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Nomenclature

Greek Alphabet

α alpha

β beta

χ chi

∆ delta

δ delta

ε epsilon

η eta

Γ gamma

γ gamma

ι iota

κ kappa

Λ lambda

λ lambda

µ mu

ν nu

Ω omega

ω omega

Φ phi

φ phi

Π pi

π pi
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Ψ psi

ψ psi

ρ rho

Σ sigma

τ tau

Θ theta

θ theta

Υ upsilon

υ upsilon

$ varpi

Ξ xi

ξ xi

ζ zeta

Mathematical Expressions

∗ complex conjugate

< x > average of x

δ Dirac delta function

∂y
∂x

Partial derivative with respect to x

= Imaginary part∫
Integral operator

< Real part

Σ summation

E expectation value

exp/e Exponential function
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Physical Constants
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c Speed of light ≈ 3× 108ms−1

h Planck's constant ≈ 6.62607004× 10−34Js

Physical Variables

k wavenumber m−1

m mass kg

t time s
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Abstract

It is well known that one might describe a wave or a function in terms of it's
Fourier components, therefore a function would be labelled as superoscillatory if
it oscillates faster than the fastest Fourier component. This phenomena is known
to be caused by the �ne destructive interference between the Fourier components
of a wave. There is a vast amount of literature on this special phenomena, how-
ever the main focus of this thesis will be studying and analysing the works of Sir
Michael Berry, Sandu Popescu, Mark Dennis, and J.Lindberg [1][2][3][4][5], focus-
ing mainly on naturally occurring superoscillations through the superposition of
a large number of waves. In particular, investigating the e�ects of changing the
band-width of the waves on the fractional superoscillatory area of the resultant
wave as well as the e�ects of varying the number of waves (Fourier components)
superimposing.
In the papers by Mark Dennis et al [5] [4], an in depth description is given for
superoscillations in speckle patterns, through the derivation of a joint probability
density function of both intensity and phase gradient. Through this, a super-
oscillating fraction of 1

5
is found for a disk spectrum in addition an expression is

found for an annular spectrum. The main work conducted for this thesis builds
on this through a range of computational methods, speci�cally investigating the
fraction of superoscillations obtained from the superposition of two dimensional
non-monochromatic waves. An interesting result found shows that the fractional
area which exhibit superoscillations is given to be much smaller than 1

5
for an

annular spectrum as described in [5]. The calculations conducted here describes
the e�ect of changing the bandwidth; in which the wavenumber of the individual
waves are chosen from, has on the fraction of superoscillations. In addition the
e�ect of varying the lowest wavenumber in the spectrum, as well as the number
of sources, is provided. The study of all the papers mentioned earlier involves a
vast amount of statistical analysis, ranging from Gaussian and speckle statistics
to probability theory.

ii



Acknowledgements

First and foremost I would like to thank my lecturer Professor Paul Strange
for letting me undergo this research under his supervision. Ever since my under-
graduate course I have always had a passion towards theoretical physics, and have
long wanted to further my study with research. After meeting Paul I knew that
he was an ideal choice as a supervisor for my postgraduate study, his passion and
devotion to the �eld is truly inspiring.

Thank you to my fellow research colleagues Jack Herklots and Greg Smith for
their help and support throughout my research. I am going to miss all the random
yet hilarious conversations between the two, as they have never failed to make me
laugh. I wish them both the best of luck for their future, they are most de�nitely
destined for greatness.

I would also like to thank my family for supporting me during my study, and
who throughout my life helped me pursue my true passions in life, they showed
me that one is truly capable of anything when you set your mind to it. I would
also like to give a special thanks to one of my best friends and colleague Rob But-
ler who has inspired me to pursue further education, he will never be forgotten.
Last but not least I would like to give my thanks and love to my girlfriend Aimee
Hayward for being by my side, and picking me up during stressful times.

iii



Contents

Abstract ii

Acknowledgements iii

List of �gures v

List of tables vii

1 Introduction 1

1.1 History of Superoscillations . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Mathematics of Superoscillations . . . . . . . . . . . . . . . . . . . 3
1.3 Superoscillations and it's applications in optics . . . . . . . . . . . . 6

2 Background Reading 13

2.1 Superoscillating Function . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Mathematical description of Superoscillations . . . . . . . . . . . . 24
2.3 D dimensional Superoscillations . . . . . . . . . . . . . . . . . . . . 33
2.4 Superoscillations in speckle patterns . . . . . . . . . . . . . . . . . . 51

3 Superoscillations in non-monochromatic waves in 2-Dimensions 62

4 Mathematics 89

4.0.1 Laplace Method . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.0.2 Volume of Hypersphere . . . . . . . . . . . . . . . . . . . . . 90
4.0.3 Gaussian Average . . . . . . . . . . . . . . . . . . . . . . . . 92
4.0.4 Central limit Theorem . . . . . . . . . . . . . . . . . . . . . 93
4.0.5 Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . . . 93
4.0.6 Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 98



List of Figures

1.1 Superoscillating function as given by equation (1.2.1) . . . . . . . . 4
1.2 Superoscillating function as given by equation (1.2.1).Showing the

region of superoscillations. . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Intensity plot of the superoscillating function as given by equation

(1.2.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Intensity plot of the superoscillating function as given by equation

(1.2.1). Showing the region of superoscillations. . . . . . . . . . . . 5
1.5 Recreation of �gure 5 in [6] and shows the intensity distribution for

a superoscillatory hot-spot. . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 c.f. From [6] �gure (11) which is an adaptation from [7] �gure(1).

The �gure shows the design for the quasicrystal array imaging tech-
nique. With the images of the point light sources taken as the source
moves by delta y. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 c.f. Figure 12 [6] (a) focal spot of 0.48λ produced from a 27-fold
symmetry QNA. (b) Focal spot of 0.39λ produced by the 40-fold
symmetric mask. (c)Focal spot of 0.23λ produced by the optimized
binary ring mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 c.f. Figure 2 [8] a 2.75µm2.755µm SEM image of a cluster of
nanoholes in a metal �lm. b, The image of the cluster is not re-
solved with a conventional lens of NA = 1.4. c, The SOL image
resolves all the main features of the cluster. Dashed circles map the
positions of the holes. . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 c.f. Figure(16) in [6] Schematic for the setup of the superoscilla-
tory focusing using SLMs. The light from the �bre coupled laser
is �rst collimated, expanded and polarised and the incident of an
amplitude modulating SLM. The beam is then imaged onto a Phase
modulating SLM using a 1:1 telescope with a polariser and demag-
ni�ed onto the back focal plane of the microscopes objective using
another telescope system. . . . . . . . . . . . . . . . . . . . . . . . 10

1.10 c.f. Figure 1 from [9] Diagram of the polarisation contrast super-
oscillatory microscope. . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 c.f. Figure(2) [10].Designs of lenses are given in a-c, while (d-f)
are the scanning electron microscope SEM images. Images a and
d are the superoscillatory lense, b and e are the ONSOL with 20
micrometer opaque region. C-f are the control sample consisting of
a 20 micrometer Au disk in a 70 micrometer transparent region. . . 12

v



LIST OF FIGURES LIST OF FIGURES

2.1 track of the saddle us using the wavenumber k5 given by equation
(2.1.31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Local wavenumber q(ξ) with change in ξ as given by equation (2.1.34) 19
2.3 Computations for the function in equation (2.1.35) and its saddle

point approximations in equation (2.1.44). . . . . . . . . . . . . . . 22
2.4 The superoscillatory function (2.2.1) given that N=20 and a=4. . . 26
2.5 Smooth curve showing the Gaussian approximation given in equa-

tion 2.2.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Superoscillations given by the superposition of plane waves using

equation (2.3.9) with k0 = 2π and N = 10 sources. . . . . . . . . . . 35
2.7 Contour plots of a two dimensional wavefunction sample's phases. 35
2.8 Plot of both the contour of several phases of the sample wave and

the plot of the superoscillating surface of the two dimensional wave.
(Figures 2.6 and 2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 The relationship between the probability distribution against the
ratio of the wavenumber k

k0
. using equation (2.3.45) . . . . . . . . . 41

2.10 This is a sample wave given from equation (2.3.56) for 1 dimension,
With the associated local wavenumber k. . . . . . . . . . . . . . . . 45

2.11 The resultant wave using equation (2.3.59). . . . . . . . . . . . . . . 47
2.12 Plot of the local wavenumber in 1D using expressions (2.3.64),

(2.3.61) and (2.3.66) . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Relationship between bandwidth and average fraction of superoscil-
lations. With N=500 waves and di�erent kmin values. . . . . . . . . 65

3.2 Fraction of superoscillations against bandwidth repeated for speci�c
number of sources N . Here the minimum wavenumber is given to
be kmin = 1π, and the number of sources are N = 5, 6, 7, 8, 9, 10, 50. 66

3.3 Relationship between bandwidth and fraction of superoscillations
repeated for a speci�c number of sourcesN . WhereN = 5, 6, 7, 8, 9, 10, 50
,and kmin = 1π (zoomed in at bandwidth from 0 to 10π). . . . . . . 66

3.4 Showing the average fraction against bandwidth for kmin = 1π and
N=5, 6, 7, 8. The approximated curve is also given with the use of
the expression given by (3.0.16) and (3.0.7). The points plotted are
the average fraction superoscillating calculated. . . . . . . . . . . . 68

3.5 Showing the average fraction against bandwidth for kmin = 1π and
N=9, 10, 50, 500. The approximated curve is also given with the
use of the expression given by (3.0.16) and (3.0.7). The points
plotted are the average fraction superoscillating calculated for each
bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Figure of average fraction of superoscillations against bandwidth us-
ing the expression in (3.0.12).Using the expression (3.0.13) for delta
and calculating the fraction using kmin = 1π, 2π, 3π, 4π, 10π, 50π, 100π. 71

3.7 Average superoscillating fraction against bandwidth starting at kmin =
1π for several values of sources N = 5, 6, 7, 8, 9, 10, 50, for the spe-
cial case where the bandwidth of every sample is �xed. . . . . . . . 72

3.8 Zoomed �gure of 3.4 at bandwidth 0 to 10π . . . . . . . . . . . . . 72

vi



LIST OF FIGURES LIST OF FIGURES

3.9 Average fraction of superoscillations with �xed bandwidth. (change
in kmin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Relationship between ∆λ and B (bandwidth) as given by (3.0.18). . 74
3.11 Graph for the distribution of wavenumber k

kmin
for number of sources

N = 50 and kmin = 1π, with bandwidths given by B = 0π, 2π, 50π.
The bar chart is the probability distribution calculated, light blue
line shows the theoretical prediction given by (2.4.37) using k2 as
given by (2.4.44). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 Graph for the distribution of wavenumber k
kmin

for number of sources
N = 50 and kmin = 100π, with bandwidths given byB = 0π, 2π, 50π.
The bar chart is the probability distribution calculated, light blue
line shows the theoretical prediction given by (2.4.37) using k2 as
given by (2.4.44). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.13 Graph of distribution of the wavenumber k
kmax

for N = 5 and N =
50, showing that N = 5 is higher overall. . . . . . . . . . . . . . . . 77

3.14 Graph for the distribution of wavenumber k
kmin

for number of sources
N = 5 and kmin = 1π, with bandwidths given by B = 0π, 2π, 50π.
The bar chart is the probability distribution calculated, light blue
line shows the theoretical prediction given by (2.4.37) using k2 as
given by (2.4.44). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 Average fraction superoscillating for N=10 waves given kmin =
1π, 2π for Random angles. . . . . . . . . . . . . . . . . . . . . . . . 79

3.16 Superoscillatory region of a 2-D non-monochromatic sample wave
with kmin = 2π, N = 50 and B = 2π. . . . . . . . . . . . . . . . . . 80

3.17 Superoscillatory region of a 2-D non-monochromatic sample wave
with kmin = 2π, N = 50 and B = 50π. . . . . . . . . . . . . . . . . 80

3.18 Superoscillatory region of a 2-D non-monochromatic sample wave
with kmin = 10π, N = 50 and B = 2π. . . . . . . . . . . . . . . . . 81

3.19 Superoscillatory region of a 2-D non-monochromatic sample wave
with kmin = 10π, N = 50 and B = 50π. . . . . . . . . . . . . . . . . 81

3.20 Comparison between intensity and superoscillatory regions, for 1
sample wave (Bandwidth=0). . . . . . . . . . . . . . . . . . . . . . 82

3.21 Comparison between intensity and superoscillatory regions, for 1
sample wave (Bandwidth=2π). . . . . . . . . . . . . . . . . . . . . . 83

3.22 Comparison between intensity and superoscillatory regions, for 1
sample wave (Bandwidth=10π). . . . . . . . . . . . . . . . . . . . . 83

vii



List of Tables

3.1 Table showing the value calculated analytically of the constant a
found in our expression in 3.0.9 for N = 5, 6, 7, 8 and kmin =
1π, 2π, 3π, 4π, 10π, 50π, 100π. . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Table showing the value calculated analytically of the constant a
found in our expression in 3.0.9 for N = 10, 50, 500 and kmin =
1π, 2π, 3π, 4π, 10π, 50π, 100π, for the N = 500. . . . . . . . . . . . . 88

viii



Chapter 1

Introduction

The following thesis will be investigating speci�c properties of Superoscila-
tions, which are an unusual phenomena caused by band-limited functions that
oscillate faster than their fastest Fourier component. This seems almost para-
doxical, however it is shown how such functions are found near regions of �ne
destructive interference between wave components where the function seems to
vanish and the phase is large. It is known that functions can be constructed from
their Fourier components, or rather, a superposition of waves of di�erent frequen-
cies. Superoscillations are then formed at speci�c points in the functions where
the components interact with each other in such a way, as to produce a new wave
that is oscillating faster than the band-limit. The main focus however is going to
be the study of superoscillations in terms of waves constructed through the su-
perposition of multiple wavefunctions. Regions where the phase of the wave tends
to be unde�ned while the amplitude of the function is small (tends to 0), would
correspond to superoscillations. The main focus of this thesis will be building
on the works of Sir Michael Berry and Mark Dennis Natural Superoscillations in
Monochromatic Waves in D Dimensions [3] as well as Superoscillations in Speckle

Patterns [5] by Mark Dennis and will be the foundation of the work conducted
here. An investigation is carried out into superoscillations formed through the
superposition of non-monochromatic waves in 2 dimensions. The thesis will also
analyse the e�ect of changing the bandwidth of wavenumbers and the number of
waves on the fraction of superoscillations.

To begin with, a discussion will be made of a few examples of superoscillating
functions as given by Sir Michael Berry's paper Faster than Fourier [1], where he
provides an example of a superoscillating function and uses asymptotics; in partic-
ular the Saddle Point Method, to give an approximate solution to the integral of a
speci�c function, and thus showing how such functions tend to be found in regions
of complex saddles. In addition, the paper investigates the local wavenumber as
an indication that the function is superoscillating. Following this, a brief analysis
is made of the paper by M Berry and S Popescu Evolution of Quantum Super-

oscillations and Optical Superresolution Without Evanescent Waves [2], by looking
at the example given in the paper for a superoscillatory function described as

1



CHAPTER 1. INTRODUCTION

the initial state of the wavefunction. The paper describes how such a function
is superoscillatory and explores the regions where it exhibits this behaviour. In
addition the evolution of the wavefunction over time is shown, though this will
not be discussed in this thesis.

The second paper reviewed titled Natural Superoscillations in Monochromatic

Waves in D Dimensions by Sir Michael Berry and Mark Dennis [3], describes su-
peroscillations in naturally occurring monochromatic waves with D dimensions by
analysing the local wavenumber of a function formed from the superposition of
isotropic random waves in multiple dimensions, leading to a result showing that an
increase in dimensions of the waves used corresponds to an increase in the fraction
of superoscillations observed (regions where the local wavenumber is larger than
maximum wavenumber in the spectrum). There is a focus on the one dimensional
case here . The fractions are calculated by taking the probability distribution of
all local wavenumber values relative to the maximum wavenumber. This paper
makes the use of Gaussian statistics, which is given in the limit of a large number
of independent random variables.

Following the study of [3], an in depth discussion is made of the results from
a paper by M R Dennis titled Superoscillations in Speckle Patterns [5]. For this,
2-dimensional plane waves are superimposed, where the individual waves have a
direction and phase that are independent of each other. The interference caused
by the waves forms an intensity pattern referred to as speckle patterns. First a
joint probability density function is found for both the intensity and the phase
gradient of the wavefunction, and the correlation between both superoscillatory
regions in intensity and phase gradient is described. Furthermore, the work by
Mark Dennis and Jari Lindberg titled Natural Superoscillation of Random Func-

tions in One Or More Dimensions [4] will be of great importance, as it expands
the results in [5] including higher dimensions, and continues on with the speci�c
case of one dimensional random waves.

For the work conducted in this thesis, an investigation will be carried out
on how the superoscillating fraction of a 2-dimensional non-monochromatic wave,
which is formed from the superposition of random waves, varies as the bandwidth
of the individual waves changes. The wave in consideration is formed from the su-
perposition of isotropic waves, each wave has an amplitude and phase component
that are random and independent variables, but have the same underlying distri-
bution. This is similar to what has been provided in [5] and [4], however speci�cally
looking into the e�ects of changing the bandwidth from which the wavenumbers
are selected. Furthermore, The e�ect of changing the maximum and minimum
wavenumber (the largest and smallest wavenumber in the spectrum) on the frac-
tion of superoscillations will also be examined, along side the change in the number
of sources superimposing. A comparison is then made to the results found in [5]
and [4], by analysing the probability density function of the local wavenumber, as
this provides a clear indication of the superoscillatory regions. The computations
here involves a large number of 2-dimensional wave samples in order to obtain an

2



CHAPTER 1. INTRODUCTION 1.1. HISTORY OF SUPEROSCILLATIONS

average fraction of superoscillations. All the calculations here are conducted using
MATLAB.

1.1 History of Superoscillations

Superoscillations have been known to exists through many observations and
applications and some of which date back to around 1952 by Giuliano Toraldo
di Francia [11], The microwave community were hard at work to �nd a way to
beat the di�raction limit for directivity and this goes back to the theory of lin-
ear arrays proposed by Schelkuno� in 1943 [12]. Several studies has shown that
super-directive antennas have the ability to beat the di�raction limit. This method
involves an antenna array that creates an arbitrarily narrow beam through the in-
terference of waves, which are created by various array elements [13]. However it
was only until 1964-1988 that the works of Yakir Aharonov, vaidman and Albert
has brought to light the idea , through the results of weak measurements of post
and pre quantum mechanical system, which could lie outside of the allowed eigen-
states, in particular it was a measurement of the spin 1

2
particle values [14].

Superoscillations since have been studied mathematically by many, for exam-
ple in 2006 P.J.S.G. Ferreira and A Kempf [15] showed that an energy of a signal
required increases exponentially as the number of oscillations required increases.
This is a follow up to their previous work in 2002 [16] which investigates how super-
oscillations could be used to transmit information in low bandwidth channels. The
paper also shows that it is possible to compress vast amount of information into
a small segment of a signal with low bandwidth. In addition, the energy required
increases with both the amount of compression and the size of the message. In
2006 [2] Sir M. Berry and Popescu S. describe the behaviour of a superoscillatory
function, given as an initial state of a quantum wavefunction, when allowed to
freely evolve with time. They demonstrates how sub-wavelength waves are formed
beyond a di�raction grating and are also seen to be maintained for long distances.
The study has been followed by a large number of applications in optics which we
will discuss below.

1.2 Mathematics of Superoscillations

Superoscilations are known to be functions that oscillate faster than their
fastest Fourier component, therefore a good way of expressing these functions is
to start o� with a a simple 1 dimensional wave that is composed of six Fourier
components as given by [17].

f(x) = Σ5
n=0an cos(2πnx) (1.2.1)

where an are the Fourier components and the phase of the waves are determined
by 2πn. Therefore the fastest Fourier components will have maximum wavenumber

3



CHAPTER 1. INTRODUCTION 1.2. MATHEMATICS OF SUPEROSCILLATIONS

of kmax = 10π. The values for an are given as a0 = 1, a1 = 13295000, a2 =
30802818, a3 = 26581909,a4 = −10836909 and a5 = 1762818 [17]. The following
�gures shows the resultant wave f(x) alongside the fastest Fourier component.

Figure 1.1: Superoscillating function as given by equation (1.2.1) alongside the fastest
Fourier component.

Figure 1.2: Superoscillating function as given by equation (1.2.1) alongside the fastest
Fourier component. This is the same plot as �gure 1.1 showing the region of superoscil-
lations.

At �rst glance the function seems to oscillate slower than the fastest compo-
nent, however at closer inspection when the value of x ≈ 0 then the function is
seen to oscillate faster than the fastest Fourier component cos(10.π). The func-
tion can also be seen to exhibit superoscillatory behaviours in the region of low

4



CHAPTER 1. INTRODUCTION 1.2. MATHEMATICS OF SUPEROSCILLATIONS

intensity. The �gure below shows the intensity plot of the function near x ≈ 0,
and is done by taking the modulus squared of the function, |f(x)|2.

Figure 1.3: Intensity plot of the superoscillating function as given by equation (1.2.1)
alongside the fastest Fourier component.

Figure 1.4: Intensity plot of the superoscillating function as given by equation (1.2.1)
alongside the fastest Fourier component. This is as given in �gure 1.3, showing the
superoscillatory region.

Then from analysing the �gures and equation (1.2.1) above, we can see that
superoscillatory functions are generally found near regions of low intensity, and
are caused by the delicate destructive interference of the waves. This idea is rein-
forced through the works of Mark R. Dennis, Alasdair C. Hamilton and Johannes

5



CHAPTER 1. INTRODUCTION 1.3. SUPEROSCILLATIONS AND IT'S APPLICATIONS IN OPTICS

Courtial, where an analysis of random optical speckle patterns formed from the
superposition of isotropic Gaussian waves, and by taking the joint probability
density of both intensity and phase gradient [5]. The ideal way of representing
superoscillations is by looking at the phase of the resultant function. That is by
analysing the local wavenumber of the function, and so one can stipulate that at
any point in the function where the local wavenumber of the function is larger
than the wavenumber of the fastest Fourier component, then the function is said
to be superoscillatory.

There are several other mathematical description of superoscillations, some of
which are discussed in chapter 2 of the thesis. Here are some papers to consider [18]
[19] where a mathematical description is provided along with the theory of weak
measurements which lead to superoscillatory behaviour.[1] also describes this phe-
nomena, and uses asymptotic analysis in order to gain a better understanding of
them. A very fascinating paper by M. V. Berry and M. R. Dennis [20] titled Phase
Singularities in Isotropic Random Waves, discusses a large number of statistical
properties associated with dislocations that are formed through the superposition
of isotropic but random Gaussian waves. The statistics are discussed for cases
where the waves are not monochromatic and are not particularly isotropic. These
Phase singularities would be of great interest since superoscillations are known to
be found near these regions.

1.3 Superoscillations and it's applications in optics

In the recent years there has been many advances in optics that has changed
the way we perceive the world around us and that has contributed to a wide
range of scienti�c �elds and discoveries. In spite of this, there is still much to be
explored, speci�cally the use of the popular microscope as the standard imaging
technique. Optical microscopes are limited in the resolution it can create and
by the di�raction limit, which was �rst described by Ernest Abbe's equation d =

λ
2n sin(θ)

, here d is the Abbe di�raction limit and 2n sin(θ) is the numerical aperture.
However, there has been many attempts to beat this di�raction limit by using
various methods, including the capture of evanescent waves in the near-�eld [21]
[22] by the use of Near Field Scanning Microscope (SNOM), where a scanning
tip collects light in the near-�eld of the surface. The resolution is dependent on
the size of the aperture hole in which the light is collected through. The idea of
capturing evanescent waves is found to date back to around 1928 [23].

Now we will look into the possibility of beating the di�raction limit using
superoscillations. But �rst we will have to look at speci�c properties of �hot-spots"
produced by superoscillations in order to understand superoscillatory lenses. As
mentioned in [6] one of the main feature of the intensity pattern produced as shown
in the �gure 1.5 below is the hot-spot width which determines the resolution of the
image. The side-bands usually degrades the image produced, and a good measure
of the e�ciency of the lens is by taking the ratio of the hot-spot to sideband
intensities. The measure of the grass level, which is the residual low intensity
found in the �eld of view, against the hot-spot intensity gives the noise of level of
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the imaging apparatus.

Figure 1.5: A recreation of �gure (5) in [6] and shows the intensity distribution for a
superoscillatory hot-spot. The �gure shows important features such as the grass level,
�eld of view and the sideband intensities

Now investigating the process of designing a superoscillatory mask that can
create a hot-spot of light with arbitrary pro�le located at any distance from the
mask, and outside the near-�eld. The paper [24] shows how designing such mask is
possible and how it might be used as a super-resolution imaging tool. They show
that there are two main steps in �nding the algorithm for designing the mask,
�rst, the required sub-wavelength hot spot is given as a series of prolate spheroidal
wavefunctions [25]. Then the required complex mask transmission functions can
be derived by using scalar angular spectrum description of light, from the mask,
to the superoscillating feature.

In 2007 the �rst observation of optical superoscillations was made by Fu Min
Huang, Nikolay Zheludev et al, in the papers [26] [7] where they illustrated how
light can be focused to distances up to several tens of wavelengths from the screen,
using a quasi-crystal array illuminated by a coherent light source. The array
contained approximately 14000 holes with a diameter of 200nm each. In order to
map the distribution created by the array a scanning near-�eld optical microscope
was used as a point light source of wavelength 635nm, and the array acted as a
superoscillatory lens that mapped the point like source to the other side. Figure
1.6, as shown in [6], below shows the schematic of such a setup.

7
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Figure 1.6: c.f. From [6] �gure (11) which is an adaptation from [7] �gure(1). The
�gure shows the design for the quasicrystal array imaging technique. With the images
of the point light sources taken as the source moves by delta y.

It was shown the point like source is imaged on the other side as a hot-spot,
and when the point like source is moved, it was shown to have moved by the
same amount on the opposite side. The hot-spots produced by the array was
created using superoscillations. This array is also shown to have the property
of magni�cation without the need to move the array closer or further from the
source, but also multiple images of the observed object can be made on the same
focal plane [27].

There has been several developments of superoscillatory binary lenses which
stem from the previous work on the quasicrystal hole arrays. Here we will review
some of these binary lenses as shown in [6]. First is a 27-fold symmetric quasi-
crystalline array, which is quasi periodic and is made by projecting a hypercubic
lattice, which is 27 dimensional, to a plane. This comes from the works of [28],
which provides a grid-projection method for creating quasiperiodic tilings. The
second mask is a 40-fold symmetric mask, which is quasi-random. This random-
ness is achieved by using randomly placed holes on spiral arms, where the distance
between each hole and the central point is random [29]. Following the works of
[30] and [31], an optimized binary ring mask is created using the binary particle
swarm optimization method.

It is shown in [6] �gure 12 and given below by �gure 1.7, the focal point pro-
duced by each of these binary masks has its own unique property. For example
the 27-fold symmetry mask forms a focal spot of 0.48λ with a �eld of view of 90λ,
but has very low sidebands this is given as �gure 1.7 a . Whereas in �gure 1.7 b
representing the 40-fold symmetric mask, the focal spot is 0.39λ but has a moder-
ate amount of sideband intensity. Lastly the optimized binary ring mask is shown
to give a focal spot of 0.23λ but has the highest amount of sideband intensity.
Though each of these masks show di�erent focal point sizes, the applications of
each could vary from one mask to the other. Note here that the wavelength used
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is around 640nm and each mask is observed in di�erent mediums. Where (a) is in
a panel, (b) in air and (c) in immersion oil.

Figure 1.7: c.f. Figure 12 [6] (a) focal spot of 0.48λ produced from a 27-fold symmetry
QNA. (b) Focal spot of 0.39λ produced by the 40-fold symmetric mask. (c)Focal spot
of 0.23λ produced by the optimized binary ring mask.

Using binary masks as an imaging technique is shown in the paper [8], instead of
using a continuous mask, they have been able to develop a high-throughput binary
superoscillatory lens. This lens is easy to manufacture and is consisted of several
concentric rings of varying width and diameter. Here a particular scanning mode
is used alongside the superoscillatory lens illumination, where a CCD detector is
used to reconstruct the image from the signal. This allows the unwanted scattering
created by the `halo' to be removed. The construction of the binary lens here
uses binary particle swarm optimization method as mentioned above. Using a
fabricated cluster of nanoholes in a 100nm gold �lm, it can be shown that the
superoscillatory lens surpasses the performance of the conventional lens, were a
conventional lens has not identi�ed the holes as clearly as the superoscillatory
lens. This is shown in �gure 1.8 below as given by �gure 2 of [8]. The paper also
reinforces this result by comparing the recorded images with ones simulated by
computer modelling and shown good agreement with the resolution and shape.

Figure 1.8: c.f. Figure 2 [8] a 2.75µm2.755µm SEM image of a cluster of nanoholes
in a metal �lm. b, The image of the cluster is not resolved with a conventional lens of
NA = 1.4. c, The SOL image resolves all the main features of the cluster. Dashed circles
map the positions of the holes.
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There are other ways in which superoscillation focusing is achieved, and can
be done by the using waves with precise amplitude and phase, that interfere and
create a beam that is directed using a spatial light modulator alongside a conven-
tional microscope objective. These are called dynamic superoscillatory lenses and
are designed with the works of [11] [32][33][34]. First a Laser beam is directed at
an amplitude shaping SLM, then beam is then directed at a phase shaping SLM
by using an imaging telescope. The beam is then demagni�ed and directed at the
back focal plane of the microscope's objective. Here the �eld on the focal plane
is shown to be related by Fourier Transform and therefore any �eld pro�le can be
found. This is as described in [6] �gure 16 and recreated here in �gure 1.9 below.

Figure 1.9: c.f. Figure(16) in [6] Schematic for the setup of the superoscillatory focusing
using SLMs. The light from the �bre coupled laser is �rst collimated, expanded and
polarised and the incident of an amplitude modulating SLM. The beam is then imaged
onto a Phase modulating SLM using a 1:1 telescope with a polariser and demagni�ed
onto the back focal plane of the microscopes objective using another telescope system.

In order to create a desired focal spots, a method called the eigenmode method
[35] [36] is applied, here various test masks are used in order to probe the optical
system's lenses, microscope objective and free space. The spot size and intensity
matrix operators are found which in turn can given the eigenvalues for intensity
and spot size from the eigenvectors and eigenmodes.

The use of superoscillatory lenses has been used in many applications and
studies, for example in [9], demonstrates how superoscillations are used to probe
unlabelled living cells using optical super-resolution imaging techniques without
the need for �uorescent probes. In order to image unlabelled cells, a new sys-
tem where a superoscillatory microscope is combined with a polarisation contrast
imaging setup that contains spatial light modulators and a liquid crystal panel.
Here the crystal panel controls the input polarization and the spatial light modu-
lators directs the beam into the microscope. They have been able to capture four
di�erent super-resolved images of the sample with di�erent incident polarisations,
therefore can �nd the orientation angle and anisotropy of each pixel. The setup
used for the polarisation-contrast superoscillatory microscope is shown in �gure
1.10 as given in �gure(1) from [9].
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Figure 1.10: c.f. Figure 1 from [9] Diagram of the polarisation contrast superoscillatory
microscope.

The result is the ability to highlight signi�cant structures like cell membranes
and actin-�laments to reveal new information about the biological structures. As
an example in �gure (2) of [9] it can be shown that a Osteosarcoma cell can be
imaged with much higher resolution than using standard confocal microscopes.

Going back to Binary SOLs and superoscillatory focusing using SLM here are
a few di�erences and advantages for each. To start, SLM setups are seen to have a
more complex setup than Binary SOLs as they require more components, whereas
the binary SOL only require one component. Furthermore, the SLM are more
sensitive to aberrations. On the other hand, the working distance for a SLM is
much larger than that of a binary setup, this is because the system can allows the
focal spot to be directed at the microscope objectives' focus. This is said to give
better results when imaging on thicker objects easier [6].

One of the main problems that SOL faces is the scattering caused by high
intensity side bands that accompany the hot-spot generated. Therefore with
smaller hot-spots, the sideband intensities increases relative to the hot-spot in-
tensity. However there has been attempts to solve this, for example in [10], a new
proposed class of superoscillatory lenses have been able to move the sidebands far
from the focal point, and are called optical needle superoscillatory lenses (ONSOL
for short). These lenses are shown to produce a focal spot that is extended in the
axial direction as opposed to have many axially localised spots as given by SOLs.
The main idea behind the design of the ONSOL is that the central region of the
lense in concealed by a stop, this allows a shadow region to be formed around
the focus. Figure 1.11 below as given by [10] �gure (2), shows the design of the
ONSOL lenses along with the standard SOL, these are made using focused ion
beam milling of a gold �lm deposited on a silica substrate . Images a and d show
the SOL, b and e show ONSOL. C and d show a simple disk with a transparent
region behind it and is used as a control sample.
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Figure 1.11: c.f. Figure(2) [10].Designs of lenses are given in a-c, while (d-f) are the
scanning electron microscope SEM images. Images a and d are the superoscillatory lens,
b and e are the ONSOL with 20 micrometer opaque region. C-f are the control sample
consisting of a 20 micrometer Au disk in a 70 micrometer transparent region.

The results in [10] show that when a beam of wavelength 640 nm is used,
the ONSOL forms a long optical needle 4 micrometers from the lens, that is
approximately 7 micrometers in length. While the SOL forms several focal spots
at various distances from the lens. The size of the spot produced by ONSOL is
found to be larger than that of the SOL , however it is isolated from any intense
sidebands. The result of increasing the size of the blocked region in the ONSOL
causes the needle to move away from the lens and the �eld of view around the
needle also increases, this is though, at the expense of the intensity.

As seen, there are many applications of optical superoscillations in regards
to imaging, but there are other areas of research where optical superoscillations
are useful. As an example [37], shows the behaviour of a single photon and how
the wavefunction can contain sub-di�raction properties, with length scale smaller
than the wavevector eigenvalues. The method used here is quite similar to that
of Young's double slit experiment, except here a superoscilatory pattern is ob-
served using a one dimensional binary superoscillatory lens, through interference
of multiple beams of speci�c phases and intensities. Then an analysis of the local
momentum, spatial con�nement and energy �ow distribution is provided for the
�eld which it created. The fantastic results shown in this paper, illustrates how
superoscillations can be formed from the interaction of a single photon wavefunc-
tion with itself. In addition, the local momentum of the photon shows expectation
values much higher than that of the largest Fourier component in the spectrum.
This study may be a great path for applications in quantum physics. To conclude,
superoscillations has been extensively researched by many, with a potential to be
used in a wide range of applications.
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Chapter 2

Background Reading

2.1 Superoscillating Function

Introduction

In the following section an in depth analysis of the paper Faster than Fourier

[1] is made, as to obtain a better understanding of superoscillations. Here a math-
ematical model is written, which provides a clear description of superoscillating
functions and uses asymptotics, in particular the saddle point method alongside
numerics to describe speci�c aspects of such functions.

Example of Superoscillations

To begin with, a function f(x) that has a spectrum of frequencies that are
band-limited by |K| ≤ 1 is required. Therefore the function should not oscillate
faster than cos(x), however we want it to do so, for example by cos(Kx), where K
is some large constant. An expression that exhibits this is is provided in [1], and
is given to be,

f(x,A, δ) =
1

(δ ·
√

2π)

∫ ∞
−∞

eixk(u) · e−
1

2δ2
(u−iA)2du. (2.1.1)

k(u) has to be even, k(0) = 1 (for real u) |k| ≤ 1, δ is very small and A is
real and positive. Notice that the function in (2.1.1) could be described as the
expectation value of eixk(u) with an underlying Gaussian probability density. The
examples of k(u) listed in the paper are described as,

k1(u) =
1

1 + 1
2
u2
, k2(u) = sec(u), k3(u) = e−

1
2
u2 , k4(u) = cos(u). (2.1.2)

Looking at equation (2.1.1) if δ is taken to be very small, it is clear that the
second exponential would tend to disappear, and so would act as a complex delta
function.

δ(x) = lim
σ→0

e−
x2

2σ2 . (2.1.3)
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This will lead to a projection of the �rst exponential at u = iA when integration
is carried out, resulting in the function being expressed as,

f(x,A) ≈
∫ ∞
−∞

eixk(u)δ(u− iA)du (2.1.4a)

f(x) ≈ eiKx where K = k(iA). (2.1.4b)

Remembering the condition that |k| ≤ 1 for a function whose spectrum is band-
limited, then through equation (2.1.4) if k(u) = cos(u) for small δ values, k can
be described as follows,

k(u) = cos(u) =
eiu + e−iu

2
(2.1.5a)

k(iA) =
e−A + eA

2
= cosh(A) (2.1.5b)

k(iA) ≈ eA

2
where A is large. (2.1.5c)

Therefore seeing that the value for K > 1 and it increases when moving up
from u = 0 to u = iA along the imaginary axis, and since it depends on A, k can be
arbitrarily large. These are described as regions where the function superoscillates.
As can be seen if the values of u is taken to be imaginary, this causes the function
to be superoscillatory, in this case.

Asymptotics

This section looks into the asymptotics which will help explain some of the func-
tion's characteristics by looking into small δ for the integral that represents the
function (2.1.1), as this would be regions where the function superoscillates as de-
scribed before. For a small δ approximation to the integral, given that ξ is de�ned
as,

ξ = δ2x (2.1.6)

f(
ξ

δ2
, A, δ) =

1

δ
√

2π

∫ ∞
−∞

e−
1
δ2
φ(u,ξ,A)du. (2.1.7)

where,

φ =
1

2
(u− iA)2 − iξk(u). (2.1.8)

When looking at small δ of f in equation (2.1.7), the function can be approx-
imated using a method called the saddle point method [38], which is described
in the section that follows. Here a deformation of the integration path is taken,
such that when integrating the function, it passes through the saddles given by
us. Then a quadratic approximation can be taken near each saddle point us of the
exponent φ in equation (2.1.8).
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Saddle Point Method

This method deals with integrals of the form,

I =

∫
eλf(z)g(z)dz. (2.1.9)

Certain integrals can be in put into this form and then a deformation of the path
of integration is made so that it contains all the saddle points where f

′
(z) = 0,

and follow a path down the complex plane f(z); which is essentially complex for a
speci�c set of saddles. zo corresponds to the highest saddle point where f has its
largest value. When λ tends to ∞, z0 would be the main contribution to the the
integral along side the neighbourhood of z0, given by z − z0. If there were more
saddle points then each have a weighted contribution, however in the case that
they are of the same height, then the saddles would be of the same magnitude as
each other.

If considering z0 as the only saddle point, near z0 we can expand through a
Taylor series expansion,

f(z) = f(z0) + a2(z − z0)2 + a3(z − z0)3.... (2.1.10)

a2 =
1

2
f
′′
(z0) (2.1.11a)

a3 =
1

3!
f
′′′

(z0). (2.1.11b)

Replacing f(z) by its quadratic approximation near z0,

eλf(z) = eλf(z0)+λa2(z−z0)2 . (2.1.12)

The terms in equation (2.1.10) have an order of O(1),O(ν−2),O(ν−3). Note:
when expanding the function in (2.1.10) the �rst derivative is zero at the saddle
points so that a term a1 is not needed as shown in (2.1.10), furthermore terms of
order O(ν−3) or higher are neglected. Therefore the integral can now be written
as,

I = g(z0)eλf(z0)

∫
eλa2(z−z0)2dz. (2.1.13)

When selecting the path of integration, a2 is set to have a value of,

a2 = Aeiα. (2.1.14)

If A > 0 and z is taken to be expressed as,

z = z0 + reiθ. (2.1.15)

Therefore,
a2(z − z0)2 = Ar2ei(α+2θ). (2.1.16)
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For θ = ±π
2
− 1

2
α, equation (2.1.16) is going to be negative. The path of integration

goes through the saddle point and in the direction of steepest descent, therefore
writing equation(2.1.13) as,

I = g(z0)eλf(z0)

∫
e−Aλr

2+ 1
2
i(π−α)dr. (2.1.17)

Let,

u2 = Aλr2, dr =
1√
Aλ

du. (2.1.18)

Then the integral will look like a Gaussian,

I = g(z0)eλf(z0)− 1
2
iαe

1
2
iπ 1√

Aλ

∫ ∞
−∞

e−u
2

du. (2.1.19)

Knowing that
∫∞
−∞ e

−u2du =
√
π

I = g(z0)eλf(z0)(
−π
Aλeiα

)
1
2 . (2.1.20)

Given that Aeiα = 1
2
f
′′
(z0),

I = g(z0)eλf(z0)(
−2π

λf ′′(z0)
)
1
2 . (2.1.21)

Equation (2.1.21) gives an asymptotic approximation to the integral of the
form (2.1.9) for a function with just one saddle point. If more than one saddle
point is present, each will contribute similarly.
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Application of S.P.M to the function f(x,A, δ)

Using the Saddle Point Method here to �nd the approximation to the function
f(x) with small δ.

f(
ξ

δ2
, A, δ) =

1

δ
√

2π

∫ ∞
−∞

e−
1
δ2
φ(u,ξ,A)du. (2.1.22)

Need to �nd saddle points which are found by,

dφ

du
= 0

∂(1
2
(u− iA)2 − iξk(u))

∂u
= 0 (2.1.23)

us = i(ξk
′

us + A). (2.1.24)

Where we de�ne our saddle point by us. Comparing the results shown in the
saddle point method and the function, using equation (2.1.22) and (2.1.9),

g(z) =
1

δ
√

2π
, λ =

−1

δ2
, f(z) = φ(u, ξ, A). (2.1.25)

Using equations (2.1.8) and (2.1.24), φ is given by,

φ(us, ξ, A) =
1

2
(us − iA)2 − iξk(us). (2.1.26)

Given the approximation of the integral from equation (2.1.21) it is clear that the
second derivative of φ(u, ξ, A) is required. Therefore,

φ
′′
(us) =

∂

∂u
(us − iA− iξk

′
(us)) = 1− iξk′′(us). (2.1.27)

Now putting equations (2.1.27),(2.1.26) and (2.1.25) in the form of equation (2.1.21)
which is the saddle point approximation, and returning it to the form f(x,A, δ),
resulting in,

f(
ξ

δ2
, A, δ) =

1

δ
√

2π
e
−1

δ2
[ 1
2

(us−iA)2−iξk(u)](
2π

1
δ2

(1− iξk′′(us)
))

1
2 . (2.1.28)

f(x,A, δ) =
eixk(u)− ((us)−iA)2

2δ2√
1− ixδ2k′′(us)

(2.1.29)

Looking into the characteristics of the function found above (2.1.29) it can be
seen how us, which is the main saddle, changes as ξ is altered . For instance,
when we take ξ to be of a value smaller than 1; ξ << 1, that is x << δ−2, from
equation (2.1.24) it is clear that the saddle point us ≈ iA and so the function
that was derived in (2.1.29) will result in the exponential to be equal to the
function given in (2.1.4) as f(x) ≈ eiKx, This as described before, is the region of
superoscillations.

Now looking at (2.1.26) when ξ >> 1, that is x >> δ−2, us can be approx-
imated to give us ≈ iξk′(us); where the term iξk′(us) >> iA. The saddle must
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be found in the region where k′(us) = 0, that is if k had only one value for the
maximum (2.1.2) , which it does for the k examples given in the paper.
as ξ >> 1 the function (2.1.29) then becomes,

f(x,A, δ) ≈ 1

δ
√
xk′′(0)

ei(x−
π
4

)e
A2

2δ2 .. (2.1.30)

This shows that the function f(x,A, δ) has an order of O(e
A2

2δ2 ), and so the term
is much larger than that of the region that represents the superoscillations, with
the ampli�cation of these regions being exponential. Given k value below, then
looking at how the saddle changes and behaves as we vary x,

k5(u) = 1− 1

2
u2. (2.1.31)

using equation(2.1.24) and using the derivative of (2.1.31),

us = i(ξk′(us) + A) (2.1.32a)

us = i(ξ(−us) + A) (2.1.32b)

us =
iA

1 + iξ
. (2.1.32c)

Figure 2.1: This �gure shows the track of the saddle us as ξ is increased from 0 to ∞
using the wavenumber k5 given by equation (2.1.31). Using the fact that A=2, the value
of ξ when the real and imaginary part of the saddle are zero, is equal to ∞, but ξ = 0
when the imaginary part reaches its maximum (regions of superoscillations). This is a
recreation of �gure 1 in [1].

Figure 2.1 shows the track of the leading saddle as x goes from iA to 0. There
are several other curves and solutions, but they are much more complex. A second
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way of looking into superoscillations is by taking the local wavenumber, this will
be of great use in the later chapters to come, as it will be used to identify the
superoscillatory regions. This is given by the function below,

q(ξ) = −=(
∂φ(us(ξ), ξ, A)

∂ξ
) = <(k(us)). (2.1.33)

Using the value for k given by equation (2.1.31) and the value for us given by
equation (2.1.32), the value of the local wavenumber is provided below as well as
a graph representing the function against ξ,

q(ξ) = 1 +
A2(1− ξ2)

2(1 + ξ2)
. (2.1.34)

Figure 2.2: This �gure is a recreation of �gure 2 of [1] and shows the local wavenumber
q(ξ) with change in ξ using A=2. As shown in equation (2.1.34).

Figure 2.2 shows that at the point where ξ = 0 the local wavenumber will have
the highest value and then rapidly decreases to to value smaller than 1. When
q(ξ) is larger than 1 this is the region where the function is superoscillating, and
when q(ξ) is a value lower than 1 then it would be the region where the function
oscillates conventionally, If the function needed be superoscillatory over a large
domain of x then δ has to be smaller in value so that ξ remains small. Notice
that as mentioned before as ξ tends to decrease in value i.e. ξ << 1 the function
superoscillates.

Analysing equation (2.1.2) using di�erent wavenumbers (k1(u), k2(u), k3(u),
k4(u)) as given in the paper, the resultant integral of f could not be evaluated using
special functions. However if the function is taken to be of the form k5(u) = 1− 1

2
u2

from equation (2.1.31), it is possible to make it band-limited by letting |k| < 1.
This is done by allowing u to take on values |u| ≤ 2 in equation (2.1.31). This
will, in return, give a truncated integral of the form,
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f(x,A, δ) =
1

δ
√

2π

∫ 2

−2

eix(1− 1
2

(u2))e
−1

2δ2
(u−iA)2du. (2.1.35)

Which then becomes,

f(x,A, δ) =
1

δ
√

2π

∫ 2

−2

eixe−ix
1
2
u2e−

1
2δ2

(u2−2iAu−A2)du (2.1.36a)

f(x,A, δ) =
1

δ
√

2π
eixe

A
2δ2

∫ 2

−2

e−u
2( 1

2
ix+ 1

2δ2
)+ iAu

δ2 du. (2.1.36b)

Using,

K = (
1

2
ix+

1

2δ2
)
1
2 (2.1.37a)

D =
iA

2δ2(1
2
ix+ 1

2δ2
)
1
2

, (2.1.37b)

substituting equation (2.1.37) into (2.1.36) we get,

f(x,A, δ) =
1

δ
√

2π
eixe

A2

2δ2

∫ 2

−2

e−K
2u2+2KDudu (2.1.38a)

f(x,A, δ) =
1

δ
√

2π
eixe

A2

2δ2

∫ 2

−2

e−[(Ku−D)2−D2]du. (2.1.38b)

Now letting,

t = Ku−D (2.1.39a)

dt = Kdu (2.1.39b)

du =
1

K
dt (2.1.39c)

and substituting in all the values from equation(2.1.39) will result with,

f(x,A, δ) =
1

δ
√

2π
eixe

A2

2δ2 e−D
2

∫ 2K−D

−2K−D

e−t
2

K
dt (2.1.40a)

f(x,A, δ) =
1

δ
√

2π
eixe

A2

2δ2 e−D
2

[

∫ 2K−D

0

e−t
2

K
dt+

∫ 0

−2K−D

e−t
2

K
dt]. (2.1.40b)

Now given that the error function is de�ned as,

erf(z) =
2√
π

∫ z

0

e−t
2

dt. (2.1.41)

By this concept equation(2.1.40) can be written as,

f(x,A, δ) =
1

2Kδ
√

2
eixe

A2

2δ2 e−D
2

(erf(2K −D)− erf(−2K −D)). (2.1.42)
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Now substituting back in the equations (2.1.37) gives,

f(x,A, δ) =
1

2
√

1 + ixδ2
e
ix(2+A2+2ixδ2)

2(1+ixδ2) [erf(
2 + iA+ 2ixδ2

δ
√

2 + 2ixδ2
) + erf(

2− iA+ 2ixδ2

δ
√

2 + 2ixδ2
)]

(2.1.43)
Now to get superoscillations the wavenumber should be equal to k(u), where

u = iA therefore the wavenumber is,

k5(iA) = 1 +
1

2
A2. (2.1.44)

Through the application of the saddle point method given in the previous sections
the function can be approximated as,

f(x,A, δ) ≈ 1√
1 + ixδ2

exp (ix[1 +
A2

2(1 + x2δ4)
]) exp (

A2δ2x2

2(1 + x2δ4)
). (2.1.45)

Note the integration is between the limits u = ±2 and not ±∞, as it is consid-
ering the points at ±2 as well as the saddle point us. Also the endpoints here are
oscillating the slowest with a wavenumber equal to 1, these regions are of highest
amplitude so to ensure that the regions of superoscillations doesn't get masked by
the normally oscillating signal, it is a requirement that the absolute value for the
Gaussian in equation (2.1.35),

exp(
A2 − 4

2δ2
) ≤ 1. (2.1.46)

Numerics

In this section a comparison is made between the exact results for the integral in
equation (2.1.1), to the saddle point approximation in equation (2.1.29), using the
wavenumber k5 in equation (2.1.31), the results will display the real part of the
function against x with K = 3 A = 2 and δ = 0.2.

Figure 2.3 shows the comparison between the saddle point approximation in
equation (2.1.45) and the exact expression in (2.1.35), which is similar to each
other. Now for small x it can be seen that the local wavenumber q(ξ) ≈ 3 when
x = 3 using the expression in (2.1.6) and (2.1.34). In �gure (2.3b) conventional
oscillations are shown with x ≈ 40 giving a value for ξ ≈ 1.6, and therefore a
period that is almost 3 times slower than in the small x region.
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2.3a

2.3b

2.3c

Figure 2.3: Shows the computations for the function in equation (2.1.35) as given in
the form (2.1.43) and its saddle point approximations in equation (2.1.45), with A = 2
δ = 0.2,2. 2.3a showing regions of superoscillations where o is the calculation using
the expression in (2.1.43) and the blue line is the Saddle point approximation, 2.3b
conventional oscillations with large x between x = 40 and x = 46 and 2.3c shows the
logarithm of the real part of the function and the associated Saddle point approximation.
This is a recreation of �gure 3 [1].
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Conclusion

The paper reviewed gives a description of what superoscillations are and some
examples of such functions. It also highlights some mathematical methods used
to analyse integral functions that diverge using an approximation called saddle
point method. It shows how the regions of superoscillations can be explored by
looking into the local wavenumber of the functions, in addition to the fact that the
amplitude of the function where superoscillations are found is much smaller than
that found where the function oscillates in a conventional way. This can be seen
when trying to to extend the superoscillatory region (x), causing the amplitude
for conventional oscillations to increase by a large amount relative to the super-
oscillatory region. The method in which the local wavenumber is analysed will
be used throughout the following chapters and will be fundamental in identifying
regions where a given wave superoscillates.
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2.2 Mathematical description of Superoscillations

Introduction

This section follows the approach of the paper Evolution of quantum Su-

peroscillations and optical super-resolution without evanescent waves written by
Professor Sir Michael Berry and Sandu Popescu [2]. Our purpose is to explore
the example given in paper [2] of the initial superoscillatory function, to give an
in depth understanding of superoscillations, it also gives an example of how such
functions are transpired. The paper looks into how a superoscillatory function
that describes the initial state of a quantum wavefunction behaves when allowed
to freely evolve with time. It also demonstrates how an evolving state can be
described as waves propagating beyond a di�raction grating, and manages to il-
lustrate how the grating can generate waves with much smaller wavelengths and
thus achieving `super-resolution'. The paperMathematics of Superoscillations [18]
by Y.Aharonov et al was also of great importance throughout this chapter, as it
provides a clear mathematical description of superoscillations. Here, however, we
will not be concerned with the time evolution of superoscillations as shown in [2].

Initial state of superoscillatory function f(x)

Starting with a function f(x) given by,

f(x) = (cos(x) + ia sin(x))N (a > 1, N � 1). (2.2.1)

For any given value of a, f(x) is periodic (2π) if N is odd. If a = 1, then
f(x) is a plane wave travelling to the right and can be expressed as f(x) = eiNx.
However the most interesting case is when a > 1, and taking in the limit that
x = 0, here the function oscillates the fastest. Using small x approximations,

cos(x) ≈ 1 sin(x) ≈ x. (2.2.2)

From the approximation (2.2.2) an expression for f(x) in (2.2.1) is found,

f(x) ≈ (1 + iax)N = exp(ln[ 1 + iax]N). (2.2.3)

Using a Taylor series expansion of log(1 + x) ≈ x − x2

2
+ x3

3
a �nal expression is

given as,
f(x) ≈ exp(iaNx). where x << 1 (2.2.4)

It is essential now to prove that the function above is indeed superoscillatory.
Therefore analysing the Fourier components of the function f(x) in (2.2.1) will be
of great importance, since superoscillations are de�ned as functions that oscillate
faster than their fastest Fourier component. The function in 2.2.1 can be expressed
in the form,

f(x) = [ cos(x) + iasin(x)]N =
1

2N
(
eix + e−ix + aeix − ae−ix

)N (2.2.5a)

=
1

2N
[
eix(1 + a) + e−ix(1− a)

]N
. (2.2.5b)

24



CHAPTER 2. BACKGROUND READING 2.2. MATHEMATICAL DESCRIPTION OF SUPEROSCILLATIONS

Expanding the function binomially gives,

f(x) =
1

2N
ΣN
m=0

N !

m!(N −m)!
[ eix(1 + a)]N−m[ e−ix(1− a)]m (2.2.6a)

=
1

2N
ΣN
m=0

N !

m!(N −m)!
eixN−2ixm(1 + a)N−m(1− a)m (2.2.6b)

f(x) = ΣN
m=0Cm exp(iNkmx). (2.2.6c)

Where,

km = 1− 2m

N
Cm =

N !

2N
(−1)m

(a2 − 1)
N
2 [(a+ 1)/(a− 1)]

Nkm
2[

N(1+km
2

]
!
[
N (1−km)

2

]
!

. (2.2.7a)

The form for Cm has been found using the relations (2.2.10) shown below.

Cm =
1

2N
(1− a)m(1 + a)N−m

N !

(N −m)!m!
(2.2.8a)

=
(−1)m

2N
(a− 1)m(1 + a)N−m

N !

(N −m)!m!
. (2.2.8b)

(a− 1)m(1 + a)N−m = (a− 1)
N
2 (a− 1)m−

N
2 (a+ 1)

N
2 (a+ 1)

N
2
−m (2.2.9a)

= (a2 − 1)
N
2

(
a+ 1

a− 1

)N
2

(1− 2m
N

)

. (2.2.9b)

N !

(N −m)!m!
=

N !

( N
2

( 2− 2m
N

) ) !(N( 1− 1 + m
N

) ) !
(2.2.10a)

=
N !

( N
2

( 1 + km) ) !(N( 1− 1 + 2m
N

) ) !
(using km in equation 2.2.7)

(2.2.10b)

=
N !

( N
2

( 1 + km) ) !( N
2

( 1− km) ) !
. (2.2.10c)

25



CHAPTER 2. BACKGROUND READING 2.2. MATHEMATICAL DESCRIPTION OF SUPEROSCILLATIONS

Figure 2.4: : The superoscillatory function (2.2.1) given that N=20 and a=4, is
plotted here as log(<f) against x

π
. Note that the blue line is the exact expression

for f(x) and the red circles are the Fourier expression given by (2.2.6). Recreation
of �gure 1 [2].

By equation (2.2.7) the wavenumber is always |km| ≤ 1, and therefore shows
that the fastest contribution of the Fourier series is given by exp(iNx). How-
ever this is not the case when looking at (2.2.4), which shows that our function
f(x) ≈ exp(iaNx) is superoscillatory, with degree of superoscillations given by
the parameter a. Therefore it can be said that the Taylor series expansion of the
function contains local information whilst the Fourier representation contains the
global information. [18]

Next, converting f(x) to polar coordinates starting with the function (2.2.1).

r =
√
f(x)f(x)∗ (2.2.11)

θ = arctan

∣∣∣∣=f(x)

<f(x)

∣∣∣∣ (2.2.12)

Using f(x) from (2.2.1),

r =
(
[ cos(x) + ia sin(x)]N [ cos(x)− ia sin(x)]N

) 1
2 (2.2.13a)

= [ cos2(x) + a2 sin2(x)]
N
2 (2.2.13b)

θ = arctan( a tan(x)) . (2.2.13c)

Now writing the function in polar form,

f(x) = ( cos2(x) + a2 sin2(x))
N
2 exp[ iN( arctan(a tan(x)) ] . (2.2.14)
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Finding the derivative of the natural logarithm of f(x),

ln f(x) = ln[ ( cos(x) + ia sin(x))N ] (2.2.15a)

d

dx
(ln f(x)) = N

(− sin(x) + ia cos(x))

cos(x) + ia sin(x)
(2.2.15b)

= N
( (a− 1) sin(x) cos(x) + ia)

cos2(x) + a2 sin2(x)
. (2.2.15c)

From the equation above a description of the local wavenumber k(x) is provided,
since it is de�ned as the imaginary part of equation (2.2.15)

k(x) =
1

N
=
[
d

dx
( ln f(x))

]
=

a

cos2(x) + a2 sin2(x)
. (2.2.16)

The term 1
N
in equation (2.2.16) is introduced here as to normalise the wavenum-

ber k(x) to the maximum wavenumber of f(x). De�ning r as given in equation
(2.2.13)as,

f(x) =

(
a

k(x)

)N
2

exp(iN arctan(a tan(x))) (2.2.17)

r = ( cos2(x) + a2 sin2(x))
N
2 =

(
a

k(x)

)N
2

. (2.2.18)

To help with understanding superoscillations, a new way of representing the func-
tion f(x) in (2.2.1) is required, using the integral

I =

∫ x

0

k(x′)d(x′) =

∫ x

0

a

cos2(x′) + a2 sin2(x′)
dx′ (2.2.19a)

=

∫ x

0

a

1 + (a2 − 1) sin2(x′)
dx′. (2.2.19b)

Note now in equation (2.2.18), a > 1 therefore (a2 − 1 > 0), using the standard
integral∫

1

a+ b sin2(x)
dx =

1√
a(a+ b)

arctan

(√
(a+ b)

a
tan(x)

)
(2.2.20)

for b
a
> 1. Now writing the integral in (2.2.19) as,

I =

∫ x

0

a

(1− (a2 − 1) sin2(x′)
dx′ (2.2.21a)

= arctan(a tan(x)). (2.2.21b)

Now the function f(x) can be expressed by,

f(x) =

(
a

k(x)

)N
2

exp( iN

∫ x

0

k(x′)dx′) . (2.2.22)
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The function k(x) = a
cos2(x)+a2 sin2(x)

above is the local wavenumber determined
at every point in space x. Local wavenumbers describes the state of oscillation.
Note here that when x = π

2
; k(π

2
) = 1

a
, this is the region where the function

oscillates the slowest since the term cos(x) disappears. The state where x = 0,
k(0) = a, would be region in which superoscillations are observed. In addition the
region where |k(x)| > 1 in (2.2.16), is regions of superoscillations, since the largest
band-limit is taken to be equal to 1 with the normalisation of k(x) as stated in
equation (2.2.16).

a

cos2(x) + a2 sin2(x)
> 1 (2.2.23a)

a

cos2(x) + sin2(x) + (a2 − 1) sin2(x)
> 1 (2.2.23b)

a

1 + (a2 − 1) sin2(x)
> 1 (2.2.23c)

a− 1

(a2 − 1)
> sin2(x) (2.2.23d)

1

a+ 1
> sin2(x). (2.2.23e)

In terms of cos(x),
a

a+ 1
< cos2(x). (2.2.24)

To �nd the condition for f(x) to be superoscillatory, the square root of both in-
equalities obtained are taken, providing the condition in x where superoscillations
occur. √

( a
a+1

)

( 1
a+1

)
<

cos(x)

sin(x)
(2.2.25a)

|x| < arccot(
√
a). (2.2.25b)

An expression is given below showing the number of oscillations in this region,
equation (2.2.26).

ηosc =
N

2π

∫ arccot
√
a

− arccot
√
a

k(x)dx (2.2.26a)

=
N

2π

∫ arccot
√
a

− arccot
√
a

a

cos2(x) + a2 sin2(x)
dx (2.2.26b)

=
N

2π
[arctan(a) tan(x)]arccot

√
a

− arccot
√
a

(2.2.26c)

ηosc =
N

π
(arctan(a tan(arccot

√
a))) (2.2.26d)
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given tan(−x) = − tan(x). Simplifying the expression above by considering the
fact that tan(arctan( 1√

a
)) = 1√

a
, and arctan( 1√

a
) = arc cot(

√
a), we can express

the equation in (2.2.25) as,

ηosc =
N

π
arctan(

√
a). (2.2.27)

Looking back at equation (2.2.17), for regions of superoscillations, |f | is expo-
nentially smaller than the normally oscillating region. The asymptotic parameter
N determines the number of superoscillations as well as the exponential small-
ness of the function. Now Equation (2.2.4) shows the region of superoscillation
where the amplitude is constant. For the meantime it shall be referred to as fast
superoscillations. These fast superoscillations would be found in a region that is
smaller than that derived before in equation (2.2.25). To investigate this further
it is necessary to take the the function f(x) in equation (2.2.22) and expand it

near x = 0.Starting with the expansion of the term
(

a
k(x)

)N
2
,

[ cos2(x) + a2 sin2(x)]
N
2 = (1 + (a2 − 1) sin2(x))

N
2 (2.2.28a)

≈ (1 + (a2 − 1)x2)
N
2 (2.2.28b)

(1 + (a2 − 1)x2)
N
2 ≈ (1 +

1

2
(a2 − 1)x2)N . (2.2.28c)

For small x, the exponential function is de�ned as,

ex ≈ 1 + x. (2.2.29)

Expressing the function from (2.2.28) as,

(1 +
1

2
(a2 − 1)x2)N ≈ exp[

1

2
N(a2 − 1)x2] . (2.2.30)

Now �nding an approximation to the integral
∫
k(x′)dx′ with small x, which will

give the behaviour of the phase of the function f(x) in (2.2.22),

I = a

∫ x

0

1

1 + (a2 − 1)x′2
. (2.2.31)

Where the expression in equation (2.2.28) is applied with small x approximation.
Using the approximation 1

1+x
≈ 1− x,

I ≈ a

∫ x

0

1− (a2 − 1)x′2dx (2.2.32a)

I ≈ a[x− a2 − 1

3
x′3] x0 ≈ ax. (2.2.32b)

Knowing that the function f(x) in (2.2.22) can be written as follows,

29



CHAPTER 2. BACKGROUND READING 2.2. MATHEMATICAL DESCRIPTION OF SUPEROSCILLATIONS

f(x) =

(
a
a

cos2(x)+a2 sin2(x)

)N
2

exp( iN

∫ x

0

k(x′)dx′) . (2.2.33)

Substituting in the values found in equations (2.2.30) and (2.2.32) gives the �nal
result for small x approximations,

f(x) ≈ exp[ iNax] exp[
1

2
N(a2 − 1)x2] . (2.2.34)

Notice that in the region of fast superoscillations the second exponential varies
from 1 (at x = 0) to a factor of e (at x = xfs). When x << 1 the second
exponential tends to 1 which in turn gives the expression found in (2.2.4). Now
the region of fast superoscillations is given by,

|x| < xfs =

√
2√

N(a2 − 1)
. (2.2.35)

The number of oscillations in the region is given by exp(iNax) where,

exp[iNax] = exp

(
iNa

√
2

N(a2 − 1)

)
= exp[2πηfs] (2.2.36a)

ηfs = a

√
N

π
√

2(a2 − 1)
. (2.2.36b)

When taking the power density spectrum; which is the average power dis-
tributed over frequency, there will be no trace of any superoscillations. This is
due to the delicate nature of superoscillations, which are caused by the �ne inter-
action between the Fourier components of the function. So as given in the paper
[2] the spectral density function is de�ned by

P (k) =
Nc2

m(m = (1− k)N/2)

2ΣN
0 c

2
m

≈ 1

σ
√

2π
exp−(k− < k >)2

2σ2
. (2.2.37)

Where cm is the amplitude of the Fourier components, with

< k >=
1

a
, σ =

√
(k− < k >)2 =

√
a2 − 1

2Na2
. (2.2.38)

A plot is provided below in �gure 2.5, showing the relationship between spectral
density and the local wavenumber, for the exact expression in equation (2.2.37)
as well as the approximated expression given by the Gaussian expression.
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Figure 2.5: Smooth curve showing the Gaussian approximation given in equation
(2.2.37) for the power density spectrum of the local wavenumber k, the circles indicate
the exact spectrum (given by the �rst part of function 2.2.37) for f(x) with a=4 and
N=20. The smooth plot is the approximation given by the second part of equation
(2.2.37). Recreation of �gure 2 [2].
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Conclusion

The Chapter began with a clear example of a superoscillatory wavefuntion given
by equation (2.2.1). Through analysing the binomial expansion of the function,
an expression was obtained for the Fourier components (2.2.6). A realization that
the value for the largest wavenumber in the Fourier components cannot exceed
1 can be seen when looking at equation (2.2.7), this illustrates that the largest
contribution in the series is given by exp(iNx). However when taking the x com-
ponent in the function to be small, the function can be expressed as exp(iaNx) as
seen in (2.2.4). This indicates that our function oscillates, with a phase gradient
that is much larger than the fastest Fourier component and so is shown to exhibit
superoscillations. The parameter a is seen to govern the degree in which the func-
tion superoscillates. When looking speci�cally into the local wavenumber k(x) in
(2.2.16), it is seen that the largest oscillations are found at k(0) = a where x = 0
and the slowest variation is when k(nπ

2
) = 1

a
.

In addition, [2] also shows the region where superoscillations occur, through
examining the values of x required for the function to exhibit these phenomena
which is shown in equation (2.2.25). Using this known region, the number of oscil-
lations has been found (2.2.26). Following these results, speci�c regions which are
identi�ed as fast superoscillations where the function is expressed as exp(iaNx)
are investigated, by taking the small x approximation of the function in equation
(2.2.22). This resulted in the expression found in (2.2.34), which gives the region
of fast superoscillations in (2.2.35). It is seen that the argument of the second
exponential in (2.2.34) is constant for fast superoscillations. A �nal note is given
about the power spectral density of the function, saying that there is no trace
of superoscillations in the power spectrum, since the spectrum is taken from the
distribution of individual Fourier components, and superoscillations are caused by
a �ne interaction between the components.

The example discussed in this section will be fundamental in the understanding
and analysis of the chapters to come, as it illustrates how a band-limited function
can oscillate faster than its Fourier components. This will be important when
analysing the formation of superoscillations with the superposition of plane waves.
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2.3 D dimensional Superoscillations

Introduction

The following section is an in depth analysis of the paper Natural Super-
oscillations in monochromatic waves in D dimensions by M V Berry and M R
Dennis [3]. Here monochromatic waves and their associated superoscillations,
given by the calculation of the local wavenumber, is discussed for a wave formed
from a superposition of many isotropic and monochromatic random waves in sev-
eral dimensions (D). The paper shows how the probability that a given wave
function is superoscillating, increases with higher dimensions. A particular case
is 2 dimensions, where the fraction of superoscillation is given by 1

3
. In addition

the paper provides an in depth description of the special 1D case. The analysis
given in this chapter in conjunction with the chapter 2.4, will form the founda-
tion of the research conducted in this thesis, where an extension is made to the
non-monochromatic case for two dimensional waves.

D dimensional wave ψ

Given in previous work on superoscillations, it is well established that there
are functions that can oscillate faster than their fastest Fourier component [1][2],
given that the function is band limited. It is also understood that such super-
oscillations are found near regions of small amplitude. Paper [3] initially states
functions of complex scalar waves that are monochromatic in multiple dimensions,
which are also band-limited. These are described as

ψ(x) = u(x) + iν(x) (2.3.1a)

ψ(x) = ρ(x)eiχ(x). (2.3.1b)

Let,
r = [x1, x2, x3....] (2.3.2)

ψ(r) = u(r) + iν(r) = ρ(r) exp[iχ(r)]. (2.3.3)

Here the time dependence is ignored. Looking into the fact that the wavefunction
ψ must satisfy the Helmholtz equation, which presents the time-independent form
of the wave equation

∇2ψ + k2
0ψ = 0 (2.3.4)

Where k0 is the free space wavenumber. Superoscillations then, are when the
wavefunction oscillates with a much higher wavenumber than that of the free
space wavenumber, It's resultant wavelength is smaller than 2π

k0
. In order to �nd

how the function behaves at a given point, it is essential to measure the local
wavenumber, which can be found by taking the rate at which the phase (given by
χ(r) in equation (2.3.3)) changes. This is shown through the function

k(r) = |∇χ(r)| = =[∇ ln(ψ(r))]. (2.3.5)
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Therefore from the function in equation (2.3.1), this is calculated as

k(r) = =[∇(ln(u(r) + iν(r)))] (2.3.6a)

k(r) =
| (∇ν(r))u(r)− (∇u(r)) ν(r)|

u2(r) + ν2(r)
. (2.3.6b)

Since the magnitude of the wave is ρ(r), which is expressed as ρ(r) =
√
u2(r) + ν2(r),

k(r) =
| (∇ν(r))u(r)− (∇u(r)) ν(r)|

ρ2(r)
. (2.3.7)

There are two ways in which k(r) is greater than k0, the �rst is given as an example
in [3] which is a two dimensional case where

ψ(r) = eiKxe−y
√
K2−k20 . (2.3.8)

Where K > k0.
Here K = k(r), there are some subwavelength oscillations which are transverse

to the direction of decay speci�cally in the x direction, since K > k0. Then the
spectrum in the x direction is much larger than that in the y direction which decays
exponentially. These represent fast variation which are present in the spectrum of
ψ and are not superoscillatory. The main interest is in the real plane wave, then
we can say that the region where k(r) > k0 is in fact the region of superoscillations.
These are expected to be situated near regions of wave vorticies, which are waves
or superposition of waves where the phase is unde�ned, this is also known as phase
singularities.[20] [39] (can be thought of as waves with a phase varying in�nitely
rapidly).

Now looking into constructing monochromatic waves, which occur naturally
by the isotropic superposition of plane waves,

ψ(r) = ΣN
n=1an exp[ikn.r] (2.3.9)

where N >> 1, and |kn| = k0.
Here the amplitudes are given by an which are random complex numbers, and

the wavevector direction given by kn
k0

which is uniformly distributed. Figure 2.6
shows our calculation of the superoscillatory area formed from the superposition
of many waves in D = 2 given by equation (2.3.9), in addition to �gure 2.7 which
is a contour plot of the phase of the wave with the lines indicating wavefronts
at a constant phase interval. Where the lines intersects is an indication of wave
vortices, which are found in the region of superoscillations as shown in �gure 2.8.
Furthermore, regions of superoscillations are found to be where the phase gradient
is large (where the lines are closer together). Here, a calculation of the fraction
of surface superoscillating is given to be around 1

3
, this result is to be expected

and is described later in this section through the derivation of superoscillatory
probability for two dimensional mono-chromatic waves. Our �gures 2.6 2.7 2.8
has been created using MATLAB and supports the results as found in Ref [3].
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Figure 2.6: Our calculation of superoscillations given by the superposition of plane
waves using equation (2.3.9) with k0 = 2π and N = 10 sources. This shows the
superoscillatory region where k(r) > k0, given by the yellow regions.

Figure 2.7: Shows the plot of 20 di�erent phases (represented by the solid black
lines) of a two dimensional sample wave as given by equation (2.3.9). The contour
lines is seen to join in at the vortices.
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Figure 2.8: Plot of both the contour of several phases of the sample wave and the
plot of the superoscillating surface of the two dimensional wave (Figures 2.6 and
2.7). Given that the dark regions are the regions of superoscillations. Each line
shows the wavefront at a given phase.

Probability of Superoscillations

For D dimensions it is essential to �nd a way of measuring the probability
that local wavenumber exceeds the free space wavenumber; k(r) > k0, at any
given point r. This is done by using the fact that the functions are Gaussian and
are isotropic. This is due to the central limit theorem which states that the sum
of a large number of samples of an independent random variable will result in a
normal distribution, that is if both the expected value and the variance is well
de�ned (4.0.4). The waves described in equation (2.3.9) are Gaussian functions
and are isotropic. The probability in a multiple D dimensions that the wave is
Superoscillating through is shown to be

PDsuper =

∫ ∞
k0

PD(k)dk. (2.3.10)

Where PD(k) is the probability distribution in D dimensions for the local wavenum-
ber k(r). The aim is to �nd the probability distribution of k for a value of r in
more than one dimension. This distribution can be described by

PD(k) = ΩDk
D−1 < δ(k − u(∇ν)− ν(∇u)

ρ2
) > . (2.3.11)

Where ΩD = 2π
D
2

Γ( 1
2
D)

is the surface area of the unit sphere in multiple dimensions
D. The unit sphere in multiple dimensions is explained fully in the mathematics
section (4.0.2).

Essentially what equation (2.3.11) shows is that the function is superimposed
on a unit sphere in D dimensions (hypersphere), so that at every point r on the
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surface of the sphere, k has a value corresponding to the superposition of the
isotropic, monochromatic waves at said point. The dirac delta function creates
this distribution, so that when k = u(∇ν)−ν(∇u)

ρ2
the function contributes to the

equation. Note that it is averaging over all values of u, ν, ∇u and ∇ν, that is
averaging over all the wavefunctions at point r. Taking the Fourier inversion of
the dirac delta function we obtain,

δ(s) =
1√
2π

∫ ∞
−∞

eiks < δ(k − u(∇v)− (∇u)v

ρ2
) > dk, (2.3.12a)

δ(s) =
1√
2π

< e
is
u(∇v)−v(∇u)

ρ2 > (2.3.12b)

δ(k) =
1√
2π

∫ ∞
−∞

1√
2π
e−iks < e

is(u(∇v)−v(∇u))
ρ2 > dDs (2.3.12c)

δ(k) =
1

(2π)D

∫ ∞
−∞

e−iks < e
is
u(∇v)−v(∇u)

ρ2 > . (2.3.12d)

Then an expression of equation (2.3.11) is given as,

PD(k) = ΩDk
D−1 1

(2π)D

∫ ∞
−∞

e−isk < e
is[

u(∇ν)−ν(∇u)
ρ2

])
> dDs. (2.3.13)

Taking that in equation (2.3.13), the variables u, ν, ∇u and∇ν are all independent
of each other but have same distribution, also taking that ∂iu is independent of
∂ju for i 6= j.

< exp[is.
u(∇ν)− ν(∇u)

ρ2
] >=< exp[− 1

2ρ2
< (s.(cosχ(∇ν)−sinχ(∇u)))2 >∇u,∇ν ] >

(2.3.14)
The function (2.3.14) is found as follows, knowing that the expectation value of a
given function is described as follows,

< eitx >=
1

σ
√

2π

∫ ∞
−∞

e−
(x−µ)2

2σ2 eitxdx. (2.3.15)

Where the variable x have a Gaussian distribution with a mean of µ and a varience
of σ2. Making the substitution of

a =
1

σ
√

2π
(2.3.16a)

c =
√

2σ. (2.3.16b)

Now equation (2.3.15) becomes

< eitx >= a

∫ ∞
−∞

e−
(x−µ)2

c2 eitxdx. (2.3.17)

Let
α = x− µ (2.3.18)
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< eitx >= a

∫ ∞
−∞

e−
α2

c2 eit(α+µ)dα (2.3.19a)

< eitx >= aeitµ
∫ ∞
−∞

e−
1
c2

(α2−itc2α). (2.3.19b)

Substitute c back in from the equation given in (2.3.16) into the brackets,

< eitx >= aeitµ
∫ ∞
−∞

e−
1
c2

(α2−i2tσ2α)dα (2.3.20a)

= ae(itµ− t
2σ2

2
)

∫ ∞
−∞

e−
(α−itσ2)2

c2 dα. (2.3.20b)

Using the substitution rule
γ = α− itσ2, (2.3.21)

the equation becomes

< eitx >= ae(itµ− t
2σ2

2
)

∫ ∞
−∞

e−
γ2

c2 dγ. (2.3.22)

φ =
γ

c
(2.3.23a)

cdφ = dγ (2.3.23b)

< eitx >= ace(itµ− t
2σ2

2
)

∫ ∞
−∞

e−φ
2

dφ (2.3.24a)

= ace(itµ− t
2σ2

2
)
√
π. (2.3.24b)

Substituting back in a and c from (2.3.16) into (2.3.24), yields the �nal relation:

< eitx >= e(itµ− t
2σ2

2
). (2.3.25)

As have been previously described u, ν, ∇u and ∇ν are all independent from
one another (i.e. each has its own probability distribution which is Gaussian),
thus the average over ∇u and ∇ν would tend to zero as it would be over cos(χ)
and sin(χ). This illustrates that µ in the equation (2.3.14) is zero and the variance
would be equal to σ2 =< x2 >, therefore giving the relationship above (2.3.14) as,

(s.[cosχ[∇ν]−sinχ[∇u]])2 = |s|(cos2 χ(∇ν)2+sin2 χ(∇u)2−2 sinχ cosχ(∇ν)(∇ν))

= s2
x[cos2 χ(

∂ν

∂x
)2 + sin2 χ(

∂u

∂x
)2]

+ s2
y[cos2 χ(

∂ν

∂y
)2 + sin2 χ(

∂u

∂y
)2] + s2

z[cos2 χ(
∂ν

∂z
)2 + sin2 χ(

∂u

∂z
)2]. (2.3.26a)
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Given that the average of < sin2 >=< cos2 >= 1
2
, < ∂u

∂x
>=< ∂ν

∂x
>, it can be

shown to be,

(s.[cosχ∇ν − sinχ∇u])2 = s2
x < (

∂u

∂x
)2 > +s2

y < (
∂u

∂y
)2 > +s2

z < (
∂u

∂z
)2 >

(2.3.27a)

= 3s2
x < (

∂u

∂x
)2 > (2.3.27b)

s2
x =

1

3
s2 (2.3.27c)

= s2 < (
∂u

∂x
)2 > . (2.3.27d)

From isotropy and monochromaticity, it can be seen that the value of

< (
∂u

∂x
)2 >=

1

D
< |∇u|2 >=

k2
0

D
< u2 > . (2.3.28)

Now substituting back in equations (2.3.27),(2.3.28) and (2.2.14) back into (2.3.13),
yields

PD(k) =
ΩDk

D−1

(2π)D

[∫
e−iks < e

− 1
2ρ2

s2
k20
D
<u2>

> ds

]D
. (2.3.29)

Analysing the integral by completing the square,

y =
1√
2ρ
s
k0

D
1
2

< u2 >
1
2 +a (2.3.30)

y2 =
1

2ρ2
s2k

2
0

D
< u2 > +

2√
2

a

ρ
s
k0

D
1
2

< u2 >
1
2 +a2. (2.3.31)

Now comparing this with equation (2.3.29) gives

a = i
kρD

1
2

k0 < u2 >
1
2

√
2
. (2.3.32a)

Putting this back into the equation (2.3.31), results in

−y2 = − 1

2ρ2
s2k2

0 < u2 > −iks+
k2ρ2D

k2
0 < u2 > 2

. (2.3.33)

Where dy = 1√
2ρ

k0

D
1
2
< u2 >

1
2 ds.

PD(k) =
Ωdk

D−1

(2π)D
[<

∫
e−y

2

e
− k2ρ2D

2k20<u
2>2 (

√
2ρD

1
2

< u2 >
1
2 k0

)dy >]D (2.3.34a)

PD(k) =
Ωdk

D−1

(2π)D
[

√
2πρD

1
2

< u2 >
1
2 k0

]D < e
−k2ρ2D
2k20<u

2> > (2.3.34b)

PD(k) =
ΩDk

D−1D
D
2

(2π)
D
2 < u2 >

D
2 kD0

< ρDe
− k2ρ2D

2k20<u
2> >ρ,χ . (2.3.34c)
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Here the integral solution below is used,∫ ∞
−∞

e−y
2

dy =
√
π. (2.3.35)

First an expression of the probability density function is made so that the average
is taken of the quantity in equation (2.3.34).

PD(k) =
Ωdk

D−1D
D
2

(2π)
D
2 < u2 >

D
2 kDo

∫
ρDe

− k2ρ2D

2k20<u
2> e

− (u−<u>)2

2σ2u e
− (v−<v>)2

2σ2v dudv (2.3.36)

Now taking the polar form of the integral,

du dv = ρdρdχ (2.3.37a)

u = ρ cosχ (2.3.37b)

v = ρ sinχ. (2.3.37c)

The expression for the probability density can be written as follows,

PD(k) =
Ωdk

D−1D
D
2

(2π)
D
2 < u2 >

D
2 kDo

∫
ρD+1e

− k2ρ2D

2k20<u
2> e−

ρ2

2<u2>dρdχ. (2.3.38)

In order to evaluate the average over χ, an integral for 0 to 2π divided by
2/pi is taken, meaning the average of the expression (2.3.38) is equal to 1. Also
integrating over ρ from 0 to ∞ will not give a useful answer because the end
expression will give a non convergent result. Thus a Gaussian expression which is
normalised is required, as given by,∫ ∞

0

Ae−
ρ2

2<u2>ρ dρ = 1 (2.3.39a)

A =
1

< u2 >
. (2.3.39b)

PD(k) =
ΩDk

D−1DD
2

(2π)
D
2 kD0 < u2 >

D
2

+1

∫ ∞
0

ρD+1e
− ρ2

2<u2>
(Dk

2

k20
+1)
dρ. (2.3.40)

Let y = ρ2 and dρ = 1
2ρ
dy, then equation (2.3.40) becomes∫ ∞

0

1

2
y
D
2 e
− y

2<u2>
(Dk

2

k20
+1)
dy. (2.3.41)

From the relation given by the Gamma function,∫ ∞
0

tbe−atdt =
Γ(b+ 1)

ab+1
, (2.3.42)
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equation (2.3.40) can be written as

PD(k) =
ΩDk

D−1D
D
2

(2π)
D
2 kD0 < u2 >

D
2

+1

1

2
Γ(
D

2
+ 1).[

1
1

2<u2>
(Dk

2

k20
+ 1)

]
D
2

+1 (2.3.43a)

PD(k) =
ΩDk

D−1D
D
2

(2π)
D
2 kD0 < u2 >

D
2

+1
Γ(
D

2
+ 1)2

D
2 .
< u2 >

D
2

+1 kD+2
0

[Dk2 + k2
0]
D
2

+1
. (2.3.43b)

Knowing that the surface of the unit sphere ΩD is

ΩD =
2(π)

D
2

Γ(D
2

)
, (2.3.44)

and substituting (2.3.44) into (2.3.43) yields the �nal result of

PD(k) =
kD−1k2

0

(k2 +
k20
D

)
D
2

+1
. (2.3.45)

Distributions for several values of D is given in �gure 2.9 below:

Figure 2.9:
Relationship between the probability distribution against the ratio of the
wavenumber k

k0
. Using equation (2.3.45) for the probability distribution.

D = 1, 2, 3, 4, 99 where the green line is D = 1 and the dashed line is D = 99.
This �gure is produced using MATLAB and supports the result in [3] �gure 3.
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Taking the equation in (2.3.45), and writing it in the form

PD(k) =
1

(
k2+k20/D

k
4

D+2
0 k

2D−2
D+2

)
D
2

+1
(2.3.46a)

PD(k) =
1

(k
6

D+2

k
4

D+2
0

+
k

2D
D+2
0 /D

k
2D−2
D+2

)
D
2

+1

(2.3.46b)

PD(k) =
1

k3

k20
(1 + k

2D
D+2
o /D

k
2D−2
D+2

k
4

D+2
0

k
6

D+2
)
D
2

+1

(2.3.46c)

PD(k) =
k2

0

k3

1

(1 +
k20/D

k2
)
D
2

+1
. (2.3.46d)

Expanding the term in equation (2.3.46) (1 +
k20/D

k2
)
D
2

+1 results in,

(1 +
k2

0/D

k2
)
D
2

+1 = 1 + (
D

2
+ 1)

k2
o

Dk2
+

1

2!
(
D

2
+ 1)(

D

2
)
k4
o

D2k4
+ ... (2.3.47a)

= 1 +
k2
o

2k2
+

k2
o

Dk2
+

1

2!

D2

4

k4
o

D2k4
+

k4
o

2Dk4
+ .... (2.3.47b)

When D → ∞ it can be seen how the expanded term in (2.3.47) tends to an
exponential, which gives the expression

P∞(k) =
k2

0

k3
e
−k20
2k2 . (2.3.48)

To calculate the probability for superoscillations, the �rst step is to express
the probability density function as shown,

PD(k) =
k2

0k
D−1

(k2 +
k20
D

)
D
2

+1
(2.3.49a)

=
k2

0k
D−1

kD+2(1 +
k20
Dk2

)
D
2

+1
(2.3.49b)

=
k2

0

k3(1 +
k20
Dk2

)
D
2

+1
. (2.3.49c)

Now calculating the probability of superoscillations as,

PDsuper =

∫ ∞
kmax

d

dk
[1 +

k2
0

Dk2
]
−D
2 dk (2.3.50a)

= 1− 1

(1 + 1
D

)
D
2

. (2.3.50b)
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Equation (2.3.50) above then, gives the probability of the wavefunction being
superoscillatory at given D dimensions. For example at 1 D, the probability is
around 0.2928, while for two dimension i.e. D = 2 the probability is 1

3
. As D

increases the probability increases. The distribution in equation (2.3.49) diverges
for orders 2 or higher of the term (1 +

k20/D

k2
)
D
2

+1 (equation (2.3.47)) as k decays
by a factor of k−3, therefore the �rst moment; mean value of k(r), is given by,

< kD >=

∫ ∞
0

kPD(k)dk =

∫ ∞
0

k2
0k

D

(k2 +
k20
D

)
1
2
D+1

dk. (2.3.51)

The equation (2.3.51) can be expressed using the β function given below,

β(x, y) =

∫ ∞
0

tx−1

(1 + t)x+y
dt (2.3.52a)

β(x, y) = 2

∫ ∞
0

t2x−1

(1 + t2)x+y
dt. (2.3.52b)

Equation (2.3.51) can now be written as

< kD >=
D

1
2
D+1

kD+2
0

k2
0

∫
kD

(1 + k2D
k20

)
1
2
D+1

dk (2.3.53)

Let t = k
k0
D

1
2 → k0

D
1
2
dt = dk.

< kD >= D
k0

D
1
2

∫ ∞
0

tD

(1 + t2)
1
2
D+1

dt (2.3.54a)

< kD >= D
1
2k0

1

2

Γ(D
2

+ 1
2
)Γ(1

2
)

Γ(D
2

+ 1)
(2.3.54b)

< kD >= k0

√
π

D

Γ(1
2
(D

2
+ 1))

Γ(D
2

)
. (2.3.54c)

In this section, a description of superoscillations is given for the superposition
of a large number of waves which are Gaussian functions and isotropic (equation
(2.3.9)). This was given by �nding an expression for the probability distribution
of the local wavenumber in D dimensions (given by equation (2.3.45)). Following
this, an expression for the probability of the wavefunction being superoscillatory
is shown in equation (2.3.50), which can be seen to be completely independent of
the maximum wavenumber in the Fourier spectrum. Furthermore the probability
of superoscillation was shown to increase with higher dimensions.
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Superoscillations In D = 1 Dimensions

This section looks at the special case of D = 1, where the probability of the
function superoscillating was given to be around 0.293. A numerical and com-
putational analysis of how such functions can superoscillate is provided, given
that the plane wave and its components for a 1 D wave would be concentrated
at kn = ±k0 for a monochromatic wave. To start, allow k(x) to take on both
negative and positive values (unlike before where the modulus was taken).

k(x) = ∂xχ(x) = =[∂x(logψ(x))]. (2.3.55)

Then it is important that non-monochromatic waves are taken to be concentrated
between the limits ±k0.

ψ(x) = ΣN
n=1an exp(iknx) (2.3.56)

For 1 ≤ n ≤ 1
2
N ,

−k0 ≤ kn ≤ −k0(1− δ) (2.3.57)

for 1
2
N + 1 ≤ n ≤ N ,

k0(1− δ) ≤ kn ≤ k0. (2.3.58)

Here N is given to be the number of waves superimposing and is given to be
N � 1, also δ is a parameter that gives the bandwidth of the waves, this is
given to be δ � 1, so that the waves are approximately monochromatic. When
simulated through Matlab a good approximation is given for the wavefunction
given by equation (2.3.56) repeated over 105 times. Giving a similar distribution
for k values as predicted theoretically. The �gures provided below in 2.10 is an
example of one wavefunction.
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(a) (b)

(c) (d)

(e)

Figure 2.10: This is a sample wave given from equation (2.3.56) for 1 dimension, with
N = 50, k0 = 1,and δ = 0.1 the red line shows <(ψ), the green line shows =(ψ) and
the blue line shows the (|ψ|), (b) shows the magni�cation of (a).Plots (c) and (d) shows
the local wavenumber for (a) and (b) respectively as given by equation (2.3.55). Plot (e)
shows the plot of both (b) and (d) on the same graph. Recreation of �gure 5 in [3]

When looking at the graphs formed, the area where the wavenumber is a
minimum, i.e. where |ψ(x)| is minimum, is the region where superoscillations
occur, here large local wavenumbers are located as seen in �gure 2.10e, which
shows the plot of ψ and k. Therefore superoscillations is said to be found near
regions of phase singularities (regions where the phase varies in�nitely rapidly and
functions tend to vanish).

To analyse how the asymptotic distribution is formed where P∞(k) tends to
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k20
k3

for k � k0, an example is given of a wave function given as,

ψ(x) = (1 + ε)eix + e−ix. (2.3.59)

ε � 1, and is real. Now as before the local wavenumber is found using equation
(2.3.55) this gives,

ψ(x) = ε[cos(x) + i sin(x)] + 2 cos(x) (2.3.60a)

∇ lnψ(x) =
−(ε+ 2) sin(x) + iε cos(x)

(ε+ 2) cos(x) + iε sin(x)
(2.3.60b)

=[∇ lnψ(x)] =
(iε2 + 2iε)

ε2 + (ε+ 1)4 cos2(x)
. (2.3.60c)

Now with ε << 1 the local wavenumber can be written as shown in (2.3.61),
This is due to the fact that the terms at the denominator of the expression has ε2

as the main contributor to the function, when cos2(x) has a small value or tends
to zero. Therefore the term ε2 cannot be ignored here, however the term 4ε cos2(x)
can be disregarded as it has very little contribution to the function overall.

k(x) =
ε2 + 2ε

ε2 + 4cos2(x)
(2.3.61)

As shown in the �gures computed below, the values for k(x) where it is a
maximum with a magnitude of 2

ε
, is at the same point were the wave |ψ(x)| is a

minimum, which is equal to |ε| at x = π
2
. From equation (2.3.60) it is clear that

ψ(x) = iε when x = π
2
. Now an analysis is made for regions where the value for

k is greatest (with the maximum k(π
2
)), and where the wave |ψ(x)| disappears as

the phase varies rapidly. Therefore taking the points for k(π
2

+ ξ) where ξ is small
compared to ε.
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Figure 2.11: recreation of �gure 6 in [3] and shows the resultant wave using equation
(2.3.59) by plotting Re(ψ) (red curve), imaginary(ψ) (green) and |ψ| (blue). given ε=-0.1.
The �gure also shows the plot of local wavenumber k(x) against x.

From equation (2.3.61), k(x) is given to be

k(
π

2
+ ξ) =

2ε+ ε2

ε2 + 4 cos2(π
2

+ ξ)
=

2ε+ ε2

ε2 + 4(cos(π
2
) cos(ξ)− sin(π

2
) sin(ξ))2

. (2.3.62)

If an assumption is made so that ξ � 1, then we can write (2.3.62) as,

2ε+ ε2

ε2 + 4sin2ξ
=

2ε+ ε2

ε2 + 4ξ2
(2.3.63a)

=
2ε+ ε2

ε2

(
1 +

4ξ2

ε2

)−1

. (2.3.63b)
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Now we expand this through binomial expansion

k(
π

2
+ ξ) =

(
2

ε
+ 1

)(
1− 4ξ2

ε2
+

16ξ4

ε4
+ ...

)
=

2

ε
+ 1− 8ξ2

ε3
− 4ξ2

ε2
. (2.3.64)

Here ε is constant. If ξ >> ε then it can be seen that the series above diverges,
giving an unde�ned value for k, however if ξ << ε then it can be shown that the
series converges. Expanding the expression with the factor 2

ε
will always have the

biggest contribution to the value of k if ε << 1 and ε << ξ, therefore equation
(2.3.64) can be approximated to that given in (2.3.66) as given in the paper [3].

Taking ξ << ε would mean the series converges in (2.3.64). A calculation of
the wavenumber in this case gives the result shown in (2.3.65), Comparing the two
expressions in (2.3.65) and (2.3.66) the di�erence can be seen. The �gure shown
in 2.12, illustrates this.

k(
π

2
+ ξ) ≈ 2

ε
− 8ξ2

ε3
+ 1− 4ξ2

ε2
(2.3.65)

In [3] the local wavenumber was expressed as shown in equation (2.3.66), Here the
approximation that ε << 1 is taken, yielding

k(
π

2
+ ξ) ≈ 2

ε
− 8ξ2

ε3
. (2.3.66)

Figure 2.12: Here the �gure shows the plots for the functions found for the local
wavenumber of the expression (2.3.59), using the approximation of small ξ for k(π/2+ξ).
The plots are given by the expression given in paper [3] given here by (2.3.66) shown
in red, and the approximation calculated by us as (2.3.64) in orange. The exact local
wavenumber is given by (2.3.61) in blue. ε = −0.1, −0.02 ≤ ξ ≤ 0.02

Looking at the graph in �gure (2.11) showing the relationship between the local
wavenumber k(x) and x this gives a parabola shape distribution and so could be
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approximated or expressed as a dirac delta function, with values of k = 2
ε
and

at k = 0. An average is taken of the dirac delta function over all values of ξ
by integrating through all values of ξ, assuming that ε is �xed. The integral is
taken through all values of ξ because the distribution of ξ is known to be uniform,
however it is not apparent what the underlying distribution is for the wavenumbers.
Given that the probability distribution can be expressed as,

P (ε, k) =
2

ε

∫ ε
2

0

δ

(
k −

(
2

ε
− 8ξ2

ε3

))
dξ (2.3.67)

and changing the integral in terms of z, where z is de�ned as

z =
2

ε
− 8ξ2

ε3
. (2.3.68)

ξ =
ε

2

√
1− zε

2
(2.3.69a)

dξ

dz
= −ε

2

8

(
1− zε

2

)− 1
2
. (2.3.69b)

Substituting this back into equation (2.3.67) to �nd that

P (ε, k) =
2

ε

∫ 0

2
ε

−ε
2

8

(
1− zε

2

)− 1
2
δ(k − z) dz (2.3.70a)

P (ε, k) =
2

ε

∫ 0

2
ε

−ε
2

8

(
1− zε

2

)− 1
2
δ(z − k) dz (2.3.70b)

P (ε, k) = − ε
4

(
1− kε

2

) 1
2

Θ(k − 2

ε
) (Θ is a heaviside step function). (2.3.70c)

With the waves, ε is not �xed so an estimate is taken of P1(k) by averaging
over ε. Using the fact that the distribution of minimum values vanishes linearly
as ε tends to 0.

p1(k) ≈ 1

2

∫ 2

0

εP (ε, k)dε =
1

8

∫ 2

0

ε2√
1− kε

2

Θ(k − 2

ε
)dε. (2.3.71)

Now integrating the function (2.3.71) by parts twice yields the result

2

15k3

[
(3k2 + 4k + 8)(1− k)

1
2 − 8

]
. (2.3.72)

Then when k > 1 equation in (2.3.72), the variable (1 − k)
1
2 becomes imaginary,

therefore taking the real part giving the result

p1(k) = − 16

15k3
. (2.3.73)
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Using the expression of the wavenumber given in (2.3.65) the probability distri-
bution P (ε, k) is given to be,

P (ε, k) =
2

ε

∫ ε
2

0

δ

(
k −

(
2

ε
− 8ξ2

ε3
+ 1− 4ξ2

ε2

))
dξ (2.3.74a)

P (ε, k) =
−ε

2 [(ε+ 2)2 − kε(ε+ 2)]
1
2

. (2.3.74b)

Conclusion

The main aim of the paper analysed was to �nd a way of expressing su-
peroscillations in monochromatic waves, speci�cally in several dimensions. As a
result a large fraction of superoscillations is found in waves that are formed from
the superposition of many monochromatic waves, where for 1 dimension the frac-
tion was around 0.29, and increases to a 1

3
when dealing with 2 dimensions. In

fact the fraction of superoscillations increases asymptotically to a value of 0.394 as
D → ∞. When analysing the superoscillatory region, the local wavenumber was
compared to the free space wavenumber of the wave, since the local wavenumber
gives a good description of the oscillatory state of the wave. If the local wavenum-
ber was found to be greater than k0, that is the largest wavenumber in the Fourier
spectrum,then superoscillation is assumed. The paper also shows how the proba-
bility distribution of the local wavenumber k(r) decays as k−3 as given in equation
(2.3.45). The special case where D = 1 (1 dimensional case) has been analysed.
Through an example given in equation (2.3.59) of a one dimensional wave, it has
been proven through numerical calculations that the function does in fact super-
oscillate as given by equation (2.3.45), in addition the probability distribution is
shown to decay proportionally to k−3 as predicted in (2.3.49). The ideas discussed
in this section will form the foundation to the work conducted in the following
chapters where the work is extended to non-monochromatic waves and speci�cally
the two dimensional case.
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2.4 Superoscillations in speckle patterns

Introduction

The main purpose of this chapter is to study superoscillations in random optical
speckle patterns. Speckle patterns are described as intensity patterns which are
formed from the superposition of many random waves, and can be thought of as
waves that were re�ected or refracted from random rough surfaces. The focus here
is to give an in depth description of the joint probability density function of the
phase and intensity of a two dimensional wave. From this an accurate description
of the superoscillations formed is provided. This section will be of great impor-
tance in understanding the special case of two dimensional superoscillations that is
investigated in this thesis, as it provides a clear description of how the fraction of
superoscillations changes with various wavenumber spectrums for a band-limited
random function. This will be used in later chapters to analyse the e�ect of
changing the bandwidth of the spectrum on the fraction of superoscillations. The
following section is an analysis and discussion of the papers Superoscillations in
speckle patterns by M R Dennis, A C Hamilton and J Courtial [5], as well as Nat-
ural Superoscillation of random functions in one and more dimensions by Mark
Dennis and Jari Lindberg [4].

Two dimensional Superoscillations

To start a wave is created from the superposition of many two dimensional
waves, whose characteristics are de�ned as follows, the phase of the individual
waves as well as their directions are taken to be independent of each other and
are uniformly distributed random variables. Now a mathematical description can
be shown for the condition of superoscillations in a two dimensional wave starting
with a description of a wavefunction ψ,

ψ = ρeiχ, (2.4.1)

where the intensity of the wave is characterized by I = ρ2 and the phase gradient
given by ∇χ; which can also be de�ned as the local wavenumber. Note here that
ψ is dependent on position r = (x, y). The superoscillatory condition can be given
as,

|χ|2 − k2
max > 0. (2.4.2)

Where kmax is the maximum wavenumber of the individual superimposed waves,
or rather the maximum wavenumber in the Fourier spectrum of ψ. Since the main
interest here is the superoscillations in random optical waves, it is important to
investigate the regions where the wavefunction tends to zero, i.e. vanishes, and
where the phase gradient of our wave is large. These are also known as optical
vortices [5].

Joint intensity and phase gradient probability

A requirment for the joint probability desnity function of both the intensity
and the phase gradient of the wave is needed, for this Statistical Optics as well as
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Gaussian statistics is used, which consideres in�nitely many random plane waves.
The main statistical ideas used here are shown in Statistical Optics [40] and Speckle
Phenomena in optics [41] by J W Goodman. A few terms need to be de�ned, the
�rst is the relationship between the phase gradient and probability current of the
wave. Probability current is described as the �ow of probability per unit time per
unit area, and is shown by the relation below (2.4.3), where J is the probability
current, m is the mass and ∇ is the gradient operator,

J =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗). (2.4.3)

The joint probability density of the intensity I and current J is going to be of
great importance as it will further provide a description of the joint probability
density of intensity I and the local wavenumber of ψ. Knowing ψ from equation
(2.4.1) and taking m, as well as h̄ to be equal to 1 the expression can be rewritten
as,

J =
h̄

2mi
([ρe−iχ(∇ρeiχ + i∇χeiχ)]− [ρeiχ(∇ρe−iχ − i∇χe−i∇χ)]) (2.4.4a)

=
h̄

m
[ρ2∇χ] (2.4.4b)

J = I∇χ. (2.4.4c)

It can also be shown that,

ψ∗∇ψ = a+ ib (2.4.5a)

ψ∇ψ∗ = a− ib (2.4.5b)

where a and b are arbitrary values. Therefore,

J = =[ψ∗ψ] (2.4.6a)

J =
[ψ∗∇ψ − ψ∇ψ∗]

2
. (2.4.6b)

Random phasors

Now an analysis of the properties of random phasor sums [41] is given, these will
be of great use when calculating the joint probability density function of phase and
intensity. For isotropic random waves which are two dimensional, the components
ψ, ∂xψ and ∂yψ, have independent Gaussian probability density functions with
variances given by equation (2.4.8) below. Note here that for every sample function
ψ the amplitude of the individual waves are dependent of the wavenumber, so that
each wavenumber is assigned an amplitude an. A wave can be expressed as,

ψ = ΣN
n ane

knr (2.4.7a)

ψ = ΣN
n an(cos θn + i sin θn), (2.4.7b)
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where θ is the phase, and k is the wavenumber. The amplitudes, which are de�ned
as an, are described as complex circular Gaussian random variables. The phase
of the amplitudes are given to be uniformly distributed, this will allow the wave-
function ψ, to be invariant to any translation [4]. In addition the random wave is
said to be ergodic, meaning if a point r is taken and an average is found for all
the amplitudes, this will be equivalent to averaging over all points r.

An important property to �nd would be the variance of the wave ψ, this is
determined by,

σ2
ψ =< |ψ|2 > − < ψ >2 . (2.4.8a)

Now the average of the wavefunction is de�ned by,

< ψ >=< ΣN
n an[cos θn + i sin θn] > . (2.4.8b)

Taking the real part of < ψ >,

< < ψ >=< ΣN
n an cos θn >= 0. (2.4.8c)

It can be seen that the imaginary and real parts are equal to 0

,< < ψ >= = < ψ >= 0. (2.4.8d)

Now looking at the average of the absolute value of ψ which is described by,

< |ψ|2 >=< ΣN
n,mana

∗
m(cos θn + i sin θn)(cos θm − i sin θm) > . (2.4.8e)

Therefore,

< |ψ|2 >=< ΣN
n,mana

∗
m(cos θn cos θm − i sin θm cos θn + i sin θn cos θm + sin θn sin θm) > .

(2.4.8f)

Where < is the real part and = is the imaginary part of the wave ψ. The brackets
< ψ > is the average of ψ.

Notice in equation (2.4.8), if n 6= m, then the function tends to zero as the
average would be over cos θ and sin θ. Therefore only the n = m terms remain,
resulting in the variance to be expressed as,

< |ψ|2 >=< ΣN
n |an|

2 (cos2 θn + sin2 θn) > (2.4.9a)

< |ψ|2 >=< ΣN
n |an|

2 ([
1

2
+

1

2
cos 2θn] + [

1

2
+

1

2
sin 2θn]) > (2.4.9b)

< |ψ|2 >= ΣN
n <

|an|2

2
> +ΣN

n <
|an|2

2
> . (2.4.9c)
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Now the mean intensity can be described by I0,

< |ψ|2 >= ΣN
n < |an|2 >= I0. (2.4.9d)

In equation (2.4.9), it is possible to express the variance of the amplitudes by
taking the power spectrum of the wave, this is de�ned as the distribution of power
over the frequency. First taking a small in�nitesimal region de�ned as ε = dk,
with a large number of wavenumbers k, the variance of the amplitude is described
as,

Σn∈ε < |an|2 >≈ S(k)dk (2.4.10)

where S is the power spectrum of the wave ψ. The normalisation is shown to be,

< |ψ|2 >= Σn,m < ana
∗
m > ei(kn−km).r =

∫
S(k)dk = I0. (2.4.11)

Taking the derivative of the wavefunction ψ in equation (2.4.7), the variance
is found to be,

< |∇ψ|2 >= Σn,m < ana
∗
m > knkme

i(kn−km).r =

∫
k2S(k)dk ≡ k2I0. (2.4.12)

k2 is the second moment of the spectrum and is normalized by the mean intensity
Io found in equation (2.4.11). If the wave function is expressed in terms of the real
and imaginary part, considering that the real and imaginary part are independent
random Gaussian functions which are isotropic and identically distributed, the
variance of the real and imaginary part can be expressed as,

ψ(r) = ψ1 + iψ2 (2.4.13a)

σ2
ψ1

=< |ψ1|2 > − < ψ1 >
2 (2.4.13b)

< ψ1 >
2 =< ΣN

n an cos(θn) >2= 0 (2.4.13c)

< ψ2
1 > =< ΣN

n,manam cos(θn) cos(θm) > (2.4.13d)

=< Σn=ma
2
n cos2(χn) > (2.4.13e)

=< ΣN
n=ma

2
n(

1

2
+ cos(2θ)) > (2.4.13f)

< ψ2
1 >=< ψ2

2 >=
Io
2
. (2.4.13g)

Here the real part is expressed as ψ1 = Σn=mancosn(θ) and the imaginary part
ψ2 = Σn=man sinn(θ). Now taking the partial derivative of both the real and
imaginary part, which are also independent Gaussian random variables,

∇ψ = ∇[ΣN
n an[cos(θn) + i sin(θn)]] (2.4.14a)

= ΣN
n an[−sin(θn) + i cos(θn)]∇θn. (2.4.14b)
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Now �nding the variance of both the real and imaginary part,

σ2
< =< |<∇ψ|2 > − < <∇ψ >2 (2.4.15a)

< <ψ >= 0 (2.4.15b)

< |<∇ψ|2 >=< ΣN
n∇θ2a2

n sin2(θn) > (2.4.15c)

=
I0k2

2
=< |=∇ψ|2 > . (2.4.15d)

De�ning k2 as the second moment of k with respect to the power spectrum, given
that k is de�ned as the gradient of the phase (∇θ).

Calculations of joint probability density function in two di-
mensions of both the phase and intensity

The following will show the derivation of the joint intensity and phase gradient
probability density function, for this we follow closely the derivations in Ref [4].
First a restatement that the real part and imaginary part of ψ are real independent
random Gaussian functions, which are identically distributed and isotropic, and
have variances given by (2.4.13). In addition the partial derivatives of the real
part and imaginary part of ψ are also Gaussian random variables, with variances
given by (2.4.15). Then an expression for the joint probability distribution for
each component is given as follows,

p(ψ1, ψ2) =
1√

2πσ2
ψ1

exp(− ψ2
1

2σ2
ψ1

).
1√

2πσ2
ψ2

exp(− ψ2
2

2σ2
ψ2

) (2.4.16a)

p(ψ1, ψ2) =
1

πI0

exp(−ψ
2
1 + ψ2

2

I0

). (2.4.16b)

Note the use of the expression for the variances of the real and imaginary part of
our wave, from (2.4.13). Finding the expression for the probability density for the
partial derivatives of the real and imaginary part can be seen to be,

p(∇ψ1,∇ψ2) =
1√

2πσ2
∇ψ1

exp(− ∇ψ
2
1

2σ2
∇ψ1

).
1√

2πσ2
∇ψ2

exp(− ∇ψ
2
2

2σ2
∇ψ2

) (2.4.17a)

p(∇ψ1,∇ψ2) = (
D

πk2I0

)D exp(−D∇ψ
2
1 +∇ψ2

2

k2I0

). (2.4.17b)

In equations (2.4.17), D is the number of dimensions in which the partial
derivative is taken, so for the special case of two dimension, D = 2 as shown in
[4]. Now writing the joint probability distribution of (2.4.16) and (2.4.17), it is
found that,

p(ψ1, ψ2,∇ψ1,∇ψ2) = p(ψ1, ψ2).p(∇ψ1,∇ψ2) (2.4.18a)

p(ψ1, ψ2,∇ψ1,∇ψ2) =
1

πI0

(
D

πk2I0

)D exp(−ψ
2
1 + ψ2

2

I0

−D∇ψ
2
1 +∇ψ2

2

k2I0

). (2.4.18b)
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Given the expression for the distribution in (2.4.18), the density function for inten-
sity and phase gradient is found by �rst taking the probability density of intensity
and current density, then using the expression that J = I∇χ in (2.4.4) and (2.4.6).
The density function can be expressed as an average Dirac delta function.

P (I, J) =< δ(I − (ψ2
1 + ψ2

2)) > . < δD(J − (ψ1∇ψ2 − ψ2∇ψ1)) > . (2.4.19)

Analysing the expression (2.4.19), a value for I is found for each ψ1 and ψ2 random
variables. Using Fourier inversion,

P (s) =
1√
2π

∫
e−isI < δ(I − (ψ2

1 + ψ2
2)) > dI (2.4.20a)

P (I) =
1

2π

∫
eisI < e−is(ψ

2
1+ψ2

2) > ds (2.4.20b)

P (t) = (
1√
2π

)D
∫
e−itJ < δ(J − (ψ1∇ψ2 − ψ2∇ψ1)) > dDJ (2.4.21a)

P (J) = (
1

2π
)D
∫
eitJ < e−it(ψ1∇ψ2−ψ2∇ψ1) > dDt. (2.4.21b)

s and t here are arbitrary variables. Rewriting the joint probability density,

P (I, J) = (
1

2π
)D+1

∫
eisI+itJ < exp(−is(ψ2

1 + ψ2
2)− it(ψ1∇ψ2 − ψ2∇ψ1)) > dDt.

(2.4.22)
It is known previously, that the Gaussian average with zero mean (2.3.25) is

expressed as < exp(−itx) >= e−
σ2t2

2 , therefore the average in (2.4.22) is expressed
as,

< e−itψ1∇ψ2 >= e−
k2I0
2

t2

2
ψ1 = e−

k2I0t
2ψ1

4 (2.4.23a)

< eitψ2∇ψ1 >= e−
k2I0
2

t2

2
ψ2 = e−

k2I0t
2ψ2

4 (2.4.23b)

< exp(−it(ψ1∇ψ2 − ψ2∇ψ1)) >= e−
k2I0t

2

4
(ψ1+ψ2). (2.4.23c)

Here an average is taken for ∇ψ1, ∇ψ2 �rst. Then averaging over the real and
imaginary parts ψ1,ψ2,

< e−is(ψ
2
1)− k2I0t

2ψ2
1

4D >=

∫ ∞
−∞

e−(is+
I0k2t

2

4D
)ψ2

1 .
1√
2π I0

2

e
ψ2
1
I0 dψ1 (2.4.24a)

=

∫ ∞
∞

1√
2π I0

2

e
−(is+

I0k2t
2

4D
+ 1
I0

)ψ1dψ1 (2.4.24b)

=
1√

I0(is+ I0k2t2

4D
+ 1

I0
)
. (2.4.24c)
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where the relation (2.4.25) shown below, is used.∫ ∞
−∞

e−ax
2

=

√
π

a
. (2.4.25)

Now squaring the expression (2.4.24) to �nd the averages for both the real and
imaginary parts which is substituted back into equation (2.4.22),

P (I, J) = (
1

2π
)D+1

∫ ∞
−∞

1

1 + iI0s+
t2k2I20

4D

eisI+itJds dDt. (2.4.26)

The integral above can be solved by using the fact that there is a simple pole in
s, �rst taking,

P (I) = (
1

2π
)D+1

∫ ∞
−∞

eisI+itJ

a+ ibs
ds (2.4.27a)

=
1

(2π)D+1ib

∫
eisI+itJ

a
ib

+ s
ds, (2.4.27b)

where a and b are expressed as,

a = 1 +
t2k2I

2
0

4D
(2.4.28a)

b = I0. (2.4.28b)

The function is seen to have a singularity at s = ia
b
, therefore �nding the residue

and the integral,

R(i
a

b
) =

1

(2π)D+1ib

∫
eisI+itJds (2.4.29)

P (I) =
2πi

(2π)D+1ib

∫
eitJ+(−a

b
)IdDt. (2.4.30)

Substituting back in the values for a and b from (2.4.28),

P (I, J) =
1

(2π)DI0

∫
e
−itJ− I

I0
(1+

t2k2I
2
0

4D
)
dDt. (2.4.31)

Using the relation,

e−
x2

2a =

√
a

2π

∫ ∞
−∞

eixy−y
2 a
2 dy (2.4.32)

We can show that,

P (I, J) =
1

I0

(
D

πk2I0I
)
D
2 exp(− I

I0

− DJ2

k2I0I
). (2.4.33)

By isotropy of the random function, J is isotropically distributed in D dimensions.
The joint probability distribution for I and j = |J | is found by integrating over
all directions in D dimensions,

P (I, j)dIdj = P (I, J)ΩDj
D−1dIdJ. (2.4.34)
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Here Ω = 2π
D
2

Γ(D
2

)
, as seen before in [3], which is the surface area of unit sphere in D

dimensions.

P (I, j) =
1

I0

(
D

πk2I0I
)
D
2 e
− I
I0
− DJ2

k2I0I
2π

D
2

Γ(D
2

)
JD−1 (2.4.35)

To �nd the probability density of the intensity I and the phase gradient ∇χ ,
�rst taking the Jacobian transformation of the function in (2.4.35) and speci�cally
taking the result for D = 2, as this will be of great importance in the following
chapters. This gives the result,

P (I,∇χ) =
I

I0

(
2

πk2I0I
)e
− I
I0
− 2I2∇χ2

k2I0I 2π(I∇χ). (2.4.36)

Here the Jacobian transformation is used to obtain an expression in terms of I
and ∇χ.

P (I,∇χ) =
4

I2
0k2

∇χIe−I(
k2+2∇χ2
k2I0

) (2.4.37a)

=
4∇χ
I2

0k2

∫ ∞
0

Ie−aIdI (2.4.37b)

=
4∇χ
I2

0k2

[e−aI(− Ik2I0

k2 + 2∇χ2
− k2

2I
2
0

(k2 + 2∇χ2)2
)]∞0 (2.4.37c)

=
4k2∇χ

(k2 + 2∇χ2)2
(2.4.37d)

P (∇χ) =
k2∇χ

(k2
2

+∇χ2)2
. (2.4.37e)

Notice how equations (2.4.37) is of the same form as given in [3], shown here
by equation 2.3.45, where k2 = k2

max = k2
0 for the monochromatic case. However

here k2 (spectral moment) is considered to have a distribution that depends on
kmax, which is the maximum wavenumber in Fourier space. Now as before it can
be shown that the fraction of superoscillations is given by,

fsuper =

∫ ∞
kmax

P (∇χ)d∇χ (2.4.38a)

=

∫ ∞
kmax

k2∇χ
(∇χ2 + k2

2
)2
d∇χ. (2.4.38b)

Showing P (∇χ) as,

P (∇χ) =
−k2

2

d(∇χ2 + k2
2

)−1

d∇χ
. (2.4.39)
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Therefore for equation (2.4.38),

fsuper = −k2

2
(

1

k2
max + k2

2

) (2.4.40a)

= − k2

2k2
max(1 + k2

2k2max
)

(2.4.40b)

= 1− 1

1 + k2
2k2max

. (2.4.40c)

An expression for the probability density function can be provided for intensity
as shown in [5] and [4], by integrating over all local wavevectors (phase gradients),
the papers also discuss the relationship between the regions of intensity and phase
gradient, however this will not be required for the remaining chapters. This ex-
pression is given by,

P (I) =
exp(−I

I0
)

I0

. (2.4.41)

Usually it is possilbe to take a speci�c spectrum for a band-limited random
function, for example a spectrum that is a `top hat' spectrum with steps of 0 to
kmax. The example given in paper [4] for a 1 dimensional random function, with
k2 given as follows,

k2 =
1

kmax

∫ kmax

0

k2dk (2.4.42a)

=
k2
max

3
. (2.4.42b)

However if the `top hat spectrum' (disk spectrum for a two dimensional) is required
then it is essential to change into polar coordinates, as shown below,

k2 =
1

πk2
max

∫ kmax

0

∫ 2π

0

k.k2dkdθ (2.4.43a)

k2 =
k2
max

2
. (2.4.43b)

Looking at a di�erent spectrum, and speci�cally of most importance for later
discussions, is the annular spectrum. For this spectrum taking the limits to tend
from kmax(1 − δ) to an upper limit of kmax. Note here that 0 ≤ δ ≤ 1. If the
speci�c case for the 2 dimensional function is taken as shown in [4], [5] then we
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acquire,

k2 =
1

πk2
max − π(kmax(1− δ))2

∫ 2π

0

∫ kmax

kmax(1−δ)
k.k2dkdθ (2.4.44a)

=
1

2k2
max(1− (1− δ)2)

(k4
max − k4

max(1− δ)4) (2.4.44b)

=
k2
max

2(1− (1− δ)2)
[1− (1− δ)4] (2.4.44c)

=
k2
max

2(1− (1− δ)2)
[4− 6δ2 + 4δ3 − δ4] (2.4.44d)

k2 =
k2
max

2
(2− 2δ + δ2). (2.4.44e)

Now from the expression for the fraction of superoscillations in (2.4.40), the frac-
tion is now given as,

fsuper = 1− 1

1 + k2
2kmax

(2.4.45a)

fsuper = 1− 1

1 + (2−2δ+δ2)
4

(2.4.45b)

fsuper = 1− 4

6− 2δ + δ2
. (2.4.45c)

Notice that the expression in (2.4.45) for the fraction of superoscillation tends to
1
5
of the plane in the limit that δ → 1, therefore giving the disk spectrum that was

found in (2.4.43). However as δ → 0 a value of 1
3
is given, which is identical to

the monochromatic case. The expression for the annular spectrum will be of great
importance in the following chapter where a discussion will be made of the unusual
result obtained from changing the band-limit of the spectrum for the individual
superimposing waves.
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Conclusion

At the beginning of this section an analysis of the speci�c properties of super-
oscillations in speckle patterns was made, using Gaussian statistics and speci�c
statistical optics. Through analysing the probability density of both intensity and
probability current of two dimensional waves, a joint probability density was ob-
tained for both intensity and the phase gradient (local wavenumber) of our wave
as seen by equation (2.4.36). This in turn gave the probability density of the
phase gradient (2.4.39) . From there an expression for the fraction of superoscilla-
tions was given through the integration of the probability density function of local
wavenumber over all values of k that are larger than the maximum wavenumber in
the Fourier components k > kmax, giving rise to the function de�ned by equation
(2.4.40). Following this an expression for the fraction of superoscillation was pro-
vided given that k2 (second moment k with respect to the power spectrum) has
a `top hat' spectrum (2.4.45). This �nally provided the result that the fraction
of superoscillations tends to 1

5
when taking a larger bandwidths, in other words

when taking the value of δ → 1 in equation (2.4.45). This is a rather interesting
result that is discussed further in the following chapter, where an investigation
into the e�ects of changing the band-limit on the fraction of superoscillations is
conducted. The results found in the following chapters is compared to the theo-
retical values found in this section and previous sections, speci�cally the fraction
of superoscillations for two dimensional non-monochromatic waves.

61



Chapter 3

Superoscillations in non-monochromatic

waves in 2-Dimensions

Introduction

The main purpose of this chapter is to further investigate the results obtained
from [5], [4] and [3] which are discussed in the previous chapters. Speci�cally
through analysing the e�ects of varying the bandwidth, as well as the number of
sources which are superimposing, on the fractional area that exhibit superoscilla-
tory behaviour. This will be done by numerically calculating the local wavenumber
of our sample wave at every point in our region, which provides us with a good
discription of the oscillatory nature of the wave. A comparison is then made with
the maximum wavenumber of the individual waves in the Fourier spectrum.
A sample wavefunction ψ(x, y) here will be represented through the superposi-
tion of complex plane waves of a particular size N , where each individual wave
is assigned a random amplitude a(n) and wavevector k(n), both are independent
random variables as shown in equation (3.0.1), below. The wavenumbers are given
to be real and the amplitudes a(n) are described as complex circular random vari-
ables [4] [40], with their imaginary and real component also being independent of
one another but have the same distribution. A speci�c bandwidth is chosen to
start with, so that the maximum wavenumber contributing is given by kmax. In
the following study two cases have been taken into consideration, the �rst is the
analysis of the average fractional area; of a speci�ed region, that is superoscil-
lating given that a particular bandwidth is chosen with minimum and maximum
wavenumbers given by kmin and kmax respectively. Now for one sample wave taken
ψ(x, y), the wavefunctions's components are randomly assigned a wavenumber kn
so that they can be be of any value within the band-limits provided. Then it
can be seen that every sample function ψ(x, y) taken will vary in bandwidth such
that the maximum and minimum wavenumber in the wave's spectrum will change
from one sample function to another. The fraction of superoscillations for every
sample wave ψ(x, y) is found by analysing the local wavenumber K at each point
in a speci�c area given by x, y, and comparing it to the maximum wavenumber
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in that sample function. Note here we de�ne the local wavenumber as K in order
to distinguish it from the Fourier components de�ned by kn and the minimum
and maximum wavenumbers (kmin and kmax). If the local wavenumber is given to
be larger than the maximum wavenumber in the wave's spectrum, then it is said
that the wave exhibits superoscillations at that point . This is done for around
105 samples, then an average fraction of superoscillatins is given. The e�ect of
changing the bandwidth B and the number of sources N on the average fraction
is also explored, this is done for several minimum wavenumbers kmin.
For the second case investigated here, the average fraction of superoscillations
found for every sample wave is given as before, however the bandwidth is �xed for
each sample wave ψ(x, y) and does not vary from one sample wave to another, so
that the minimum wavenumber and maximum wavenumber of each sample wave
is constant. Again the average fraction of superoscillations is found as before and
a comparison between the two cases is provided. The main codes used can be
found in Appendix A: MATLAB codes.

Superoscillations in 2-Dimensional waves

First a de�nition for a wave is given as,

ψ(x, y) = ΣN
n=1anexp(ikn.r(x, y)) (3.0.1)

where an is a random complex number that is independent of k, and can be
described by,

an = αeiφn . (3.0.2)

Here α is a random independent variable and is real. Now the phase φn is
taken to be a random independent variable and uniformly distributed between
0 ≤ φn ≤ 2π, such that the function ψ is statistically invariant to translation.
Furthermore the number of sources N is taken to be N >> 1. The expression
(3.0.1) has wavenumbers in x and y given by,

knx = kn cos((n− 1)θ) (3.0.3a)
kny = kn sin((n− 1)θ) (3.0.3b)

where θ = 2π
N
. this creates waves directed from di�erent angles each with a

wavenumber and amplitude that are chosen at random. This ensures that the
waves are equally spaced and are of the same direction with each sample function.
The expression (3.0.1) can then be written as,

ψ(x, y) = ΣN
n=1ane

i(knx .x+kny .y). (3.0.4)

Now looking for regions where the wave oscillates faster than it's Fourier com-
ponents, a good measurement would be to analyse the local wavenumber of the
function, as this gives the rate at which the function's phase is changing. Therefore

63



CHAPTER 3. SUPEROSCILLATIONS IN NON-MONOCHROMATIC WAVES IN 2-DIMENSIONS

the local wavenumbers (Kx,Ky) is given by,

Kx = =[
∂ ln(ψx,y)

∂x
] (3.0.5a)

Ky = =[
∂ ln(ψx,y)

∂y
] (3.0.5b)

K =
√
K2
x +K2

y (3.0.5c)

where K is the local wavenumber of the function ψ(x, y). The local wavenumber
is calculated over all x and y values. The fraction of superoscillations is given by
�nding the points where |K| > kmax, which is the largest maximum wavenumber
in the spectrum, this is done for every sample wave. A numerical computation
of around 1.105 samples of the calculation is taken and an average of the fraction
superoscillating is then given.

First Case: Random Bandwidths

Provided in this section is a discussion of the e�ects of changing the minimum
wavevector kmin, alongside the change in bandwidth B on the fraction of super-
oscillations, where B = kmax − kmin. The e�ect of increasing or decreasing the
number of sources superimposing is also analysed and discussed. Noting as before
that the wavenumber kn of the individual waves are chosen at random so that the
bandwidth for every sample function ψ in equation (3.0.1) is not �xed. This is
closely related to what has been discussed in [5] for an annular spectrum, however
the main focus here will be on the bandwidth rather than the scaled thickness
delta as given by equation (2.4.45).

An interesting observation which will be discussed is that when the band-width
B � 1, the average superoscillatory fraction tends to a third. This indicates that
the closer the waves are in wavenumber the closer the resemblence is to that of the
monochromatic case as seen in [3]. From intuition this result is plausible, how-
ever as the bandwidth gets larger, the number of superoscillations drops rapidly
to a constant value, indicating that there is always a fraction of superoscillations
present in the region taken. This is as discussed in paper [5] for a disk spectrum
where the fraction of superoscillation is given to be around 1

5
in the limit that the

bandwidth tends to increase. However a rather interesting observation given in
the calculations below shows that the fraction of superoscillations is much lower
than what was predicted. Graphs (3.1, 3.2) shows the relationship between the
average fraction superoscillating and the bandwidth B.
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Figure 3.1: Relationship between bandwidth; measured in multiples of π,
and average fraction of superoscillations. With N=500 waves and kmin =
1π, 2π, 3π, 4π, 10π, 50π, 100π. kmin = 1π in black and kmin = 100π in cyan. This is
done using samples of size 105.

The �rst observation made when looking at Figure 3.1, is that for all kmin val-
ues the fraction of superoscillations is a 1

3
for bandwidth of 0π, which is described

as the monochromatic case. In addition, the fraction of superoscillations is shown
to decrease with increase in bandwidth for all kmin, however it can be seen that
increasing the minimum wavenumber kmin of our spectrum, causes the rate at
which the fraction falls to decreases with every bandwidth. For example when the
minimum wavenumber is set to kmin = 1π the fraction, at low bandwidths, falls at
a much faster rate compared to a higher kmin value such as kmin = 100π, which
decreases at the slowest rate compared to all other values. Furthermore, It is clear
that all the values tends to the same constant fraction of superoscillations of ap-
proximately 0.15 of the plane, however it can be seen that for larger kmin values the
average fraction of superoscillations asymptotically tend to this constant at much
larger bandwidths. Then it can be said that the ratio between the bandwidth and
the minimum wavenumber a�ects the average fraction of superoscillations present
in our region. As an example if kmin → ∞ then it can be seen that the average
fraction would be constant and of a value ≈ 1

3
, then an increase in bandwidth of

100π would be insigni�cant when compared to the vale of to the value of kmin.
This leads to interesting point made later in the chapter when analysing the rela-
tionship between the change in wavelength and the bandwidth. For these graphs
it was of great importance that when calculating the local wavenumber the use of
a small value for dx and dy in the expression (3.0.5) was taken in the code, as this
ensures that all wavelengths are taken into consideration.

An investigation was also carried out in to the e�ects of changing the number
of sources that are superimposing in every sample. Here a minimum wavevector
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value kmin = 1π has been assigned, so that in every sample the smallest wavevector
in the Fourier spectrum cannot have a value lower than this limit. Calculations
for several N values where N = 5, 6, 7, 8, 9, 10, 50 has been found. The results are
shown in �gure 3.2.

Figure 3.2: Showing the relationship between bandwidth and fraction of superoscilla-
tions, repeated for speci�c number of sources N . Here the minimum wavenumber is
given to be kmin = 1π, and the number of sources are N = 5, 6, 7, 8, 9, 10, 50.

Figure 3.3: Showing the relationship between bandwidth and fraction of superoscilla-
tions repeated for a speci�c number of sources N . Where N = 5, 6, 7, 8, 9, 10, 50 waves,
and kmin = 1π (�gure 3.2 zoomed in at bandwidth from 0 to 10π).

Through the analysis of �gures 3.2 and 3.3, it can be seen that at very low
bandwidths the fraction of superoscillation is a third for any value of N . However
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as the bandwidth increases, and taking large number of sources the fraction tends
to its lowest value. WithN = 5 the fraction of superoscillations tends to a constant
value slightly smaller than 1

5
and is given to be approximatly 0.18. Noticing that

the results shown in both �gures 3.2 and 3.3 contradict the results as given by [4]
[5] in equation (2.4.45), where the e�ect of changing bandwidth on the fraction
is illustrated by �gure 3.6, as the average superoscillatory fraction shown is much
smaller than 1

5
with large bandwidth. Now it is of great importance to �nd an

expression for the probability density function of k(r) (local wavenumber), as this
will provide a mathematical description of the fraction of superoscillations. Note
the new notation for local wavenumber which is now given by k(r) For the speci�c
case here the probability density is taken to be,

P (k) =
α2k2

0k

(
α2k20

2
+ k2)2

. (3.0.6)

Here k0 is the maximum wavenumber in the bandwidth, and α2 is a parameter to
be found. This is done to get an approximate expression for the average fraction
superoscillating that �ts the results. It is is seen that the expression in (3.0.6)
is of the same form as (2.3.45) found in paper [3], but with an extra parameter
α multiplied by the maximum wavenumber k0. As before to �nd the fraction
superoscillating one might use the expression given by,

fsuper =

∫ ∞
k0

α2k2
0k

(
α2k20

2
+ k2)2)

dk (3.0.7a)

=

∫ ∞
k0

1

2

1

k2 +
α2k20

2

1

dk
dk (3.0.7b)

fsuper =
α2

α2 + 2
. (3.0.7c)

For the case of monochromatic waves α2 = 1, gives the superoscillatory region to
be 1

3
. In the attempt to �nd an expression analytically for the results obtained in

�gures 3.1 and 3.2, α2 is �rst de�ned as,

α2 ≈ exp(−a B

kmin +B
). (3.0.8)

As this expression of α best �ts the results found in �gure 3.1, where B is the
bandwidth, kmin smallest wavenumber allowed and a is a constant to be found.
The following shows the results obtained by taking the expression of fraction to
be (3.0.7), with alpha given by the expression (3.0.8) above,

f =
e
−a B

B+kmin

e
−a B

B+kmin + 2
. (3.0.9)

The Plot for the average fraction superoscillating against bandwidth, with the
best �t expression (3.0.9) is shown in �gure 3.4 and 3.5, analysing the results
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for several values of N (N = 5, 6, 7, 8, 9, 10, 50, 500), the values for a has been
calculated and shown in table 3.1 for several kmin values.

Figure 3.4: Showing the average fraction against bandwidth for kmin = 1π and
N=5, 6, 7, 8. The approximated curve is also given with the use of the expres-
sion given by (3.0.16) and (3.0.7). The points plotted are the average fraction
superoscillating calculated.
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Figure 3.5: Showing the average fraction against bandwidth for kmin = 1π and
N=9, 10, 50, 500. The approximated curve is also given with the use of the ex-
pression given by (3.0.16) and (3.0.7). The points plotted are the average fraction
superoscillating calculated for each bandwidth.

Similar results are obtained to that of �gure 3.4 and 3.5 when taking into
account di�erent values for kmin. It is shown that with larger values of N the
fraction of superoscillations decreases, and can be seen to fall to a value of 0.15 for
N = 500 sources. An important observation would be the slight variation in the
value for the constant a for each case. In addition, the e�ect of changing N on a is
much larger than the e�ect of changing kmin as shown in table (3.1). The constant
a is asymptotically tending to a value of approximately 1.09 as we increase the
number of sources to N = 500. Then for large N , the expression in (3.0.9) can be
approximated as follows,

f =
e−1.09 B

kmax

e−1.09 B
kmax + 2

(3.0.10a)

≈ eln 1
3

( B
kmax

)

eln 1
3

( B
kmax

) + 2
. (3.0.10b)

Looking back at paper [5] (Superoscillations in speckle patterns), where a de-
sciption of the probability density function of the wave is given by equation (2.4.37)
in terms of the local phase gradient (local wavenumber) only. The relationship
between k2 (second moment of the power spectrum) and the maximum wavenum-
ber kmax in the spectrum here, detemines the characteristics of superoscillations
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[4], where kmax is upper limit of
√
k2. The annular spectrum was given by,

kmax(1− δ) ≤ k ≤ kmax. (3.0.11)

The fraction of superoscillation is given by,

fannulus = 1− 4

(6− 2δ + δ2)
. (3.0.12)

Now for the case discussed here, the bandwidth is considered rather than a
scaled thickness as in [5]. Therefore the bandwidth B can be described in terms
of δ as shown,

δ =
B

kmax
. (3.0.13)

Therefore equation (3.0.12) can be described in terms of bandwidth as,

fannulus = 1− 4

(6− 2( B
kmax

) + ( B
kmax

)2)
. (3.0.14)

Equation (3.0.14) above is the expression as found in [5] and [4]. Now comparing
the expression for the fraction of superoscillations in (3.0.7) and the fraction in
(3.0.12),

f =
α2

α2 + 2
(3.0.15a)

α =

√
2f

1− f
. (3.0.15b)

Substituting (3.0.12) into (3.0.15), then taking δ from (3.0.13),

α =

√
2

( 4
6−2δ+δ2

)

(1− 4
6−2δ+δ2

)
(3.0.16a)

α =

√
1− δ +

δ2

2
(3.0.16b)

α =

√
1− B

kmax
+

B2

2k2
max

. (3.0.16c)

Notice here if we computed the values for the fraction of superoscillations using
alpha as found by equation (3.0.16) we get the result that as bandwidth tends to
∞ our fraction of superoscillation tends to 1

5
as shown in �gure 3.6, by the means

of equation (3.0.12). On further inspection of the expression α in 3.0.16, the
resemblance to exponential function can be seen,

1− B

kmax
+

B2

2k2
max

... ≈ e
B

kmax (3.0.17a)

√
1− B

kmax
+

B2

2k2
max

... ≈ e
B

2kmax = α. (3.0.17b)
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Therefore it can be said that the expression found analytically in (3.0.9) can be
reduced down to the expression found in (3.0.16) when a = 1 and B

kmax
<< 1. As

seen in �gure 3.6, the calculated fraction of superoscillations using the expression
as given in (3.0.14) with di�erent initial wavenumbers given by kmin, does not
fall below 1

5
. Furthermore, the fraction changes with the initial wavenumber, this

shows a similar trend to the results obtained analytically in 3.1 where the fraction
of superoscillations increases as kmin increases.

Figure 3.6: Figure of average fraction of superoscillations against bandwidth using the
expression in (3.0.12). Using the expression (3.0.13) for delta and calculating the fraction
using kmin = 1π, 2π, 3π, 4π, 10π, 50π, 100π.

Second Case: Fixed Bandwidths

The second case investigated will consider a �xed bandwidth with every sample
taken of our wave, this is done to anaylse any changes that this might have to the
results already obtained in the �rst case. The fraction of superoscillation is taken
for a wave, given that there exists two components with wavenumbers assigned
speci�c kmin and kmax, which are �xed for every sample. Here the amplitudes
and the phase remains random and independent random variables as before. The
fraction is taken for 105 samples and an average is calculated. This average is
then plotted for multiple bandwidths ranging from 0 to 100π. Furthermore the
e�ects of changing the number of sources N and the initial wavenumber kmin,
on the average fraction superoscillating is analysed, where N = 5, 10, 50, 100 and
kmin = 1π, 2π, 10π, 50π. The results are presented in �gures (3.7, 3.8), showing
similar trends to that of the �rst case where the wavenumbers are chosen at ran-
dom from a given bandwidth. Still it can be seen that the value decreases to a
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value much smaller than a �fth as the number of sources increases, and the rate
at which the fraction varies with bandwidth decreases with an increase in kmin.

Figure 3.7: This �gure shows the average superoscillating fraction against bandwidth
starting at kmin = 1π for several values of sources N = 5, 10, 50, 500, for the special case
where the bandwidth of every sample is �xed.

Figure 3.8: This �gure shows the average superoscillating fraction against bandwidth
starting at kmin = 1π for several values of sources N = 5, 10, 50, 500, for the special case
where the bandwidth of every sample is �xed.(zoomed �gure of 3.7 at bandwidth 0 to
10π )
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Figure 3.9: This �gure shows the e�ect of changing bandwidth on the average super-
oscillating fractional area, with a �xed number of wave sources of N=500. This also
shows the results for change in initial wavenumber kmin = 1π, 2π, 10π, 50π, 100π.

To understand why the fraction of superoscillations might change as seen by
the graph 3.1, one might get a better understanding by looking into the di�erence
in wavelength ∆λ with every sample rather than the change in bandwidth. First,
the bandwidth is expressed in terms of wavelength as follows:

B = kmax − kmin (3.0.18a)

=
2π

λmin
− 2π

λmax
(3.0.18b)

∆λ =
∆k(λminλmax)

2π
(3.0.18c)

B: bandwidth, ∆λ:di�erence in wavelength.

Taking the bandwidth �xed in (3.0.18), then it is seen that with an increase in
initial wavenumber the change in wavelength ∆λ decreases with �xed bandwidth,
this might explain some of the properties observed before from the relationship
between the fraction of superoscillation and the change in the initial wavenumber.
In addition the fraction is at its highest value when taking very large values for
the initial wavenumber kmin, as seen in �gures 3.2, 3.3 and 3.9. When analysed
in terms of the di�erence in wavelengths, this would be where the di�erence in
wavelength is at its lowest. To illustrate equation (3.0.18) we plot ∆λ (change
in wavelength) against B (bandwidth). Figure 3.10 shows this relationship. An
interesting observation is that as bandwidth increases ∆λ tends to a constant,
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which might also also be related to the result obtained for the average fraction of
superoscillations where it tends to a constant value.

Figure 3.10: The following graph gives the relationship between bandwidth and change
in wavelength for several initial wavenumbers as given by equation (3.0.18). kmin =
1π, 2π, 10π, 50π, 100π.

The plots for the distribution of the local wavenumber for each sample is shown
in 3.11, 3.12 and 3.14. These plots show the distribution given for every k(r)

k0
(ra-

tio of local wavenumber over the maximum wavenumber), calculated analytically
alongside the theoretical equivalent as given by equation (2.4.37) shown in [5], us-
ing the fact that k2 is given by the expression in equation (2.4.44). Analysing the
wavefunction's local wavenumber for number of sources N = 50 in 3.11 and 3.12,
as well as N = 5 in �gure 3.14 for several bandwidths given by B = 0π, 2π, 50π and
minimum wavenumbers kmin = 1π, 100π. The distribution for the monochromatic
case seems to agree with the theoretical calculation, as seen in the �gures where
B = 0, however the distribution seems to deviate from the theoretical expecta-
tion as the value of bandwidth increases. Note that the area under the graphs is
the probability, and therefore any local wavenumber that gives a ratio k

kmax
larger

than 1 is an indication of superoscillation. Here we de�ne k0 to be the maximum
wavenumber kmax.
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Figure 3.11: Graph for the distribution of wavenumber k
kmin

for number of sources
N = 50 and kmin = 1π, with bandwidths given by B = 0π, 2π, 50π. The bar chart
is the probability distribution calculated, light blue line shows the theoretical
prediction given by (2.4.37) using k2 as given by (2.4.44).
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Figure 3.12: Graph for the distribution of wavenumber k
kmin

for number of sources
N = 50 and kmin = 100π, with bandwidths given by B = 0π, 2π, 50π. The bar
chart is the probability distribution calculated, light blue line shows the theoretical
prediction given by (2.4.37) using k2 as given by (2.4.44).

There is a clear di�erence between �gure 3.11 where the minimum wavenumber
in the spectrum is given as kmin = 1π and 3.12 with wavenumber kmin = 100π.
The �rst most notable di�erence is that the e�ect of changing the bandwidth B
on the distribution of local wavenumbers for a larger kmin, is much smaller than
that with a lower kmin. This is therefore in agreement to what has been observed
in �gure 3.1, which shows that the average fraction of superoscillation falls at a
much smaller rate with higher initial wavenumbers kmin. Figure 3.12, shows that
an increase of 2π in bandwidth for large kmin has little e�ect to the overall distri-
bution, and when looking into the change in wavelength as shown in �gure 3.10,
it is clear that the di�erence in wavelength is small. Therefore the waves could be
approximated to that of the monochromatic case.
Knowing previously the relationship between the fraction of superoscillations and
the number of sources taken, given by �gure 3.7, the plot of the distribution in
3.14 reinforces the e�ect of changing the number of sources. Comparing the re-
sults to when the number of sources N = 50, a clear indication that the fraction of
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superoscillations is higher overall for N = 5. This can be seen in �gure 3.13 where
the bandwidth B = 50π and kmin = 1π, here the probability of k(r)/k0 is seen
to be larger in N = 5 than N = 50. The di�erence between the two probability
distributions can also be seen in �gure 3.7 where the fraction of superoscillations
for N = 5 is ≈ 0.16 than that for N = 50 which is ≈ 0.15. This relationship still
holds for large bandwidths.

Figure 3.13: Graph of the distribution of wavenumber k
kmax

for number of sources
N = 5, 50 with kmin = 1π and bandwidth B = 50π. The black bar shows the distribution
for N = 50 and the blue shows N = 5.

For the calculations in 3.11, 3.12 and 3.14 the number of samples taken had
to be signi�cantly decreased due to computational limitations. The number of
samples taken for the wavefunction is given to be 4000 and the number of sources
superimposing to form each wavefunction is given for both N = 5 and N = 50.
The local wavenumber k(r) is then found for all x and y values in our region
chosen. The distribution is then plotted for all local wavenumbers relative to the
associated kmax in each sample wave, This is done for several bandwidths and
initial wavenumbers.
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Figure 3.14: Graph for the distribution of wavenumber k
kmin

for number of sources
N = 5 and kmin = 1π, with bandwidths given by B = 0π, 2π, 50π. The bar chart
is the probability distribution calculated, light blue line shows the theoretical
prediction given by (2.4.37) using k2 as given by (2.4.44).

preliminary evidence of changing the angles in equation (3.0.3) so that they are
not equally spaced and are chosen at random, as well as having random kn values
has no signi�cant e�ect on the results obtained here. Therefore, each sample wave
is created by waves superimposing from random directions. This can be seen by
�gure 3.15 showing the superposition of N = 10 waves for kmin = 1π, 2π. The
code for this can be found in Appendix A: MATLAB codes.
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Figure 3.15: The following graph gives the relationship between the bandwidth and the
average fraction of superoscillations observed for N = 10 and kmin = 1π, 2π. This is
done for wave samples created through superposition of waves from random directions
(random angles in (3.0.3)).

Figures 3.16, 3.17, 3.18 and 3.19 are plots of the superoscillatory region (seen by
the blue region) for several sample wavefunctions for a 2-D non-monochromatic
wave formed through the superposition of N = 50 waves as given by equation
(3.0.1). The black lines are contour plots of several phases of the wave, the inter-
section of these lines are the phase singularities. It is clear that superoscillations
are found near vortices and near regions where the phase gradient is high i.e.
where the black lines shown in the �gures are closer together. It is known from
before that taking larger values for kmin the average fraction of superoscillations
increases, this could be seen through the comparison between �gure 3.16 and 3.18.
However there is rather interesting observation that the number of wave vortices
increases with larger kmin values and with larger bandwidths. This again might
be due to the relationship between the bandwidth and the di�erence between the
wavelengths of the waves superimposing as mentioned previously.

79



CHAPTER 3. SUPEROSCILLATIONS IN NON-MONOCHROMATIC WAVES IN 2-DIMENSIONS

Figure 3.16: This �gure shows a plot of the superoscillatory region of a sample wave
formed through the superposition of N = 50 waves, and is non-monochromatic with min-
imum wavenumber kmin = 2π and bandwidth of B = 2π. The black lines show the plot
of multiple phases of the wave, intersecting at wave vortices found in the superoscillatory
region.

Figure 3.17: Figure showing a plot of the superoscillatory region of a sample wave formed
through the superposition of N = 50 waves, and is non-monochromatic with minimum
wavenumber kmin = 2π and bandwidth of B = 50π. The black lines show the plot of
multiple phases of the wave, intersecting at wave vortices found in the superoscillatory
region.
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Figure 3.18: This �gure shows a plot of the superoscillatory region of a sample wave
formed through the superposition of N = 50 waves, and is non-monochromatic with min-
imum wavenumber kmin = 10π and bandwidth of B = 2π. The black lines show the plot
of multiple phases of the wave, intersecting at wave vortices found in the superoscillatory
region.

Figure 3.19: This �gure shows a plot of the superoscillatory region of a sample wave
formed through the superposition of N = 50 waves, and is non-monochromatic with min-
imum wavenumber kmin = 10π and bandwidth of B = 50π. The black lines show the plot
of multiple phases of the wave, intersecting at wave vortices found in the superoscillatory
region.

A comparison between the intensity region and the superoscillatory region is
shown in �gures 3.20 , 3.21 and 3.22 for several bandwidths (B = 0π, 2π, 10π)
with kmin = 2π. The plots show how the superoscillatory region di�ers from
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that of the lowest intensity region, however it does illustrate that superoscillations
are found near regions of low intensities. The graphs produced are a plot of the
intensity region shown by the coloured hues and lowest intensity region shown
by the white line, for one sample wavefunction ψ which was formed from the
superposition of N = 50 waves. The lowest intensity region was found by taking
the fraction of superoscillations calculated and taking the same fraction from the
intensity pattern. The red lines encloses the superoscillatory regions. The results
are similar to that found by paper [5].

Figure 3.20: This is a plot of the intensity pattern shown as the coloured hue, along side
the plot for the region superoscillating which is enclosed by the red lines, for 1 sample
wavefunction given by the superposition of N = 50 waves with kmin = 2π. The white
lines shows the area of low intensities. Here the bandwidth is taken as B = 0π, so that
the wave is considered to be monochromatic.
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Figure 3.21: This is a plot of the intensity pattern shown as the coloured hue, along side
the plot for the region superoscillating which is enclosed by the red lines, for 1 sample
wavefunction given by the superposition of N = 50 waves with kmin = 2π. The white
lines shows the area of low intensities. Here the bandwidth is taken as B = 2π.

Figure 3.22: Similar plot to that of �gures 3.20 and 3.21, however taking bandwidth
B = 10π.

Final Conclusion

The main body of this thesis covered a variety of di�erent mathematical topics
which were required to understand the nature and behaviour of superoscillatory
function. One mathematical concept called the Saddle Point Method was essential
in understanding paper [1], as it gives an approximation of a special kind of inte-
gral of the form shown in equation (2.1.21). Statistical optics along with Gaussian
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statistics were also of great importance in the study of the papers [3], [5] and [4]
and has been used throughout this thesis. The papers reviewed in the chapter
Background Reading explain all the major physical concepts required, however
the paper Mathematics of Superoscillations by Y. Aharonov et al [18] gives and
in-depth mathematical analysis of superoscillations, which was of great use in un-
derstanding this fascinating phenomena.

The aims of the thesis was to give a clear description of superoscillations and
how such functions behave. Expanding on the work conducted in [3], [5] as well
as the [4], by studying the e�ect of changing the bandwidth of the individual su-
perimposing waves, alongside the change in the number of sources on the average
fraction of superoscillations observed in a �xed region of space. Furthermore, the
e�ect of changing the smallest wavenumber in the spectrum is also analysed and
observed.

A de�nition is given for a wave as before [3] [5], where a superposition of ran-
dom waves is taken, each individual wave had components amplitude and phase,
both of which were random independent variables, i.e the knowledge of one vari-
able gives no indication of the behaviour of the other. The amplitudes are taken
to be random complex circular Gaussian variables with a real and imaginary part
that are also independent of each other. The expression for such a wave is given
by (3.0.1).

The main idea was to �nd the region in the sample wavefunction (3.0.1)
where the local wavenumber in the resultant wave exceeds that of the maximum
wavenumber in the Fourier spectrum, as this indicates that the function is su-
peroscillating. The fractional area of superoscillation is calculated for 105 sample
waves. All the �gures shown in chapter 3 were found computationally using MAT-
LAB.

Two cases are taken into consideration as mentioned previously. The �rst cre-
ating sample waves by taking individual waves, where the wavenumber is chosen
at random from a speci�ed band-limit, so that the maximum wavenumber in the
spectrum could vary from one sample to another. The second case is where the
bandwidth is �xed for every sample function, which in turn means that there is
always a wave that has maximum wavenumber kmax and a minimum kmin. Both
cases here give similar results to one another, as shown in the graphs given by 3.1
and 3.9. This might be due to the high level of samples taken, since the average
fraction of the area in which superoscillations is observed is taken for a vast num-
ber of sample waves. The main and most surprising result shown in �gures 3.1,3.2
and �gures 3.7 to 3.9, is that for extremely large bandwidth the average fraction
of superoscillations falls to a value of ≈ 0.15 with large number of sources. This
contradicts the theoretical result in [4], as shown by equation (2.4.45), where a
scaled thickness is used rather than bandwidth. Here the predicted value of a 1

5

is given for a `top hat' spectrum, and the superoscillatory fraction against band-
width is shown in �gure 3.6. It can be seen that the fraction falls with bandwidth
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to a fraction much larger than what was found numerically here. It was not clear
what caused the fraction to fall below 1

5
, however a possibility might be the ex-

pression given to k2 which is the second moment of k with respect to the power
spectrum, as shown in [4] and [5], this is shown in equation (2.4.42) to (2.4.44),
other possibilities might be an approximation used in [5] [4] which has not been
taken into consideration in the computation. Looking at equation (3.0.17), it can
be seen that the expression for α is similar to the expression obtained in (3.0.8),
and can be considered as an approximation of it. Another interesting observa-
tion is made when comparing the fraction of superoscillation with the change in
the minimum wavenumber kmin. It is seen through �gures 3.8, 3.9, that as the
minimum wavenumber decreases, the average fraction falls at a faster rate. This
could be caused by the relationship between the change in wavelength and the
bandwidth, the plot of ∆λ against bandwidth B is given in �gure 3.10 and this
shows that with large initial wavenumber ∆λ is almost constant with large band-
widths, however with small kmin the change is more signi�cant with every step.
The relationship between bandwidth and the change in wavelength is shown in
equation (3.0.18). The plot for the theoretical result given by equation (2.4.45) is
found in �gure 3.6 and it shows that the fraction of superoscillation falls in the
same manner as that found computationally however with the slight di�erences
as mentioned earlier.

Looking back at the results, there is a clear correlation between the number
of sources superimposing and the average fraction superoscillating. Surprisingly,
the �gures in 3.2, 3.7 show that as the number of sources increases the fraction
tends to decrease, in the case of constant initial wavenumber. Since superoscilla-
tions are said to be found near regions where the functions tends to vanish and
the phase is unde�ned. One possibility might be the underlying statistical link
between the destructive interference of the waves and the number of sources, such
that the probability for the waves to destructively interfere might decrease with
the increase of the number of random waves superimposing.

From all the results found in chapter 3, It is essential to �nd an expression
that �ts the �gures obtained in 3.1, 3.2 and 3.7 to 3.9 analytically and computa-
tionally. Initially the probability distribution for a monochromatic case is known
to be of the form found in equation (2.3.45). Now a parameter α in (3.0.6) is
multiplied by the maximum wavenumber, this is done due to the fact that for a
non-monochromatic case, the probability density function was shown to be ex-
pressed as (2.4.37), where k2 is the second moment of the power spectrum, which
is dependent on the underlining distribution of the wavenumbers k. For the results
obtained in chapter 3, an approximated �t is made using the expression given by
equation (3.0.9), Where an expression for α has been found as shown in (3.0.8).
The approximated expression for the fraction of superoscillations was found to
reduce down to the expression found in [4] and [5] as given by (3.0.14) with a = 1
and b

kmax
<< 1.

Overall, superoscillations has been an interesting and exciting area to research
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and study. It has shown to be an area that is growing rapidly and has been applied
in a variety of di�erent areas such as optical super-resolution. However there is
still much to be explored in the �eld of superoscillations. If one were to further
the work conducted here, they might consider expanding the 2−D case here into
higher dimensions and analysing the statistics, as well as the e�ects of changing
the number of sources on the superoscillatory fraction. Another possible area
of research, would be explaining the reasoning behind the contradicting results
obtained here for the theoretical description of the fraction of superoscillations, as
shown in equation (2.4.45), and the results obtained from numerical computation
of the fraction of superoscillations as provided in �gures 3.1, 3.2, 3.7 and 3.9.
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E�ect of Change in N , and kmin on a
Number of
sources N

kmin a Root mean
squared error

N = 5 1π 0.7599 0.0025
2π 0.7561 0.0023
3π 0.7579 0.0024
4π 0.7616 0.0023
10π 0.7513 0.0027
50π 0.7244 0.0016
100π 0.7135 0.0020

N = 6 1π 0.8119 0.0024
2π 0.8081 0.0020
3π 0.807 0.0021
4π 0.8071 0.0024
10π 0.7973 0.0021
50π 0.7836 0.0020
100π 0.7755 0.0022

N = 7 1π 0.8461 0.0023
2π 0.8471 0.0021
3π 0.8445 0.0024
4π 0.8456 0.0023
10π 0.8407 0.0024
50π 0.8229 0.0017
100π 0.8139 0.0017

N = 8 1π 0.877 0.0021
2π 0.8747 0.0022
3π 0.8734 0.0021
4π 0.8688 0.0021
10π 0.8653 0.0018
50π 0.8437 0.0018
100π 0.8354 0.0016

Table 3.1: Table showing the value calculated analytically of the constant a found in
our expression in (3.0.9) for N = 5, 6, 7, 8 and kmin = 1π, 2π, 3π, 4π, 10π, 50π, 100π. The
root mean squared error has also been found using MATLAB, by �nding the residuals
which are the di�erences between the predicted and observed values of a. It is said
to describe the sample standard deviation of the di�erence between the values found
computationally and the predicted values.
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E�ect of Change in N , and kmin on a
Number of
sources N

kmin a Root mean
squared error

N = 10 1π 0.9146 0.0021
2π 0.9144 0.0025
3π 0.911 0.0023
4π 0.9138 0.0023
10π 0.9086 0.0020
50π 0.892 0.0015
100π 0.8629 0.0015

N = 50 1π 1.055 0.0022
2π 1.06 0.0021
3π 1.06 0.0017
4π 1.054 0.0021
10π 1.055 0.0019
50π 1.038 0.0018
100π 1.015 0.0018

N = 500 1π 1.09 0.0020

Table 3.2: Table showing the value calculated analytically of the constant a found in our
expression in (3.0.9) for N = 10, 50, 500 and kmin = 1π, 2π, 3π, 4π, 10π, 50π, 100π, for the
N = 500 (we only found the value for kmin = 1π due to computational limitations). The
root mean squared error has also been found using MATLAB, by �nding the residuals
which are the di�erences between the predicted and observed values of a. It is said
to describe the sample standard deviation of the di�erence between the values found
computationally and the predicted values.
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Chapter 4

Mathematics

4.0.1 Laplace Method

The laplace method is used to �nd an estimation of integrals that are written
in the form,

I =

∫ b

a

e−φf(x)g(x)dx. (4.0.1)

The values of a and b here can be either in�nite or �nite. It can be seen that the
peak of the function given by e−φf(x), would be around the point x0, and if φ is
taken to be very large then the peak is concentrated around the region (x − x0).
Note that at the point x = x0, g(x0) is a minimum.
For the moment taking that x0 = a (some integer) and let f ′(x0) > 0 and g(x0) 6=
0. Then taking the Taylor series expansion of g(x) and f(x) near the point x = x0

obtains,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + ...+O(x− x0)3. (4.0.2)

Returning back to equation (4.0.1) and let the limit b, which is the upper limit,
be equal to in�nite and replace the terms f(x) and g(x) with their expansions,

I =

∫ ∞
a

g(x0)e−φ(f(x0)+f ′(x0)(x−x0)+...)dx (4.0.3a)

= g(x0)e−φf(x0)[
−1

φf ′(x0)
]∞a (4.0.3b)

= g(x0)
e−φf(x0)

φf ′(a)
(4.0.3c)

= g(a)
e−φf(a)

φf ′(a)
. (4.0.3d)

Now considering a point x = x0 that is a minimum i.e. where f ′(x) = 0 and
f ′′(x0) > 0, then an expression of the integral in (4.0.3) is given as,

I =

∫ b

a

g(x0)e−φ(f(x0)+ 1
2
f ′′(x0)(x−x0)2)dx. (4.0.4)
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Replacing the limits a and b by ±∞ respectively then,

I ≈ g(x0)e−φ(f(x0))

∫ ∞
−∞

e
−φ(x−x0)

2

2
f ′′(x0)dx. (4.0.5)

Note that the integral in equation (4.0.5) is a Gaussian, then using the relation,∫ ∞
−∞

e−ax
2

dx =

√
π

a
, (4.0.6)

Gives,

I ≈ g(x0)e−φf(x0)

√
2π

φf ′′(x0)
. (4.0.7)

4.0.2 Volume of Hypersphere

First considering a hypersphere, which has a radius that will be denoted as R,
and letting n be the number of dimensions of said sphere. Then a speci�c point can
be de�ned on the n dimensional sphere in a euclidean space by (x1, x2, x3, ...xn).
The surface area of the hypersphere shall be denoted as An−1 and can be described
by the points,

R2 ≥ x2
1 + x2

2 + x2
3 + ... (4.0.8)

Requiring the computation of the volume of the hypersphere Vn(R). For this
it can be described as,

Vn(R) ∝ Rn (4.0.9a)

Vn(R) =

∫
x21+x22+x23...x

2
n

dx1dx2dx3..dxn (4.0.9b)

Vn(R) = BnR
n. (4.0.9c)

Since Bn is needed. A Construction of the volume is made by taking spherical
shells that are in�nitesimally thin of a radius ranging from 0 < r < R, Therefore
describing the volume as follows,

Vn(R) =

∫ R

0

An−1(r)dr. (4.0.10)

It is also obvious that the surface area can also be expressed as,

An−1(R) =
dVn(R)

dR
(4.0.11a)

An−1(R) = nBnR
n−1. (4.0.11b)

Substituting in equation (4.0.11) into (4.0.10),

Vn(R) = nBn

∫ R

0

rn−1dr =

∫
x21+x22+x23+...x2n

dx1dx2dx3...dxn. (4.0.12)
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To �nd Bn. Changing the integral to be of a hyper-spherical coordinate system
where,

dx1dx2dx3.... = rn−1drdΩn−1. (4.0.13)

Here Ω1 = dθ for n = 2, Ω2 = sin(θ)dθdφ for n = 3 and so on for multiple
dimensions. Using the equation (4.0.13) and (4.0.12), it can be seen that,∫

dΩn−1 = nCn. (4.0.14)

A speci�c way of calculating Bn, by considering the function f(x)

f(x1, x2, x3, ...xn) = exp[−(x2
1 + x2

2 + ...x2
n)] = exp(−r2). (4.0.15)

If an integral is taken of the function f(x) in the hyper spherical coordinate system
over all n dimensions,∫ ∞

−∞
e−(x21+x22+x23+...x2n)dx1..dxn =

∫ ∞
0

rn−1e−r
2

drdΩn−1. (4.0.16)

Using the relation in equation (4.0.14) gives,∫ ∞
−∞

e−x
2
1dx1

∫ ∞
∞

e−x
2
2dx2... = nBn

∫ ∞
0

rn−1e−r
2

dr (4.0.17)

The integrals shown above can be found by,∫ ∞
−∞

e−x
2

dx =
√
π (4.0.18a)

∫ ∞
0

rn−1e−r
2

dr =
1

2
Γ(
n

2
). (4.0.18b)

Therefore, seeing now that the equation (4.0.17) is given by,

π
n
2 = Γ(

n

2
)
n

2
Bn = Γ(1 +

n

2
)Bn. (4.0.19)

Where the relation, xΓ(x) = Γ(x+ 1) is used. Now a solution to Bn is found and
is characterized as,

Bn =
π
n
2

Γ(1 + n
2
)
. (4.0.20)

The surface area and volume of an n dimensional hypersphere is thus given as,

Vn(R) =
π
n
2Rn

Γ(1 + n
2
)

(4.0.21a)

Sn−1(R) =
nπ

n
2Rn−1

Γ(1 + n
2
)

(4.0.21b)

Sn−1(R) =
2π

n
2Rn−1

Γ(n
2
)

. (4.0.21c)
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4.0.3 Gaussian Average

< eitx >=
1

σ
√

2π

∫ ∞
−∞

e−
(x−µ)2

2σ2 eitxdx (4.0.22)

Where the variable x has a Gaussian distribution with a mean of µ and a varience
of σ2. Making the substitution of,

a =
1

σ
√

2π
(4.0.23a)

c =
√

2σ. (4.0.23b)

Now the equation (4.0.22) becomes,

< eitx >= a

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx. (4.0.24)

let,

α = x− µ (4.0.25a)

dα

dx
= 1 (4.0.25b)

< eitx >= a

∫ ∞
−∞

e−
α2

c2 eit(α+µ)dα (4.0.26a)

< eitx >= aeitµ
∫ ∞
−∞

e−
α2

c2 eitαdα (4.0.26b)

< eitx >= aeitµ
∫ ∞
−∞

e−
1
c2

(α2−itc2α). (4.0.26c)

Substitute c back in from the equation given in (4.0.23) into the brackets,

< eitx >= aeitµ
∫ ∞
−∞

e−
1
c2

(α2−i2tσ2α)dα (4.0.27a)

= ae(itµ− t
2σ2

2
)

∫ ∞
−∞

e−
(α−itσ2)2

c2 dα. (4.0.27b)

Using the substitution rule,

γ = α− itσ2 dγ

dα
= 1 (4.0.28a)

now the equation becomes,

< eitx >= ae(itµ− t
2σ2

2
)

∫ ∞
−∞

e−
γ2

c2 dγ. (4.0.29)
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φ =
γ

c
(4.0.30a)

dφ

dγ
=

1

c
(4.0.30b)

cdφ = dγ. (4.0.30c)

< eitx >= ace(itµ− t
2σ2

2
)

∫ ∞
−∞

e−φ
2

dφ (4.0.31a)

= ace(itµ− t
2σ2

2
)
√
π. (4.0.31b)

Substituting back in a and c from (4.0.23) into (4.0.32) to get the �nal relation,

< eitx >= e(itµ− t
2σ2

2
). (4.0.32)

4.0.4 Central limit Theorem

Central limit theorem states that the sums of a large number of independent
random variables tends towards a normal distribution and this does not depend
on the original distribution of the variables. First take the independent random
variables to be x1, x2, x3, ...xn with probability distributions that are not necessar-
ily the same. Also expressing their mean as x̄1, x̄2, x̄3, ..x̄n, as well as the variance
σ2

1, σ
2
2, σ

2
3, ..., σ

2
n.[40]

Then if,

Y =
1√
n

Σn
i=1

xi − x̄1

σ1

, (4.0.33)

take that in the limit n tends to in�nity the probability density function of y (p(y))
approaches a Gaussian density.

limn→∞ pY (y) =
1√
2π
e−

y2

2 . (4.0.34)

This also works for sums of samples. If a large number of samples of size n is
taken then the distribution of the sums in n tends to be normally distributed.

4.0.5 Speckle Statistics

The following information was deduced from the work of J.W. Goodman ,Statis-
tical Optics as well as Speckle Phenomena in Optics [40] [41], and includes speci�c
relevant information required for the work conducted in this thesis. A de�nition
of a speckle is given as , the intensity pattern usually formed by the interference
of waves, and in a speci�c case when a number of independent phased components
which are complex are added together to form a signal. The signals discussed will
have random phases as well as lengths (amplitudes).
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Sum of random phasors:

Initially de�ning the phasor sum as follows,

A = Aeiθ =
1√
N

ΣN
n=1Bn =

1√
N

ΣN
n=1ane

iφn . (4.0.35)

Given that an is the length of Bn, and φn is the phase of Bn. Note a scaling factor
of 1√

N
is used here, so as to maintain the �nite second moments of the sum.

There are a few assumptions, which will now be stated, about the statistics of
the components of the phasors in which the sum is made up of. These are of most
importance, as all the calculations which will follow rely deeply on them:
1) The amplitude and the phase given by an and φn respectively are statistically
independent from one phasor to another. In other words the value of amplitude
and phase of one phasor reveals no information about the phase and amplitude of
the other phasors.
2) For each individual phasor the amplitude and phase are completely indpendent
of each other.
3) The presumption of uniform distribution is taken for the phases φn.

Moments of the imaginary and real parts of the resultant phasor

Note for the duration of this section the expectation value shall be denoted as
E, and all the assumptions are used from before.

E[<] = E[
1√
N

ΣN
n=1an cosφn] (4.0.36a)

=
1√
N

ΣN
n=1E[an cosφn] (4.0.36b)

=
1√
N

ΣN
n=1E[an]E[cosφn] = 0 (4.0.36c)

Equivalently the imaginary part is found as,

E[=] =
1√
N

ΣN
n=1E[an]E[sinφn] = 0. (4.0.37)

Since it was stated before that the phase has a uniform distribution, this gives
the average of sinφn and cosφn is = 0. Also noting that the variances of the real
and imaginary part are equal to the second moments since the means are zero.

σ2
< = E[<2] =

1

N
ΣN
n=1ΣN

j=1E[anaj]E[cosφn cosφj] (4.0.38a)

σ2
= = E[=2] =

1

N
ΣN
n=1ΣN

j=1E[anaj]E[sinφn sinφj]. (4.0.38b)
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Now for n 6= j E[cosφn cosφj] = E[cosφn]E[cosφj] = 0, and the same can be seen
for the imaginary part. Thus the terms where n = j are left, and the expressions
in equation 4.0.38 can be expressed as,

σ2
< = ΣN

n=1

1

N
E[a2

n]E[cosφn
2] =

1

N
ΣN
n=1E[a2

n]E[
1

2
+

1

2
cos 2φn] (4.0.39a)

σ2
< =

1

N
ΣN
n=1

E[a2
n]

2
(4.0.39b)

σ2
= =

1

N
ΣN
n=1

E[a2
n]

2
. (4.0.39c)

It was assumed here that φn is uniformaly distributed on (−π, π). The means and
variances, of both the real < and imaginary = parts, are identical to one another.
A useful identity to have is the correlation (Γ) between the real and imaginary
part, for the case here, this is shown to be,

Γ(<,=) = E[<=] =
1

N
ΣN
n=1E[a2

n]E[cosφn sinφn] = 0. (4.0.40)

So for the conditions speci�ed before, there is no correlation between the real
and imaginary parts of the resultant phasor as shown in equation 4.0.40.

Large number of independent steps

Recall, the resultant phasor is given by,

A = Σ
1√
N
eiφn . (4.0.41)

Taking N to be very large, then < and = are going to be sums of independent
random variables, this gives rise to the central limit theorem which states that
the sum of a large N independent random variables, is asymptotic as N tends to
in�nity. Refer to section 4.0.4.

Given all the results obtained from equations (4.0.39, 4.0.36), one can �nd the
joint probability density function, which can be expressed as follows,

P<=(<,=) =
1

2πσ2
e−
<2+=2

2σ2 , (4.0.42)

where σ2 = σ2
= = σ2

<.
The joint probability density function for both the amplitude and phase can

be easily found through transformation of variables.

A =
√
<2 + =2 (4.0.43a)

θ = arctan(
=
<

) (4.0.43b)

< = A cos θ (4.0.44a)

= = A sin θ. (4.0.44b)
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By taking the Jacobian transformation determinant between the amplitude and
phase (A,θ), with < and =), the probability of phase and amplitude is given by,

PA,θ(A, θ) = P<,=(A cos θ, A sin θ)||J ||. (4.0.45)

Here de�ning ||J || as the Jacobian transformation.

||J || = ‖∂<
∂A

∂<
∂θ
||

||∂=
∂A

∂=
∂θ
||.

Following this, an expression for the joint probability density for amplitude and
phase of the resultant phasor is given by,

PA,θ(A, θ) =
A

2πσ2
e−

A2

2σ2 . (4.0.46)

Notice that the value of the Jacobian is equal to A.
Since the joint probability density is found, it is still possible to �nd the ex-

pression for the amplitude and phase alone. Starting by �nding the probability
density of the amplitude, for this the expression of probability density given by
equation 4.0.46 is integrated in terms of phase using the limits from −π to π,

PA(A) =

∫ π

−π
PA,θ(A, θ)dθ =

A

σ2
e−

A2

2σ2 . (4.0.47)

Now the density function of the phase is given by integrating over all possible
amplitudes.

Pθ(θ) =

∫ ∞
0

A

2πσ2
e−

A2

2σ2 dA =
1

2π
. (4.0.48)

From this one can deduce that the probability density of phase and ampli-
tude are statistically random variables, as the product of the two probabilities is
equivalent to the joint probability density function.

4.0.6 Helmholtz equation

The Helmholtz equation is a partial di�erential equation of the form,

∇2A+ k2A = 0. (4.0.49)

Here ∇2 is the Laplacian. The Helmholtz equation usually represents a time-
independent form of the wave equation, so in terms of the wave equation given
by,

(∇2 − 1

c2

∂2

∂t2
)u(r, t) = 0. (4.0.50)

Assuming that the wavefunction u(r, t) is separable.

u(r, t) = A(r)T (t) (4.0.51)
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Substituting this back into the wave equation in 4.0.50.

∇2A(r)

A
− 1

Tc2

∂2T (t)

∂t2
= 0. (4.0.52)

Assuming both the spacial and time independent variables are equal to a constant
call it k2.

∇2A(r) + Ak2 = 0. (4.0.53)
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Appendix A: MATLAB codes

Here are the main codes used for the work conducted in this thesis, These code �les
can be provided to the reader upon request by emailing sharif.alkhass@gmail.com.

Code for obtaining graphs in �gures (3.1, 3.2, 3.4, 3.5)

8pt
1 c l e a r
2 %superpos t i ons o f plane waves from d i f f e r e n t angle , each with a unique
3 %wavevector as s i gned at random from a bandwidth which i s chosen in advance. Also samples ...

are taken by the
4 %va r i ab l e m sta ted be low. ( the func t i on i s band l im i t ed between pi and 2 pi )
5 %however the ac tua l bandwidth o f the sample func t i on changes with each
6 %i t t e r a t i o n .
7 c l e a r a l l ;
8 xmin=0.0 ;
9 xmax=0.00004 ; %x and y g ive us the area in which we are working wi th .
10 dx=0.000005 ;
11 nx=1+(xmax - xmin ) /dx ;
12 x=xmin : dx : xmax ;
13 ymin=0;
14 ymax=0.00004 ;
15 dy=0.000005 ;
16 ny=1+(ymax - ymin ) /dy ;
17 y=ymin : dy : ymax ;
18
19 t t=0 . 0 . * pi ; %th i s i s time however we take t h i s as zero s i n c e we are only ...

dea l ing with time independent f u n c t i o n s .
20 N=[5 , 6 , 7 , 8 , 9 , 10 , 50 , 500 ] ; %number o f plane waves , we need more than one so as to graph ...

the r e s u l t s
21 hbar=1; %plank ' s constant d iv ided by 2 p i .
22 c=1; %speed .
23 M=1; %mass.
24 A=2 . * pi ; %t o t a l ang l e .
25 l im=100000; %lim 100000
26
27 B=[ l i n s pa c e (0 ,1 , 15 ) l i n s pa c e (1 .1 , 2 , 1 5 ) l i n s pa c e (2 .2 , 100 , 15 ) ] ; %th i s g i v e s the bandwidth ...

f o r a s p e c i f i c number o f waves.
28 f o r b=1: l ength (B)
29 BP(b)=(B(b) . * pi ) ; %th i s i s the bandwidth mu l t i p l i ed by pi
30 end
31 %code below c a l c u l a t e s the wave func t i on given at every x and y value , kmax
32 %would be the maximum K value given in each sample t h i s i s l a t e r used to
33 %f ind the cond i t i on where the l o c a l wavelength i s l a r g e r than
34 %kmax( s u p e r o s c i l l a t i n g reg ion ) .
35
36
37 k_min=[1 , 2 , 3 , 4 , 10 , 50 , 100 ] ; %th i s code changes the min and max k va lues ...

chosen .
38
39
40 f o r h=1: l ength (N)
41 f o r n=1:N(h)
42 ddeg (h)=A/N(h) ; %c r e a t e s the ang l e s f o r each plane ...

wave ( dependent on the number o f waves we are l ook ing at ) .
43 cd (h , n)=cos ( ( n - 1 ) *ddeg (h) ) ;
44 sd (h , n)=s in ( ( n - 1 ) *ddeg (h) ) ;
45 end
46 end
47
48
49 f o r t=1: l ength (k_min) ;
50 f o r h=1: l ength (N)
51 f o r b=1: l ength (B)
52 f r a c=ze ro s (1 , l im ) ;
53
54 f o r m=1: l im
55 kmax(h)=k_min( t ) . * pi ; %th i s w i l l be our i n i t i a l ...

maximum wavenumber ( however i t changes with each i t t e r a t i o n as shown ...
in the code )

56 f o r n=1:N(h)
57 k0 (n)=(k_min( t ) . * pi )+B(b) . * rand. *( p i ) ;
58 kx (n)=k0 (n) *cd (h , n) ;
59 ky (n)=k0 (n) * sd (h , n) ;
60 k2 (n)=kx (n)^2+ky (n) ^2;
61 w1(n)=c*k0 (n) ; %angular f requency
62 w(n)=hbar*k2 (n) /(2*M) ;
63 i f s q r t ( k2 (n) ) > kmax(h)
64 kmax(h)=k0 (n) ; %de f i n e s our maximum wavenumber
65 end
66 end
67 sum1=ze ro s (nx , ny ) ;
68 a=ze ro s (1 ,N(h) ) ;
69 f o r n=1:N(h) ;
70 a1=-pi+2 . * p i . * rand ; %a s s i gn s a random amplitude f o r every wave
71 a2=0+2*rand ; %a s s i gn s random phase f o r every wave
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72 a (n)=a2 . *exp ( a1 . *1 i ) ;
73 t1=a (n) *exp ( -1 i *w(n) * t t ) ;
74 t2=ze ro s (nx , 1 ) ;
75 t2 ( : )=exp (1 i *kx (n) *x ( : ) ) ; %can be thought o f as i nd i v i dua l phasors
76 t3=ze ro s (1 , ny ) ;
77 t3 ( : )=exp (1 i *ky (n) *y ( : ) ) ;
78 term=zero s (nx , ny ) ;
79 term=t1 * t2 * t3 ;
80 sum1=sum1+term ;
81 end
82 %ca l c u l a t i o n to f i nd the f r a c t i o n where the wavefunct ions ...

s u p e r o s c i l l a t e , by f i nd i ng the d i f f e r e n t i a l o f the phase o f the log ...
wave funct ion .

83 lp=log ( sum1) ;
84 psu=ze ro s (nx , ny ) ;
85 P=0;
86 dpdx=imag ( d i f f ( lp , 1 , 1 ) /dx ) ;
87 dpdy=imag ( d i f f ( lp , 1 , 2 ) /dy ) ;
88 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
89 f o r ix =1:nx -1
90 f o r iy =1:ny -1
91 kr ( ix , i y )=sq r t ( dpdx ( ix , i y )^2+dpdy ( ix , i y ) ^2) ; %l o c a l ...

wavenumber at every point
92 i f kr ( ix , i y ) > kmax(h)
93 P=P+1;
94 end
95 end
96 end
97
98 f r a c (m)=P/(( nx - 1 ) *(ny - 1 ) ) ; %f r a c t i o n o f area s u p e r o s c i l l a t i n g
99 end
100 sumf=0;
101 f o r m=1: l im
102 sumf=sumf+f r a c (m) ;
103 end
104 f r a c t i o n ( t , h , b)=sumf/ lim ; %average f r a c t i o n ...

o f area that i s s u p e r o s c i l l a t i n g by tak ing ( l im ) samples
105 formatSpec0 = ' Mean f r a c t i o n o f su r f a c e that i s s u p e r o s c i l l a t i n g %8 . 4 f \n ' ;
106 f p r i n t f ( formatSpec0 , f r a c t i o n ( t , h , b) ) ;
107
108
109 end
110 end
111 end
112
113
114 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
115 %c a l c u l a t e s average f r a c t i o n f o r s p e c i f i c number o f source s
116 f o r t=1: l ength (k_min)
117 f o r b=1: l ength (B)
118 f r a c t i o n 2 ( t , b)=f r a c t i o n ( t , 1 , b) ; %N=5
119 f r a c t i o n 3 ( t , b)=f r a c t i o n ( t , 2 , b) ; %N=6
120 f r a c t i o n 4 ( t , b)=f r a c t i o n ( t , 3 , b) ; %N=7
121 f r a c t i o n 5 ( t , b)=f r a c t i o n ( t , 4 , b) ; %N=8
122 f r a c t i o n 6 ( t , b)=f r a c t i o n ( t , 5 , b) ; %N=9
123 f r a c t i o n 7 ( t , b)=f r a c t i o n ( t , 6 , b) ; %N=10
124 f r a c t i o n 8 ( t , b)=f r a c t i o n ( t , 7 , b) ; %N=50
125 f r a c t i o n 9 ( t , b)=f r a c t i o n ( t , 8 , b) ; %N=500
126 end
127 end
128
129
130 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
131 %f i nd s the d i f f e r e n c e in wavelength f o r each bandwidth
132 f o r t=1: l ength (k_min)
133 f o r b=1: l ength (B)
134 dlam2 ( t , b)=(B(b) . * p i . /(2 . * pi ) ) . * ( (2 . * p i . /(k_min( t ) . * pi ) ) . *(2 . * p i . / ( (k_min( t )+B(b) ) . * pi ) ) ) ; ...

%puts bandwidth in terms o f lambda
135 end
136 end
137 dlam21=dlam2 ( 1 , : ) ; dlam22=dlam2 ( 2 , : ) ; dlam23=dlam2 ( 3 , : ) ; dlam24=dlam2 ( 4 , : ) ;
138 dlam25=dlam2 ( 5 , : ) ; dlam26=dlam2 ( 6 , : ) ;
139 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
140 %lamda min ( sma l l e s t wavelength ca l cu l a t ed f o r each kmin value ( taken over
141 %the whole range o f bandwidths )
142
143 f o r b=1: l ength (B)
144 lamda1 (b)=2-dlam2 (1 , b) ;
145 lamda2 (b)=1-dlam2 (2 , b) ;
146 lamda3 (b)=(2 . /3) - dlam2 (3 , b) ;
147 lamda4 (b)=(2 . /4) - dlam2 (4 , b) ;
148 lamda10 (b)=(2 . /10) - dlam2 (5 , b) ;
149 lamda50 (b)=(2 . /50) - dlam2 (6 , b) ;
150 lamda100 (b)=(2 . /100) - dlam2 (7 , b) ;
151
152 end
153
154
155 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - v
156 %Finding the f r a c t i o n f o r a given N, where the f r a c t i o n i s in terms o f 1
157 %k_min only and i s dependent on the bandwidth.
158 f r a c t i on21=f r a c t i o n 2 ( 1 , : ) ; f r a c t i on22=f r a c t i o n 2 ( 2 , : ) ; f r a c t i on23=f r a c t i o n 2 ( 3 , : ) ; f r a c t i on24=f r a c t i o n 2 ( 4 , : ) ;
159 f r a c t i on25=f r a c t i o n 2 ( 5 , : ) ; f r a c t i on26=f r a c t i o n 2 ( 6 , : ) ; f r a c t i on27=f r a c t i o n 2 ( 7 , : ) ;
160 f r a c t i on31=f r a c t i o n 3 ( 1 , : ) ; f r a c t i on32=f r a c t i o n 3 ( 2 , : ) ; f r a c t i on33=f r a c t i o n 3 ( 3 , : ) ; f r a c t i on34=f r a c t i o n 3 ( 4 , : ) ;
161 f r a c t i on35=f r a c t i o n 3 ( 5 , : ) ; f r a c t i on36=f r a c t i o n 3 ( 6 , : ) ; f r a c t i on37=f r a c t i o n 3 ( 7 , : ) ;
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162 f r a c t i on41=f r a c t i o n 4 ( 1 , : ) ; f r a c t i on42=f r a c t i o n 4 ( 2 , : ) ; f r a c t i on43=f r a c t i o n 4 ( 3 , : ) ; f r a c t i on44=f r a c t i o n 4 ( 4 , : ) ;
163 f r a c t i on45=f r a c t i o n 4 ( 5 , : ) ; f r a c t i on46=f r a c t i o n 4 ( 6 , : ) ; f r a c t i on47=f r a c t i o n 4 ( 7 , : ) ;
164 f r a c t i on51=f r a c t i o n 5 ( 1 , : ) ; f r a c t i on52=f r a c t i o n 5 ( 2 , : ) ; f r a c t i on53=f r a c t i o n 5 ( 3 , : ) ; f r a c t i on54=f r a c t i o n 5 ( 4 , : ) ;
165 f r a c t i on55=f r a c t i o n 5 ( 5 , : ) ; f r a c t i on56=f r a c t i o n 5 ( 6 , : ) ; f r a c t i on57=f r a c t i o n 5 ( 7 , : ) ;
166 f r a c t i on61=f r a c t i o n 6 ( 1 , : ) ; f r a c t i on62=f r a c t i o n 6 ( 2 , : ) ; f r a c t i on63=f r a c t i o n 6 ( 3 , : ) ; f r a c t i on64=f r a c t i o n 6 ( 4 , : ) ;
167 f r a c t i on65=f r a c t i o n 6 ( 5 , : ) ; f r a c t i on66=f r a c t i o n 6 ( 6 , : ) ; f r a c t i on67=f r a c t i o n 6 ( 7 , : ) ;
168 f r a c t i on71=f r a c t i o n 7 ( 1 , : ) ; f r a c t i on72=f r a c t i o n 7 ( 2 , : ) ; f r a c t i on73=f r a c t i o n 7 ( 3 , : ) ; f r a c t i on74=f r a c t i o n 7 ( 4 , : ) ;
169 f r a c t i on75=f r a c t i o n 7 ( 5 , : ) ; f r a c t i on76=f r a c t i o n 7 ( 6 , : ) ; f r a c t i on77=f r a c t i o n 7 ( 7 , : ) ;
170 f r a c t i on81=f r a c t i o n 8 ( 1 , : ) ; f r a c t i on82=f r a c t i o n 8 ( 2 , : ) ; f r a c t i on83=f r a c t i o n 8 ( 3 , : ) ; f r a c t i on84=f r a c t i o n 8 ( 4 , : ) ;
171 f r a c t i on85=f r a c t i o n 8 ( 5 , : ) ; f r a c t i on86=f r a c t i o n 8 ( 6 , : ) ; f r a c t i on87=f r a c t i o n 8 ( 7 , : ) ;
172 f r a c t i on91=f r a c t i o n 9 ( 1 , : ) ; f r a c t i on92=f r a c t i o n 9 ( 2 , : ) ; f r a c t i on93=f r a c t i o n 9 ( 3 , : ) ; f r a c t i on94=f r a c t i o n 9 ( 4 , : ) ;
173 f r a c t i on95=f r a c t i o n 9 ( 5 , : ) ; f r a c t i on96=f r a c t i o n 9 ( 6 , : ) ; f r a c t i on97=f r a c t i o n 9 ( 7 , : ) ;
174 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
175
176 %The code below shows the r e l a t i o n s h i p etween the f r a c t i o n o f
177 %s u p e r o s c i l l a t i o n s aga in s t bandwidth. This id done f o r N=500 source s f o r
178 %s ev e r a l kmin va l u e s . In the t h e s i s t h i s i s r epre s ented by f i g u r e 3 . 1
179 p lo t (B, f r a c t i on91 , 'k ' ,B, f r a c t i on92 ,B, f r a c t i on93 ,B, f r a c t i on94 ,B, f r a c t i on95 ,B, f r a c t i on96 ,B, f r a c t i on97 )
180 x l ab e l ( 'Bandwidth in \ pi ' )
181 y l ab e l ( ' Fract ion o f area s u p e r o s c i l l a t i n g ' )
182 t i t l e ( 'Change in i n i t i a l wavenumber with N=500 ' )
183 legend ( 'k=1 \ pi ' , 'k=2 \ pi ' , 'k=3 \ pi ' , 'k=4 \ pi ' , 'k=10 \ pi ' , 'k=50 \ pi ' , 'k=100 \ pi ' )
184 s e t ( gca , ' FontSize ' , 20)
185
186 %The f o l l ow ing code r ep r e s en t s the f i g u r e s 3 .2 , 3 . 3 in the t h e s i s and i s
187 %given to be the f r a c t i o n o f s u p e r o s c i l l a t i o n s aga in s t the bandwidth
188 %f o r s e v e r a l va lues o f N (N=5 ,6 ,7 ,8 ,9 ,10 ,50) f o r kmin = 1 pi
189 p lo t (B, f r a c t i on21 ,B, f r a c t i on31 ,B, f r a c t i on41 ,B, f r a c t i on51 )
190 hold on
191 p lo t (B, f r a c t i on61 ,B, f r a c t i on71 ,B, f r a c t i on81 ,B, f r a c t i on91 )
192 x l ab e l ( 'Bandwidth in \ pi ' )
193 y l ab e l ( ' Fract ion o f area s u p e r o s c i l l a t i n g ' )
194 t i t l e ( ' change in number o f source s N ( f o r bandwidth 0 to 100 \ pi ' )
195 legend ( 'N=5 ' , 'N=6 ' , 'N=7 ' , 'N=8 ' , 'N=9 ' , 'N=10 ' , 'N=50 ' )
196 s e t ( gca , ' FontSize ' , 20)
197
198
199 %in order to p lo t the r equ i r ed f i g u r e p l e a s e comment out that which i s not
200 %needed. F igures with the approximation given are c a l cu l a t ed us ing the
201 %curve f i t t i n g app bu i l t i n to MATLAB. Here a curve f i t can be found by
202 %ente r ing a pa r t i c u l a r equat i on .

Code for obtaining �gures (3.7, 3.8, 3.9, 3.15)

8pt
1 %the only d i f f e r e n c e in t h i s code i s that I took the band - width f i x ed with
2 %every i t t e r a t i o n
3 %superpos t i ons o f plane waves from d i f f e r e n t angle , each with a unique
4 %wavelength. Also samples are taken by the
5 %va r i ab l e m sta ted below. ( the func t i on i s band l im i t ed between pi and 2 pi
6 c l e a r a l l ;
7 xmin=0.0 ;
8 xmax=0.00004 ; %x and y g ive us the area in which we are working wi th .
9 dx=0.000005 ;
10 nx=round (1+(xmax - xmin ) /dx ) ;
11 x=xmin : dx : xmax ;
12 ymin=0;
13 ymax=0.00004 ;
14 dy=0.000005 ;
15 ny=round (1+(ymax - ymin ) /dy ) ;
16 y=ymin : dy : ymax ;
17
18 t t=0 . 0 . * pi ; %th i s i s time however we take t h i s as zero s i n c e we are only dea l ing ...

with time independent f u n c t i o n s .
19 N=[5 ,10 ,50 ,100 ,500 ] ; %number o f plane waves , we need more than one so as to graph the ...

r e s u l t s .
20 hbar=1; %plank ' s constant d iv ided by 2 p i .
21 c=1; %speed .
22 M=1; %mass.
23 A=2 . * pi ; %t o t a l ang l e .
24 l im=100000;
25
26 B=[ l i n s pa c e (0 ,1 , 15 ) l i n s pa c e (1 .1 , 2 , 1 5 ) l i n s pa c e (2 .2 , 100 , 15 ) ] ; %th i s g i v e s the ...

bandwidth f o r a s p e c i f i c number o f waves.
27 f o r b=1: l ength (B)
28 BP(b)=(B(b) . * pi ) ; %Finds the value f o r the bandwidth
29 end
30 %code below c a l c u l a t e s the wave func t i on given at every x and y value , kmax
31 %would be the maximum K value given in each sample t h i s i s l a t e r used to
32 %f ind the cond i t i on where the l o c a l wavelength i s l a r g e r than
33 %kmax( s u p e r o s c i l l a t i n g reg ion ) .
34
35
36 k_min=[1 ,2 , 10 , 50 , 100 ] ; %th i s code changes the min and max k ...

va lues chosen .
37
38
39 f o r h=1: l ength (N)
40 f o r n=1:N(h)
41 ddeg (h)=A/N(h) ; %c r e a t e s the ang l e s f o r each plane ...

wave ( dependent on the number o f waves we are l ook ing at ) .
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42 cd (h , n)=cos ( ( n - 1 ) *ddeg (h) ) ; %in order to change the ang l e s so they are ...
random , change ddeg (h) so that i t s ddeg (h , n)

43 %ddeg (h , n)=0+2 . * p i . * rand and
44 %change cd (h , n)=cos ( ddeg (h , n) )
45 %sd (h , n)=s in ( ddeg (h , n) )
46 sd (h , n)=s in ( ( n - 1 ) *ddeg (h) ) ;
47 end
48 end
49
50 f o r t=1: l ength (k_min) ;
51 f o r h=1: l ength (N)
52 f o r b=1: l ength (B)
53 f r a c=ze ro s (1 , l im ) ;
54
55 f o r m=1: l im
56 kmax(h)=k_min( t ) . * pi ; %th i s w i l l be our i n i t i a l ...

maximum wavenumber ( however i t changes with each i t t e r a t i o n as shown ...
in the code

57 f o r n=1:N(h)
58 i f n==1 %i f statements that make sure ...

our bandwidth i s f i x ed through every sample
59 k0 (n)=k_min( t ) . * pi ;
60 e l s e i f n==N(h)
61 k0 (n)=(k_min( t ) . * pi )+(B(b) . * pi ) ;
62 e l s e
63 k0 (n)=(k_min( t ) . * pi )+(B(b) . * rand. *( p i ) ) ;
64 end
65 end
66 kx (n)=k0 (n) *cd (h , n) ;
67 ky (n)=k0 (n) * sd (h , n) ;
68 k2 (n)=kx (n)^2+ky (n) ^2;
69 w1(n)=c*k0 (n) ; %angular f requency
70 w(n)=hbar*k2 (n) /(2*M) ;
71 i f s q r t ( k2 (n) ) > kmax(h) %de f i n e s our maximum wavenumber
72 kmax(h)=k0 (n) ;
73 end
74 end
75 sum1=ze ro s (nx , ny ) ;
76 a=ze ro s (1 ,N(h) ) ;
77 f o r n=1:N(h) ;
78 a1=-pi+2 . * p i . * rand ; %a s s i gn s a random amplitude f o r every wave
79 a2=2 . * rand ; %a s s i gn s random phase f o r every wave
80 a (n)=(a2 ) . *exp (1 i . *a1 ) ;
81 t1=a (n) ;
82 t2=ze ro s (nx , 1 ) ;
83 t2 ( : )=exp (1 i *kx (n) *x ( : ) ) ; %can be thought o f as i nd i v i dua l phasors
84 t3=ze ro s (1 , ny ) ;
85 t3 ( : )=exp (1 i *ky (n) *y ( : ) ) ;
86 term=zero s (nx , ny ) ;
87 term=t1 * t2 * t3 ;
88 sum1=sum1+term ; %summing the waves at every point in ...

our ' pool ' or ra the r a r e a . de f ined by x and y
89 end
90 %ca l c u l a t i o n to f i nd the f r a c t i o n where the wavefunct ions ...

s u p e r o s c i l l a t e , by f i nd i ng the d i f f e r e n t i a l o f the phase o f the log ...
wave funct ion .

91 lp=log ( sum1) ;
92 psu=ze ro s (nx , ny ) ;
93 P=0;
94 dpdx=imag ( d i f f ( lp , 1 , 1 ) /dx ) ;
95 dpdy=imag ( d i f f ( lp , 1 , 2 ) /dy ) ;
96 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
97 f o r ix =1:nx -1
98 f o r iy =1:ny -1
99 kr ( ix , i y )=sq r t ( dpdx ( ix , i y )^2+dpdy ( ix , i y ) ^2) ; %l o c a l wavenumber ...

at every point
100 i f kr ( ix , i y ) > kmax(h)
101 P=P+1;
102 end
103 end
104 end
105 f r a c (m)=P/(( nx - 1 ) *(ny - 1 ) ) ; %f r a c t i o n o f area s u p e r o s c i l l a t i n g
106 end
107 sumf=0;
108 f o r m=1: l im
109 sumf=sumf+f r a c (m) ;
110 end
111 f r a c t i o n ( t , h , b)=sumf/ lim ; %average f r a c t i o n o f area ...

that i s s u p e r o s c i l l a t i n g by tak ing ( l im ) samples
112 formatSpec0 = ' Mean f r a c t i o n o f su r f a c e that i s s u p e r o s c i l l a t i n g %8 . 4 f \n ' ;
113 f p r i n t f ( formatSpec0 , f r a c t i o n ( t , h , b) ) ;
114 end
115 end
116 end
117
118
119 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
120 %c a l c u l a t e s average f r a c t i o n f o r s p e c i f i c number o f source s
121
122 f o r t=1: l ength (k_min)
123 f o r b=1: l ength (B)
124 f r a c t i o n 2 ( t , b)=f r a c t i o n ( t , 1 , b) ; %N=5
125 f r a c t i o n 3 ( t , b)=f r a c t i o n ( t , 2 , b) ; %N=10
126 f r a c t i o n 4 ( t , b)=f r a c t i o n ( t , 3 , b) ; %N=50
127 f r a c t i o n 5 ( t , b)=f r a c t i o n ( t , 4 , b) ; %N=100
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128 f r a c t i o n 6 ( t , b)=f r a c t i o n ( t , 5 , b) ; %N=500
129
130 end
131 end
132
133
134 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135 %f i nd s the d i f f e r e n c e in wavelength f o r each bandwidth
136 f o r t=1: l ength (k_min)
137 f o r b=1: l ength (B)
138 dlam2 ( t , b)=(B(b) . * p i . /(2 . * pi ) ) . * ( (2 . * p i . /(k_min( t ) . * pi ) ) . *(2 . * p i . / ( (k_min( t )+B(b) ) . * pi ) ) ) ; ...

%puts bandwidth in terms o f lambda
139 end
140 end
141
142 dlam21=dlam2 ( 1 , : ) ; dlam22=dlam2 ( 2 , : ) ; dlam23=dlam2 ( 3 , : ) ; dlam24=dlam2 ( 4 , : ) ; dlam25=dlam2 ( 5 , : ) ;
143
144 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
145 %lamda min ( sma l l e s t wavelength ca l cu l a t ed f o r each kmin value ( taken over
146 %the whole range o f bandwidths )
147 %
148 f o r b=1: l ength (B)
149 lamda1 (b)=2-dlam2 (1 , b) ;
150 lamda2 (b)=1-dlam2 (2 , b) ;
151 lamda3 (b)=(2 . /10) - dlam2 (3 , b) ;
152 lamda4 (b)=(2 . /50) - dlam2 (4 , b) ;
153 lamda10 (b)=(2 . /100) - dlam2 (5 , b) ;
154 end
155 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - v
156 %Finding the f r a c t i o n f o r a given N, where the f r a c t i o n i s in terms o f 1
157 %k_min only and i s dependent on the bandwidth.
158 f r a c t i on21=f r a c t i o n 2 ( 1 , : ) ; f r a c t i on22=f r a c t i o n 2 ( 2 , : ) ; f r a c t i on23=f r a c t i o n 2 ( 3 , : ) ; f r a c t i on24=f r a c t i o n 2 ( 4 , : ) ;
159 f r a c t i on25=f r a c t i o n 4 ( 5 , : ) ;
160 f r a c t i on31=f r a c t i o n 3 ( 1 , : ) ; f r a c t i on32=f r a c t i o n 3 ( 2 , : ) ; f r a c t i on33=f r a c t i o n 3 ( 3 , : ) ; f r a c t i on34=f r a c t i o n 3 ( 4 , : ) ;
161 f r a c t i on35=f r a c t i o n 4 ( 5 , : ) ;
162 f r a c t i on41=f r a c t i o n 4 ( 1 , : ) ; f r a c t i on42=f r a c t i o n 4 ( 2 , : ) ; f r a c t i on43=f r a c t i o n 4 ( 3 , : ) ; f r a c t i on44=f r a c t i o n 4 ( 4 , : ) ;
163 f r a c t i on45=f r a c t i o n 4 ( 5 , : ) ;
164 f r a c t i on51=f r a c t i o n 5 ( 1 , : ) ; f r a c t i on52=f r a c t i o n 5 ( 2 , : ) ; f r a c t i on53=f r a c t i o n 5 ( 3 , : ) ; f r a c t i on54=f r a c t i o n 5 ( 4 , : ) ;
165 f r a c t i on55=f r a c t i o n 5 ( 5 , : ) ;
166 f r a c t i on61=f r a c t i o n 6 ( 1 , : ) ; f r a c t i on62=f r a c t i o n 6 ( 2 , : ) ; f r a c t i on63=f r a c t i o n 6 ( 3 , : ) ; f r a c t i on64=f r a c t i o n 6 ( 4 , : ) ;
167 f r a c t i on65=f r a c t i o n 6 ( 5 , : ) ;
168
169 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
170 %the p lo t below show the r e l a t i o n s h i p between the bandwidth and the
171 %f r a c t i o n o f s u p e r o s c i l l a t i o n s f o r s e v e r a l N va lues at kmin =1p i . In the
172 %th e s i s t h i s corresponds to f i g u r e s 3 . 7 and 3 . 8 where 3 . 8 i s j u s t a zoomed
173 %in ve r s i on o f 3 . 7
174 p lo t (B, f r a c t i on21 ,B, f r a c t i on31 ,B, f r a c t i on41 ,B, f r a c t i on51 ,B, f r a c t i on61 )
175 x l ab e l ( 'Bandwidth in \ pi ' )
176 y l ab e l ( ' Fract ion o f area s u p e r o s c i l l a t i n g ' )
177 t i t l e ( ' change in number o f source s N ' )
178 legend ( 'N=5 ' , 'N=10 ' , 'N=50 ' , 'N=100 ' , 'N=500 ' )
179 s e t ( gca , ' FontSize ' , 30)
180
181 %the p lo t below shows the r e l a t i o n sh ip between bandwidth and the f r a c t i o n
182 %of s u p e r o s c i l l a t i o n s f o r N=500 f o r s e v e r a l k_min va lues . in the t h e s i s
183 %th i s r e l a t e s to f i g u r e 3 . 9 .
184 p lo t (B, f r a c t i on61 ,B, f r a c t i on62 ,B, f r a c t i on63 ,B, f r a c t i on64 ,B, f r a c t i on65 )
185 x l ab e l ( 'Bandwidth in \ pi ' )
186 y l ab e l ( ' Fract ion o f area s u p e r o s c i l l a t i n g ' )
187 t i t l e ( 'Average f r a c t i o n aga in s t bandwidth with change in kmin (N=500) ' )
188 legend ( 'kmin=1 \ pi ' , 'kmin=2 \ pi ' , 'kmin=10 \ pi ' , 'kmin=50 \ pi ' )
189 s e t ( gca , ' FontSize ' , 30)

Code for Probability density of wavenumbers �gures (3.11,
3.12, 3.14)

8pt
1 %superpos t i ons o f plane waves from d i f f e r e n t angle , each with a unique
2 %wavelength where each wavelength i s l a r g e r than that o f k0 g iv ing the
3 %cond i t i on that kn must be sma l l e r than k0 . Also samples are taken by the
4 %va r i ab l e m sta ted be low. ( the func t i on i s band l im i t ed between pi and 2 pi
5 c l e a r a l l ;
6 xmin=0.0 ;
7 xmax=0.00004 ;
8 dx=0.000001 ;
9 nx=round (1+(xmax - xmin ) /dx ) ;
10 x=xmin : dx : xmax ;
11 ymin=0;
12 ymax=0.00004 ;
13 dy=0.000001 ;
14 ny=round (1+(ymax - ymin ) /dy ) ;
15 y=ymin : dy : ymax ;
16
17 t t=0 . 0 . * pi ;
18 N=[5 , 50 ] ; %number o f plane waves , we need more than one so as to graph the r e s u l t s
19 hbar=1;
20 c=1;
21 M=1;

105



BIBLIOGRAPHY BIBLIOGRAPHY

22 A=2 . * pi ;
23 l im=10000;
24
25 B=[2 ] ; %th i s g i v e s the bandwidth f o r a s p e c i f i c number o f waves.
26
27 %code below c a l c u l a t e s the wave func t i on given at every x and y value , kmax
28 %would be the maximum K value given in each sample t h i s i s l a t e r used to
29 %f ind the cond i t i on where the l o c a l wavelength i s l a r g e r than
30 %kmax( s u p e r o s c i l l a t i n g reg ion ) .
31
32 k_min= [0 , 1 ] ; %th i s code changes the min and max k va lues chosen .
33 f o r h=1: l ength (N)
34 f o r n=1:N(h)
35 ddeg (h)=A/N(h) ;%c r e a t e s the ang l e s f o r each plane wave ( dependent on the number o f ...

waves we are look ing at ) .
36 cd (h , n)=cos ( ( n - 1 ) *ddeg (h) ) ;
37 sd (h , n)=s in ( ( n - 1 ) *ddeg (h) ) ;
38 end
39 end
40 f o r t=1: l ength (k_min)
41 f o r h=1: l ength (N)
42 f o r b=1: l ength (B)
43 f r a c=ze ro s (1 , l im ) ;
44 f o r m=1: l im
45 kmax(h)=k_min( t ) . * pi ; %th i s w i l l be our i n i t i a l ...

maximum wavenumber ( however i t changes with each i t t e r a t i o n as shown ...
in the code

46 f o r n=1:N(h)
47 i f n==1 %i f statements that make sure ...

our bandwidth i s f i x ed through every sample
48 k0 (n)=k_min( t ) . * pi ;
49 e l s e i f n==N(h)
50 k0 (n)=(k_min( t ) . * pi )+(B(b) . * pi ) ;
51 e l s e
52 k0 (n)=(k_min( t ) . * pi )+(B(b) . * rand. *( p i ) ) ;
53 end
54 end
55 kx (n)=k0 (n) *cd (h , n) ;
56 ky (n)=k0 (n) * sd (h , n) ;
57 k2 (n)=kx (n)^2+ky (n) ^2;
58 w1(n)=c*k0 (n) ; %angular f requency
59 w(n)=hbar*k2 (n) /(2*M) ;
60 i f s q r t ( k2 (n) ) > kmax(h) %de f i n e s our maximum wavenumber
61 kmax(h)=k0 (n) ;
62 end
63 end
64
65 sum1=ze ro s (nx , ny ) ;
66 sumt=ze ro s (nx , ny ) ;
67 a=ze ro s (1 ,N(h) ) ;
68 f o r n=1:N(h)
69 a1=-pi+2 . * p i . * rand ; %a s s i gn s a random amplitude f o r every wave
70 a2=2 . * rand ; %a s s i gn s random phase f o r every wave
71 a (n)=(a2 ) . *exp (1 i . *a1 ) ;
72 t1=a (n) ;
73 t2=ze ro s (nx , 1 ) ;
74 t2 ( : )=exp (1 i *kx (n) *x ( : ) ) ; %can be thought o f as i nd i v i dua l phasors
75 t3=ze ro s (1 , ny ) ;
76 t3 ( : )=exp (1 i *ky (n) *y ( : ) ) ;
77 term=zero s (nx , ny ) ;
78 term=t1 * t2 * t3 ;
79 sum1=sum1+term ; %summing the waves at every point in ...

our ' pool ' or ra the r a r e a . de f ined by x and y
80 end
81
82 %realkmin2 ( t , h , b ,m)=min( sq r t ( k2 ( : ) ) ) ; %minimum wavenumber f o r each sample
83
84 %ca l c u l a t i o n to f i nd the f r a c t i o n where the wavefunct ions ...

s u p e r o s c i l l a t e , by f i nd i ng the d i f f e r e n t i a l o f the phase ( log wavefunct ion ) .
85 lp=log ( sum1) ;
86 psu=ze ro s (nx , ny ) ;
87 P(m)=0;
88 dpdx=imag ( d i f f ( lp , 1 , 1 ) /dx ) ;
89 dpdy=imag ( d i f f ( lp , 1 , 2 ) /dy ) ;
90 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
91 f o r ix =1:nx -1
92 f o r iy =1:ny -1
93 kr ( ix , i y )=sq r t ( dpdx ( ix , i y ) .^2+dpdy ( ix , i y ) . ^2) ;
94 i f kr ( ix , i y ) > kmax(h)
95 P(m)=P(m)+1;
96 end
97 K1( t , h , b ,m, ix , i y )=kr ( ix , i y ) ; %every s i n g l e l o c a l wavenumber f o r ...

each sample we take at every x and y point
98 end
99 end
100 % fo r every m th i s f i nd s the f r a c t i o n o f s u p e r o s c i l l a t i n g waves. then add ...

a l l r e s u l t s f o r each repeat and f i nd the average
101 f r a c (m)=P(m) /( ( nx - 1 ) *(ny - 1 ) ) ;
102 r e a l f r a c ( t , h , b ,m)=f r a c (m) ; %s u p e r o s c i l l a t i n g f r a c t i o n f o r every sample
103 k01 ( t , h , b ,m)=kmax(h) ; %every Kmax f o r every sample
104 f o r ix =1:nx -1
105 f o r iy =1:ny -1
106 k10 ( t , h , b ,m, ix , i y )=K1( t , h , b ,m, ix , i y ) . /k01 ( t , h , b ,m) ; % l o c a l wavenumber ...

div ided by the maximum wavevector f o r that sample
107 end
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108 end
109 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
110 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
111 %PDDK i s the expr e s s i on found through the r e s u l t obtained
112 %f o r p r obab i l i t y d i s t r i b u t i o n given by equat ion
113 %\ r e f {eq : 4 .32 } with the power spectrum given by
114 %\ r e f {eq : 4 .39 } ( s e c t i on s u p e r o s c i l l a t i o n s in speck l e pattern ) .
115 f o r ix =1:nx -1
116 f o r iy =1:ny -1
117 PDDK( t , h , b ,m, ix , i y ) =((( k01 ( t , h , b ,m) . ^2) . /2) ...

. * (2 - (2 . *B(b) . /k01 ( t , h , b ,m) )+(B(b) . /k01 ( t , h , b ,m) ) . ^2) . *K1( t , h , b ,m, ix , i y ) ) . . .
118 . / ( (K1( t , h , b ,m, ix , i y ) . ^2 + ( ( k01 ( t , h , b ,m) . ^2) . /4) ...

. * (2 - (2 . *B(b) . /k01 ( t , h , b ,m) )+(B(b) . /k01 ( t , h , b ,m) ) ) ) . ^2) ;
119 end
120 end
121 end
122 sumf=0;
123 f o r m=1: l im
124 sumf=sumf+f r a c (m) ;
125 end
126 f r a c t i o n ( t , h , b)=sumf/ lim ;
127 formatSpec0 = ' Mean f r a c t i o n o f su r f a c e that i s s u p e r o s c i l l a t i n g %8 . 4 f \n ' ;
128 f p r i n t f ( formatSpec0 , f r a c t i o n ( t , h , b) ) ;
129 end
130 end
131 end
132
133
134 %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CALCULATING K
135 %DISTRIBUTION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
136 %the f o l l ow ing c a l c u l a t e s the p r obab i l i t y d i s t r i b u t i o n f o r the wavenumbers
137 %using the equat ion given in s e c t i on : s u p e r o s c i l l a t i o n s in speck l e pat te rns
138 %each r ep r e s en t s a s p e c i f i c bandwidth value f o r kmin=1p i .
139
140
141 PDDK2=PDDK( 2 , 1 , 1 , : , : , : ) ;
142 PDDK32( : )=PDDK2( : ) ; %the array f o r the p r obab i l i t y d i s t r i b u t i o n
143 normPDDK32 ( : )=PDDK32( : ) . /max(PDDK32) ;
144
145 PDDK3=PDDK( 2 , 2 , 1 , : , : , : ) ;
146 PDDK33( : )=PDDK3( : ) ; %the array f o r the p r obab i l i t y d i s t r i b u t i o n
147 normPDDK33 ( : )=PDDK33( : ) . /max(PDDK33) ;
148
149
150
151
152 %the f o l l ow ing f i nd s the array o f each l o c a l wavenumber d iv ided by kmax in
153 %the sample f o r kmin 1 pi and bandwidth o f 0 ,2 , and 50 pi r e s p e c t i v l y . In
154 %order to produced the graphs f o r d i f f e r e n t N va lues p l e a s e s change the
155 %value o f N at the beginning o f the code ( the reason f o r running only one N
156 %i s to reduce running time ) . Also to produce the graphs but f o r the other
157 %kmin va lues p l e a s e change k10 ( 2 , 1 , 1 , : , : , : ) to k10 ( 3 , 1 , 1 , : , : , : ) f o r kmin =2pi and so on.
158
159
160
161 K32=k10 ( 2 , 1 , 1 , : , : , : ) ;
162 K332 ( : )=K32 ( : ) ; %array o f wavenumbers
163
164 K33=k10 ( 2 , 2 , 1 , : , : , : ) ;
165 K333 ( : )=K33 ( : ) ; %array o f wavenumbers
166
167
168
169 %p l ea s e uncomment and comment the r equ i r ed p l o t s f o r the d i f f e r e n t
170 %bandwidths.
171 % numOfBins = 2500;
172 % [ histFreq , h i s tkout ] = h i s t (K331 , numOfBins ) ;
173 % f i g u r e ;
174 % bar ( h i s tkout , h i s tFreq /max( h i s tFreq ) )
175 % hold on
176 % plo t (K331 ,normPDDK31, '+ ' )
177
178 numOfBins = 2500 ;
179 [ h istFreq2 , h i s tkout2 ] = h i s t (K332 , numOfBins ) ;
180 % f i g u r e ;
181 % bar ( h istkout2 , h i s tFreq2 /max( h i s tFreq2 ) )
182 % hold on
183 % plo t (K332 ,normPDDK32, '+ ' )
184
185 %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
186 %here some o f the graphs r equ i r e the ax i s p r op e r t i e s to be changed by going
187 %to ' ed i t ' and then ' ax i s p rope r t i e s ' once the graph i s shown. This i s
188 %because there are va lues which have a very l a r g e k ( r ) to k (0) r a t i o but
189 %with very smal l p r obab i l t y .
190 %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
191 numOfBins = 20000000;
192 [ h istFreq3 , h i s tkout3 ] = h i s t (K333 , numOfBins ) ; %th i s p l o t s f o r bandwidth 50 pi
193 f i g u r e ;
194 p lo t ( h istkout3 , h i s tFreq3 /max( h i s tFreq3 ) )
195 hold on
196 p lo t ( h istkout2 , h i s tFreq2 /max( h i s tFreq2 ) )
197 %plo t (K333 ,normPDDK33, '+ ' )
198
199
200 x l ab e l ( 'k ( r ) /k0 ' )
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201 y l ab e l ( ' Probab i l i t y (P) ' )
202 t i t l e ( ' Probab i l i t y d i s t r i b u t i o n wavenumber k (N=5, kmin=1\pi , Bandwidth=50\pi ) ' )
203 legend ( ' Calcu lated D i s t r i bu t i on ' , ' Theor e t i c a l exp r e s s i on ' )
204 s e t ( gca , ' FontSize ' , 15)
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