates the pheromone values in the
same way as the PheromonePolicy from Ant-Miner, with the di�er-
ence that it takes a RuleList object as a parameter, corresponding
to the iteration-best list of rules. Each rule in the list is used to
increment the pheromone values of its associated level. �e incre-
ment is proportional to the quality of the iteration-best list of rules,
measured by a ListMeasure—the framework provides di�erent
implementation of measures in the myra.classification.rule
package. Pheromone evaporation is implemented by decreasing the
pheromone values by a user-de�ned factor ρ. Figure 4 presents a
simpli�ed class diagram illustrating the dependencies among main
classes used in cAnt-MinerPB implementation. As can be seen, there
are many classes shared between cAnt-MinerPB and cAnt-Miner
(Figure 3) implementations.

Unordered Rules. �e Unordered cAnt-MinerPB implementation
follows a similar structure, with the di�erence that the order in
which the rules are created is not important to make predictions—
i.e., it creates a set of rules. �is is implemented by the FindRule-
SetActivity class (package myra.classification.rule.unor-
dered). Rules are created in a (non-optimised) sequential covering
fashion, as in cAnt-MinerPB. �e FindRuleSetActivity uses a
FixedClassRuleFactory to create rules for each class value. �e
pre�x ‘Fixed’ in the class name indicates that the class value of
the rule is decided in advance, before the rule is created, and it
guarantees that the algorithm will create at least one rule for each
class value. While the order of rules is not important to make
predictions, pheromone values are indexed by the position of the
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RuleFunction
«use»

Scheduler

«use»
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Figure 3: A simpli�ed class diagram illustrating the depen-
dencies among main classes used in Ant-Miner and cAnt-
Miner implementation.

cAntMinerPB

FindRuleListActivity

LevelPheromonePolicy

LevelRuleFactory

Graph
«use»

Classifier

Pruner

«call»

Rule

«instantiate»

RuleList

RuleFunction
«use»

Scheduler

«call»
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«use»

«instantiate»

«instantiate»

«use»

«interface»
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«use»

Figure 4: A simpli�ed class diagram illustrating the depen-
dencies among main classes used in cAnt-MinerPB imple-
mentation.

rule, the same way as cAnt-MinerPB. It also uses a LevelPheromo-
nePolicy to control the update of pheromone values. It should be
noted that a RuleSet is a subclass of RuleList, therefore the same
ListMeasure measures can be used to evaluate a RuleSet.

�e implementation of Unordered cAnt-MinerPB includes an
option to use a FunctionSelector (package myra.classificati-
on.rule.function) to dynamically select a RuleFunction for pru-
ning [15]. �e motivation for this is that evaluation functions
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Figure 5: A simpli�ed class diagram illustrating the de-
pendencies among main classes used in Unordered cAnt-
MinerPB implementation.
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Figure 6: A simpli�ed class diagram illustrating the depen-
dencies among main classes used in Ant-Tree-Miner imple-
mentation.

have di�erent bias and capture di�erent aspects of a rule. �e
procedure to choose an evaluation function is similar to a vertex
selection, where the pheromone associated with each function bias
the selection. Hence, the algorithm is not only identifying which
vertices are more suitable to create rules, but also the evaluation
function more suitable to prune each individual rule.

Figure 5 presents a simpli�ed class diagram illustrating the de-
pendencies among main classes used in Unordered cAnt-MinerPB

implementation. It is clear that there are many shared classes be-
tween cAnt-MinerPB (Figure 4) and the unordered version.

3.3 Decision Trees
In addition to algorithms that produce classi�cation rules as a model,
MYRA includes the implementation of Ant-Tree-Miner, an ACO
algorithm to create decision trees. Ant-Tree-Miner follows the
traditional top-down approach, o�en referred to as divide-and-
conquer. In this approach, a decision tree is created iteratively,
from the top (root node) to the bo�om (leaf nodes). In the �rst
iteration, an a�ribute is selected to represent the root node of
the tree. �en, a branch is created for each di�erent value in the
domain of the a�ribute. Each branch represents a test on a particular
a�ribute value. �e data is then split into subsets according to
the instances’ values of the selected a�ribute—each subset is then
associated with its corresponding branch. �e a�ribute selection
is then recursively repeated for each branch created until one of
the following conditions is met: (i) all instances on a subset are
associated with the same class value; or (ii) the number of instances
in a subset is smaller than a user-de�ned minimum value. At this
point, a leaf node predicting the majority class value—the class
value associated with the majority of instances in the subset—is
added to the tree and the recursive process stops.

As can been seen, the crucial step in the top-down strategy is the
selection of a�ributes to create the nodes of the decision tree. In
other words, the problem of creating a decision tree is divided into
smaller problems of selecting an appropriate a�ribute given a subset
of data. Ant-Tree-Miner employs an ACO procedure to select at-
tributes during the decision tree construction. �is is implemented
by a FindTreeActivity (package myra.classification.tree).
�e �rst di�erence between Ant-Tree-Miner and Ant-Miner (and
variations) is the construction graph structure: vertices in Ant-Tree-
Miner’s graph represent a�ributes instead of (a�ribute, value) terms.
At each step of the tree construction procedure, an ant probabilisti-
cally selects vertex to visit based on the amount of pheromone and
the heuristic information, in the same way as Equation 1. When
an ant creates a candidate decision tree (Tree class), internal nodes
are represented by InternalNode objects and leaf nodes are rep-
resented by LeafNode objects. A Pruner class is used to remove
nodes that lead to an improvement in the quality of the tree. While
Ant-Tree-Miner uses a di�erent PheromonePolicy implementation,
since the construction graph and the solution representation are
di�erent, it works in a similar fashion: each internal node is used
to increment the pheromone values of its associated level (depth of
the node in the decision tree). �e increment is proportional to the
quality of the decision tree, measured by a TreeMeasure enum.

Given that Ant-Tree-Miner is a population-based algorithm, mul-
tiple decision trees are created at each iteration of the ACO proce-
dure. Similarly to Ant-Miner and variations, the FindTreeActivi-
ty is controlled by a maximum number of iterations. At the end, the
best Tree object created is returned as the output of the algorithm.

Figure 6 presents a simpli�ed class diagram illustrating the de-
pendencies among main classes used in Ant-Tree-Miner implemen-
tation. It should be noted that Ant-Tree-Miner implementation has
li�le overlap to the implementation of other rule-based algorithms,
apart from ACO algorithmic components discussed in Section 2.
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Table 1: Main class for the algorithms included in MYRA.

Algorithm / Main Class
Ant-Miner

myra.classification.rule.impl.AntMiner

cAnt-Miner
myra.classification.rule.impl.cAntMiner

cAnt-MinerPB
myra.classification.rule.impl.cAntMinerPB

Unordered cAnt-MinerPB
myra.classification.rule.impl.UcAntMinerPB

Ant-Tree-Miner
myra.classification.tree.AntTreeMiner

Its Graph, PheromonePolicy and Pruner are di�erent, since Ant-
Tree-Miner uses a Tree as a solution representation instead of a
list/set of rules.

4 RUNNING THE ALGORITHMS
�e framework includes main classes to run the algorithms directly
from the command-line. �ese are presented in Table 1. In order to
run the algorithms from the command-line, the following template
can be used:
java -cp myra-<version>.jar <main class> -f <file>

where <version> is MYRA jar version number (e.g., 4.5), <main
class> is the main class name of the algorithm and <file> is the
path to the a�ribute-relation �le format (ARFF)4 to be used as
training data. �e minimum requirement to run an algorithm is
a training data �le. If no training data �le is speci�ed, the list of
command-line switches is printed. Figure 7 shows the command-
line options for Ant-Miner algorithm.

�e parameters of an algorithm can be tweaked using command-
line options. Experiments can be reproduced by se�ing the same
seed value (-s option), since ACO algorithms are stochastic and a
pseudorandom number generator is used during their execution.
Note that when running the algorithm in parallel (--parallel
option), there is no guarantee that it will have the same behaviour
even if the same seed value is used, since the thread allocation is
not controlled in the code. Figure 8 shows an example of a run
of cAnt-Miner. �e output generated includes the values of the
parameters to facilitate replicating an execution.

�e algorithms can also be executed by instantiating the cor-
responding main class and calling the train method, which is
speci�ed by the abstract Classifier class. �is method returns a
Model object that can be used to make predictions.

5 CONCLUSIONS
�is paper introduced MYRA, a Java ant colony optimization frame-
work for classi�cation algorithms. It provides the implementation
of several popular ant colony optimization algorithms. �e algo-
rithms are ready to be used from the command-line or can be easily
called from your own Java code. �ey are implemented using a
4h�p://www.cs.waikato.ac.nz/ml/weka/ar�.html

Usage: AntMiner -f <file> [-t <test file>] [options]

The minimum required parameter is a training file to
build the model from. If a test file is specified,
the model will be tested at the end of training. The
results are presented in a confusion matrix.

The following options are available:

-c <size> specify the size of the
colony

-g enables the dynamic
heuristic computation

-h <method> specify the heuristic
method

-i <number> set the maximum number
of iterations

-m <number> set the minimum number of
covered examples per rule

-p <method> specify the rule pruner

-r <function> specify the rule quality
function

-s <seed> Random seed value

-u <number> set the allowed number of
uncovered examples

-x <iterations> set the number of iterations
for convergence test

--parallel <cores> enable parallel execution in
multiple cores

Figure 7: Command-line options of Ant-Miner algorithm.
When options are not speci�ed, the algorithm is executed
using the default values.

modular architecture, so they can be easily extended to incorporate
di�erent procedures and/or use di�erent parameter values.

�e current version 4.x is a complete rewrite from version 3.x,
although it was not possible to maintain backward compatibility.
�e overall architecture of the framework is very similar, but most
data structures have changed. �e computational time has been
signi�cantly improved—tasks that used to take minutes, now are
done in seconds. In addition, there is an initial support for ant
colony optimization regression algorithms [3].

Not all algorithms and features from version 3.x are implemented
in current version. Namely, hierarchical multi-label algorithms,
support for output of predictions and the GUI interface are not

http://www.cs.waikato.ac.nz/ml/weka/arff.html
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cAnt-Miner rule induction [build v4.5]
_________________________________________________

Training file: /uci/datasets/iris/iris.arff

[Runtime default values]
-s 1490115439698
-c 60
-i 1500
-m 10
-u 10
-x 10
-p backtrack
-r sen_spe
-h gain
-d mdl

Relation: iris
Instances: 150
Attributes: 4
Classes: 3
Random seed: 1490115439698

=== Discovered Model ===

IF petal-width <= 0.8 THEN Iris-setosa
IF petal-length > 5.15 THEN Iris-virginica
IF petal-width <= 1.45 THEN Iris-versicolor
IF petal-width > 1.75 THEN Iris-virginica
IF <empty> THEN Iris-versicolor

Number of rules: 5
Total number of terms: 4
Average number of terms: 0.80

Classification accuracy on training set: 97.33%

Running time (seconds): 0.24

Figure 8: Output of cAnt-Miner when executed on the iris
data from the UCI Machine Learning repository [11].

present. �ese will eventually be refactored into a future release.
Currently the framework does not have a standard way of organ-
ising experiments—e.g., run an algorithm over multiple datasets,
perform n-fold cross-validation or visualise results of multiple runs.
Users are required to provide their own wrapper code/scripts. It
would be interesting to incorporate a facility to perform multiple
experiments into the framework. Additionally, the framework does
not provide any feedback regarding the progress of the execution
of an algorithm—this is an important future development. Another
important future development is to include MYRA as a package
into WEKA.
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