Teaching architecture students to code

Thrills and spills

Tim Ireland’
!Kent School of Architecture
!t ireland@kent.ac.uk

This paper will present the introduction of computer programming for design to
students at the Leicester School of Architecture (LSA). It will describe the course
and teachings, explain the trials and tribulations, and illustrate the results. An
important weight on students of architecture, when it comes to the inclusion of
coding into their architectural education, is the pressure of meeting certain
professional criteria. The MArch Architecure course results in a professional
level award that is prescribed by the ARB, and accredited by the RIBA for Part 11
exemption from their examinations. Consequently, students are required to
articulate through their design work that they have met the learning outcomes
associated with the stipulated professional criteria. Given the task of meeting the
learning outcomes is challenging enough, the pressure of then learning to code,
and to apply that skill to the design process in the course of the traditional
process is a pressure few students of architecture seem willing to take on. The
paper will conclude with a discussion as to the merits of coding and reason why
students of architecture should learn to code.

Keywords: Programming, Code, Processing, Teaching, Architectural Education

INTRODUCTION

This paper will present the introduction of computer
programming for design to students at the Leices-
ter School of Architecture (LSA). It will describe the
course and teachings, explain the trials and tribu-
lations, and illustrate the results. The course has
been taught for three years, commencing as part of
a specialised stream of the MA Architectural Design
course (2014-15), before becoming a component of
the MArch Architecture course in 2015-16, whereby
the course has become a module adjunct to the de-
sign studio; promoting algorithmic design thinking

in correlation to traditional and contemporary meth-
ods of production and design thinking. Animportant
weight on students of architecture, when it comes
to the inclusion of coding into their architectural ed-
ucation, is the pressure of meeting certain profes-
sional criteria. The MArch Architecture course results
in a professional level award that is prescribed by the
ARB, and accredited by the RIBA for Part Il exemp-
tion from their examinations. Consequently students
are required to articulate through their design work
that they have met the learning outcomes associated
with the stipulated professional criteria. See the QAA

Draft - eCAADe 35 | 1

Subject Benchmark Statement for Architecture (QAA
2010). Given the task of meeting the learning out-
comes is challenging enough, the pressure of then
learning to code, and to apply that skill to the de-
sign process in the course of meeting these criteria
is a pressure few students of architecture seem will-
ing to take on. This is understandable because learn-
ing to programme is a challenge that requires a mind-
set quite different from the traditional design studio
(see Vannini 2016), and why would someone wish to
struggle with connecting two random points to draw
a line when they can quite easily do it with a pen
and paper; and thereby focus on developing and ar-
ticulating their design proposal. The paper will con-
clude with a discussion as to the merits of coding and
reason why students of architecture should learn to
code.

BACKGROUND

Computer coding was introduced to students at LSA
in the academic year 2014-15. It was offered as an op-
tion to learn coding for the purpose of using the com-
puter as a tool to simulate parallelism and thereby
generate architectural scenarios through a decen-
tralised process of production. Until that time the
manner in which computation was utilised in the
school was quite traditional. Whilst it was incorpo-
rated and applied in the design process the computer
was typically used for 3D modelling, graphics and vi-
sualisation. Rhino, the favoured modelling software,
was, and remains to be, encouraged and students
are adept in its use through studio tutorials, work-
shops and self-directed learning. Whilst workshops
in Grasshopper are delivered students tend to adhere
to 3D modelling software as a means to produce rep-
resentations of their designs, rather than use the ca-
pacities of such tools to enable them to explore and
form find: or as Ranulph Glanville would say to pro-
duce “models of, as opposed to models for”. A spe-
cialist studio was introduced in the MArch Architec-
ture course this academic year (2016-17), concerned
with morphogenesis and parametric modelling tech-
niques (led by Gudjon Thor Erlendsson), so this trend

2| eCAADe 35 - Draft

is changing and LSA students are becoming more
computer savvy. The school emphasises the craft
of making, and promotes, through studio teaching,
craft-oriented and digital production techniques. Its
mix of analogue and digital fabrication techniques,
with a strong design-led ethos has yielded a num-
ber of student awards, putting the school in company
with internationally renowned leading schools of ar-
chitecture. (See note 1). The intention behind intro-
ducing students to algorithmic design thinking and
teaching them how to code is to promote the gen-
eration of architectural propositions through decen-
tralised methods of pattern formation and form pro-
duction (see Coates 2010), so as to (a) open up their
way of thinking about architecture and the world and
(b) experiment and test the potential of the computer
as a tool for design.

IMPLEMENTATION

Coding is taught as a short course, composed of sev-
eral lessons, introducing up to 10 students with only
basic computer skills and no coding experience to
programming. Processing is the programming lan-
guage taught. By the end of the course they are
able to produce their own agent-based-modelling
programs. To date no students have failed the mod-
ule, and the majority of students achieve a merit or
higher: due in large to the format and premise that
the students are required to write their own program
that generates some spatial composition. The nature
of code is such that no mistakes can be made, else
the program does nothing. So, so long as a student
is able to write code and produce a short program
that generates some spatial formation they are un-
likely to fail the module. This is not to say it is an easy
course. The majority of students experience a break-
down (see note 2) until their mind-set clicks: after all
programming is a way of thinking. This short course
has evolved over three years. It was implemented at
first as part of a specialist computing stream to stu-
dents on the MA course, during the academic year
2014-15, before it migrated the following year to the
MArch Architecture course, as a specialist technol-

ogy module. As part of the MA Architectural Design
course the students coding ability became more ad-
vanced (compared with the following year when the
course transferred to the MArch) and the manner in
which they took to coding was more literate. Having
learnt from the MA-MArch transition the course was
adapted and the relevance to design studio revised
for the current year (2016-17). The coding module
took place in the first term of the MArch course; com-
pleted before the Christmas break. This differs from
what was taught when the course was part of the MA.
The MA students where first taught (in the Autumn
term) NetLogo and given theory lectures introducing
them to key concepts: self-organisation, emergence,
decentralisation and agency. They then took the Pro-
cessing course in the Spring term (after the Christmas
break). So the MA students were better prepared for
programming, as they were clued up: in terms of hav-
ing both a theoretical grounding and a basic under-
standing of code before commencing with the Pro-
cessing programming module.

COURSE OUTLINE
The course starts with an introduction to the basics
of computer programming, before going through a
series of lessons to teach the Processing program-
ming language, agent-based modelling and Object-
Oriented Programming (OOP). The intention is that
the students write a short OOP programme which
generates 3-dimensional architectural spatial forma-
tions. Asked to investigate simple organisms, stu-
dents are required to model a simple artificial organ-
ism that responds to differences in its environment
which can be utilised to generate architectural spa-
tial compositions.

Essentially students are taught coding through
a series of weekly workshop oriented seminars, dur-
ing which they are introduced to key concepts and
taken through a series of exercises. Each of these
workshop-seminars concludes with a task, requiring
the student to produce their own processing sketch
toillustrate they have learnt the principles presented
in each lesson. This is also a mechanism prompt-

ing them to work through the lesson independently,
and to urge them to complete the tasks as the course
progresses because the module concludes with the
above mentioned assignment: to produce an object-
oriented agent-based program, whereby a cyber-
organism of their devising generates a pattern, struc-
ture or form that has spatial qualities and is an emer-
gent outcome of their agent’s autonomous interac-
tion with its environment. This agent-based mod-
elling assignment is the peak of this short course
which they present in the form of a report, including
their outputs for the weekly tasks. The report thus il-
lustrates their progression through the course, articu-
lating their understanding and development. Conse-
quently, as the weekly tasks form the basis of this re-
port, students are encouraged to complete each task
promptly, not only to ensure they are absorbing the
lessons but also as a scheduling mechanism to pro-
vide them the time to focus on the concluding as-
signment.

Each workshop-seminar starts with a confab
whereby students present their previous weeks task
output, explaining their code and what it does. The
group discusses the output, problems highlighted
and successes are congratulated. Given each task
must, in actuality be completed for the submission of
the report, students are able to take on comments to
revise and rework their weekly task codes. Students
are strongly encouraged to review the lesson inde-
pendently, and that an hour a day of coding is neces-
sary, else the code-muscle weakens and each week
will quickly become groundhog like; and it quickly
becomes apparent to the students that the work-
load snowballs if they do not keep abreast of the
developing syllabus. Students are also encouraged
to meet up to go through lessons and exercises to-
gether, either with a code-buddy or as a group to
prompt discourse about the tasks, and problems en-
countered; to counter them getting trapped by in-
ternal processes that prohibit seeing the wood for
the trees. The confab and workshop-seminar envi-
ronment promotes an inner-circle atmosphere and
students tend to work openly with each other, sup-

Draft - eCAADe 35 | 3

porting one another in the various glitches they en-
counter. At the end of the session the week’s task is
revealed and example output(s) presented.

The course runs for five weeks. Starting with the
fundamentals of programming students learn how to
write short programs that create dynamic patterns
and then, having grasped the fundamentals of cod-
ing, they move to interaction and movement before
learning about agents and finally object-oriented
programming (OOP). The course outline presented
below is as delivered this academic year (2016/17). It
is a reincarnation of a course originally authored by
Alasdair Turner, which the author took in 2009 at the
Bartlett School of Graduate Studies. The course has
been altered and adapted over the three years it has
been taught at LSA; in response to the students, the
authorsintentions and how it aligned with the design
studio module. An underlying aspect of the course is
thatit has been shoehorned into existing programme
structures. As part of the MA it was offered as an as-
pect of the design studio module, whilst under the
MArch it is offered as a specialist option in the His-
tory, Theory & Criticism module, which has both a hu-
manities side and a technology side. In both circum-
stances the timetable did not allow for the course -
at least not to provoke and prompt the students to
go from zero to agent-based modelling coder in five
weeks. The two-hour weekly seminar timetabled for
five weeks was insufficient. The course is an elec-
tive and consequently, it was stressed at the outset
of week 1 that the enthusiastic students had drawn
the short straw and that a deal was to be struck if
they were willing to “feel the pain” To achieve said
transition the author was willing to put in the time if
the students were, and proposed the weekly sessions
took as long as needed: on the basis that he was keen
to share and teach coding skills with the students, it
would not only be fun, but that it was a new skill and
would open the students up to another way of doing
things, with the view that it could feed into their stu-
dio work: as well as being part of a pioneering way
of doing architecture at LSA. Over the three years all
students have voted to take the plunge, signing up

4| eCAADe 35 - Draft

to extended weekly sessions that generally last three-
and-a-half to four hours.

Week 1. The first week is a crash course in the fun-
damentals of programming before explaining repeti-
tion and variation. The lesson starts with a short pre-
sentation and discussion regarding “Why Code?", be-
fore covering fundamentals of ‘functions’ and ‘data;
the Processing co-ordinate system, and an explana-
tion of ‘loops’ and ‘conditions’ Using colour and co-
ordinates as variables students are taught how to
control data. The first week's task is twofold, requir-
ing one sketch that produces a composition of points
and lines, and another that produces colourful pat-
terns. See Figure 1.

> &> <
<> <>
> <> <
[2 <> <
<> <>
4 <> <

Week 2. The following week is about movement and
change. Having learnt how to draw a shape primi-
tively (opposed to using, say the “rect” command, to
do so) in week 1, students are shown how to write
their own function, enabling them to replicate their
shapes more easily: i.e, less code. They then study
how to manipulate these shapes through loops, al-
tering local and global variables so that they shift and
rotate. The output is to produce a sketch that gener-
ates a dynamic artwork. See Figure 2.

Week 3. Students are shown how to stop and start
shapes rotating use an event according to mouse

Figure 1

Week 1 sketches by
MArch student Ka
Leong (2015/16)
that produces a
composition of
points and lines
(left) and another
(right) that
produces a
colourful pattern.

Figure 2

Week 2 sketch by
MArch student Ka
Leong (2015/16)
that generates a
dynamic artwork

Figure 4

Week 4 sketch by
Florian Mouafo
(MArch 2016/17) in
which spinning
boxes that are
attracted
to/repelled by other
boxes are added at
the click of the
mouse, to create an
asteroid field.

Figure 3

Week 3 task by
2016/17 student
Aashiv Shah who
created a simple
two dimensional
game, making his
own version of the
classic game
‘SNAKE

clicks and key presses, so that their sketches become
interactive, before they are introduced to classes. The
concept of grouping information into routines and
sub-routines is emphasised so that they are able to
organise their short programmes, grouping certain
bits of data and functions together, to enable them
to add and interact with shapes/objects that have dif-
ferent behaviours and respond differently to external
events: like the press of the keyboard or click of the
mouse to change direction. The aim being that they
view their coded objects as characters that “know”
what and where they are, and so respond accord-
ingly to an event. They are required to write a short
program in which an “object” has behaviour and re-
sponds to mouse/keyboard interaction. See Figure 3.

—_ ct

Week 4. This lesson introduces arrays. The notion of
arrays is introduced, starting with fixed length arrays,
first for lists of integers, and then for classes. Variable
length arrays are then introduced so that they can
add an arbitrary number of objects, which they can
manipulate and interact with, before arrayLists are in-
troduced. They are given a short sketch of variable
2D objects with behaviour which they are required to
modify, amending the objects behaviour and trans-
forming the sketch into 3D. They are introduced to
libraries, at the end of the lesson so that they can ei-
ther independently convert the sketch into 3D or use
a plug-in: such as peasyCam.

fart

Sarts
ox floating in

Week 5. Students are shown how to manipulate and
interact with their objects personally (with the click
of the mouse) and with one another. They are intro-
duced to the idea of agents, and agency to extend
their coding to agent-based modelling. The object-
oriented programming concept of composition is in-
troduced to present the technique for creating more
complex objects, and they study how we define an
agent. The notion of an agent and agency crosses
many disciplines, but the focus is on the computa-
tional notion of an agent; because that's what the
course is concerned with. Jacob von Uexkull’s con-
cept of the “functional Cycle” (1957) is introduced to
highlight an agent must be able to detect its environ-
ment in order to react to it. A taxonomy of “agent” is
presented (see Franklin and Graesser (1996), and Ing-
ham (1997)) with the conclusion that an agent is situ-
ated and exhibits autonomous and cogent behaviour
with respect to its environment and to each other.
The definition presented by Franklin and Graesser
(1996) is adopted as a working definition, that: “An
autonomous agent is a system situated within and a
part of an environment that senses that environment
and acts on it, over time, in pursuit of its own agenda
and so as to effect what it senses in the future”
Uexkdll's functional cycle is thus used as a model
to emphasise detector-effector interplay, explaining
the congruence between an organism (agent) and its
environment.

Draft-eCAADe 35 | 5

Looking at a simple ant inspired agent model we
look first at a primitive method of movement using
Moores Neighbourhood as a method of governing
movement of a random walker: akin to how a turtle
moves from patch to patch in NetLogo. We then con-
vert the method of walking to using PVectors. The
lesson closes with a look at the object-oriented pro-
gramming concept of composite objects and how an
agent can interact with its environment. Students
are then given the code for a random walking agent
sketch and tasked to alter the agent’s behaviour
to generate an alternative output arising from the
agent’s interaction with its environment. They are
also issued with the concluding assignment to write
a programme, for which they are required to char-
acterise an agent, which creates something through
interaction with its environment. By detecting dif-
ferences in its environment which it reacts to, their

6 | eCAADe 35 - Draft

autonomous agent must alter or affect its environ-
ment through its motion (shaping its environment
as it moves) or by brute-force (moving and chang-
ing elements in its environment). The aim is that their
cyber-organism produces some pattern, structure or
form which has spatial qualities and is an emergent
outcome of its autonomous interaction with its envi-
ronment. See figures 5 and 6, by 2016/17 MArch stu-
dent Michael Roden, who, interested in how spiders
sense vibrations, explored how the web acts like an
amplifier enhancing spiders’ capacity to detect, and
replicated the spiders coupling with its web to locate
food and survive.

CORRELATION WITH THE DESIGN STUDIO
The coding course outlined above was for the first
two years adjoined to the design studio. In its first
year (MA students 2014/15) the course was integral
to the design studio. With its transition to the MArch
in 2015/16 students, who signed up to the authors
design studio, were compelled to sign-up to the cod-
ing course, and in its third year (MArch 2016/17) the
course was detached from the design studio; as the
emphasis to design architectural projects through
code appeared daunting for MArch students; who
are compelled to respond to the constraints of the
Part 2 architectural curriculum (QAA 2010). The MA
is not vetted by the RIBA and so the design studio
is at liberty to experiment and explore, with the lux-
ury of being able to promote a more theoretical dis-
course given it is not constrained by vocational tar-
gets. During its application as part of the MA the
course was submerged into the studio. The design
studio commenced with Processing lessons, and so
it drove the design thinking and process. The final
output was thus not a report but a design project.
The MA students were thus not bound to produc-
ing outputs each and every week; though in large
they did. It meant that the learning was more fluid
and embedded in a design discussion. Interestingly
MA students seemed to struggle a little initially with
some of the more advanced concepts (such as ar-
rays and classes), even though they had the bene-

Figure 5
Two spider-agents;
one that spins a
web as it moves,
thereby enhancing
its sensorial
domain, the other
with just a field of
view. The spider
with the web (top)
lasts longer and
explores the
n'],%iontg of its
thsranscrlbed
into3D.

fit of having worked with NetLogo in the previous
term: during which they were introduced to key prin-
ciples (self-organisation, emergence, distributed rep-
resentation) and “played” with agents; so they had
a heads-up. This was only appreciated in hindsight,
once the course was delivered to MArch students
(2015/16), who seemed to lap up the initial weeks
of the course, producing dynamic art sketches more
impressive than their previous counterparts. How-
ever, having “twigged” the MA students use of Pro-
cessing as a tool for their design project became
ubiquitous and their coding projects surpassed the
course content. The MA students design projects
were driven by a code mind-set, and so their de-
sign projects were motivated by their coding abili-
ties. They explored methods, utilised libraries and
overcame technical problems independently: like
how to enable an agent to recognise a 3D plane so
that it changes direction and doesn’t walk through a
wall. The (2015/16) MArch students found the tran-
sition from using Processing as a drawing tool (to
generate artsy dynamic outputs) to producing mod-
els that generate some sort of architectural/spatial
composition through agent interaction more diffi-
cult. This is likely down to the fact that the MA co-
hort (2014/15) had more time and where not con-
strained by vocational criteria. The course they fol-
lowed and the final output was the same but the for-
mat and schedule differed. The Processing course
outlined above was delivered in MA studio time (for
which a day was available!) and bled directly into
the studio project which was to model a paramecium
(i.e., build a 2D artificial creature that responded to
differences in its environment), which they used to
generate two-dimensional spatial compositions and
developed into three-dimensions, to generate archi-
tectural compositions that express structure, space
and form. (See Figure 7: top). The MArch students
had the same brief as the MA students, but seemed
to freeze when it came to using processing to drive
their architectural projects, as they struggled to “let
loose” and perceive, or consider, the output of their
processing model as a basis for architectural thinking

and a vehicle for designing. Consequently, the transi-
tion between their Processing work and their design
project became moot: more an interesting exercise
than an embedded aspect that informed their initial
design process. (See Figure 7: bottom).

This third year the above Processing course was
decoupled from the design studio, and students
wishing to use their new coding skills were given
the flexibility to test and try, whilst ensuring they
progressed their design work by other methods in
tandem. The result of this decoupling was that the
MArch students appeared to relax; with regards the
need to drive their design studio projects through
Processing. The emphasis in the design studio was
instead placed on algorithmic thinking: i.e., their de-
sign projects were driven by a rule based process
(to emphasise results derived from cause and effect
“systems”), which they were welcome to implement
through analogue methods if they wished. The re-
sult of this decoupling was that the students were
less troubled with regards the design studio and were
more focused on the Processing course. The detach-
ment seemed to allow them the space to focus on
both individually and not worry about the coupling.
Consequently, a few of the students freely utilised
Processing in the early stages of their design stu-
dio projects to drive their conceptual thinking, and
as an aid to generate outputs, which they exported
into Rhino for further development. (See figure 8).
Whilst few actually developed this further, to gener-
ate their final output, the fact that they freely utilised
code in their design process was encouraging and
suggests that there is an interest in using the com-
puter in a more creative manner (i.e., “models for”),
but that the vocational constraints and schedule,
discourage architecture students because the voca-
tional constraints pressure them to thinking more tra-
ditionally - or using more tried and tested methods.
This is perhaps why (digital) architecture schools pro-
mote computational design through Masters courses
as opposed through the vocational Part 1 and 2 (or
equivalent courses). Whilst one might say this works,
its a deterrent to experimenting with the machine

Draft - eCAADe 35 |7

as a creative device/engaging at the low level be-
cause completing a Masters thereafter (Part 2) not
only amalgamates further time and expense, but is
by that time somewhat detached from the “day job".

TO CODE OR NOT TO CODE?

The fundamental question anyone interested in us-
ing computers as a medium for design must ask is
whether to learn to code, or not. The underlying

8| eCAADe 35 - Draft

concern to this question is whether they should en-
gage with the machine at a level typically reserved
for computer scientists and nerds. Computers are a
part of our everyday life, and computation has be-
come an intrinsic aspect of architectural design to-
day. But computers are typically background arte-
facts. Something we use in the process of doing
something, which enables and enhances production
and streamlines the way we do it. The vast majority of

Figure 7

(Top) “Paramecium
Drawing” by MA
student (2014/15)
Shen Guanlong
(aka Jerry) derives
inspiration from
single-celled
organisms that are
attracted to light.
The behaviour of
which was used as a
mechanism to draw
and generate
spatial
compositions that
materialise
bottom-up.
(Bottom) MArch
student (2015/16)
Ka Leoung uses an
attract-repel
network of nodes to
generate a simple
structure which a
mesh is wrapped
around (using
toxi.geom) to
inform a spatial
scenario.

Figure 8

March student
(2016/17) Mark Ngo
uses the
pheromone trails
generated by
ant-like agents
searching for food
to generate a trail
network which he
exported into Rhino
to produce a 3D
spatial composition.

architects and designers use computers as a produc-
tion tool. Fewer use computers as a tool for design.
Fewer still use computers as a creative device - even
in this age of digitalisation.

As a tool for design a user typically engages at
the level of a CAD package (such as Rhino), to build a
three-dimensional form using the in-built functions
and procedures provided. Whilst using a 3D CAD
package enables and enhances our design abilities
it also constrains; keeping the user within a well-
defined “design space”. The user has the freedom
to generate and build models but the manner in
which they do so pertains to particular procedures
and means dictated by the functionality of the pro-
gram: i.e., the software designer felt they knew a bet-
ter way than another program to do something in
a particular way. A typical question a student may
have when seeking to learn 3D modelling is which
CAD software they should learn - because each pack-
age has its merits, functionality and thus particular
ways of doing things. One may answer “learn any’,
because once you've learnt one you might crossover;
and having understood the nuances of each platform
be able to use whichever package best suits what you

want to achieve. Whilst this is true, and not new,
the issue is that the different packages require one
to think in a particular way. 3D modelling packages,
generally, do the same thing. They enable a user
to build three-dimensional models, which they can
animate and manipulate, but the functionality and
ways and means of doing something is aligned to
the developer’s view of how something should be
done. The same thing goes for visual programming
languages, which enable students to construct dia-
grammatic programmes in an interactive way. Hav-
ing learnt the graphic interface and functionality stu-
dents can produce “something” quickly, with relative
ease, and then simply play around. This provides
a systems-oriented approach to “generating” some-
thing, but what the user gains in ease of program-
ming they lose in being able to manipulate the “finer
details”. It is important to understand “algorithmic
thinking” and the basics of programming, quite sim-
ply because it makes you build from the ground up.
(See Burry 2011). Textual programming is empower-
ing. Itis the language of the computer scientist and it
is necessary to “speak” this language. It is a question
of communication and not of simply doing “some-

Draft - eCAADe 35 | 9

thing".

Steve Jobs said, “I think everybody... should learn
how to program a computer because it teaches you
how to think” (See URL reference: one minute in).
The ability to code is liberating, because it enables
you to get to the base of how to do something. To
draw a line with a pen and paper is “natural’, but
using a computer to do the same thing is a com-
plicated task. There is no kidding - code is difficult,
time consuming and often daunting. But once you
have figured out how to draw a line, and to copy, ro-
tate, and offset that line the capacity to draw lines
is enriched. The computer cannot and will not re-
place the qualities of a line drawn by hand but the ca-
pacity of the computer to do something repetitively
and automate the process provides the “drawer” a
freedom otherwise unknown. Speed and automa-
tion are key benefits, but the capacity to surrender to
the process is liberating. For example; the addition
of lines may change colour and an element of ran-
domness may be combined into the mix. The lines
could be animated, such that they move and have
the capacity to affect and be affected by other lines.
Once the “drawer” has figured out how to draw a cir-
cle the same process can be adapted to drawing cir-
cles, and then lines and circles; and so forth. In short
the drawing of lines becomes an animated, dynamic
and potentially self-organising and emergent pro-
cess, which opens up a world of possibilities for the
“drawer”. In this way the machine is used creatively,
because the only constraint is the “drawer”. Addi-
tionally, the problem of having to work out how to
draw a line in the first instance requires the “drawer”
to think about the process of drawing lines. In short,
programming how to draw a line mirrors the thought
process and action of drawing lines. Learning to
code empowers because it makes one think from the
ground up.

Notes:

1. LSAstudents have achieved 3 x RIBA awards at
the RIBA president’s medals in the past 5 years.
A significant achievement paralleled only by

10 | eCAADe 35 - Draft

four other schools of architecture: Bartlett
School of Architecture, Royal College of Art,
University of Sydney and London Metropoli-
tan University.

2. Not literally - what occurs is that the students
experience considerable frustration and fear
that they cannot get to grips with code. They
(reportedly ...and the author bears witness to
the tired unkempt zombie looking beings the
students become as the course progresses)
spend long hours starring into space, wanting
to throw their machine (and most likely the
author) out the window.

ACKNOWLEDGEMENTS

The author would like to acknowledge Alasdair
Turner (author of the Processing course on which the
course presented is founded) and the reviewers for
their comments and suggestions, which have helped
to improve the content of this paper. Not forget-
ting the students, who opted to take the course, and
whose effort and input have made the course a de-
light to teach.

REFERENCES

Burry, M. 2011, Scripting Cultures: Architectural Design
and Programming, John Wiley & Sons, Chichester, UK

Coates, P. 2010, programming.architecture, Routledge,
London

Franklin, S. and Graesser, A. 1996 'Is it an Agent, or just
a Program?: A Taxonomy for Autonomous Agents;,
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages, Bu-
dapest, Hungary, pp. 21-35

Ingham, J. 1997 "What is an Agent; no source given, Cen-
tre for Software Maintenance, University of Durham

QAA, initials missing 2010, Subject Benchmark State-
ment for Architecture., The Quality Assurance Agency
(QAA) for Higher Education 2010

von Uexkull, J. 1957, ‘A Stroll Through the Worlds of An-
imals and Men), in Schiller, C. H. (eds) 1957, Instinc-
tive behaviour; The development of a modern concept,
Methuen & Co. Ltd., London

[1] https://www.youtube.com/watch?v=mCDkxUbalCw

