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Abstract
Data literacy is becoming increasingly important in the modern world. While spreadsheets make
simple data analytics accessible to a large number of people, creating transparent scripts that
can be checked, modified, reproduced and formally analyzed requires expert programming skills.
In this paper, we describe the design of a data exploration language that makes the task more
accessible by embedding advanced programming concepts into a simple core language.

The core language uses type providers, but we employ them in a novel way – rather than
providing types with members for accessing data, we provide types with members that allow the
user to also compose rich and correct queries using just member access (“dot”). This way, we
recreate functionality that usually requires complex type systems (row polymorphism, type state
and dependent typing) in an extremely simple object-based language.

We formalize our approach using an object-based calculus and prove that programs construc-
ted using the provided types represent valid data transformations. We discuss a case study
developed using the language, together with additional editor tooling that bridges some of the
gaps between programming and spreadsheets. We believe that this work provides a pathway to-
wards democratizing data science – our use of type providers significantly reduce the complexity
of languages that one needs to understand in order to write scripts for exploring data.
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1 Introduction

The rise of big data and open data initiatives means that there is an increasing amount of
raw data available. At the same time, the fact that “post-truth” was chosen as the word of
2016 [11] suggests that there has never been a greater need for increasing data literacy and
tools that let anyone explore such data and use it to make transparent factual claims.

Spreadsheets made data exploration accessible to a large number of people, but operations
performed on spreadsheets cannot be reproduced or replicated with different input parameters.
The manual mode of interaction is not repeatable and it breaks the link with the original
data source, making spreadsheets error-prone [17, 25]. One solution is to explore data
programmatically, as programs can be run repeatedly and their parameters can be modified.

However, even with the programming tools generally accepted as simple, exploring data is
surprisingly difficult. For example, consider the following Python program (using the pandas
library), which reads a list of all Olympic medals awarded (see Appendix A) and finds top 8
athletes by the number of gold medals they won in Rio 2016:
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olympics = pd.read_csv("olympics.csv")

olympics[olympics["Games"] == "Rio (2016)"]
.groupby("Athlete")
.agg({"Gold" : sum})
.sort_values(by = "Gold", ascending = False)
.head(8)

The code is short and easy to understand, but writing or modifying it requires the user to
understand intricate details of Python and be well aware of the structure of the data source.
The short example specifies operation parameters in three different ways – indexing [. . .] is
used for filtering; aggregation takes a dictionary {. . .} and sorting uses optional parameters.
The dynamic nature of Python makes the code simple, but it also means that auto-completion
on member names (after typing dot) is not commonplace and so finding the operation names
(groupby, sort_values, head, ...) often requires using internet search. Furthermore, column
names are specified as strings and so the user often needs to refer back to the structure of
the data source and be careful to avoid typos.

The language presented in this paper reduces the number of language features by making
member access the primary programming mechanism. Finding top 8 athletes by the number
of gold medals from Rio 2016 can be written as:

olympics
.«filter data».«Games is».«Rio (2016)».then
.«group data».«by Athlete».«sum Gold».then
.«sort data».«by Gold descending».then
.«paging».take(8)

The language is object-based with nominal typing. This enables auto-completion that
provides a list of available members when writing and modifying code. The members (such
as «by Gold descending») are generated by the pivot type provider based on the knowledge of
the data source and transformations applied so far – only valid and meaningful operations
are offered. The rest of the paper gives a detailed analysis and description of the mechanism.

Contributions. This paper explores an interesting new area of the programming language
design space. We support our design by a detailed analysis (Section 3), formal treatment
(Section 6) and an implementation with a case study (Section 7). Our contributions are:

We use type providers in a new way (Section 2). Previous work focused on providing
members for direct data access. In contrast, our pivot type provider (Section 6) lazily
provides types with members that can be used for composing queries, making it possible
to perform entire date exploration through single programming mechanism (Section 3.2).
Our mechanism illustrates how to embed “fancy types” [37] into a simple nominally-typed
programming language (Section 4). We track names and types of available columns of
the manipulated data set (using a mechanism akin to row types), but our mechanism can
be used for embedding other advanced typing schemes into any Java-like language.
We formalize the language (Section 5) and the pivot type provider (Section 6) and
show that queries for exploring data constructed using the type provider are correct
(Section 6.2). Our formalization also covers the laziness of type providers, which is an
important aspect not covered in the existing literature.
We implement the language (github.com/the-gamma), make it available as a JavaScript
component (thegamma.net) that can be used to build transparent data-driven visualiza-
tions and discuss a case study visualizing facts about Olympic medalists (Section 7).

github.com/the-gamma
thegamma.net
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2 Using type providers in a novel way

The work presented in this paper consists of a simple nominally-typed host language and
the pivot type provider, which generates types with members that can be used to construct
and execute queries against an external data source. This section briefly reviews the existing
work on type providers and explains what is new about the pivot type provider.

Information-rich programming. Type providers were first presented as a mechanism for
providing type-safe access to rich information sources. A type provider is a compile-time
component that imports external information source into a programming language [34].
It provides two things to the compiler or editor hosting it: a type signature that models
the external source using structures understood by the host language (e.g. types) and an
implementation for the signatures which accesses data from the external source.

For example, the World Bank type provider [27] provides a fine-grained access to develop-
ment indicators about countries. The following accesses CO2 emissions by country in 2010:

world.byYear.«2010».«Climate Change».«CO2 emissions (kt)»

The provided schema consists of types with members such as «CO2 emissions (kt)» and
«2010». The members are generated by the type provider based on the meta-data obtained
from the World Bank. The second part provided by the type provider is code that is executed
when the above code is run. For the example above, the code looks as follows:

series.create("CO2 emissions (kt)", "Year", "Value",
world.getByYear(2010, "EN.ATM.CO2E.KT"))

Here, a runtime library consists of a data series type (mapping from keys to values) and
the getByYear function that downloads data for a specified indicator represented by an ID.
The indicators exist only as strings in compiled code, but the type provider provides a
type-safe access to known indicators, increasing safety and making data access easier thanks
to auto-completion (which offers a list of available indicators).

Types from data. Recent work on the F# Data library [26] uses type providers for accessing
data in structured formats such as XML, CSV and JSON. This is done by inferring the
structure of the data from a sample document, provided as a static parameter to a type
provider. In the following example, adapted from [26], a sample URL is passed to JsonProvider:

type Weather = JsonProvider "http://api.owm.org/?q=London"

let ldn = Weather.GetSample()
printfn "The temperature in London is %f" ldn.Main.Temp

As in the World Bank example, the JSON type provider generates types with members
that let us access data in the external data source – here, we access the temperature using
ldn.Main.Temp. The provided code attempts to access the corresponding nested field and
converts it to a number. The relative safety property of the type provider guarantees that
this will not fail if the sample is representative of the actual data loaded at runtime.

Pivot type provider. The pivot type provider presented in this paper follows the same
general mechanism as the F# type providers discussed above, although it is embedded in a
simple host language that runs in a web browser.

ECOOP 2017
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The main difference between our work and the type providers discussed above is that
we do not use type providers for importing external data sources (by providing members
that correspond to parts of the data). Instead, we use type providers to lazily generate types
with members that let users compose type-safe queries over the data source.

This means that our use of type providers is more akin to meta-programming or code
generation with one important difference – the schema provided by the pivot type provider
is potentially infinite (as there are always more operations that can be applied). The
implementation relies on the fact that type providers are integrated into the type system
and types can be provided lazily. This is also a new aspect of our formalization in Section 5.

3 Simplifying data scripting languages

In Section 1, we contrasted a data exploration script written using the popular Python
library pandas [21] with a script written using the pivot type provider. In this section, we
analyze what makes the Python code complex (Section 3.1) and how our design simplifies it.

3.1 What makes data exploration scripts complex
We consider the Python example from Section 1 for concreteness, but the following four
points are shared with other commonly used libraries and languages. We use the four points
to inform our alternative design as discussed in the rest of this section.

The filtering operation is written using indexing [. . .] while all other operations are written
using member invocation with (optionally named) parameters. In the first case, we write
an expression olympics["Games"] == "Rio (2016)" returning a vector of Booleans while in
the other, we specify a column name using by = "Gold". In other languages, a parameter
can also be a lambda function specifying a predicate or a transformation.
The aggregation operation takes a dictionary {. . .}, which is yet another concept the user
needs to understand. Here, it lets us specify one or more aggregations to be applied over
a group. A similar way of specifying multiple operations or results is common in other
languages. For example, anonymous types in LINQ [22] play the same role.
The editor tooling available for Python is limited – editors that provide auto-completion
rely on a mix of advanced static analysis and simple (not always correct) hints and often
fail for chained operations such as the one in our example1. Statically-typed languages
provide better tooling, but at the cost of higher complexity2.
In the Python example (as well as in most other data manipulation libraries), column
names are specified as strings3. This makes static checking of column names and auto-
completion difficult. For example, "Gold" is a valid column name when calling sort_values,
but we only know that because it is a key of the dictionary passed to agg before.

In our design, we unify many distinct languages constructs by making member access the
primary operation (Section 3.2); we use simple nominal typing to enable auto-completion
(Section 3.3); we use operation-chaining via member access for constructing dictionaries
(Section 3.4) and we track column names statically in the pivot type provider (Section 4).

1 For an anecdotal evidence, see for example: stackoverflow.com/questions/25801246
2 A detailed evaluation is out of the scope of this paper, but the reader can compare the Python example
with F# code using Deedle (fslab.org/Deedle), Haskell Frames library (acowley.github.io/Frames)
and similar C# project (extremeoptimization.com/Documentation/Data_Frame)

3 This is the case for Deedle and the aforementioned C# library. Haskell Frames [9] tracks column names
statically, arguably at the cost of higher code complexity when compared with Python.

stackoverflow.com/questions/25801246
fslab.org/Deedle
acowley.github.io/Frames
extremeoptimization.com/Documentation/Data_Frame
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Figure 1 Auto-completion offering the available values of the athlete name column

3.2 Unifying language constructs with member access
LISP is perhaps the best example of a language that unifies many distinct constructs using
a single form. In LISP, everything is an s-expression, that is, either a list or a symbol. In
contrast, a typical data processing language uses a number of distinct constructs including
indexers (for range selection and filtering), method calls (for transformations) and named
parameters (for further configuration). Consider filtering and sorting:

data[data["Games"] == "Rio (2016)"] Ê

data.filter(fun row→ row.Games = "Rio (2016)") Ë

data.sort_values(by = "Gold", ascending = False) Ì

Pandas uses indexers for filtering Ê which can alternatively be written (e.g. in LINQ) using
a method taking a predicate as a lambda function Ë. Operations that are parameterized only
by column name, such as sorting in pandas Ì are often methods with named parameters.

We aim to unify the above examples using a single language construct that offers a
high-level programming model and can be supported by modern tooling (as discussed in
Section 3.3). Member access provides an extremely simple programming construct that is,
in conjunction with the type provider mechanism, capable of expressing the above data
transformations in a uniform way:

data.«sort data».«by Gold descending».then Ê

data.«filter data».«Games is».«Rio (2016)».then Ë

The member names tend to be longer and descriptive. Quoted names appear as '. . .' in code,
but we typeset them using «...» for readability. The names are not usually typed by the
user (see Section 3.3) and so the length is not an issue when writing code. The above two
examples illustrate two interesting aspects of our approach.

Members, type providers, discoverability. When sorting Ê the member that specifies how
sorting is done includes the name of the column. This is possible because the pivot type
provider tracks the column names (see Section 4) and provides members based on the
available columns suitable for use as sort keys. When filtering Ë, the member «Rio (2016)»
is provided based on the values in the data source (we discuss this further in Section 6.3).

These two examples illustrate that member access can be expressive, but it requires huge
number of types with huge number of members. Type providers address this by integration
with the type system (formalized in Section 5) that discovers members lazily. This is why
approaches based on code generation or pre-processors would not be viable.

Using descriptive member names is only possible when the names are discoverable. The
above code could be executed in a dynamically-typed language that allows custom message-
not-understood handlers, but it would be impossible to get the name right when writing it.
Our approach relies on discovering names through auto-completion as discussed in Section 3.3.

ECOOP 2017
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«drop columns»
→ «drop Athlete»
→ «drop Discipline»
→ «drop Year»

«sort data»
→ «by Athlete»
→ «by Athlete descending»
→ «by Discipline»
→ «by Discipline descending»

«group data»
→ «by Athlete»
→ «average Year»
→ «sum Year»

→ «by Year»
→ «distinct Athlete»
→ «concat Athlete»
→ «distinct Discipline»
→ «concat Discipline»

Figure 2 Subset of members provided by the pivot type provider

Expressivity of members. Using member access as the primary mechanism for programming
reduces the expressivity of the language – our aim is to create a domain-specific language for
data exploration, rather than a general purpose language4. For this purpose, the sequential
nature of member accesses matches well with the sequential nature of data transformations.

The members provided, for example, for filtering limit the number of conditions that
can be written, because the user is restricted to choosing one of the provided members. As
illustrated by the case study based on our implementation (Section 7), this appears sufficient
for many common data exploration tasks. The mechanism could be made more expressive,
but we leave this for future work – for example, the type provider could accept or reject
member names written by the user (as in internet search) rather than providing names from
which the user can choose (as in web directories).

3.3 Tooling and dot-driven development

Source code editors for object-based languages with nominal type systems often provide
auto-completion for members of objects. This combination works extremely well in practice;
the member list is a complete list of what might follow after typing “dot” and it can be
easily obtained for an instance of known type. The fact that developers can often rely on just
typing “dot” and choosing an appropriate member led to a semi-serious phrase dot-driven
development, that we (equally semi-seriously) adopt in this paper.

Type providers in F# rely on dot-driven development when navigating through data.
When writing code to access current temperature ldn.Main.Temp in Section 2, the auto-
completion offers various available properties, such as Wind and Clouds once “dot” is typed
after ldn.Main. Other type providers [34] follow a similar pattern. It is worth noting that
despite the use of nominal typing, the names of types rarely explicitly appear in code – we
do not need to know the name of the type of ldn.Main, but we need to know its members.
Thus the type name can be arbitrary [26] and is used merely as a lookup key.

The pivot type provider presented in this paper uses dot-driven development for suggesting
transformations as well as possible values of parameters. This is illustrated in Figure 1 where
the user wants to obtain medals of a specific athlete and is offered a list of possible names.
The editor filters the list as the user starts typing the required name.

4 Designing a general purpose language based on member access is a separate interesting problem.
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Figure 2 lists a subset of the members from the example in Section 1. After choosing «sort
data», the user is offered the possible sorting keys. After choosing «group data», the user first
selects the grouping key and then can choose one or more aggregations that can be applied
on other columns of the group. Thus an entire data transformation (such as choosing top 8
athletes by the number of gold medals) can be constructed using dot-driven development.

Values vs. types. As Figure 1 illustrates, the pivot type provider sometimes blurs the
distinction between values and types. In the example in Section 1, "Rio (2016)" is a string
value in Python, but a statically-typed member «Rio (2016)» when using the pivot type
provider. This is a recurring theme in type provider development5.

Our language supports method calls and so some of the opertaions that are currently
exposed as member access could equally be provided as methods. For example, filtering
could be written as «Games is»("Rio (2016)"). However, the fact that we can offer possible
values when filtering largely simplifies writing of the script for the most common case when
the user is interested in one of the known values.

Unlike in traditional development, a data scientist doing data exploration often has the
entire data set available. The pivot type provider uses this when offering possible values
for filtering (Section 6.3), but all other operations (Section 6.1) require only meta-data
(names and types of columns). Following the example of type providers for structured data
formats [26], the schema could be inferred from a representative sample.

3.4 Expressing structured logic using members
In the motivating example, the agg method takes a dictionary that specifies one or more
aggregates to be calculated over a group. We sum the number of gold medals, but we
could also sum the number of silver and bronze medals, concatenate names of teams for the
athlete and perform other aggregations. In this case, we provide a nested structure (list of
aggregations) as a parameter of a single operation (grouping).

This is an interesting case, because when encoding program as a sequence of member
accesses, there is no built-in support for nesting. In the pivot type provider, we use the “then”
design pattern to provide operations that require nesting. The following example specifies
multiple aggregations and then sorts data by multiple keys:

olympics.
«group data».«by Athlete».
.«sum Gold».«sum Silver».«concat Team».then Ê

.«sort data».
.«by Gold descending».«and Silver descending».then Ë

When grouping, we sum the number of gold and silver medals and concatenates distinct team
names Ê. Then we sort the grouped data using two sorting keys Ë – first by the number of
gold medals and then silver medals (within a group with the same number of gold medals).

The “then” pattern. Nesting is an essential programming construct and it may be desirable
to support it directly in the language, but the “then” pattern lets us express nesting without
language support. In both of the cases above, the nested structure is specified by selecting
one or more members and then ending the nested structure using the then member.

5 The Individuals property in the Freebase type provider [34] imports values into types in a similar way.

ECOOP 2017
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In case of grouping, we choose aggregations («sum Gold», «concat Team», etc.) after we
specify grouping key using «by Athlete». In case of sorting, we specify the first key using «by
Gold descending» and then add more nested keys using «and Silver descending». Thanks to
the dot-driven development and the “then” pattern, the user is offered possible parameter
values (aggregations or sorting keys) even when creating a nested structure. We also use the
simple structure of the “then” pattern to automatically generate interactive user interfaces
for specifying aggregation and sorting parameters (Section 7).

Renaming columns. The pivot type provider automatically chooses names for the columns
obtained as the result of aggregation. In the above example Ê, the resulting data set will
have columns Athlete (the grouping key) together with Gold, Silver and Team (based on the
aggregated columns). The user cannot currently rename the columns.

In type providers for F#, renaming of columns could be encoded using methods with
static parameters [33] by writing, for example, g.«sum Gold as» "Total Gold" (). In F#, the
value of the static parameter (here, "Total Gold") is passed to the type provider, which can
use it to generate the type signature of the method and the return type with member name
according to the value of the static parameter.

4 Tracking column names

The last difficulty with data scripting discussed in Section 3.1 is that pandas (and most
other data exploration libraries, even for statically-typed languages) track column names as
strings at runtime, making code error-prone and auto-complete on column names difficult to
support. Proponents of static typing would correctly point out that column names and their
types can be tracked by a more sophisticated type system.

In this section, we discuss our approach – we track column names statically using a
mechanism that is inspired by row types and type state (Section 4.1), however we embed
the mechanism using type providers into a simple nominal type system (Section 4.2). This
way, the host language for the pivot type provider can be extremely simple – and indeed, the
mechanism could be added to languages such as Java or TypeScript with minimal effort.

4.1 Using row types and type state

There are several common data transformations that modify the structure of the data set and
affect what columns (and of what types) are available. When grouping and aggregating data,
the resulting data set has columns depending on the aggregates calculated. For simplicity,
we consider another operation – removing column from the data set. For example, given the
Olympic medals data set, we can drop Games and Year columns as follows:

olympics.«drop columns».«drop Games».«drop Year».then

Operations that change the type of rows in the data set can be captured using row types [35].
Row types make it possible to statically track operations on records that add or remove fields
and so they can be used for the typing of operations such as «drop Year». In addition, we
need to annotate type with a form of typestate [32] to restrict what operations are available.
When dropping columns, we first access the «drop columns» member, which sets the state to
a state where we can drop individual columns using «drop f». The then member can then be
used to complete the operation and choose another transformation.
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(drop-start)
Γ ` e : [f1 :τ1, . . . , fn :τn]

Γ ` e.«drop columns» : [f1 :τ1, . . . , fn :τn]drop

(drop-col)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«drop fi» : [f1 :τ1, . . . , fi−1 :τi−1, fi+1 :τi+1, . . . , fn :τn]drop

(drop-then)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«then» : [f1 :τ1, . . . , fn :τn]

Figure 3 Tracking available column names with row types and type state

To illustrate tracking of columns using row types and type state, consider a simple
language with variables (representing external data sources) and member access. Types can
be either primitive types α, types annotated with a type state lbl or row type with fields f :

e = v | e.N
τ = α | τlbl | [f1 :τ1, . . . , fn :τn]

Typing rules for members that are used to drop columns are shown in Figure 3. When
«drop columns» is invoked on a record, the type is annotated with a state drop (drop-start)
indicating that individual columns may be dropped. The then operation (drop-then) removes
the state label. Individual members can be removed using «drop fi» and the (drop-col) rule
ensures the dropped column is available in the input row type and removes it.

Other data transformations could be type checked in a similar way, but there are two
drawbacks. First, row types and typestate (although relatively straightforward) make the
host language more complex. Second, rules such as (drop-col) make auto-completion more
difficult, because the editor needs to understand the rules and calculate what members may
be invoked. This is a distinct operation from type checking and type inference (which operate
on complete programs) that needs to be formalized and implemented.

4.2 Using the pivot type provider
In our approach, the information about available fields is used by the pivot type provider to
provide types with appropriate members. This is hidden from the host language, which only
sees class types. Provided class definitions consist of a constructor and members:

l = type C(x : τ) = m

m = member N : τ = e

During type checking, the type system keeps track of a lookup of provided class definitions L.
Checking member access is then just a matter of finding the corresponding class definition
and finding the member type:

(member)
L; Γ ` e : C L(C) = type C(x : τ) = .. member Ni : τi = ei ..

L; Γ ` e.Ni : τi

The rule, adapted from [26], does not capture laziness of type providers that is important for
the pivot type provider (where the number of provided classes is potentially infinite). We
discuss this aspect in Section 5.

ECOOP 2017
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D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

e = Πf1,...,fn
(e) Projection – select specified column names

| σϕ(e) Selection – filter rows by given predicate
| τf1 7→ω1,...,fn 7→ωn

(e) Sorting – sort by specified columns
| Φf,ρ1/f1,...,ρn/fn

(e) Grouping – group by and calculate aggregates

ω = desc | asc Sort order – descending or ascending
ρ = count Count number of rows in the group

| sum f Sum numerical values of the column f
| dist f Count number of distinct values of the column f
| conc f Concatenate string values of the column f

Figure 4 Relational algebra with values, sorting and aggregation

Using type providers and nominal type system hides knowledge about fields available in
the data set. However, for types constructed by the pivot type provider, we can define a
mapping fields that returns the fields available in the data set represented by the class. The
type provider encodes the logic expressed in Section 4.1 in the following sense:

I Remark 1 (Encoding of fancy types). If Γ ` e : [f1 : τ1, . . . , fn : τn] using a type system
defined in Figure 3 and Γ ` e : C using nominal typing and C is a type provided by the pivot
type provider then fields(C) = {f1 7→ τ1, . . . , fn 7→ τn}.

In the following two sections, we focus on formalizing the pivot type provider and the
nominally typed host language. We define the fields predicate in Section 6.2 and use it to
prove properties of the pivot type provider.

We do not fully develop the type system based on fancy types sketched in Section 4.1.
However, the remark illustrates one interesting aspect of our work – the type provider
mechanism makes it possible to express safety guarantees that would normally require row
types and typestate in a simple nominally typed language. In a similar way, type providers
have been used to encode session types [2], suggesting that this is a generally useful approach.

5 Formalising the host language and runtime

Type providers often provide a thin type-safe layer over richer untyped runtime components.
In case of providers for data access (Section 2), the untyped runtime component performs
lookups into external data sources. In case of the pivot type provider, the untyped runtime
component is a relational algebra modelling data transformations. We formalize the relational
algebra in Section 5.1, followed by the object-based host language in Section 5.2.

5.1 Relational algebra with vector semantics
The focus of our work is on data aggregation and so we use a form of relational algebra with
extensions for grouping and sorting [8, 24]. The syntax is defined in Figure 4. We write f for
column (field) names and we include definition of a data value D, which maps column names
to vectors of length r storing the data (values v are defined below). Aside from standard
projection Π and selection σ, our algebra includes sorting τ which takes one or more columns
forming the sort key (with sort order ω) and aggregation Φ, which requires a single grouping
key and several aggregations together with names of the new columns to be returned.
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Πfp(1),...,fp(m){f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{fp(1) 7→ vp(1),1, . . . , vp(1),r , . . . , fp(m) 7→ vp(m),1, . . . , vp(m),r }

σϕ{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{f1 7→ . . . , v1,j , . . . , . . . , fn 7→ . . . , vn,j , . . . } (∀j. ϕ {f1 7→ v1,j , . . . , fn 7→ vn,j})

τfp(1) 7→ω1,...,fp(m) 7→ωm{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 
{f1 7→ v1,q(1), . . . , v1,q(r) , . . . , fn 7→ vn,q(1), . . . , vn,q(r) } where q permutation
such that ∀i, j. i ≤ j =⇒ (u1,i, . . . , vm,i) ≤ (v1,j , . . . , vm,j) where
uk,l = vp(k),q(l) (when ωk = asc)
uk,l = −vp(k),q(l) (when ωk = desc)

Φfi,ρ1/f ′
1,...,ρm/f ′

m
{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } 

{f ′1 7→ a1, . . . , f
′
m 7→ am, fi 7→ b} where

{g1, . . . , gs} = {{l | k ∈ 1 . . . r, vi,l = vi,k}, l ∈ 1 . . . r}
b = vi,k1 , . . . , vi,ks

where kj ∈ gj
ai = |g1|, . . . , |gs| when ρi = count
ai = Σk∈g1vj,k, . . . ,Σk∈gsvj,k when ρi = sum fj
ai = Πk∈g1vj,k, . . . ,Πk∈gs

vj,k when ρi = conc fj
ai = |{vj,k | k ∈ g1}|, . . . , |{vj,k | k ∈ gs}| when ρi = dist fj

Figure 5 Vector-based semantics for operations of the extended relational algebra

The semantics of the algebra is given in Figure 5. We use vector-based semantics to
support sorting and duplicate entries, but otherwise the formalization captures the usual
behaviour. In projection and sorting, we write fp(1), . . . , fp(m) to refer to a selection of fields
from f1, . . . , fn. Assuming m ≤ n, p can be seen as a mapping from {1 . . .m} to a subset of
{1 . . . n}. In selection, ϕ is a predicate applied to a mapping from column names to values. In
sorting, we assume that there is a permutation on row indices q such that the tuples obtained
by selecting values according to the given sort key are ordered. The auxiliary definition uk,l
negates the number to reverse the sort order when descending order is required.

The most complex operation is grouping. We need to group data by the value of the
column fi and then apply aggregations ρ1, . . . , ρm. To do this, we first obtain a set of groups
g1, . . . , gs where each group represents a set of indices of rows belonging to each group. For a
given group gi we can then obtain values of column j for rows in the group as {vj,k | k ∈ gi}.
This is used to calculate the resulting data set – the field fi becomes a new column formed by
the group keys (obtained by picking one of the indices from gj for each group); other fields
are calculated by aggregating data in various ways – |gi| gives the number of rows in the
group, Σ sums numerical values and Π (a slight notation abuse) concatenates string values.

5.2 Foo calculus with lazy context
We model the host language using a variant of the Foo calculus [26]. The core of the calculus
models a simple object-based language with objects and members. The syntax of the language
is shown in Figure 6. The relational algebra defined in Figure 4 is included in the Foo calculus
as a model of the runtime components of the pivot type provider – the values include the
data value D and the expressions include all the operations of the relational algebra.

The Foo calculus includes two special types. Query is a type of data and queries constructed
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v = C(v) | series τ1, τ2 (v) | n | s | D
e = C(e) | series τ1, τ2 (e) | x | v | e.N | . . .
E = C(E) | series τ1, τ2 (E) | E.N

| Πf1,...,fn
(E) | σϕ(E) | τf1,...,fn

(E) | Φf,ρ1/f1,...,ρm/fm
(E)

τ = C | num | string | series τ1, τ2 | Query
l = type C(x : τ) = m

m = member N : τ = e

(member)
L(C) = (type C(x : τ) = . . . member Ni : τi = ei . . .), L′

(C(v)).Ni  L ei[x← v]

(context)
e L e

′

E[e] L E[e′]

Figure 6 Syntax and remaining reduction rules of the Foo calculus

using the relational algebra. The type series τ1, τ2 models a type-safe data series mapping
keys of type τ1 to values of type τ2 that can be used, for example, as input for a charting
library. A series is a typed wrapper over a Query value and the proofs in Section 6.2 show that
a series obtained from the pivot type provider contains keys and values of matching types.

Reduction rules. The reduction relation  L is parameterized by a function L that maps
class names to class definitions, together with nested classes associated with the class definition
(used during type checking as discussed below). The map is not used in the reduction rules
for the relational algebra, given in Figure 5 and so it was omitted there.

The remaining reduction rules are given in Figure 6. The (member) rule performs lookup
using L(C) to find the definition of the member that is being accessed and then it reduces
member access by substituting the evaluated constructor argument v for a variable x. We
assume standard capture-avoiding substitution [x← v]. The rule ignores the nested class
definitions L′. The (context) rule performs reduction in an evaluation context E.

Type checking. One interesting aspect of type checking with type providers is that type
providers can provide potentially infinite number of types. The types are provided lazily as
the type checker explores parts of the type space used by the program [34]. Consider:

olympics.«group data».«by Athlete».«sum Gold».then

The type checker initially knows the type of olympics is a class C1 with member «group data»
and it knows that the type of this member is C2. However, it only needs to obtain full
definition of C2 when checking the member «by Athlete». Types of other members of C1
remain unevaluated. This aspect of type providers have been omitted in previous work
[26, 19], but it is necessary for the pivot type provider. The typing rules given are written as:

L1; Γ ` e : τ ;L2

The judgement states that given class definitions L1 and a variable context Γ, the type of
expression e is τ and the type checking evaluated class definitions that are now included
in L2. The resulting context obtained by type checking contains all definitions that may be
needed when running the program and is passed to the reduction operation  L.
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(num)
L; Γ ` n : num;L (string)

L; Γ ` s : string;L (var)
L; Γ, x : τ ` x : τ ;L

(data)
L; Γ ` vi,j : τ ;L τ ∈ {num, string}

L; Γ ` {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } : Query;L

(proj)
L1; Γ ` e : Query;L2

L1; Γ ` Πf1,...,fn
(e) : Query;L2

(sort)
L1; Γ ` e : Query;L2

L1; Γ ` τf1,...,fn
(e) : Query;L2

(sel)
L1; Γ ` e : Query;L2

L1; Γ ` σϕ(e) : Query;L2
(group)

L1; Γ ` e : Query;L2

L1; Γ ` Φf,ρ1/f1,...,ρn/fn
(e) : Query;L2

(series)
L1; Γ ` e : Query;L2

L1; Γ ` series τ1, τ2 (e) : series τ1, τ2 ;L2

(new)
L1; Γ ` e : τ, L2 L2(C) = (type C(x : τ) = . . .), L

L1; Γ ` C(e) : C;L2 ∪ L

(member)

L1; Γ ` e : C;L2 L2 ∪ L; Γ, x : τ ` ei : τi;L3
L2(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L

L1; Γ ` e.Ni : τi;L3

Figure 7 Type-checking of Foo expressions with lazy context

The structure of class definitions L is a function mapping a class name C to a pair
consisting of the definition and a function that provides definitions of delayed classes:

L(C) = type C(x : τ) = m,L′

The class C may use classes defined in L, but also delayed classes from L′. This models
laziness as L′ is a function that may never be evaluated. Since L is potentially infinite, we
cannot check class definitions upfront as in typical object calculi [1]. Instead, we check that
that members are well typed as they appear in the source code, which matches the behaviour
of F# type providers. In general, this means that L may contain classes with incorrectly
typed members. We prove that this is not the case for the pivot type provider (Section 6.2).

The rules that define type checking are shown in Figure 7. The two rules that force the
discovery of new classes are (new) and (member). In (new), we find the class definition and
delayed classes using L2(C). We treat functions as sets and join L2 with delayed classes
defined by L using L2 ∪ L. In (member), we obtain the class definition and discover delayed
classes in the same way, but we also check that the body of the member is well-typed.

The rules for primitive types and variables are standard. Input data (data) is of type Query
and all the operations of relational algebra take Query input and produce Query results. An
untyped Query value can be converted into a series (series) of any type, akin to the boundary
between static and dynamic typing in gradually typed languages [31]. When provided by the
pivot type provider, the operation produces series with values of correct types.
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pivot(F ) = C, {C 7→ (l, L1 ∪ . . . ∪ L4)} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F )
member «sort data» : C2 = C2(x) where C2, L2 = sort(F )
member «group data» : C3 = C3(x) where C3, L3 = group(F )
member «get series» : C4 = C4(x) where C4, L4 = get-key(F )

get-key(F ) = C, {C 7→ (l,
⋃
Lf )} Ë

l = type C(x : Query) = ∀f ∈ dom(F ) where
member «with key f» : Cf = Cf (x) Cf , Lf = get-val(F, f)

get-val(F, fk) = C, {C 7→ (l, {})} Ì

l = type C(x : Query) = ∀f ∈ dom(F ) \ {fk} where
member «and value f» : series τk, τv = τk = F (fk), τv = F (f)
series τk, τv (Πfk,f (x)) Í

Figure 8 Pivot type provider – entry-point type and accessing transformed data

6 Formalising the pivot type provider

A type provider is an executable component called by the compiler and the editor to provide
information about types on demand. In our formalization, we follow the style of Petricek
et al. [26], but we add laziness as discussed in Section 5.2. We model the core operations
(dropping columns, grouping and sorting) in Section 6.1 and refine the model to include
filtering Section 6.3. For simplicity we omit paging, which does not affect the shape of data.

6.1 Pivot type provider
A type provider is a function that takes static parameters, such as schema of the input data
set, and returns a class name C together with a mapping that defines the body of the class
and definitions of delayed classes L that may be used by the members of the class C. In our
case, the schema F is a mapping from field names to field types:

pivot(F ) = C, {C 7→ (type C(x : Query) = . . . , L)} where F = {f1 7→ τ1, . . . , fn 7→ τn}

The class C provided by the pivot type provider has a constructor taking Query, which
represents the, possibly already partly transformed, input data set. It generates members
that allow the user to refine the query and access the data. The type provider is defined
using several helper functions discussed in the rest of this section.

Entry-point and data access. Figure 8 shows three of the functions defining the pivot type
provider. The pivot function Ê defines the entry-point type, which lets the user choose which
operation to perform before specifying parameters of the operation. This is the type of
olympics in the examples throughout this paper. The definition generates a new class C with
members that wrap the input data in delayed classes generated by other parts of the type
provider. The result of pivot is the class name C together with definition of the class and
delayed generated types. The definition is a function that only needs to be evaluated when



T. Petricek 55:15

drop(F ) = C, {C 7→ (l, L′ ∪
⋃
Lf )} Ê

l = type C(x : Query) = ∀f ∈ dom(F ) where Cf , Lf = drop(F ′)
member «drop f» : Cf = Cf (Πdom(F ′)(x)) and F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
member then : C ′ = C ′(x) Ë where C ′, L′ = pivot(F )

sort(F ) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f )} Ì

l = type C(x : Query) = ∀f ∈ {f | F (f) = num}, where
member «by f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, f 7→ desc )
member «by f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, f 7→ asc )

sort-and(F, s1, . . . , sn ) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪ L′)} Í

l = type C(x : Query) = ∀f ∈ {f | F (f) = num, @i.si = f ′ 7→ ω ∧ f ′ = f}
member «f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, s1, .., sn, f 7→ desc )
member «f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, s1, .., sn, f 7→ asc )

member then : C ′ = C ′(τs1,...,sn
(x)) where C ′, L′ = pivot(F ) Î

Figure 9 Pivot type provider – dropping columns and sorting data

a program accesses a member of the class C, modelling the laziness of the type provider.
In the implementation, we return the name C together with a function that computes the
definition of the class when the type checker needs to inspect the body.

The get-key Ë and get-val Ì functions provide members that can be used to choose two
columns from the data set as keys and values and obtain the resulting data set as a value of
type series τ1, τ2 . For example, the following expression has a type series string, num :

olympics.«get series».«with key Athlete».«and value Year»

The get-key function generates a class with one member for each field in the data set. The
returned class Cf is generated by get-val and lets the user choose any of the remaining fields
as the value. The key and value columns are then selected using Πfk,f Í. The series is then
created with a data set containing only the key and value columns (we assume the order of
columns is preserved). Creating a series does not statically enforce that the data set has the
right structure, but the properties discussed in Section 6.2 show that series obtained from
the pivot type provider is constructed correctly.

Dropping columns and sorting. Functions that provide types for the «drop columns» and
«sort data» members are defined in Figure 9. The drop function Ê builds a new type that lets
the user drop any of the available columns. The resulting type Cf is recursively generated by
drop so that multiple columns can be dropped before completing the transformation using
the then operation Ë, whose return type is generated using the main pivot function. Note
that columns removed from the schema F ′ match the columns removed from the data set at
runtime using Πdom(F ′).

Types for defining the sorting transformation are split between two functions; sort Ì

generates type for choosing the first sorting key and sort-and Í lets the user add more keys.
For space reasons, we abbreviate ascending and descending as asc and desc in the generated
member names and we omit and in name of further keys such as «and Gold descending».
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group(F ) = C, {C 7→ (l,
⋃
Lf )} Ê

l = type C(x : Query) = ∀f ∈ dom(F ) where
member «by f» : Cf = Cf (x) Cf , Lf = agg(F, f, {f 7→ F (f)}, ∅) Ë

agg(F, f,G, S) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪

⋃
L′′f ∪ L′ ∪ L′′)} Ì

l = type C(x : Query) = ∀f ∈ dom(F ) \ dom(S)
member «sum f» : C ′f = C ′f (x) when F (f) = num Í

member «concat f» : C ′′f = C ′′f (x) when F (f) = string Î

member «count all» : C ′ = C ′(x) when Count /∈ G Ï

member «distinct f» : Cf = Cf (x)
member then : C ′′ = C ′′(Φf,ρ1/f1,...,ρn/fn

(x)) where {ρ1/f1, . . . , ρn/fn} = S Ð

where

Cf , Lf = agg(F, f,G ∪ {f 7→ num}, S ∪ {dist f/f})
C ′f , L

′
f = agg(F, f,G ∪ {f 7→ num}, S ∪ {sum f/f})

C ′′f , L
′′
f = agg(F, f,G ∪ {f 7→ string}, S ∪ {conc f/f})

C ′, L′ = agg(F, f,G ∪ {Count 7→ int}, S ∪ count/Count)
C ′′, L′′ = pivot(G)

Figure 10 Pivot type provider – grouping and aggregation

The members are restricted to numerical columns (by checking F (f) = num). The sort
keys are kept as a vector. The sort operation creates a singleton vector; sort-and appends a
new key to the end and the then member Î generates code that passes the collected sort keys
to the τ operation of the relational algebra. When generating members for adding further
sort keys, we exclude the columns that are used already (by checking that the column f does
not match column name of any of the existing keys @i. si = f ′ 7→ ω).

Grouping and aggregation. The final part of the pivot type provider is defined in Figure 10.
The group function Ê generates a class that lets the user select a column to use as the
grouping key and agg is used to provide aggregates that can be calculated over grouped
data. The agg function Ì takes the schema of the input data set F , column f to be used as
the group key, a schema of the data set that will be produced as the result G and a set of
aggregation operations collected so far S. Initially Ë, the resulting schema contains only the
column used as the key with its original type (which is always implicitly added by Φ) and
the set of aggregations to be calculated is empty.

The agg function is invoked recursively (similarly to drop and sort-and) to add further
aggregation operations, or until the user selects the then member Ð, which applies the
grouping using Φ and returns a class generated by the entry-point pivot function.

When calculating an aggregate over a specific column, the type provider reuses the column
name from the input data set in the resulting data set. Consequently, the agg function offers
aggregation operations only using columns that have not been already used. This somewhat
limits the expressivity, but it simplifies the programming model. Furthermore, «sum f» Í is
only provided for columns of type num and «concat f» Î is only provided for strings. Finally,
the «count all» aggregation Ï is not related to a specific field and is exposed once, adding a
column Count to the schema of the resulting data set.
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6.2 Properties of the pivot type provider
If we were using the relational algebra formalized in Section 5.1 to construct queries, we can
write an invalid program, e.g. by attempting to select a column f using Πf from a data set
that does not contain the column. This is not an issue when using the pivot type provider,
because the provided types allow the user to construct only correct data transformations.

To formalize this, we prove partial soundness of the Foo calculus (Theorem 1), which
characterizes the invalid programs that can be written using the Query-typed expressions
and then prove safety of the pivot type provider (Theorem 7), which shows that such errors
do not occur when using the provided types.

Foo calculus. The Foo calculus consists of the relational algebra and simple object calculus
where objects can be constructed and their members accessed. It permits recursion as a
member can invoke itself on a new object instance. To accommodate this, we formalize
soundness using progress (Lemma 2) and preservation (Lemma 3).

The soundness is partial because the evaluation can get stuck when an operation of the
relational algebra on a given data set is undefined.

I Theorem 1 (Partial soundness). For all L0, e, e
′, if L0, ∅ ` e : τ, L1 and e  L1 e

′ then
either e′ is a value, or there exists e′′ such that e′  L1 e

′′, or e′ has one of the following
forms: E[Πf1,...,fn(D)], E[σϕ(D)], τf1,...,fn(D)] or E[Φf,ρ1/f1,...,ρm/fm

(D)] for some E,D.

Proof. Direct consequence of Lemma 2 and Lemma 3. J

I Lemma 2 (Partial progress). For all L0, e such that L0, ∅ ` e : τ, L1 then either, e is a
value, there exists e′ such that e L1 e

′ or e has one of the following forms: E[Πf1,...,fn(D)],
E[σϕ(D)], τf1,...,fn

(D)] or E[Φf,ρ1/f1,...,ρm/fm
(D)] for some E and D.

Proof. By induction over `. For data, strings and numbers, the expression is always a value.
For relational algebra operations, the expression can either be reduced or has one of the
required forms. For (member) typing guarantees reduction is possible. J

I Lemma 3 (Type preservation). For all L0, e, e
′ such that L0, ∅ ` e : τ, L1 and e  L1 e

′

then L1, ∅ ` e′ : τ, L2 for some L2.

Proof. By induction over  L1 . Cases for relational algebra operations and for (context) are
straightforward. The (member) case follows from a standard substitution lemma and the
fact that type checking of member access also type checks the body of the member. J

Correctness of the pivot provider. The pivot type provider defined by pivot defines an
entry-point class and a context L containing delayed classes. Our type system does not check
type definitions in L upfront (although this is possible in dependently-typed languages [7]),
but we prove that the body of all provided members is well-typed.

Type checking can also fail if a delayed class was not discovered before it is needed in
the (new) and (member) typing rules (Figure 7). We show that this cannot happen for
the context constructed by the pivot function. To avoid operating over potentially infinite
contexts, we first define an expansion operation ↓n L that evaluates the first n levels of the
nested context L and flattens it.

I Definition 4 (Expansion). Given a context L, we define nth expansion of L, written ↓n L
such that ↓n+1 L =↓n L ∪

⋃
Ln where ↓n L = {C0 7→ (l0, L0), . . . , Cn 7→ (ln, Ln)} and

↓0 L = L.
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I Theorem 5 (Correctness of lazy contexts). Given C,L = pivot(F ) then for any e if there
exists i, τ such that ↓i L; ∅ ` e : τ ;L′ then also L; ∅ ` e : τ ;L′′.

Proof. Assume there exists F, e, i such that ↓i L; ∅ ` e : τ ;L′ but not L; ∅ ` e : τ ;L′′. This
is a contradiction as (new) and (member) typing rules expand L defined by pivot sufficiently
to discover all types that may have been used in the type-checking of e using ↓i L. J

I Theorem 6 (Correctness of provided types). For all F, n let C0, L0 = pivot(F ) and assume
that C ∈ dom(↓n L) where ↓n L(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L′. It holds
that for all i the body of Ni is well-typed, i.e. L ∪ L′;x : τ ` ei : τi;L′′.

Proof. By examination of the functions defining the type provider; the expressions ei are
well-typed and use only types defined in L ∪ L′. J

Safety of provided transformations. The two properties discussed above ensure that the
types provided by the pivot type provider can be used to type check expressions constructed
by the users of the type provider in the expected way. An expression will not fail to type
check because of an error in the provided types.

Now we can turn to the key theorem of the paper, which states that any expression
constructed using (just) the provided types can be evaluated to a value of correct type. For
simplicity, we only assume expressions that access a series using the «get series» member.
However, this covers all data transformations that can be constructed using the type provider.

I Theorem 7 (Safety of pivot type provider). Given a schema F = {f1 7→ τ1, . . . , fn 7→ τn},
let C,L = pivot(F ) then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C ` e : series τ1, τ2 ;L′ then
for all D = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } such that ` vi,j : τi it holds
that e[x ← C(D)]  ∗L′ series τk, τv ({fk 7→ k1, . . . , kr, fv 7→ v1, . . . , vr}) such that for all j
` kj : τk and ` vj : τv.

Proof. Define a mapping fields(C) that returns the fields expected in the data set passed to
a class C provided by the pivot type provider. Let fields(C) = F for C provided using:

pivot(F ) = C,L get-key(F ) = C,L

drop(F ) = C,L get-val(F, fk) = C,L

sort(F ) = C,L

sort-and(F, s1, . . . , sn ) = C,L
group(F ) = C,L agg(F, f,G, S) = C,L

By induction over  L′ , show that when C(v).Ni is reduced using (member) then v is a value
{f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } s.t. fields(C) = {f1 7→ τ1, . . . , fn 7→ τn}
and ` vi,j : τi. Thus the class provided by get-val is constructed with a data set containing
the required columns of corresponding types. J

6.3 Adding the filtering operation
The example given in Section 1 obtained top 8 athletes based on the number of gold medals
from Rio 2016. It used two operations that were omitted in the formalization in Section 6.1.
We omitted paging to keep the host language simple, but we also omitted filtering, which lets
us write «filter data».«Games is».«Rio (2016)». This operation is worth further discussion.
To support it, the type provider needs not only the schema of the data set, but also sample
data set that is used to offer the available values such as «Rio (2016)».
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pivot(F,D) = C, {C 7→ (l, L1 ∪ L2 ∪ . . .} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F,D)
member «filter data» : C2 = C2(x) where C2, L2 = filter(F,D)
(. . .)

drop(F,D) = C, {C 7→ (l, L′ ∪
⋃
Lf )} Ë

l = type C(x : Query) = ∀f ∈ dom(F )
member «drop f» : Cf = where F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
Cf (Πdom(F ′)(x)) and Cf , Lf = drop(F ′,Πdom(F ′)(D)) Ì

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter(F,D) = C, {C 7→ (l, L′ ∪
⋃
Lf )}

l = type C(x : Query) = ∀f ∈ dom(F )
member «f is» : Cf = Cf (x) where Cf , Lf = filter-val(F, f,D) Í

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter-val(F, f,D) = C, {C 7→ (l,∪
⋃
Lv)} where D = {f 7→ v1, . . . , vn , . . .} Î

l = type C(x : Query) = ∀v ∈ {v1, . . . , vn}
member « v » : Cv = where Cv, Lv = filter(F, σϕv (D))
Cv(σϕv

(x)) and ϕv(r) = r(f) = v Ï

Figure 11 Pivot type provider – grouping and aggregation

In the revised formalization, the pivot function which models the type provider takes the
schema F together with sample data D and provides the type with class context:

pivot(F,D) = C,L where
F = {f1 7→ τ1, . . . , fn 7→ τn}
D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

In prior work [26], the input value is not available when writing the code and so the schema
is inferred from a representative sample. In exploratory data analysis, the data set is often
available at the time of writing the code and so D can be the actual data set.

The Figure 11 shows a revised version of the pivot function Ê together with one of the
operations discussed before and the newly added filter function. As members members
performing data transformations are generated, the provider applies the same transformation
on the sample data. For example, the revised drop function Ë takes the sample data set D;
when calling drop recursively to generate nested class after dropping a column Ì, it removes
the column from the schema (as before), but it also removes the column from the sample
dataset. This means that as nested types are provided, the sample data used is always
representative of data what will be passed to the class at runtime.

After choosing the «filter data» member, the class provided by filter lets the user select
one of the columns Í based on the schema; filter-val then generates a class with members
based on the available values for the specified column in the data D Î. The predicate that
filters data based on the value Ï is used both in the runtime code and when restricting the
sample data set using σϕv

(D) in the type provider when recursively calling filter.
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olympics.«filter data».«Medal is».Gold.«Team is»
→ «Czech Republic».«Athlete is»

→ «Barbora Spotakova»
→ «David Kostelecky»
→ «David Svoboda»

→ Mongolia.«Athlete is»
→ «Badar-Uugan Enkhbat»
→ «Tuvshinbayar Naidan»

Figure 12 Subset of members provided by the filtering operation

The fact that we transform the sample data when providing types is important for two
reasons. It makes it possible to apply filtering after aggregation (which changes the format of
data) and it means that more appropriate values are provided for faceted data. For example,
Figure 12 shows some of the provided members when filtering data by medal, team and
individual athlete. Once we refine the team using «Team is».Mongolia and attempt to filter
by athlete using «Athlete is», the type provider offers only the names of Mongolian athletes.

7 Case study: Visualizing Olympic medalists

We used The Gamma script with the pivot type provider to build an interactive web site
(rio2016.thegamma.net) that visualizes a number of facts about Olympic medalists using
the data set discussed in Appendix A and used throughout this paper. The web site lets
the readers view and modify the source code and we also developed a number of tools that
make working with the source code easier, going beyond the basic auto-completion tooling
to enable dot-driven development as discussed in Section 3.3. In this section, we review our
experience and outline some of the additional tools (available at github.com/the-gamma).

Building tables and charts. As part of the case study, we implement functions for building
basic visualizations (table, column chart, pie chart and timeline) and we extended the host
language with more advanced features that can be used to customize the displays. Building
rich visualizations with the simplicity of the pivot type provider is an interesting future work.
Figure 13 shows a sample table, listing top athletes over the entire history of Olympic games.

Figure 13 Athletes by the number of medals over the entire history of Olympic games

rio2016.thegamma.net
github.com/the-gamma
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Figure 14 User interface with automatically provided grouping and sorting options

The data transformation used to construct the table include the operations discussed in
this paper together with paging functionality and «get the data» which returns the entire
data set of type Query, as opposed to extracting a series with keys and values:

let data = olympics
.«group data».«by Athlete»
.«sum Gold».«sum Silver».«sum Bronze».«concat Team».then

.«sort data».«by Gold descending»
.«and by Silver descending».«and by Bronze descending».then

.paging.take(10).«get the data»

table.create(data)

The table.create operation on the last line generates a table based on the columns available
in the data set. We omit the additional customization which specifies that medals should be
rendered as images. For most visualizations we built, the pivot type provider was expressive
enough to capture the core logic of the operation, but further joining of data was sometimes
needed. Possible extensions that would allow capturing those are discussed in Section 8.1.

Generating interactive user interfaces. Although the pivot type provider simplifies code
needed for data exploration, not everyone will be able to write or modify source code. The
simplicity of the host language makes it possible to automatically generate user interface
that allows changing of some of the parameters of the program. Figure 14 shows an example
for the above code snippet that we implemented as part of the visualization.

The user interface lets the user choose aggregations to be calculated over a group and
select columns used for sorting. It is generated automatically by looking for a specific pattern
in the chain of member accesses – we annotate members with annotations denoting whether
a member is start of a list, list item or an end of a list. The editor then looks for parts of the
chain of the form «list start».«list item 1».«list item 2».«list end» and generates a component
that lets the user remove or add list items. An item cannot be removed if the operation
would break the code (e.g. when it adds a member that is needed later) and items to be
added are chosen using available members (as in the standard auto-complete). The headers
shown in Figure 14 are provided as additional annotations attached to «list start».
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Figure 15 Spreadsheet-inspired live editor for the pivot type provider

Spreadsheet-inspired live editor. The third editor extension that we developed for the pivot
type provider aims to bridge the gap between code and user interfaces. This is done through
a direct manipulation editor [28] inspired by spreadsheet applications. When exploring data
in a spreadsheet, the user can always see the data they work with and the results of an action
will be immediately visible. This is not usually the case when writing code in text editor.
However, when exploring data using the pivot type provider, the intermediate results can be
calculated immediately using the sample data set provided when instantiating the refined
version of the type provider with filtering support (Section 6.3).

The Figure 15 shows the sample expression (discussed above) in the live editor6. Note
that the selected part of code is the «by Gold descending» identifier and so the preview shows
results as computed at that point of the query evaluation. Athletes with largest number of
gold medals appear first, but silver or bronze medals are not yet used as secondary sorting
keys and so the secondary ordering is arbitrary. As the user moves through the code, or
writes the code, the live preview is updated accordingly.

Finally, the editor also makes it possible to modify the code through the user interface.
The “x” buttons can be used to remove sort keys or transformations and “+” buttons (on the
right) can be used to add more transformations or to specify additional parameters within
the “then” pattern. In case of sorting, this allows adding further sorting keys.

Unlike the user interface for modifying lists, the live editor works specifically with the
pivot type provider. However, it still relies on the simple structure provided by the fact that
entire transformation can be written as a single chain of member accesses. In particular,
we identify individual transformations («group by», «sort by», etc.) and generate different
user interface for specifying parameters of each transformation. For sorting, as shown in
Figure 15, the user can add or remove sort keys. For grouping or paging, the user interface
lets the user choose the grouping key and the number of elements to take, respectively.

6 The live editor can be tested live as part of the documentation for the JavaScript package at thegamma.net

thegamma.net
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8 Related and further work

The technical focus of this paper is on the programming language theory behind the pivot
type provider (Section 6), but the paper also outlines interesting human-computer interaction
aspects (Section 7). We discuss further related directions in this section before concluding.

8.1 Further work
The pivot type provider shows the feasibility of using dot-driven development as a mechanism
behind simple programming tools for data exploration. Extending the mechanism to handle
large and dirty datasets poses a number of interesting challenges.

Scalability. A benefit of our approach based on relational algebra, is that the query construc-
ted by the pivot type provider can be translated to SQL and executed by a database engine.
This means that evaluating the query over large data sets does not pose a problem. However,
the completion lists generated from data when filtering may require further consideration.

We plan to explore a number of possibilities such as grouping the values by a prefix (e.g.
«starting with LO».London and «starting with CA».Cambridge) or grouping the values by their
frequency (for example, «occurring less than 100 times».Grantchester and «occurring more than
10000 times».London). Such encoding makes it possible to scale to an arbitrary data size,
provided that the backing data storage is equipped with an appropriate index.

Expressivity. The case studies presented in the paper show that the pivot type provider
is practically useful in its current form, but we acknowledge that its expressivity is limited
to simple queries. Making the tool more expressive to allow tasks such as denormalisation,
handling of missing values and dirty data is an important problem. Unlike data querying
(which is captured by the relational algebra), there is no generally accepted “algebra of data
cleaning” and so more foundational work is needed, possibly building on from tools such as
Wrangler [16] and PADS [12]. We believe that the “dot-driven development” methodology
can support richer languages and we intend to explore this direction in the future.

8.2 Related work
Our work builds on type providers, which have been pioneered in F# [34]. The technical
contributions are related to several works on type systems. This section also gives an overview
of related work on human-computer interaction and commercial tools for data visualization.

Type providers. Type providers first appeared in F# [34] and can also be seen as a form of
dependent typing [7]; we take the opposite perspective and use type providers as a mechanism
for implementing other type system features. Our focus on using type providers for describing
computations is different from other type provider work [26, 19, 27], which focuses on mapping
of external data into types. To our best knowledge, the Azure type provider [3] is the first
type provider that provides members for specifying a restricted form of queries.

Fancy types. The pivot type provider makes data exploration safer as it does not allow
construction of invalid queries. Alternative approach would be to use fancy types, such
as those available in Haskell [9, 37]. The approach sketched in Section 4.1 used row types
and typestate or phantom types [35, 32, 18]. The idea of using type providers to encode
fancy types has also been explored for session types [13, 2] and it would be interesting to see
whether our approach can be applied in other areas such as web development [6].
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Human-computer interaction. We discussed how the pivot type provider simplifies the
programming model (Section 3), but it would be interesting to explore this aspect empirically
through the perspective of HCI. The live editor shown in Section 7 offers a form of direct
manipulation [28, 29, 30]. Unlike spreadsheets, we construct a transformation rather than
actually transforming data, which makes it more related to systems for query construction
[20, 5]. Our approach is somewhat different in that we see code as equally important to the
direct manipulation interface.

Relational algebra. Our operational semantics used to model data transformations (Sec-
tion 5) was based on relational algebra [8, 24], although our focus was on aggregation, which
has been added to the core algebra in a number of different ways [23, 14, 4, 10]. The pivot
type provider does not provide operations for joining data sets, which is an interesting
problem for further work as it requires extensions to the type provider mechanism – the join
operation is parameterized by two data sets that are being combined.

Commercial tools. There is a wide range of commercial tools for building dashboards
and data visualizations such as Microsoft Power BI [36], Tableau [38] and Qlik [15]. Those
allow users to build data visualizations through a user interface and embedded scripting
capabilities. The main difference from the pivot type provider is that none of these tools
treats source code as primary and so they do not provide the same level of reproducibility as
scripts written using the pivot type provider.

9 Conclusions

In this paper, we presented a simple programming language for data exploration. The
language addresses two problems with the current tooling for data science. On one hand,
spreadsheets are easy to use, but are error-prone and do not lead to reproducible scripts
that could be modified or checked for correctness. On the other hand, even simple data
exploration libraries require the user to understand non-trivial programming concepts and
offer only little help when writing data exploration code.

We reduce the number of concepts in the language by making member access (“dot”)
the primary programming mechanism and we implement type provider for data exploration,
which offers available transformations and their parameters as members of a provided type.
This leads to a simple language that can be well supported by standard tooling such as
auto-completion. We also explore other possibilities for tooling enabled by this model ranging
from simple interactive user interfaces to direct manipulation tools.

The pivot type provider offers a safe and easy to use layer over an underlying relational
algebra that we use to model data transformations. As a key technical contribution of this
paper, we formalize the type provider and prove that queries constructed using the types it
provides are correct. Achieving this property by other means would require a language with
complex type system features such as typestate and row types.

We believe that the simple programming model for data exploration presented in this
paper can contribute to democratization of data exploration – you should not need to be an
experienced programmer to build a transparent visualization using facts that matter to you!
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A Sample of the Olympic medals data set

The data set used as an example in the case study discussed in Section 7 as well as
in the examples discussed throughout the paper is a single CSV file listing the entire
history of Olympic medals awarded since 1896. The data set can be found at https:
//github.com/the-gamma/workyard together with scripts used to obtain it. The following
is a representative example listing the first 5 rows:

Games,Year,Discipline,Athlete,Team,Gender,Event,Medal,Gold,Silver,Bronze
Athens (1896), 1896, Swimming, Alfred Hajos, HUN, Men, 100m freestyle, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Otto Herschmann, AUT, Men, 100m freestyle, Silver, 0, 1, 0
Athens (1896), 1896, Swimming, Dimitrios Drivas, GRE, Men, 100m freestyle for sailors, Bronze, 0, 0, 1
Athens (1896), 1896, Swimming, Ioannis Malokinis, GRE, Men, 100m freestyle for sailors, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Spiridon Chasapis, GRE, Men, 100m freestyle for sailors, Silver, 0, 1, 0

The column names are the same as the column names used to generate the olympics value
using the pivot type provider. The script to generate the file de-normalizes the Medal column
and adds Gold, Silver and Bronze columns which are numerical and can thus be easily summed.
When loading the data, we also transform country codes such as GRE to full country names.
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