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Abstract: In this paper we discuss the calculation of the Bayes premium for conditionally

elliptical multivariate risks. In our framework the prior distribution is allowed to be very general

requiring only that its probability density function satisfies some smoothness conditions. Based

on previous results of Landsman and Nešlehová (2008) and Hamada and Valdez (2008) we show

in this paper that for conditionally multivariate elliptical risks the calculation of the Bayes

premium is closely related to Brown identity and the celebrated Stein’s Lemma.

Key words and phrases: Bayes premium; Credibility premium; Elliptically symmetric distribu-

tion; Stein’s Lemma; Brown identity.

1 Introduction

In the setup of classical credibility theory (see e.g., Bühlmann and Giesler (2006), Mikosch

(2006), or Kaas et al. (2008)) calculation of the Bayes premium is a central task. Considering the

L2 loss function, that task reduces to the calculation of the conditional expectationE{Θ|X} with

Θ being some random parameter with some probability density function h and X a random loss

measure, say for instance the net loss amount. When the conditional random variable X|Θ = θ

has the Normal distribution function with mean θ and variance σ2 (write X ∼ N (θ, σ2)), then

for Θ ∼ N (µ, τ2), τ > 0 we have almost surely (see Bühlmann and Giesler (2006))

E{Θ|X} = X +
σ2

σ2 + τ2
(µ−X). (1.1)

The identity (1.1) is a direct consequence of the fact that the conditional distributions of Gaus-

sian (or Normal) random vectors are again Gaussian. In fact, (1.1) can be stated for general Θ

with some probability density function h, in the form known in the literature as Brown identity
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(see e.g., DasGupta (2010)), i.e,

E{Θ−X|X = x} = σ2
E{h′(x+ Y )}
E{h(x+ Y )}

, x ∈ R, Y ∼ N (0, σ2), (1.2)

provided that the derivative h′ of h exits and the ratio in the right-hand side above is finite.

Since the Gaussian distribution is a canonical example of elliptically symmetric (for short ellipti-

cal) distributions, in this paper our main interest is to show Brown identity forX a d-dimensional

elliptical random vector, and thus deriving an explicit expression of Bayes premium for condi-

tional elliptical models.

The parameter Θ, which in our framework below is a d-dimensional random vector, is assumed

to possess a probability density function h satisfying some regularity conditions. It turns out

that Brown identity is closely related to Stein’s lemma, which is recently discussed for elliptical

random vectors in Landsman (2006), Landsman and Nešlehová (2008), and Hamada and Valdez

(2008).

Several influential papers such as Landsman and Valdez (2003), Goovaerts et al. (2005), Van-

duffel et al. (2008), Valdez et al. (2009)) and among many other in the actuarial literature have

derived tractable properties of elliptical random vectors which allow for important applications

in insurance and risk management. Our results show that this class of random vectors is also

tractable in the Bayesian paradigm which is a key pillar of actuarial science and practice.

Outline of the rest of the paper: In Section 2 we give some preliminary results and definitions.

The main result is presented in Section 3. Proofs and some additional results are relegated to

Section 4.

2 Preliminaries

We shall discuss first some distributional properties of elliptical random vectors and then we

shall present an extension of (1.1) to univariate elliptical risks. Let A ∈ Rd×d, d ≥ 1 be a

non-singular square matrix, and consider an elliptical random vector X = (X1, . . . , Xd)
> with

stochastic representation

X
d
= RAU + µ, µ ∈ Rd, (2.1)

with R > 0 a random radius being independent of U which is uniformly distributed on the

unit sphere of Rd (with respect to L2-norm). Throughout in the following Σ = AA>, with A a

d× d non-singular matrix, h denotes the probability density function of the random parameter

Θ (in the d-dimensional setup we shall write instead Θ), and R will be referred to as the radial

component of X.
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Here
d
= and > stand for the equality of the distribution functions and the transpose sign, respec-

tively. For the basic distributional properties of elliptical random vectors see e.g., Cambanis et

al. (1981), Valdez and Chernih (2003) or Denuit et al. (2006).

It is well-known that the elliptically distributed random vector X as in (2.1) possesses a prob-

ability density function f if and only if the radial component R possesses a probability density

function. Moreover, f is given by

f(x) =
1

c
√
det(Σ)

g
((x− µ)>Σ−1(x− µ)

2

)
, ∀x ∈ Rd, (2.2)

where the positive measurable function g is the so-called density generator satisfying

c =
(2π)d/2

Γ(d/2)

∫ ∞
0

ud/2−1g(u) du ∈ (0,∞). (2.3)

When the distribution function of R has a finite upper endpoint ω := sup{x ∈ R : P {R ≤ x} <
1} ∈ (0,∞), then we take g(x) = 0 for all x > ω. For any x > 0 set further

g̃(x) =

∫ ∞
x

g(s) ds,

which is well-defined if E{|X1|} <∞ or equivalently E{R} <∞. We note in passing that g̃ is

also a density generator if E{R2} <∞, see Lemma 4.1 below.

If X has stochastic representation (2.1) with generator g, then we write

X ∼ Ed(µ,Σ, g).

A canonical example of elliptically symmetric random vectors is an X being Gaussian with

covariance matrix Σ and density generator

g(x) = exp(−x), x > 0. (2.4)

Consequently, we have

g̃(x) = g(x), x > 0 (2.5)

We now present the extension of (1.2) to the elliptical framework for the 1-dimensional setup.

Theorem 2.1. Let Y ∼ E1(0, 1, g), and let Θ be a random parameter with differentiable

probability density function h. Assume that E{Y 2} ∈ (0,∞) and let Ỹ ∼ E1(0, 1, g̃). If

X|Θ = θ ∼ E1(θ, 1, g) such that for some x ∈ R

Mh(x) := E{h(x+ Y )} ∈ (0,∞), E{|h′(x+ Ỹ )|} <∞, (2.6)

then the Bayes premium is

E{Θ|X = x} = x+ c1
Lh(x)

Mh(x)
, c1 :=

∫∞
0 r−1/2g̃(r)dr∫∞
0 r−1/2g(r)dr

, (2.7)

with Lh(x) := E{h′(x+ Ỹ )}.
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Remarks: a) For simplicity, in the above theorem we consider only σ = 1. The general case

with σ ∈ (0,∞) can be easily derived by multiplying the right hand side of (2.7) by σ2 since

E{(Θ−X)|X} = σ2c1
Lh(X)
Mh(X) , see the main result in the next section.

b) When the probability density function h of Θ satisfies h(x) ≤ a|x|α−1 exp(−b|x|c), x ∈ R with

a, α, b, c some positive constants, then condition (2.6) is satisfied. A particular instance is the

Gaussian case which we discuss below in some more details.

Example 1. (Gaussian risks) Under the setup of Theorem 2.1 consider the special case of

generator g(x) = exp(−x), x ∈ R and Y ∼ N (0, σ2), σ ∈ (0,∞). Clearly, Y is an elliptical

random variable, i.e., Y ∼ E1(0, σ
2, g). Let further Θ ∼ N (µ, τ2), µ ∈ R, τ ∈ (0,∞) be also a

Gaussian random variable and denote by h(x;µ, τ2) its probability density function. By (2.5)

we have c1 = 1. In view of Theorem 2.1, since

h′(s+ t;µ, τ2) =
µ− s− t

τ2
h(s+ t;µ, τ2), s, t ∈ R

and by the fact that Ỹ and Y have the same distribution, we obtain

E{(Θ−X)|X = x} = σ2
∫
s∈R h

′(x+ s;µ, τ2)h(s; 0, σ2) ds∫
s∈R h(x+ s;µ, τ2)h(s; 0, σ2) ds

=
1

τ2

∫
s∈R

(µ− x− s)h
(
s; (µ− x)

σ2

σ2 + τ2
, (

1

σ2
+

1

τ2
)−1
)
ds

=
σ2

τ2
(µ− x)(1− σ2

σ2 + τ2
) =

σ2

σ2 + τ2
(µ− x)

for any x ∈ R. Consequently, the previous claim in (1.1) follows immediately.

3 Main Result

In this section we focus on multivariate d-dimensional conditional elliptical models. Let therefore

X,Θ be two d-dimensional random vectors such that

(X|Θ = θ) ∼ Ed(θ,Σ, g),

with Θ a d-dimensional random parameter with probability density function h. Again, as in the

univariate setup, the credibility premium is calculated (under L2 loss function) by the conditional

expectation E{Θ|X}, which for the Gaussian framework is closely related to Brown identity,

see DasGupta (2010).

In the sequel, we consider Θ such that its probability density function h is almost differentiable,

adopting the following definition from Stein (1981).
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Definition 3.1. A function q : Rd → R is almost differentiable if there exists ∇q : Rd → Rd

such that

q(x+ z)− q(x) =

∫ 1

0
z>∇q(x+ tz)dt, ∀x, z ∈ Rd.

Note that ∇q is the vector function of component-wise partial derivatives, and it is almost surely

unique.

We derive now the expression for the Bayes premium, which boils down to the multivariate

Brown identity for elliptical risks. The importance of our result is that it also shows the direct

connection between Brown identity and Stein’s Lemma for elliptically symmetric risks.

Theorem 3.2. Let Y ∼ Ed(0,Σ, g) with 0 = (0, . . . , 0)> ∈ Rd be a d-dimensional elliptical

random vector with radial component R > 0. Assume that (X|Θ = θ) ∼ Ed(θ,Σ, g), where

the random parameter Θ has probability density function h which is almost differentiable. If

E{R2} ∈ (0,∞) and for some x ∈ Rd we have

Mh(x) := E{h(x+ Y )} ∈ (0,∞), E{|∇h(x+ Ỹ )|} <∞, (3.1)

with Ỹ ∼ Ed(0,Σ, g̃), then the Bayes premium is

E{Θ|X = x} = x+ cdΣ
Lh(x)

Mh(x)
, cd :=

E{R2}
d

, (3.2)

with Lh(x) := E{∇h(x+ Ỹ )}. Moreover we have

E{Y h(x+ Y )} = cdΣE{∇h(x+ Ỹ )}. (3.3)

Remarks: a) In order to retrieve the expression of the constant cd appearing in Theorem 2.1

we need to write it in terms of g and g̃ as

cd =

∫∞
0 rd/2−1g̃(r) dr∫∞
0 rd/2−1g(r) dr

.

When g(t) = exp(−t) by (2.5) we immediately get that cd = 1. Further in view of (2.4) both

Ỹ ,Y have the normal distribution with mean zero and covariance matrix Σ. Consequently, in

view of (3.3)

E{Y h(x+ Y )} = ΣE{∇h(x+ Y )}, (3.4)

where Y is a mean-zero Gaussian random vector with covariance matrix Σ. For Σ the identity

matrix, (3.4) appears in Lemma 2 of Stein (1981). In the case that Y is elliptically symmetric

(3.3) is established in Landsman (2006); see also Landsman and Nešlehová (2008) and Hamada
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and Valdez (2008).

b) Clearly, for non-Gaussian risks the Bayes premium in given by (3.2) is in general not a

credibility premium.

c) In several tractable cases such as Gaussian scale mixture distributions the distribution of Ỹ

can be explicitly calculated, see Landsman and Nešlehová (2008).

d) The referee of the paper suggested the validity of our result when Σ is semi-positive definite.

If we check our definitions and the results of Theorem 3.2, we see that only Σ appears therein

and not its inverse matrix, which in the case that Σ is semi-positive definite does not exists.

This observations suggests that the assumption that Σ is positive-definite in our main result

is redundant. In the bivariate setup, this condition has been removed in Hamada and Valdez

(2008). With some extra technical efforts (but with a different proof that we give here), it

is possible to drop that assumption. In the context of Bayes premium there is no particular

motivation to allow for singular matrices Σ. Therefore in order to avoid some extra technical

details, we shall postpone the proof to a forthcoming technical manuscript.

Example 2. (Multivariate Gaussian model) We denote the multivariate Gaussian distribution

with mean µ and covariance matrix Σ as Nd(µ,Σ). Its probability density function is denoted

by f(x;µ,Σ),µ ∈ Rd. Next, assume that X|Θ ∼ Nd(Θ,Σ) where Θ ∼ Nd(µ,Σ0). If both

Σ and Σ0 are non-singular covariance matrices, using further the fact that for the multivariate

normal density functions we have that (set B := (Σ−10 + Σ−1)−1)

f(y; 0,Σ)f(x+ y,µ,Σ0) ∝ f(y,Σ−10 B(µ− x), B),

for any x,y ∈ Rd (with ∝ meaning proportionality), then with the proportionality constants

canceling out in the ratios of Eq. (3.2) we obtain

E{(Θ−X)|X} = ΣE{Σ−10 (µ− x− Y )},

where

Y ∼ Nd(Σ−10 B(µ− x), B).

Consequently,

E{(Θ−X)|X = x} = ΣΣ−10

(
µ− x− Σ−10 B(µ− x)

)
= ΣΣ−10

(
Id − (Id + Σ0Σ

−1)−1
)

(µ− x)

= ΣΣ−10

(
Id + ΣΣ−10

)−1
(µ− x)

=
(

Σ0Σ
−1 + Id

)−1
(µ− x),

where Id denotes the d × d identity matrix. An interesting special case is when Σ = aΣ0 with

a some positive constant. Clearly, Σ is positive definite if and only if Σ0 is positive definite
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matrix. Applying the formula above, we obtain

E{(Θ−X)|X} =
a

1 + a
(µ−X).

In particular, when Σ = σ2Id and Σ = τ2Id with σ, τ positive constant we obtain the result

presented in Example 1.

4 Proofs

Next we provide a lemma which clarifies the properties of g̃ needed to proceed with the proofs

of the main result.

Lemma 4.1. Let Y ∼ Ed(0, Id, g) be a given elliptical random vector. If E{R2} ∈ (0,∞), then

g̃ is a density generator of a d-dimensional elliptical random vector, and moreover∫ ∞
0

rd/2−1g̃(r) dr =
E{R2}
d

∫ ∞
0

rd/2−1g(r) dr ∈ (0,∞). (4.1)

Proof: The random vector Y has radial decomposition with positive radial component R which

has probability density function fR given by (set K :=
∫∞
0 ud/2−1g(u) du)

fR(r) =
rd−1g(r2/2)

2d/2−1K
, r > 0. (4.2)

Since g is a density generator, partial integration implies∫ ∞
0

rd/2−1g̃(r) dr =

∫ ∞
0

rd/2−1

(∫ ∞
r

g(s) ds

)
dr

=

∫ ∞
0

g(s)

(∫ s

0
rd/2−1 dr

)
ds

=
2

d

∫ ∞
0

sd/2g(s) ds

=
K

d

∫ ∞
0

td+1 g(t2/2)

2d/2−1K
dt

=
K

d

∫ ∞
0

t2fR(t) dt

=
K

d
E{R2} ∈ (0,∞),

hence the claim follows. 2

Proof of Theorem 2.1 By the assumption (X|Θ = θ) ∼ E1(θ, 1, g) it follows that the

conditional random variable Θ|X = x has probability density function q(·|x) given by

q(θ|x) =
h(θ)g((x− θ)2/2)∫

R h(θ)g((x− θ)2/2)dθ



8

=
h(θ)g((x− θ)2/2)

Mh(x)
,

with

Mh(x) := E{h(x− Y )} = E{h(x+ Y )}

for x such that P {X ≤ x} ∈ (0, 1). Consequently,

Mh(x)E{(Θ−X)|X = x} = E{Y h(x− Y )}.

Since Y is symmetric about 0, i.e., Y
d
= −Y we have further

Mh(x)E{(Θ−X)|X = x} = E{Y h(x+ Y )},

with Y ∼ E1(0, 1, g). By the assumptions and Lemma 4.1 g̃ is a density generator with some

normalising constant c̃ ∈ (0,∞) as in (2.3). Since we assume that E{Y 2} ∈ (0,∞), then

c1 =

∫∞
0 s−1/2g̃(s)ds∫∞
0 s−1/2g(s)ds

=
c̃

c
E{Y 2}

is finite with c ∈ (0,∞) the normalising constant of g. By Lemma 2 of Hamada and Valdez

(2008) (see also Theorem 1 of Landsmann (2006)) for any x ∈ R we obtain

E{Y h(x+ Y )} = c1E{h′(x+ Ỹ )},

with Ỹ ∼ E1(0, 1, g̃), and thus the claim follows. 2

Proof of Theorem 3.2 Let Y ∼ Ed(0,Σ, g) with 0 = (0, . . . , 0)> ∈ Rd and let A be a square

matrix such that AA> = Σ. Note first that as in the univariate case we have Y is symmetric

about origin, i.e.,

Y
d
= −Y .

As in the proof of Theorem 2.1 for any x ∈ Rd in the support of X we have

E{Θ|X = x} = x+
E{Y h(x+ Y )}
Mh(x)

, (4.3)

provided that Mh(x) := E{h(x+Y )} is finite and non-zero. Applying Lemma 3 of Landsman

and Nešlehová (2008) we obtain∫
Rd

vh(v)g(v>v/2) dv =

∫
Rd

∇h(v)

(∫ ∞
v>v/2

g(u) du

)
dv

=

∫
Rd

∇h(v)g̃(v>v/2) dv.

Hence with c as in (2.3) and Ỹ
d
= AV ∼ Ed(0,Σ, g̃) we may further write

E{Y h(x+ Y )} =
1

c
Σ

∫
Rd

∇h(x+Av)g̃(v>v/2) dv
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=
1

c
Σ

∫
Rd

1√
det(Σ)

∇h(x+ y)g̃(y>Σ−1y/2) dy

=
c̃

c
ΣE{∇h(x+ Ỹ )}.

In view of Lemma 4.1
c̃

c
=

∫∞
0 ud/2−1g̃(u)du∫∞
0 ud/2−1g(u)du

=
E{R2}
d

and thus the rest of the proof proceeds as in the univariate case, hence the claim follows. 2
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[1] Bühlmann, H., and Giesler, A. (2006) A Course in Credibility Theory and its Applications.

Springer, New York.

[2] Cambanis, S., Huang, S., and Simons, G. (1981) On the theory of elliptically contured

distributions. J. Multivariate Anal., 11, 368-385.

[3] DasGupta, A. (2010) False vs. missed discoveries, Gaussian decision theory, and the

Donsker-Varadhan principle. IMS Collections, 1-21.

[4] Denuit, M., Dhaene, J., Goovaerts, M., and Kaas, R. (2006) Actuarial Theory for Dependent

Risks: Measures, Orders and Models. Wiley.

[5] Goovaerts, M., Kaas, R., Laeven, R., Tang, Q., and Vernic, R. (2005) The tail probability

of discounted sums of Pareto-like losses in insurance. Scandinavian Actuarial Journal, 6,

446–461.

[6] Hamada, M., and Valdez, E.A. (2008) CAPM and option pricing with elliptically contoured

distributions. J. Risk & Insurance, 75, 387–409.

[7] Kaas, R., Goovaerts, M., Dhaene, J., and Denuit, M. (2008) Modern Actuarial Risk Theory:

Using R. 2nd Edt, Springer, New York.

[8] Landsman, Z. (2006) On the generalization of Stein’s lemma for elliptical class of distribu-

tions. Statist. Probab. Lett., 76, 1012–1016.
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