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a b s t r a c t

Traversal strategies à la Stratego (also à la Strafunski and ‘Scrap Your Boilerplate’) provide
an exceptionally versatile and uniformmeans of querying and transforming deeply nested
and heterogeneously structured data including terms in functional programming and
rewriting, objects in OO programming, and XML documents in XML programming.

However, the resulting traversal programs are prone to programming errors. We are
specifically concerned with errors that go beyond conservative type errors; examples we
examine include divergent traversals, prematurely terminated traversals, and traversals
with dead code.

Based on an inventory of possible programming errors we explore options of static
typing and static analysis so that some categories of errors can be avoided. This exploration
generates suggestions for improvements to strategy libraries as well as their underlying
programming languages. Haskell is used for illustrations and specifications with sufficient
explanations to make the presentation comprehensible to the non-specialist. The overall
ideas are language-agnostic and they are summarized accordingly.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Traversal programming

In the context of data programming with XML trees, object graphs, and terms in rewriting or functional programming,
consider the general scenarios of querying and transforming deeply nested and heterogeneously structured data.Because of deep
nesting and heterogeneity as well as plain structural complexity, data programming may benefit from designated idioms
and concepts. In this paper, we focus on the notion of traversal programming where functionality is described in terms of
so-called traversal strategies [70,41,3]: we are specifically concerned with programming errors in this context.

Let us briefly indicate some application domains for such traversal programming. To this end, consider the illustrative
scenarios for querying and transforming data as shown in Fig. 1. The listed queries and transformations benefit from
designated support for traversal programming. The scenarios assume data models for (a) the abstract syntax of a
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Illustrative queries

The abstract syntax of a programming language as a data model

(1) Determine all recursively defined functions.
(2) Determine the nesting depth of a function definition.
(3) Collect all the free variables in a given code fragment.

The organizational structure of a company as a data model

(1) Total the salaries of all employees.
(2) Total the salaries of all employees who are not managers.
(3) Calculate the manager / employee ratio in the leaf departments.

Illustrative transformations

The abstract syntax of a programming language as a data model

(1) Inject logging code around function applications.
(2) Perform partial evaluation by constant propagation.
(3) Perform unfolding or inlining for a specific function.

The organizational structure of a company as a data model

(1) Increase the salaries of all employees.
(2) Decrease the salaries of all non-top-level managers.
(3) Integrate a specific department into the hosting department.

Fig. 1. Illustrative scenarios for traversal programming.

programming language and (b) the organizational structure of a company within an information system. Suitable data
models are sketched in Fig. 2 in Haskell syntax.1

A querying traversal essentially visits a compound term, potentially layer by layer, to extract data from subterms of
interest. For instance, salary terms are extracted from a company term when dealing with the scenarios of totaling salaries
of all or some employees in Fig. 1.

A transforming traversal essentially copies a compound term, potentially layer by layer, except that subterms of interest
may be replaced. For instance, function applications are enriched by logging code when dealing with the corresponding
program transformation scenario of Fig. 1.

Traversal programming with traversal strategies

In this paper, we are concerned with one particular approach to traversal programming—the approach of traversal
strategies, which relies on so-called one-layer traversal combinators aswell as other, less original combinators for controlling
and composing recursive traversal. Traversal strategies support an exceptionally versatile and uniform means of traversal.
The term strategic programming is also in use for this approach to traversal programming [41]. For example, the first scenario
for the company example requires a traversal strategy as follows:

• A basic (non-traversing) rule is needed to extract salary from an employee.
• The rule is to be iterated over a term by a traversal scheme.
• The traversal scheme itself is defined in terms of basic combinators.

The notion of traversal strategies was pioneered by Eelco Visser and collaborators [48,71,70] in the broader context
of term rewriting. This seminal work also led to Visser et al.’s Stratego/XT [69,10]—a domain-specific language, in fact,
an infrastructure for software transformation. Other researchers in the term rewriting and software transformation
communities have also developed related forms of traversal strategies; see, e.g., [9,7,67,79].

Historically, strategic programming has been researched considerably in the context of software transformation. We
refer the reader to [70,68,34,44,46,78] for some published accounts of actual applications of traversal programming with
traversal strategies.

The Stratego approach inspired strategic programming approaches for other programming paradigms [43,41,72,3,4].
An early functional approach, known by the name ‘Strafunski’, inspired the ‘Scrap your boilerplate’ (SYB) form of generic

1 Note on Haskell: type definitions are type synonyms. For instance, Name is defined to be a synonym for Haskell’s String data type. In contrast, data
types define new algebraic types with one or more constructors (say, cases). Consider the data type Expr; it declares a number of constructors for different
expression forms. For instance, the constructor Var models variables; there is a constructor component of type Name (in fact, String) and hence the
constructor function’s type is Name−> Expr.
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AST example: Abstract syntax of a simple functional language

type Block = [Function]
data Function = Function Name [Name] Expr Block
data Expr = Literal Int

| Var Name
| Lambda Name Expr
| Binary Ops Expr Expr
| IfThenElse Expr Expr Expr
| Apply Name [Expr]

data Ops = Equal | Plus | Minus
type Name = String

Company example: Organizational structure of a company

data Company = Company [Department]
data Department = Department Name Manager [Unit]
data Manager = Manager Employee
data Unit = EmployeeUnit Employee

| DepartmentUnit Department
data Employee = Employee Name Salary
type Name = String −− names of employees and departments
type Salary = Float −− salaries of employees

Fig. 2. Illustrative data models (rendered in Haskell). Queries and transformation on such data may require traversal programming possibly prone
to programming errors. The data models involve multiple types; recursion is exercised; there is also a type with multiple alternatives. As a result,
traversal programmers need to carefully control queries and transformations—leaving room for programming errors.Note on language agnosticism: Haskell’s
algebraic data types are chosen here without loss of generality. Other data-modeling notations such as XML schemas or class diagrams are equally
applicable.

functional programming [38–40,59,26,27], which is relatively established today in the Haskell community. SYB, in turn,
inspired cross-paradigm variations, e.g., ‘Scrap your boilerplate in C++’ [53]. Traversal strategies à la Stratego were also
amalgamated with attribute grammars [31]. Another similar form of traversal strategies are those of the rewriting-based
approach of HATS [79,76,77].

There are also several, independently developed forms of traversal programming: TXL’s strategies [11], adaptive traversal
specifications [47,42,1], Cω’s data access [5], XPath-like queries and XSLT transformations [36,15] as well as diverse (non-
SYB-like) forms of generic functional programming [28,24,60].

Research topic: programming errors in traversal programming

Despite the advances in foundations, programming support and applications of traversal programming with strategies,
the use and the definition of programmable traversal strategies has remained the domain of the expert, rather than gaining
wider usage. We contend that the principal obstacle to wider adoption is the severity of some possible pitfalls, which make
it difficult to use strategies in practice. Some of the programming errors that arise are familiar, e.g., type errors in rewrite
rules, but other errors are of a novel nature. Their appearance can be off-putting to the newcomer to the field, and indeed
limit the productivity of more experienced strategists.

Regardless of the specifics of an approach for traversal programming—the potential for programming errors is relatively
obvious. Here are two possible errors that may arise for the traversal scenarios of Fig. 1:

A programming error implying an incorrect result. In one of the scenarios for the company example, a query is assumed
to total the salaries of all employeeswho are not managers. One approach is to use two type-specific cases in the traversal
such that managers contribute a subtotal of zero whereas regular employees contribute with their actual salary. The
query should combine the type-specific cases in a traversal that ceases when either of the two cases is applicable. A
traversal could be incorrect in that it continues even upon successful application of either case. As a result, managers are
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not effectively excluded from the total because the traversal would eventually encounter the employee term inside each
manager term.

A programming error implying divergence. In one of the scenarios for the AST example, a transformation is assumed to
unfold or inline a specific function. This problem involves two traversals: one to find the definition of the function, another
one to actually affect references to the function. Various programming errors are conceivable here. For instance, the
latter traversal may end up unfolding recursive function definitions indefinitely. Instead, the transformation should not
attempt unfolding for any subterm that was created by unfolding itself. This can be achieved by bottom-up traversal
order.

Research objective: advice on library and language improvements

We envisage that the traversal programming of the future will be easier and safer because it is better understood
and better supported. Strategy libraries and the underlying programming languages need to be improved in ways that
programming errors in the sense of incorrect strategy application and composition are less likely. Our research objective is
to provide advice on such improvements.

We contend that static typing and static program analysis are key tools in avoiding programming errors by detecting
favorable or unfavorable behaviors of strategies statically, that is, without running the program. Advanced types are helpful
in improving libraries so that their abstractions describe more accurately the contracts for usage. Static program analysis is
helpful in verifying correctness of strategy composition.

Accordingly, in this paper, we identify pitfalls of strategic programming and discover related properties of basic strategy
combinators and common library combinators. Further,we research the potential of static typing and static programanalysis
with regard to our research objective of providing advice on improved libraries and languages for strategic programming.

Summary of the paper’s contributions2

(1) We provide a fine-grained inventory of programming errors in traversal programming with traversal strategies; see
Section 3. To this end, we reflect on the use of basic strategy combinators and library abstractions in the solution of
traversal problems.

(2) We explore the utility of static typing as means of taming traversal strategies; see Section 4. This exploration clarifies
what categories of programming errors can be addressed, to some extent, by available advanced static type systems. We
use examples written in Haskell 2010, with extensions, for illustrations.

(3) We explore the utility of static program analysis asmeans of taming traversal strategies; see Section 5. Static analysis is an
established technique for dealing with correctness and performance properties of software.We study success and failure
behavior, dead code, and termination.

Haskell en route

In this paper, we use Haskell for two major purposes: (a) illustrations of static typing techniques for taming strategies;
(b) specifications of algorithms for static program analysis. All ideas are also explained informally and specific Haskell idioms
are explained—as they are encountered—so that the presentation should also be comprehensible to the non-specialist. The
overall ideas of taming strategies by static typing and static programanalysis are not tied toHaskell; they are largely agnostic
to the language—as long as it supports strategic programming style. Accordingly, all subsections of Section 4 and Section 5
begin with a language-agnostic, informal advice for improving strategy libraries and the underlying languages.

Scope of this work

Our work ties into traversal strategies à la Stratego (also à la Strafunski and ‘Scrap Your Boilerplate’) in that it intimately
connects to idiomatic and conceptual details of this class of approaches: the use of one-layer traversal combinators, the
style of mixing generic and problem-specific behavior, the style of controlling traversal through success and failure, and a
preference for certain important traversal schemes.

Nevertheless, our research approach and some of the results may be applicable to other forms of traversal programming,
e.g., adaptive programming [56,47,42], (classic) generic functional programming [28,24,60], XML queries or transformations
(based on mainstream languages). However, we do not explore such potential. As a brief indication of potential relevance,

2 Note on the relationship to previous work by the authors: a short version of this paper appeared in the proceedings of the 8th Workshop on Language
Descriptions, Tools and Applications (LDTA 2008), published by ENTCS. The present paper is generally more detailed and updated, but its distinctive
contribution is research on static program analysis for traversal strategies in Section 5; only one of the analyses was sketched briefly in the short version.
The present paper also takes advantage of other previously published work by two of the present authors in so far that some of the strategy properties
discovered by [30] help steering research on programming errors in the present paper. Programming errors are not systematically discussed in [30]. Also,
type systems and static program analysis played no substantial role in said work. Instead, the focus was on demonstrating the potential of theorem proving
in the context of traversal strategies.
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s ::= t → t (Rewrite rules as basic building blocks.)
| id (Identity transformation; succeeds and returns input.)
| fail (Failure transformation; fails and returns failure ‘‘↑’’.)
| s; s (Left-to-right sequential composition.)
| s←+ s (Left-biased choice; try left argument first.)
| ✷(s) (Transform all immediate subterms by s; maintain constructor.)
| ✸(s) (Transform one immediate subterm by s; maintain constructor.)
| v (A variable strategy subject to binding or substitution.)
| µv.s (Recursive closure of s referring to itself as v.)

Fig. 3. Syntax of strategy primitives for transformations.

let us consider XSLT [75] with its declarative processing model for XML that can be used to implement transformations
between XML-based documents. An XSLT transformation consists of a collection of template rules, each of which describes
which XML (sub-)trees to match and how to process them. Processing begins at the root node and proceeds by applying the
best fitting template pattern, and recursively processing according to the template. Hence, traversal is implicit in the XSLT
processing model, but the templates control the traversal. Several problems that we study in the present paper—such as
dead code or divergence—can occur in XSLT and require similar analyses.

Road map of the paper

• Section 2 provides background on strategic programming.
• Section 3 makes an inventory of programming errors in strategic programming.
• Section 4 researches the potential of static typing for taming traversal strategies.
• Section 5 researches the potential of static analysis for taming traversal strategies.
• Section 6 discusses related work.
• Section 7 concludes the paper.

2. Background on strategic programming

This section introduces the notion of traversal strategy and the style of strategic programming. We integrate basic
material that is otherwise scattered over several publications. The collection is also valuable in so far that we make an
effort to point out properties of strategies as they will be useful eventually in the discussion of programming errors.

We describe traversal strategies in three different styles. First, we use a formal style based on a grammar and a natural
semantics. Second, we use an interpreter style such that the semantics is essentially implemented in Haskell. Third, we
embed strategies into Haskell—this is the style that is useful for actual strategic programming (in Haskell) as opposed to
formal investigation.

2.1. A core calculus of transformations

Fig. 3 shows the syntax of a core calculus for transformations. Later we will also cover queries.3 Transformations are
sufficient to introduce strategies in a formal manner; we are confident that our approach easily extends to queries. The core
calculus of Fig. 3 follows closely Visser et al.’s seminal work [70].

The calculus contains basic strategies aswell as strategy combinators. The basic strategy id denotes the always succeeding
identity transformation, which can be thought of as the identity function. The basic strategy fail denotes the always failing
transformation. Here we note that strategies can either fail, succeed, or diverge. (We use the symbol ‘‘↑’’ to denote failure in
the upcoming semantics.) There is also a basic strategy form for rewrite rules in the sense of term rewriting. All strategies—
including rewrite rules—are applied at the root node of the input. Traversal into internal nodes of the tree is provided by
designated combinators.

Turning to the combinators, the composed strategy s; s′ denotes the sequential composition of s and s′. The composed
strategy s←+ s′ denotes left-biased choice: try s first, and try s′ second—if s failed. The characteristic combinators of strategic
programming are ✷ and ✸ (also known as ‘all’ and ‘one’). These combinators model so-called one-layer traversal. The strategy
✷(s) applies s to all immediate subterms of a given term. If there is any subterm for which s fails, then ✷(s) fails, too.
Otherwise, the result is the term that is obtained by the application of the original outermost constructor to the processed
subterms. The strategy ✸(s) applies s only to one immediate subterm, namely the leftmost one, if any, for which s succeeds.

3 Note on terminology: some of the strategic programming literature prefers the terms ‘type-preserving strategies’ for transformations and ‘type-unifying
strategies’ for queries. We do not follow this tradition here—in the interest of a simple terminology.
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∃θ. (θ(tl) = t ∧ θ(tr ) = t ′)

tl → tr @ t ❀ t ′
[rule+]

id@ t ❀ t [id+]

s1 @ t ❀ t ′ ∧ s2 @ t ′ ❀ t ′′

s1; s2 @ t ❀ t ′′
[sequ+]

s1 @ t ❀ t ′

s1←+ s2 @ t ❀ t ′
[choice+.1]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ t ′

s1←+ s2 @ t ❀ t ′
[choice+.2]

∀i ∈ {1, . . . , n}. s@ ti ❀ t ′i

✷(s)@ c(t1, . . . , tn) ❀ c(t ′1, . . . , t
′
n)

[all+]

∃i ∈ {1, . . . , n}.
s@ ti ❀ t ′i

∧ ∀i′ ∈ {1, . . . , i− 1}. s@ ti′ ❀ ↑

∧ ∀i′ ∈ {1, . . . , i− 1, i+ 1, . . . , n}. ti′ = t ′i′

✸(s)@ c(t1, . . . , tn) ❀ c(t ′1, . . . , t
′
n)

[one+]

s[v → µv.s]@ t ❀ t ′

µv.s@ t ❀ t ′
[rec+]

Fig. 4. Positive rules of natural semantics for the core calculus.

If s fails for all subterms, then ✸(s) fails, too. The one-layer traversal combinators, when used within a recursive closure,
enable the key capability of strategic programming: to describe arbitrarily deep traversal into heterogeneously typed terms.

A comprehensive instantiation of strategic programming may require additional strategy primitives that we omit here.
For instance, Stratego also provides strategy forms for congruences (i.e., the application of strategies to the immediate
subterms of specific constructors), tests (i.e., a strategy is tested for success, but its result is not propagated), and negation
(i.e., a strategy to invert the success and failure behavior of a given strategy) [70]. As motivated earlier, we also omit specific
primitives for queries.

Following [70] and subsequent work on the formalization of traversal strategies [35,30], we give the formal semantics of
the core calculus as a big-step operational semantics using a success and failure model, shown in Figs. 4 and 5. (The version
shown has been extracted from amechanizedmodel of traversal strategies, based on the theorem prover Isabelle/HOL [30].)

The judgment s@ t ❀ r describes a relation between a strategy expression s, an input term t , and a result r , which is
either a proper term or failure—denoted by ‘↑’. Based on tradition, we separate positive rules (resulting in a proper term) and
negative rules (resulting in ‘↑’). Incidentally, this distinction already helps in understanding the success and failure behavior
of strategies. For instance, the positive rule [all+]models that the strategy application ✷(s)@ c(t1, . . . , tn) applies s to all the
ti such that new terms t ′i are obtained and used in the result term c(t ′1, . . . , t

′
n). The negative rule covers the case that at least

one of the applications s@ t ′i resulted in failure.
The semantics shown uses variables only for the sake of recursive closures, and the semantics of these is modeled by

substitution. We could also furnish variables for the sake of parameterized strategy expressions, i.e., binding blocks of
strategy definitions, as this is relevant for reusability in practice, but we do not furnish this elaboration of the semantics
here for brevity’s sake.

The semantics commits to a simple, deterministic model: each strategy application evaluates to one term deterministi-
cally, or it fails, or it diverges. Further, the semantics of the choice combinator is left-biased with only local backtracking.
Non-deterministic semantics have been considered elsewhere such that resultsmay be lists (or sets) of termswith the empty
list (or set) representing failure [6,7]. Non-determinism is also enabled naturally by amonadic-style functional programming
embedding when using the list monad.

2.2. Traversal schemes

Assuming an ad hoc notation for parameterized strategy definition—think, for example, of macro expansion—some
familiar traversal schemes and necessary helpers are defined in Fig. 6. We refer to [33,59] for a more detailed discussion
of the design space for traversal schemes.
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̸ ∃θ. θ(tl) = t

tl → tr @ t ❀ ↑
[rule−]

fail@ t ❀ ↑ [fail−]

s1 @ t ❀ ↑

s1; s2 @ t ❀ ↑
[seq−.1]

s1 @ t ❀ t ′ ∧ s2 @ t ′ ❀ ↑

s1; s2 @ t ❀ ↑
[seq−.2]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ ↑

s1←+ s2 @ t ❀ ↑
[choice−]

∃i ∈ {1, . . . , n}. s@ ti ❀ ↑

✷(s)@ c(t1, . . . , tn) ❀ ↑
[all−]

∀i ∈ {1, . . . , n}. s@ ti ❀ ↑

✸(s)@ c(t1, . . . , tn) ❀ ↑
[one−]

s[v → µv.s]@ t ❀ ↑

µv.s@ t ❀ ↑
[rec−]

Fig. 5. Negative rules of natural semantics for the core calculus.

full_td(s) = µv.s;✷(v) - - Apply s to each subterm in top-down manner
full_bu(s) = µv.✷(v); s - - Apply s to each subterm in bottom-up manner
once_td(s) = µv.s←+ ✸(v) - - Find one subterm (top-down) for which s succeeds
once_bu(s) = µv.✸(v)←+ s - - Find one subterm (bottom-up) for which s succeeds
stop_td(s) = µv.s←+ ✷(v) - - Stops when s succeeds on a ‘cut’ through the tree
stop_bu(s) = µv.✷(v)←+ s - - An illustrative programming error; see the text.
innermost(s) = repeat(once_bu(s)) - - A form of innermost normalization à la term rewriting.
repeat(s) = µv.try(s; v) - - Fixed point iteration; apply s until it fails.
try(s) = s←+ id - - Recovery from failure of swith catch-all id.

Fig. 6. Familiar traversal schemes.

The traversal scheme stop_bu(s) from Fig. 6 is in fact bogus; it is only included here to provide an early, concrete example
of a conceivable programming error. That is, the argument s will never be applied. Instead, any application of the scheme
will simply perform a deep identity traversal. This property can be proven with relatively little effort by induction on the
structure of terms, also using the auxiliary property that ✷(s) is the identity for all constant terms, i.e., terms without any
subterms, no matter what s is. A library author may notice the problem eventually. A ‘regular’ strategic programmer may
make similar programming errors when developing problem-specific traversals.

2.3. Laws and properties

Fig. 7 lists algebraic laws obeyed by the strategy primitives. These laws should be helpful in understanding the primitives
and their use in traversal schemes. We refer to [30] for a mechanized model of traversal strategies, which proves these laws
and additional properties. These laws provide intuitions with regard to the success and failure behavior of strategies, and
they also hint at potential sources of dead code.

For instance, the fusion law states that two subsequent ‘✷’ traversals can be composed into one. Such a simple law does
not hold for ‘✸’, neither does it hold generally for traversal schemes. In fact, little is known about algebraic laws for traversal
schemes, but see [29,58] for some related research.

We also illustrate three non-laws at the foot of Fig. 7, which show putative equalities. The first reflects that fact that
sequential composition is (of course) not commutative, the second that choice is (indeed) left-biased, and the third that
distributivity is limited. Finding a counterexample to the third non-law we leave as an exercise for the reader.
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[unit of ‘‘;’’] id; s = s = s; id
[zero of ‘‘;’’] fail; s = fail = s; fail
[unit of ‘‘←+ ’’] fail←+ s = s = s←+ fail
[left zero of ‘‘←+ ’’] id←+ s = id
[associativity of ‘‘;’’] s1; (s2; s3) = (s1; s2); s3
[associativity of ‘‘←+ ’’] s1←+ (s2←+ s3) = (s1←+ s2)←+ s3
[left distributivity] s1; (s2←+ s3) = (s1; s2)←+ (s1; s3)
[one-layer identity] ✷(id) = id
[one-layer failure] ✸(fail) = fail
[fusion law] ✷(s1);✷(s2) = ✷(s1; s2)
[‘‘✷’’ with a constant] constant(t) ⇒ ✷(s)@ t = t
[‘‘✸’’ with a constant] constant(t) ⇒ ✸(s)@ t = ↑

[‘‘✷’’ with a non-constant] ¬constant(t) ⇒ ✷(fail)@ t = ↑

[‘‘✸’’ with a non-constant] ¬constant(t) ⇒ ✸(id)@ t = t

[commutativity of ‘‘;’’] s; s′ ≠ s′; s
[commutativity of ‘‘←+ ’’] s←+ s′ ≠ s′←+ s
[right distributivity] (s1←+ s2); s3 ≠ (s1; s3)←+ (s2; s3)

Fig. 7. Algebraic laws and non-laws of strategy primitives. In a few laws, in fact, implications, we use an auxiliary judgment constant that holds for all
constant terms, i.e., terms with 0 subterms.

data T x
= Id
| Fail
| Seq (T x) (T x)
| Choice (T x) (T x)
| Var x
| Rec (x −> T x)
| All (T x)
| One (T x)

Fig. 8. Syntax according to Fig. 3 in Haskell.

Let us also discuss basic properties of success and failure behavior for strategies. According to [30], we say that a strategy
s is infallible if it does not possibly fail, i.e., for any given term, it either succeeds or diverges; otherwise s is fallible. The
following properties hold [30]:

• If s is infallible, then full_td s and full_bu s are infallible.
• No matter the argument s, stop_td s and innermost s are infallible.
• No matter the argument s, once_td s and once_bu s are fallible.

These properties can be confirmed based on induction arguments. For instance, (the all-based branch of the choice in) a
stop-top-down traversal succeeds eventually for ‘leaves’, i.e., termswithout subterms, and it succeeds as well for every term
for which the traversal succeeds for all immediate subterms. Hence, by induction over the depth of the term, the traversal
succeeds universally.

The discussion of termination behavior for traversal schemes is more complicated, but let us provide a few intuitions
here. That is, it is easy to see that full bottom-up traversal converges—as long as its argument strategy does not diverge—
because the scheme essentially performs structural recursion on the input term. In contrast, full top-down traversal may
diverge rather easily because the argument strategy could continuously increase the given term before traversing into it.
This will be illustrated in Section 3. We will address termination by means of static program analysis in Section 5.

2.4. A Haskell-based interpreter for strategies

Let us also provide an interpreter-based model of the core calculus in Haskell. In fact, we provide this model in a way
that we can easily refine it later on for the purpose of static program analysis in Section 5. The interpreter-based model is
not very useful though for actual programming in Haskell because it is essentially untyped with regard to the terms being
transformed. We will properly embed strategies in Haskell in Section 2.5.

Fig. 8 shows the algebraic data type T for the syntax of transformations according to the core calculus. There are
constructors for the various basic strategies and combinators. There is, however, no strategy form for rewrite rules because
we can easily represent rewrite rules as functions. Please note that type T is parameterized by the type x for variables. Herewe
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−− Representation of terms
data Term = Term Constr [Term]
type Constr = String

−− The semantic domain for strategies
typeMeaning = Term−> Maybe Term

−− Interpreter function
interpret :: T Meaning−> Meaning
interpret Id = Just
interpret Fail = const Nothing
interpret (Seq s s ’) = maybe Nothing (interpret s’) . interpret s
interpret (Choice s s ’) = \t −> maybe (interpret s’ t) Just ( interpret s t)
interpret (Var x) = x
interpret (Rec f) = fixProperty ( interpret . f )
interpret (All s) = transform (all ( interpret s))
interpret (One s) = transform (one (interpret s))

−− Fixed−point combinator
fixProperty :: (x −> x)−> x
fixProperty f = f (fixProperty f)

−− Common helper for All and One
transform :: ([Term]−> Maybe [Term])−> Meaning
transform f (Term c ts)
= maybe Nothing (Just . Term c) ( f ts)

−− Transform all terms in a list
all :: Meaning−> [Term]−> Maybe [Term]
all f ts = kids ts ’
where
ts ’ = map f ts
kids [] = Just []
kids ( Just t ’: ts ’) = maybe Nothing (Just . (:) t ’) (kids ts ’)

−− Transform one term in a list
one :: Meaning−> [Term]−> Maybe [Term]
one f ts = kids ts ts ’
where
ts ’ = map f ts
kids [] [] = Nothing
kids (t : ts) (Nothing:ts ’) = maybe Nothing (Just . (:) t) (kids ts ts ’)
kids (_: ts) ( Just t ’: ts ’) = Just (t ’: ts)

Fig. 9. Haskell-based interpreter for transformation strategies.

apply a modeling technique for syntax that allows us to model variables and binding constructs of the interpreted language
with variables and binding constructs of the host language. Further, this particular style supports repurposing this syntax
most conveniently during abstract interpretation in Section 5. Finally, the style frees us from implementing substitution.

Fig. 9 shows the actual interpreter, which is essentially a recursive function, interpret, on the syntactical domain—subject
to a few auxiliary declarations as follows. There is an algebraic data type Term for terms to be transformed; constructors are
assumed to be strings; see the type synonym Constr. There is a type synonym Meaning to make explicit the type of functions
computed by the interpreter. That is, a strategy is mapped to a function from terms to terms where the function is partial in
the sense of the Maybe type constructor.4 The type Meaning hence also describes what variables are to be bound to.5

4 Note on Haskell: Maybe is defined as follows: data Maybe x = Just x | Nothing. The constructor Just is applied when a value (i.e., a result in our
case) is available whereas the constructor Nothing is applied otherwise. Maybe values can be inspected by regular pattern matching, but we also use the
convenience function maybe :: b−> (a−> b)−> Maybe a−> b which applies the first argument if the given ‘maybe’ is Nothing and otherwise the
second argument (a function) to the value.
5 Note on Haskell: Haskell in all its glory has infinite and partial data structures, such as trees with undefined leaves, or indeed undefined subtrees. In

principle, the data type Term can be used in such a manner. In the presence of infinite and partial structures, the discussion of strategy semantics and
properties (most notably, termination) becomes more subtle. In this paper, we are limiting our discussion to finite, fully defined data. (The subject of
coinductive strategies over coinductive types may be an interesting topic for future work.) We also skip over the issues of laziness in most cases.



10 R. Lämmel et al. / Science of Computer Programming ( ) –

full_bu s = Rec (\x −> Seq (All (Var x)) s)
full_td s = Rec (\x −> Seq s (All (Var x)))
once_bu s = Rec (\x −> Choice (One (Var x)) s)
once_td s = Rec (\x −> Choice s (One (Var x)))
stop_td s = Rec (\x −> Choice s (All (Var x)))
innermost s = repeat (once_bu s)
try s = Choice s Id
repeat s = Rec (\x −> try (Seq s (Var x)))

Fig. 10. Familiar traversal schemes for interpretation in Haskell.

−− Transformations as generic functions
type T m = forall x. Term x => x−> m x

−− Combinator types
idT :: Monad m => T m
failT :: MonadPlus m => T m
sequT :: Monad m => T m−> T m−> T m
choiceT :: MonadPlus m => T m−> T m−> T m
allT :: Monad m => T m−> T m
oneT :: MonadPlus m => T m−> T m
adhocT :: (Term x, Monad m) => T m−> (x−> m x)−> T m

−− Trivial combinator definitions
idT = return
failT = const mzero
sequT f g x = f x >>= g
choiceT f g x = f x ‘mplus‘ g x

−− Non−trivial combinator definitions using pseudo−code
allT f (C t1 ... tn) =

f t1 >>= \t1’−> ... f tn >>= \tn’−>
return (C t1’ ... tn’)

oneT f (C t1 ... tn) =
...−− elided for brevity

adhocT s f x =
if typeOf x == argumentTypeOf f

then f x
else s x

Fig. 11. Embedding strategies (transformations) in Haskell.

The equations of the interpret function combine the positive and negative rules of the natural semantics in a straightfor-
ward manner. The only special case is the approach to recursion. We use a fixed point combinator, fixProperty, to this end. Its
name emphasizes that the definition of the operator is immediately the defining property of a fixed point.

The traversal combinators are interpreted with the help of auxiliary functions transform, all, and one. One-layer traversal
is essentially modeled by means of mapping over the list of subterms while using the folklore list-processing function map.
The auxiliary functions are otherwise only concerned with the manipulation of failure for processed subterms.

Fig. 10 shows familiar traversal schemes in the Haskell-based syntax.

2.5. Embedding strategies into Haskell

By embedding strategies into Haskell, they can be applied to programmer-defined data types such as those illustrative
data models for companies and programming-language syntax in Fig. 2 in the introduction.

Fig. 11 defines the generic function type for transformations and the function combinators for the core calculus. A number
of aspects of this embedding need to be carefully motivated.

The type T uses forall-quantification to emphasize that strategies are indeed generic (say, polymorphic) functions because
they are potentially applied to many different types of subterms along traversal. The context Term x => ... emphasizes that
strategies are not universally polymorphic functions, but they can only be applied to types that instantiate the Haskell class
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A Haskell class is specified by a signature, which can be thought of as an interface. An implementation of the class—called an instance
in Haskell—is given by defining the interface functions for a particular type. A typical example is the equality class, Eq, shown with an
instance for the Boolean type, Bool.

class Eq a where
(==) :: a −> a−> Bool

instance Eq Bool where
(x == y) = if x then y else (not y)

A function may be polymorphic yet require that a type is a member of a particular class, as in the list membership function; the context
Eq a => ... constrains a to be a member of the Eq class.

elem :: Eq a => a −> [a]−> Bool
elem x ys = or [ x==y | y<−ys ]

Since Bool is in the class Eq, then elem can be used over Boolean lists.

Fig. 12. A note on classes in Haskell.

Term.6 Thus, Term is the set of types of terms. (For comparison, in the interpreter-basedmodel, Termdenotes the type of terms.)
The operations of the Term class enable traversal and strategy extension (see below). The specifics of these operations are
not important for the topic of the present paper; see the Strafunski/‘Scrap Your Boilerplate’ literature [43,38] for details.

There is the adhocT combinator that has no counterpart in the formal semantics and the interpreter-basedmodel because
it is specifically needed for static typing when different types can be traversed. The adhocT combinator enables so-called
strategy extension as follows. The strategy adhocT s f constructs a new strategy from the given strategy s such that the result
behaves like the type-specific case f , when f is applicable and like s otherwise. This is also expressed by the pseudo-code.We
omit technical details that are not important for the topic of the present paper; see, again, [43,38] for details. It is important
though to understand that an operation like adhocT combinator is essential for a (conservative) typeful embedding. This will
be illustrated shortly.

When compared to the interpreter of Fig. 9, the embedding does not refer to theMaybe type constructor for the potential
of failure in strategy application. Instead, a type-constructor parameter for a monadm is used.7 The use of monads is a strict
generalization of the use of Maybe because (a) Maybe is a specific monad and (b) other monads can be chosen to compose
traversal behavior with additional computational aspects. This generalization has been found to be essential in practical,
strategic programming in Haskell. By instantiating m as Maybe, we get these types:

idT :: T Maybe
failT :: T Maybe
sequT :: T Maybe−> T Maybe−> T Maybe
... .

We note that the choice of Monad versus MonadPlus in the original function signatures of Fig. 11 simply expresses what is
required by the combinators’ definitions. For instance, idT does not refer to any members of the MonadPlus class whereas
choiceT does.

The pseudo-code for the allT combinator expresses that the argument function (say, strategy) is applied to all immediate
subterms, the various computations are sequenced, and a termwith the original outermost constructor is constructed from
the intermediate results—unless failure occurred.

Fig. 14 expresses familiar traversal schemes with the embedding. The function definitions are entirely straightforward,
but two details are worth noticing as they relate to the central topic of programming errors. First, the function definitions
use general recursion, thereby implying the potential for divergence. Second, the distinction of Monad and MonadPlus in the
function signatures signals whether control flow can be affected by fallible arguments of the schemes, but the types do not
imply rejection of infallible arguments, thereby implying the potential for degenerated control flow.

Fig. 15 composes a traversal for the transformation of companies such that the salaries of all employees are increased by
1 Euro. The implementation of the traversal is straightforward: we select a scheme for full traversal such that we reach each
node, andwe extend the polymorphic identity function with amonomorphic function for employees so that we increase (in
fact, increment) their salary components. The local function f can be viewed as a rewrite rule in that it rewrites employees—
there is pattern matching on the left-hand side and term construction on the right-hand side. The trivial identity monad, Id,
is used here because the traversal is a pure function—without even the potential of failure. Fig. 1 also proposed a slightly
more involved transformation scenario for companies: decrease the salaries of all non-top-level managers. We leave this
scenario as an exercise for the reader.

6 Note on Haskell: Fig. 12 gives a brief overview of Haskell classes (say, type classes) for those unfamiliar with this aspect of the Haskell language.
7 Note on Haskell: Fig. 13 gives a brief overview of monads for those unfamiliar with the concept.



12 R. Lämmel et al. / Science of Computer Programming ( ) –

Classes can also describe interfaces over type constructors, that is, functions from types to types. For instance:

class Monad m where
return :: a −> m a
(>>=) :: m a−> (a−> m b)−> m b

class Monad m => MonadPlus mwhere
mzero :: m a
mplus :: m a−> m a−> m a

Monads encapsulate an interface for ‘computations over a’, since return x gives the trivial computation of the value x and (>>=) or ‘bind’
allows computations to be sequenced. The simplest implementation ofMonad is the identity type function:

data Id a = Id { getId :: x }

instanceMonad Idwhere
return x = Id x
c >>= f = f (getId c)

Other instances of Monad provide for non-deterministic or stateful computation, which can be used to good effect in traversals, e.g., to
accumulate context information during the traversal.
In a similar way, MonadPlus encapsulates the concept of computations that might fail, witnessed by the mzero binding, and mplus
combines together the results of two computations that might fail, transmitting failure as appropriate. The simplest instance of
MonadPlus is theMaybe type:

data Maybe a = Nothing | Just a

instanceMonad Maybewhere
return x = Just x
Nothing >>= f = Nothing
( Just x) >>= f = f x

instanceMonadPlus Maybewhere
mzero = Nothing
mplus Nothing y = y
mplus x _ = x

Every instance ofMonadPlus presupposes an instance ofMonad, but not vice versa.

Fig. 13. A note on monads in Haskell.

full_td , full_bu :: Monad m => T m−> T m
once_td, once_bu :: MonadPlus m => T m−> T m
stop_td :: MonadPlus m => T m−> T m
innermost, repeat, try :: MonadPlus m => T m−> T m

full_td s = s ‘ sequT‘ allT ( full_td s)
full_bu s = allT (full_bu s) ‘ sequT‘ s
once_td s = s ‘choiceT‘ oneT (once_td s)
once_bu s = oneT (once_bu s) ‘choiceT‘ s
stop_td s = s ‘choiceT‘ allT (stop_td s)
innermost s = repeat (once_bu s)
repeat s = try (s ‘ sequT‘ repeat s)
try s = s ‘choiceT‘ idT

Fig. 14. Familiar traversal schemes embedded in Haskell.

2.6. A note on queries

For most of the paper we focus on transformations since queries do not seem to add any additional, fundamental
challenges. However,we extend the embedding approachhere to include queries for amore complete illustration of strategic
programming. Fig. 16 defines the generic function type for queries and corresponding function combinators.
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−− Increase the salaries of all employees.
increase_all_salaries :: T Id
increase_all_salaries = full_td (adhocT idT f)
where
f (Employee n s) = Id (Employee n (s+1))

Fig. 15. Implementation of a transformation scenario from Fig. 1.

−− Queries as generic functions
type Q r = forall x. Term x => x−> r

−− Combinator types
constQ :: r−> Q r
failQ :: MonadPlus m => Q (m r)
bothQ :: Q u−> Q u’−> Q (u,u’)
choiceQ :: MonadPlus m => Q (m r)−> Q (m r)−> Q (m r)
allQ :: Q r−> Q [r]
adhocQ :: Term x => Q r−> (x−> r)−> Q r

−− Trivial combinator definitions
constQ r = const r
failQ = const mzero
bothQ f g x = (f x, g x)
choiceQ f g x = f x ‘mplus‘ g x

−− Non−trivial combinator definitions using pseudo−code
allQ f (C t1 ... tn) =

[f t1, ..., f tn]

adhocQ s f x =
if typeOf x == argumentTypeOf f

then f x
else s x

Fig. 16. Embedding strategies (queries) in Haskell.

The generic type Q models that queries may be applied to terms of arbitrary types while the result type r of the query is
a parameter of the query; it does not depend on the actual type of the input term. Here, we note that Q is not parameterized
by a monad-type constructor, as it is the case for T. This design comes without loss of generality because the result type r
may be instantiated also to the application of a monad-type constructor, if necessary.

The basic strategy constQ r denotes the polymorphic constant function, which returns r—no matter the input term or its
type. The basic strategy failQ is the always failing query. There is no special sequential composition for queries because regular
function composition is appropriate—given that the result of a query is of a fixed type. However, there is the combinator
bothQwhich applies two queries to the input and returns both results as a pair. Further, there is also a form of choice, choiceQ,
for queries. Ultimately, there is also one-layer traversal for queries. We only show the combinator allQ, which essentially
constructs a list of queried subterms. Finally, there is also a form of strategy extension for queries.

Fig. 17 expresses useful traversal schemes with the embedding. The first two schemes are parameterized over a monoid
to allow for the collection of data in a general manner.8 (The postfix ‘‘cl’’ hints at ‘‘collection’’.) That is, the monoid’s type
provides the result type of queries and the monoid’s binary operation is used to combine results from querying many
subterms. The third traversal scheme in Fig. 17 deals with finding a single subterm of interest as opposed to collecting
data from many subterms of interest.

Fig. 19 composes traversal for the query scenarios on companies: total salaries of all employees or non-managers, only.
The implementation of the former is straightforward; perhaps surprisingly, the implementation of the latter is significantly
more involved. The simple collection scheme full_cl is inappropriate for totaling all non-managers because the schemewould
reach all nodes eventually—including the employee subterms that are part of manager terms, from which salaries must not
be extracted though. Hence, a traversal with ‘stop’ is needed indeed. Further, an always failing default is needed here—again,
in contrast to the simpler case of totaling all salaries. Finally, the solution depends on the style of data modeling. That is,

8 Note on Haskell: Fig. 18 gives a brief overview of monoids for those unfamiliar with the concept.



14 R. Lämmel et al. / Science of Computer Programming ( ) –

−− Query each node and collect all results in a list
full_cl :: Monoid u => Q u−> Q u
full_cl s = mconcat . uncurry (:) . bothQ s (allQ (full_cl s))

−− Collection with stop
stop_cl :: Monoid u => Q (Maybe u)−> Q u
stop_cl s = maybe mempty id

. (s ‘choiceQ‘ (Just . mconcat . allQ (stop_cl s)))

−− Find a node to query in top−down, left−to−right manner
once_cl :: MonadPlus m => Q (m u)−> Q (m u)
once_cl s = s ‘choiceQ‘ (msum . allQ (once_cl s))

Fig. 17. Traversal schemes for queries embedded in Haskell.

TheMonoid type class encapsulates a type with a binary operation,mappend, and a unit, empty, for that operation:

class Monoid awhere
mempty :: a
mappend :: a−> a−> a
mconcat :: [a] −> a
mconcat = foldr mappend mempty

The simplest instance is the list monoid, which indeed suggests the names used in the class.

instanceMonoid [a]where
mempty = []
mappend = (++)

Other instances are given by addition and zero (or multiplication and one) over numbers, wrapped by the Sum constructor:

newtype Sum a = Sum { getSum :: a }
instance Num a => Monoid (Sum a)where
mempty = Sum 0
Sum x ‘mappend‘ Sum y = Sum (x + y)

In each case mconcat is used to accumulate a list of values into a single value. This value will be independent of the way in which the
accumulation is done if the instance satisfies theMonoid laws:

mappend mempty x = x
mappend x mempty = x
mappend x (mappend y z) = mappend (mappend x y) z

Fig. 18. A note on theMonoid class in Haskell.

−− Total the salaries of all employees.
total_all_salaries :: Q Float
total_all_salaries = getSum . full_cl (adhocQ (constQ mempty) f)
where
f (Employee _ s) = Sum s

−− Total the salaries of all employees who are not managers.
total_all_non_managers :: Q Float
total_all_non_managers = getSum . stop_cl type_case
where
type_case :: Q (Maybe (Sum Float))
type_case = adhocQ (adhocQ (constQ Nothing) employee) manager
employee (Employee _ s) = Just (Sum s)
manager (Manager _) = Just (Sum 0)

Fig. 19. Implementation of two query scenarios from Fig. 1.
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the assumed data model distinguishes the types of managers and employees. Hence, we can use an extra type-specific case
for managers to stop collection at the manager level. Without the type distinction in the data model, the traversal program
would need to exploit the special position of managers within department terms.

The transformation scenario for decreasing the salaries of all non-top-level managers, which we left as an exercise for
the reader, calls for similarly involved considerations. These illustrations may help to confirm that programming errors are
quite conceivable in strategic programming—despite the conciseness of the programming style.

3. Inventory of strategic programming errors

The implementation of a strategic programming (sub-) problem (say, a traversal problem) is normally centered around
some problem-specific ingredients (‘rewrite rules’) that have to be organized in a more or less complex strategy. There are
various decisions to be made and accordingly, there are opportunities for misunderstanding and programming errors. This
section presents a fine-grained inventory of programming errors by reflecting systematically on the use of basic strategy
combinators and library abstractions in the implementation of traversal problems. We use a deceptively simple scenario
as the running example. We begin with a short proposal of the assumed process of designing and implementing traversal
programs, which in itself may improve understanding of strategic programming and help reducing programming errors.
The following discussion is biased towards transformations, but coverage of queries would require only a few, simple
adaptations.

3.1. Design of traversal programs

Traversal programming is based on the central notion of terms of interest—these are the terms to be affected by a
transformation. When designing a traversal, the terms of interest are to be identified along several axes:

Types Most obviously, terms of interest are of certain types. For instance, a transformation for salary increase may be
concerned with the type of employees.

Patterns and conditions Terms of interest often need to match certain patterns. For instance, a transformation for the
application of a distributive law deals with the pattern x ∗ (y + z). In addition, the applicability of transformations is
often subject to (pre-) conditions.

Position-based selection A selection criterion may be applied if the transformation should not affect all terms with fitting
patterns and conditions. In an extreme case, a single term is to be selected. Such selection typically refers to the position
of these terms; think of top-most versus bottom-most.

Origin The initial input is expected to contribute terms with fitting patterns and conditions, but previous applications of
rewrite rules may contribute terms as well. Hence, it must be decided whether the latter kind of origin also qualifies for
terms of interest. For instance, an unfolding transformation for recursive function definitions may specifically disregard
function applications that were introduced by unfolding.

3.2. Implementation of traversal programs

When implementing a traversal, the types and patterns of terms of interest are modeled by the left-hand sides of rewrite
rules. Conditions are typically modeled by the rewrite rules, too, but the choice of the traversal schememay be essential for
being able to correctly check the conditions. For instance, the traversal scheme may need to pass down information that is
needed by a condition eventually. The axes of selection and origin (of terms of interest) are expressed through the choice of
a suitable traversal scheme.

Let us provide a summary of basic variation points in traversal implementation. For simplicity, let us focus here on
traversal problems whose implementation corresponds to a strategy that has been built by applying one or more traversal
schemes from a library to the problem-specific rewrite rules, possibly subject to composition of rewrite rules or sub-
traversals.

Organizing the strategy involves the following decisions:

Scheme Which traversal scheme is to be used?
• Is a full or a limited traversal required?
• Does top-down versus bottom-up order matter?
• Does a strategy need to be iterated?
• ...

Default What polymorphic and monomorphic defaults are to be used?
• The identity transformation.
• The always failing transformation.
• Another, more specific, behavior.

Composition How to compose a strategy from multiple parts?
• Use type case (strategy extension) at the level of rewrite rules.
• Combine arguments of a traversal scheme in a sequence.
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• Combine arguments of a traversal scheme in a choice.
• Combine traversals in a sequence.
• Combine traversals in a choice.

Based on an appropriate running examplewe shall exercise these choices, and see the consequences of incorrect decisions
as they cause programming errors in practice. In our experience, wrong choices are the result of insufficiently understanding
(i) the variation points of traversal schemes, (ii) the subtleties of control flow, and (iii) the axes of terms of interest in practical
scenarios.

3.3. The running example

Touse a purposely simple example, consider the transformationproblemof ‘incrementing all numbers in a term’. Suppose
ℓ is the rewrite rule that maps any given number n to n + 1. It remains to compose a strategy that can iterate ℓ over any
term.

For concreteness’ sake, we operate on n-ary trees of natural numbers. Further, we assume a Peano-like definition of the
data type for numbers. Here are the data types for numbers and trees:

data Nat = Zero | Succ Nat
data Tree a = Node {rootLabel :: a, subForest :: [Tree a ]}.

The Peano-induced recursion implies a simple form of nesting. It goes without saying that the Peano-induced nesting
form is contrived, but its inclusion allows us to cover nesting as such—any practical scenario of traversal programming
involves nesting at the data-modeling level—think of nesting of departments in the company example, or nesting of
expressions or function-definition blocks in the AST example given in the introduction.

Here are simple tree samples:

tree1 = Node { rootLabel = Zero, subForest = [] } −− A tree of numbers
tree2 = Node { rootLabel = True, subForest = [] } −− A tree of Booleans
tree3 = Node { rootLabel = Succ Zero, subForest = [tree1,tree1] } −− Two subtrees.

The rewrite rule for incrementing numbers is represented as follows:

increment n = Succ n.

In fact, let us usemonadic style because the basic Strafunski-like library introduced in Section 2.5 assumesmonadic style
for all combinators—in particular, for all arguments. Hence, we commit to the Maybe monad and its constructor Just:

increment n = Just (Succ n).

It remains to complete the rewrite rule into a traversal strategy that increments all numbers in an arbitrary term. That
is, we need to make decisions regarding traversal scheme, default, and composition for the implementation.

Given the options full_td, full_bu, stop_td, once_bu, once_td, and innermost, which traversal scheme is the correct one for the
problem at hand? Also, how to exactly apply the chosen scheme to the given rewrite rule? An experienced strategist may
quickly exclude a few options. For instance, it may be obvious that the scheme once_bu is not appropriate because we want
to increment all numbers, while once_bu would only affect one number. In the remainder of the section, we will attempt
different schemes and vary other details, thereby showcasing potential programming errors.

3.4. Strategies going wrong

The composed strategy may go wrong in different ways:

• It diverges.
• It transforms incorrectly, i.e., numbers are not exactly incremented.
• It does not modify the input, i.e., numbers are not incremented at all.
• It fails even when the transformation is assumed never to fail.
• It succeeds even when failure is preferred for terms without numbers.

Let us consider specific instances of such problems.

3.4.1. Divergent traversal
Let us attempt a full top-down traversal. Alas, the traversal diverges:9

9 Note on Haskell: Throughout the section, we operate at the Haskell prompt. That is, we show input past the ‘>’ prompt sign and resulting output, if any,
right below the input.
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> full_td (adhocT idT increment) tree1
... an infinite tree is printed ... .

The intuitive reason for non-termination is that numbers are incremented prior to the traversal’s descent. Hence, the
term under traversal grows and each increment enables another increment.

Let us attempt instead the innermost scheme. Again, traversal diverges:

> innermost (adhocT failT increment) tree1
... no output ever is printed ... .

The combinator innermost repeats once_bu until it fails, but it never fails because there is always a redex to which to apply
the increment rule. Hence, tree1 is rewritten indefinitely.

Both decisions here illustrate the case of choosing the wrong traversal scheme which in turn may be the result of
insufficiently understanding some axes of terms of interest (see Section 3.1) and associated properties of rewrite rules.
In particular, the traversal schemes used here support the origin axis in a way terms of interest are created by the traversal.

3.4.2. Incorrect transformation
Let us attempt instead the full_bu scheme:

> full_bu (adhocT idT increment) tree1
Just (Node {rootLabel = Succ Zero, subForest = []}).

The root label was indeed incremented. This particular test case looks fine, but if we were testing the same strategy with
trees that contain non-zero numbers, then we would learn that the composed strategy replaces each number n by 2n + 1
as opposed to n+ 1. To see this, one should notice that a number n is represented as a term of depth n+ 1, and the choice
of the scheme full_bu implies that increment applies to each ‘sub-number’.

More generally, we see an instance of an overlooked applicability condition (see Section 3.1) in that numbers are terms of
interest, but not subterms thereof. The same kind of error could occur in the implementation of any other scenario as long
as it involves nesting. In real-world scenarios, nesting may actually arise also through mutual (data type-level) recursion.

3.4.3. No-op traversal
Finally, let us attempt the stop_td scheme. Alas, no incrementing happens:

> stop_td (adhocT idT increment) tree1
Just (Node {rootLabel = Zero, subForest = []}).

That is, the result equals Just tree1. The problem is that the strategy should continue to descend as long as no number is
hit, but the polymorphic default idT makes the strategy stop for any subterm that is not a number. Let us replace idT by failT.
Finally, we arrive at a proper solution for the original problem statement:

> stop_td (adhocT failT increment) tree1
Just (Node {rootLabel = Succ Zero, subForest = []}).

Hence, stop_td is the correct traversal scheme for the problem at hand, but we also need to be careful about using the
correct polymorphic default for lifting the rewrite rule to the strategy level; see Section 3.2.

3.4.4. Unexpected failure
failT is the archetypal polymorphic default for certain schemes, while it is patently inappropriate for others. To see this,

suppose, we indeed want to replace each number n by 2n+1, as we accidentally ended up doing in Section 3.4.2. Back then,
the polymorphic default idT was appropriate for full_bu. In contrast, the default failT is not appropriate:

> full_bu (adhocT failT increment) tree1
Nothing.

This is a case of unexpected failure in the sense that we expect the traversal for incrementing numbers to succeed for all
possible input terms. The problem is again due to the wrong choice of default.

3.4.5. Unexpected success
Let us apply the confirmed scheme and default to a tree of Booleans:

> stop_td (adhocT failT increment) tree2
Just (Node { rootLabel = True, subForest = [] }).
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Of course, no incrementing happens; the output equals the input. Arguably, a strategic programmer could expect that the
traversal should fail, if the rewrite rule for incrementing never applies. For comparison, the traversal scheme once_bu does
indeed fail in case of inapplicability of its argument. Defining a suitable variation on stop_td that indeed fails in the assumed
way we leave as an exercise for the reader. Misunderstood success and failure behavior may propagate as a programming
error as it may affect the control flow in the strategic program.

3.5. Subtle control flow

Arguably, several of the problems discussed involve subtleties of control flow. It appears to be particularly difficult to
understand and to correctly configure control flow of strategies on the grounds of success and failure behavior for operands
in strategy composition.

Let us modify the running example slightly to provide another illustration. We consider the refined problem statement
that only even numbers are to be incremented. In the terminology of rewriting, this statement calls for a conditional rewrite
rule:10

−− Pseudo code for a conditional rewrite rule
increment_even : n−> Succ(n) where even(n)

−− Haskell code (monadic notation)
increment_even n = do guard (even n); increment n.

We use the same traversal scheme as before:

> stop_td (adhocT failT increment_even) tree1
Just (Node {rootLabel = Succ Zero, subForest = []}).

This particular test case looks fine, but if we were testing the same strategy with trees that contain odd numbers, then
wewould learn that the composed strategy in fact also increments those. The problem is that the failure of the precondition
for increment propagates to the traversal scheme which takes failure to mean ‘continue descent’. However, once we descend
into odd numbers, we will hit an even sub-number in the next step, which is hence incremented. So we need to make sure
that recursion ceases for all numbers. Thus:

increment_even n | even n = Just (Succ n)
| otherwise = Just n.

The example shows the subtleties of control flow in strategic programming: committing to the specific monomorphic
type in adhocT can still fail, and so lead to further traversal.

3.6. Dead code

So far we have mainly spotted programming errors through comparison of expected with actual output, if any. Let us
now switch to the examination of composed strategies. There are recurring patterns of producing dead code in strategic
programming. We take the position here that dead code is a symptom of programming errors.

Consider the following patterns of strategy expressions:

• adhocT (adhocT s f1) f2
• choiceT s1 s2
• sequT s1 s2.

In the first pattern, if the operands f1 and f2 are of the same type (or more generally, the type of f2 can be specialized to
the type of f1), then f1 has no chance of being applied. Likewise, in the second pattern, if s1 never possibly fails, then s2 has
no chance of being applied. Finally, in the third pattern, if s1 never possibly succeeds, which is likely to be the symptom of
a programming error by itself, then, additionally, s2 has no chance of being applied.

Let us illustrate the first kind of programming error: two type-specific cases of the same type that are composed with
adhocT. Let us consider a refined problem statement such that incrementing of numbers is to be replaced by (i) increment by
one all odd numbers, (ii) increment by two all even numbers. Here are the basic building blocks that we need:

10 Both the original increment function and the new ‘conditional’ increment_even function go arguably beyond the basic notion of a rewrite rule that
requires a non-variable pattern on the left-hand side. We could easily recover classic style by using two rewrite rules—one for each form of a natural
number.
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atOdd n | odd n = Just (Succ n)
| otherwise = Nothing

atEven n | even n = Just (Succ (Succ n))
| otherwise = Nothing.

Arguably, both rewrite rules could also have been combined in a single function to start with, but we assume here a
modular decomposition as the starting point. We also leave it as an exercise to the reader to argue that the monomorphic
default Nothing is appropriate for the given problem. Intuitively, we wish to compose these type-specific cases so that both
of them are tried.

Let us attempt a composition that uses adhocT twice:

> stop_td (adhocT (adhocT failT atEven) atOdd) tree1
Just (Node {rootLabel = Zero, subForest = []}).

Alas, no incrementing seems to happen. The problem is that there are two type-specific cases for numbers, and the case
for odd numbers dominates the one for even numbers. The case for even numbers is effectively dead code. In the sample
tree, the number, Zero, is even.

The two rewrite rules need to be composed at themonomorphic level of the number type—as opposed to the polymorphic
level of strategy extension. To this end, we need composition combinators that can be applied to functions of specific types
as opposed to generic functions:

msequ :: Monad m => (x−> m x)−> (x−> m x)−> x−> m x
msequ s s’ x = s x >>= s’

mchoice :: MonadPlus m => (x−> m x)−> (x−> m x)−> x−> m x
mchoice f g x = mplus (f x) (g x).

Using mchoice, we arrive at a correct composition:

> stop_td (adhocT failT (mchoice atEven atOdd)) tree1
Just (Node {rootLabel = Succ (Succ Zero), subForest = []}).

We face a more subtle form of dead code when the root type for terms in a traversal implies that the traversal cannot
encounter subterms of the type expected by a type-specific case. Consider again the strategy application that we already
used for the illustration of potentially unexpected success in Section 3.4.5:

> stop_td (adhocT failT increment) tree2
Just (Node { rootLabel = True, subForest = [] }).

The output equals the input. In this application, the rewrite rule increment is effectively dead code. In fact, it is not
important what actual input is passed to the strategy. It suffices to know that the input’s type is Tree Boolean. Terms of
interest, i.e., numbers, cannot possibly be found below any root of type Tree Boolean and the given strategy is a no-op in such
a case. This may be indeed a symptom of a programming error: we either meant to traverse a different term (i.e., one that
contains numbers) or we meant to invoke a different strategy (i.e., one that affects Boolean literals or polymorphic trees).
Accordingly, one could argue that the strategy application at hand should be rejected statically.

3.7. Options of composition

As a final exercise on thematter of strategy composition, let us study onemore time the refined example for incrementing
odd and even numbers as introduced in Section 3.6. We take for granted the following decisions: stop_td for the traversal
scheme and failT for the polymorphic default. Given all the principal options for composition, as of Section 3.2, there are the
following concrete options for the example:

1. stop_td (adhocT (adhocT failT atEven) atOdd)
2. stop_td (adhocT failT (mchoice atEven atOdd))
3. stop_td (adhocT failT (msequ atEven atOdd))
4. stop_td (choiceT (adhocT failT atEven) (adhocT failT atOdd))
5. stop_td (sequT (adhocT failT atEven) (adhocT failT atOdd))
6. choiceT (stop_td (adhocT failT atEven)) (stop_td (adhocT failT atOdd))
7. sequT (stop_td (adhocT failT atEven)) (stop_td (adhocT failT atOdd)).

(We do not exercise all variations on the order of operands.) Option (1.) had been dismissed already because the two
branches involved are of the same type. Option (2.) had been approved as a correct solution. Option (4.) turns out to
be equivalent to option (2.). (This equivalence is implied by basic properties of defaults and composition operators.) The
strategies of the other options do not implement the intended operation. Demonstrating and explaining the issues with
these strategies we leave as an exercise for the reader.
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4. Static typing of traversal strategies

Weuse establishedmeans of static typing to curb the identified programming errors, to the extent possible, in a way that
basic strategy combinators and library abstractions are restricted in generality. In particular, we use static typing to avoid
wrong decisions regarding strategy composition, to reduce subtleties of control flow, and to avoid some forms of dead code.
We do not design new type systems here. Instead, we attempt to leverage established means, as well as we can.

The section is organized as a sequel of contributions—each of them consisting of language-agnostic advice for improving
strategic programming and an illustration in Haskell. We use Haskell for illustrations because it is an established
programming language for statically typed strategic programming and its type system is rather powerful in terms of
supporting different forms of polymorphism and simple forms of dependent typing [50,65,63,32,60]. A basic ‘reading
knowledge’ of Haskell, supplementedwith the background notes in Section 2, should be sufficient to understand the essence
of the Haskell illustrations.

We provide language-agnostic advice because different languages may need to achieve the suggested improvements in
different ways, if at all. In fact, not even Haskell’s advanced type system achieves the suggested improvements in a fully
satisfactory manner. Hence, the section may ultimately suggest improvements of practical type systems or appropriate use
of existing proposals for type-system improvements, e.g., [14,64,51,57,45,80,8,16].

4.1. Hard-wire defaults into traversal schemes

Advice 1. By hard-wiring a suitable default into each traversal scheme, rule out wrong decisions regarding the polymorphic
default during strategy composition (see Section 3.2). Here we assume that the default can either be statically defined for each
scheme or else that it can be determined at runtime by observing other arguments of the scheme.

Wecan illustrate the advice inHaskell in a specificmanner by reducing the polymorphismof traversal schemes as follows.
While the general schemes of Section 2.5 are essentially parameterized by polymorphic functions on terms (in fact, rank-
2 polymorphic functions [38,57]), the restricted schemes are parameterized by specific type-specific cases. There is also a
proposal for a variation of ‘Scrap Your Boilerplate’ that points in this direction [52].

The following primed definitions take a type-specific case f, which is then generalized within the definition by means of
the appropriate polymorphic default, idT or failT. We delegate to the more polymorphic schemes otherwise.

full_td’ :: (Term x, Term y, Monad m) => (x−> m x)−> y−> m y
once_bu’ :: (Term x, Term y, MonadPlus m) => (x−> m x)−> y−> m y
stop_td’ :: (Term x, Term y, MonadPlus m) => (x−> m x)−> y−> m y
...

full_td’ f = full_td (adhocT idT f)
once_bu’ f = once_td (adhocT failT f)
stop_td’ f = stop_td (adhocT failT f)
... .

These schemes reduce programming errors as follows. Most obviously, polymorphic defaults are correct by design
because they are hard-wired into the definitions. A side effect is that the use of strategy extension is now limited to the
library, and hence strategy composition is made simpler by reducing the number of options (see Section 3.7).

However, there are scenarios that require the general schemes; see [70,43,44] for examples. The problem is that wemay
need a variable number of type-specific cases. Some scenarios of strategies with multiple cases can be decomposed into
multiple traversals, but even when it is possible, it may be burdensome and negatively affect performance. Further, there
are cases, when the hard-wired default is not applicable. Hence, the default should be admissible to overriding.

As a result, the restricted schemes cannot fully replace the general schemes. Therefore, a strategic programming library
would need to provide both variants and stipulate usage of the restricted schemes whenever possible.

In principle, one can think of unified schemes that can be applied to single type-specific cases, collections thereof, and
polymorphic functions that readily incorporate a polymorphic default. Those schemes would need to coerce type-specific
cases to polymorphic functions. We will illustrate this idea in a limited manner in Section 4.4.

4.2. Declare and check fallibility contracts

Advice 2. Curb programming errors due to subtle control flow (see Section 3.5) by declaring and checking contracts regarding
fallibility. These contracts convey whether the argument of a possibly restricted traversal scheme is supposed to be fallible and
whether the resulting traversal is guaranteed to be infallible (subject to certain preconditions).
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The advice is meant to improve strategic programming so that more guidance is provided as far as the success and failure
behavior of traversal schemes and their arguments is concerned. According to Section 2.3, traversal schemes differ in terms
of their fallibility properties and the dependence of these properties on fallibility properties of the arguments. For instance,
full_td preserve infallibility, that is, a composed traversal full_td s is infallible if the argument s is infallible. In contrast, stop_td s
is infallible regardless of s.

The function signatures of the schemes of Section 2.5 hint at fallibility properties: see the distinguished use of Monad vs.
MonadPlus. For instance:

full_td :: Monad m => T m−> T m
once_bu :: MonadPlus m => T m−> T m
stop_td :: MonadPlus m => T m−> T m.

However, such hinting does not imply checks. For instance, a programmer may still pass a notoriously failing argument
to full_td despite the signature’s hint that a universally succeeding argument may be perfectly acceptable. Such hinting may
also be misleading. For instance, the appearance of MonadPlus in the type of stop_td may suggest that such a traversal may
fail, but, in fact, it cannot. Instead, the appearance of MonadPlus hints at the fact that the argument is supposed to be fallible.

We can illustrate the advice in Haskell in a specific manner by providing infallible variations on the traversal schemes of
Section 2.5. To this end, we use the identity monad whenever we want to require or imply infallibility. We use the maybe
monad whenever the argument of such a scheme is supposed to be fallible. Thus:

full_td’ :: T Id−> T Id
full_bu’ :: T Id−> T Id
stop_td’ :: T Maybe−> T Id
innermost’ :: T Maybe−> T Id
repeat’ :: T Maybe−> T Id
try’ :: T Maybe−> T Id.

Applications of these restricted schemes are hence guaranteed to be infallible. We cannot provide an infallible variation
on once_bu due to its nature. It is also instructive to notice that try models transition from a fallible to an infallible strategy—
not just operationally, as before, but now also at the type level. The inverse transition is not served.

The primed definitions full_td’ and full_bu’ simply delegate to the original schemes, but the other primed definitions
need to be defined from scratch because they need to compose infallible and fallible strategy types in a manner that
requires designated forms of sequence and choice. These new definitions can be viewed as constructive proofs for fallibility
properties.

full_td’ s = full_td s
full_bu’ s = full_bu s
stop_td’ s = s ‘choiceT’‘ allT (stop_td’ s)
innermost’ s = repeat’ (once_bu s)
repeat’ s = try’ (s ‘sequT’‘ repeat’ s)
try’ s = s ‘choiceT’‘ idT

choiceT’ :: T Maybe−> T Id−> T Id
choiceT’ f g x = maybe (g x) Id (f x)

sequT’ :: T Maybe−> T Id−> T Maybe
sequT’ f g = f ‘sequT‘ (Just . getId . g).

The type of choiceT’ is interesting in so far that it allows us to compose a fallible strategy with an infallible strategy to
obtain an infallible strategy. That is, the scope of fallibility is made local.

The fallibility properties were modeled at the expense of eliminating the general monad parameter. Generality could be
recovered though by consistently parameterizing all infallible schemes with a plain monad and adding an application of the
monad transformer for Maybe whenever the argument of such a scheme is supposed to be fallible. Thus:

full_td’’ :: Monad m => T m−> T m−− equals original type
full_bu’’ :: Monad m => T m−> T m−− equals original type
stop_td’’ :: Monad m => T (MaybeT m)−> T m
innermost’’ :: Monad m => T (MaybeT m)−> T m
repeat’’ :: Monad m => T (MaybeT m)−> T m
try’’ :: Monad m => T (MaybeT m)−> T m.

The definitions are omitted here as they require non-trivial knowledge of monad transformers; see though the paper’s
online code distribution. These definitions declare the fallibility contracts better than the original schemes, but enforcement
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is limited. The monad-type parameter may be still (accidentally) instantiated to an instance of MonadPlus. For instance, the
types of full_td’’ and full_bu’’ are not at all constrained, when compared to the original schemes.

4.3. Reserve fallibility for modeling control flow

Advice 3. Curb programming errors due to subtle control flow (see Section 3.5) by reserving fallibility, as discussed so far, for
modeling control flow. If success and failure behavior is needed for other purposes, such as assertion checking, then strategies shall
use effects that cannot be confused with efforts to model control flow. The type system must effectively rule out such confusion.

We can illustrate the advice in Haskell in a specific manner by defining the traversal schemes of Section 2.5 from scratch
in terms of two distinct types for infallible versus fallible types:

data T m = T { getT :: forall x. Term x => x−> m x }
data T’ m = T’ { getT’ :: forall x. Term x => x−> MaybeT m x }.

Weuse data types here (as opposed to type synonyms) so that the two types cannot possibly be confused. This is discussed
in more detail below.

If an infallible strategy needs to fail for reasons other than affecting regular control flow, then the monad parameter can
still be used to incorporate the maybe monad or an exception monad, for example. In this manner, strategies may perform
assertion checking, as often needed for preconditions of nontrivial transformations, without running a risk of failure to be
consumed by the control-flow semantics of the strategic program. In this manner, strategic programming is updated to
reliably separate control flow and exceptions (or other effects), as it is common in the general programming field [61,49].

The types of the ‘full’ traversal schemes reflect that control flow is hard-wired:

full_td :: Monad m => T m−> T m
full_bu :: Monad m => T m−> T m.

The types of the ‘once’ traversal schemes reflect that fallibility is essential:

once_td :: Monad m => T’ m−> T’ m
once_bu :: Monad m => T’ m−> T’ m.

The other library combinators construct infallible strategies from fallible ones:

stop_td :: Monad m => T’ m−> T m
innermost :: Monad m => T’ m−> T m
repeat :: Monad m => T’ m−> T m
try :: Monad m => T’ m−> T m.

At first sight, these types look deceptively similar to those that we defined for fallibility contracts in Section 4.2. However,
the important difference is that T m and T’ m’ cannot be confused whereas this is possible for T m and T (MaybeT m’) if m and
MaybeT m’ are unifiable.

The definitions of the new schemes are omitted here as they rely on a designated, non-trivial suite of basic strategy
combinators; see though the paper’s online code distribution. It is fair to say that the present illustration also addresses
Advice 2 regarding fallibility contracts.

4.4. Enable families of type-specific cases

Advice 4. Rule out dead code due to overlapping type-specific cases (see Section 3.6) by enabling strongly typed families of type-
specific cases as arguments of traversal schemes. Such a family is a non-empty list of functions the types of which are pairwise
non-unifiable but they all instantiate the same generic function type for strategies.

We can illustrate the advice in Haskell in a specific manner by making use of advanced type-class-based programming.
More specifically, we leverage existing library support for strongly typed, heterogeneous collections—the HList library [32].

Consider the pattern of composing a strategy from several (say, two) type-specific cases and a polymorphic default:

adhocT (adhocT s f1) f2.

The type-specific cases, f1 and f2, are supposed to override the polymorphic default s in a point-wise manner. Ignoring
static typing for a second, we can represent the two type-specific cases instead as a list [f1, f2]. Conceptually, it is a
heterogeneous list in the sense that the types of the functions for type-specific cases are supposed to be distinct (in fact,
non-unifiable); otherwise dead code is admitted. Using HList’s constructors for heterogeneous lists, the type-specific cases
are represented as follows:

HCons f1 (HCons f2 HNil).
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−− Type−class−polymorphic type of familyT
class (Monad m, HTypeIndexed f) => FamilyT f m
where
familyT :: T m−> f−> T m

−− Empty list case
instanceMonad m => FamilyT HNil m
where
familyT g _ = g

−− Non−empty list case
instance ( Monad m

, FamilyT t m
, Term x
, HOccursNot (x−> m x) t
)
=> FamilyT (HCons (x−> m x) t) m

where
familyT g (HCons h t) = adhocT (familyT g t) h

The list of type-specific cases is constrained to only hold elements of distinct types; see the constraint HTypeIndexed, which is provided
by the HList library. Also notice that the element types are constrained to be function types formonadic transformations; see the pattern
x−> m x in the head of the last instance. As a proof obligation for the HTypeIndexed constraint, the instance for non-empty lists must
establish that the head’s type does not occur again in the tail of the family; see the constraint HOccursNot, which is again provided by
the HList library.

Fig. 20. Derivation of a transformation from type-specific cases and a default.

Now suppose that the types of the type-specific cases all instantiate the polymorphic type T. Further suppose that there
is a function familyT for strategy construction; it takes two arguments: the heterogeneous collection and a transformation s
which serves as polymorphic default. The original strategy is constructed as follows:

familyT (HCons f1 (HCons f2 HNil)) s.

The function familyT must be polymorphic in a special manner such that it can process all heterogeneous collections of
type-specific cases. To this end, the function must be overloaded on all possible types of such collections, which is achieved
by type-class-based programming; see Fig. 20.

The family-enabled traversal schemes are defined as follows:

full_td’ s = full_td (familyT idT s)
full_bu’ s = full_bu (familyT idT s)
once_td’ s = once_td (familyT failT s)
once_bu’ s = once_bu (familyT failT s)
stop_td’ s = stop_td (familyT failT s)
innermost’ s = innermost (familyT failT s).

That is, the family-enabled schemes invoke the familyT function to resolve the heterogeneous collection into a regular
generic function subject to the polymorphic default that is known for each traversal scheme. In this manner, we do not just
avoid dead code for type-specific cases; we also address the issue of Advice 1 in that the polymorphic default is hard-wired
into the schemes—though without the restriction to a single type-specific case, as was the case in Section 4.1.

Admittedly, the illustration involves substantial encoding. For example, type errors in type-class-based programming
are rather involved, and tend to be couched in terms well below the abstraction level of the strategic programmer. Hence,
future type systems should provide first-class support for the required form of type case.

4.5. Declare and check reachability contracts

Advice 5. Curb programming errors due to type-specific cases not exercised during traversal (see Section 3.6) by declaring and
checking contracts regarding reachability. These contracts describe that the argument types of type-specific cases can possibly be
encountered on subterm positions of the traversal’s input whose root type is known. The type system shall enforce these contracts
for composed traversals.

We can illustrate the advice in Haskell in a specific manner by making use again of advanced type-class-based
programming. That is, we leverage a type-level relation on types, which captures whether or not terms of one type may
occur within terms of another type. The relation is modeled by the following type class:
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class ReachableFrom x y
instance ReachableFrom x x−− reflexivity
−− Other instances are derived from data types of interest.

The above instance makes sure that relation ReachableFrom is reflexive. All remaining instances must be derived from the
declarations of data types that are term types. The instances essentially rephrase the constructor components of the data-
type declarations. For instance, the data type for polymorphic trees and the leveraged data type for polymorphic lists imply
the following contributions to the relation ReachableFrom:

instance ReachableFrom a [a]
instance ReachableFrom a (Tree a)
instance ReachableFrom [Tree a] (Tree a).

Recall the example of dead code due to unreachable types in Section 3.6. The relation ReachableFrom clearly demonstrates
that numbers can be reached from a tree of numbers (using the second instance) but not from a tree of Booleans.

The relation ReachableFrom can be leveraged directly for the declaration of contracts regarding reachability. To this end,
appropriate constraints must be added to the function signatures of the traversal schemes. For simplicity, we focus here on
the simpler function signatures for the traversal schemes of Section 4.1 with hard-wired defaults. Thus:

full_td’’ :: (Term x, Term y, Monad m, ReachableFrom x y)
=> (x−> m x)
−> y−> m y

full_td’’ = full_td’.

Compared to full_td’ of Section 4.1, the ReachableFrom constraint has been added. To this end, the application of the forall-
quantified type synonym for the resulting strategy had to be inlined so that the constraint can address the type variable y
for the strategy type. Of course, the constraint does not change the behavior of full top-down traversal, and hence, there is
no correctness issue. However, it is not straightforward to see or to prove that the additional constraint does not remove
any useful behavior. Here, we consider the deep identity traversal or the completely undefined traversal as ‘useless’.

While the explicit declaration of contracts provides valuable documentation, it is possible, in principle, to infer
reachability constraints from the traversal programs themselves. This may be difficult with type-class-based programming,
but we consider a corresponding static program analysis in Section 5.2.

The idea underlying this illustration has also been presented in [37] in the context of applying ‘Scrap Your Boilerplate’
to XML programming. As we noted before in Section 4.4, the use of type-class-based programming involves substantial
encoding, and hence, future type systems should provide more direct means for expressing reachability contracts.

5. Static analysis of traversal strategies

We go beyond the limitations of established means of static typing by proposing designated static analyses to curb the
identified programming errors. In this manner, we can address some problems more thoroughly than with established
means of static typing. For instance, we can infer contracts regarding fallibility and reachability—as opposed to checking
them previously. Also, the encoding burden of the previous section would be eliminated by a practical type system which
includes the proposed analyses. Further, we can address additional problems that were out of reach so far. In particular, we
can perform designated forms of termination analysis to rule out divergent traversal.

The section is organized as a sequel of contributions—each of them consisting of a piece of language-agnostic advice for
improving strategic programming and an associated static analysis to support the advice.

We use abstract interpretation and special-purpose type systems for the specification and implementation of the
analyses. We have included a representative example of a soundness proof. In all cases, we have modeled the analyses
algorithmically in Haskell. All but some routine parts of the analyses are included into the text; a cursory understanding of
the analyses does not require Haskell proficiency.

5.1. Perform fallibility analysis

Advice 6. Curb programming errors due to subtle control flow (see Section 3.5) by statically analyzing strategy properties
regarding fallibility, i.e., success and failure behavior. Favorable properties may be stated as contracts in programs which are
verified by the proposed analysis.

Without loss of generality, we focus here on an analysis that determines whether a strategy can be guaranteed to
succeed (read as ‘always succeeds’ or ‘infallible’). Similar analyses are conceivable for cases such as ‘always fails’, ‘sometimes
succeeds’, and others .

Wewill first apply abstract interpretation to the problem, but come to the conclusion that the precision of the analysis is
insufficient to yield any non-trivial results. We will then apply a special-purpose type system; the latter approach provides
sufficient precision. The first approach nevertheless provides insight into success and failure behavior, and the overall
framework for abstract interpretation can be later re-purposed for another analysis.
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−− General framework for abstract domains

class Eq x => POrd x
where
(<=) :: x −> x−> Bool
(<) :: x −> x−> Bool
x < y = not (x==y) && x <= y

class POrd x => Bottom x where bottom :: x
class POrd x => Top x where top :: x
class POrd x => Lub x where lub :: x −> x−> x

−− The abstract domain for success and failure analysis

data Sf = None | ForallSuccess | ExistsFailure | Any

instance POrd Sf
where
None <= _ = True
_ <= Any = True
x <= y = x == y

instance Bottom Sf where bottom = None
instance Top Sf where top = Any

instance Lub Sf
where
lub None x = x
lub x None = x
lub Any x = Any
lub x Any = Any
lub x y = if x == y then x else Any

Fig. 21. The abstract domain for success and failure behavior.

5.1.1. An abstract interpretation-based approach
We use the following lattice for the abstract domain for a simple success and failure analysis.11

The bottom element None represents the absence of any information, and gives the starting point for fixed point iteration.
The two data values above None represent the following cases:

• There is no value where the strategy fails: ForallSuccess
• There is a failure point for the strategy: ExistsFailure.

In the former case,we also speak of an infallible strategy according to Section 2.3. Note that this is a partial correctness analysis.
Hence, in none of the cases is it implied that the program terminates for all arguments. The ‘top’ value, Any, represents the
result of an analysis that concludes with both of the above cases as being possible. Such a result tells us nothing of value.

We refer to Fig. 21 for the Haskell model of the abstract domain. We assume appropriate type classes for partial orders
(POrd), least elements (Bottom), greatest elements (Top), and least upper bounds (Lub).

The actual analysis is shown in full detail in Fig. 22. It re-interprets the abstract syntax of Section 2.4 to perform abstract
interpretation on the abstract domain as opposed to regular interpretation. We discuss the analysis case by case now.

11 We use the general framework of abstract interpretation by Cousot and Cousot [13,12]; we are specifically guided by Nielson and Nielson’s style as
used in their textbooks [54,55].
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−− The actual analysis
analyse :: T Sf −> Sf
analyse Id = ForallSuccess
analyse Fail = ExistsFailure
analyse (Seq s s ’) = analyse s ‘ seq‘ analyse s ’
analyse (Choice s s ’) = analyse s ‘ choice‘ analyse s ’
analyse (Var x) = x
analyse (Rec f) = fixEq (analyse . f )
analyse (All s) = analyse s
analyse (One s) = ExistsFailure

−− Equality−based fixed−point combinator
fixEq :: (Bottom x, Eq x) => (x −> x)−> x
fixEq f = iterate bottom
where
iterate x = let x’ = f x

in if (x==x’) then x else iterate x’

−− Abstract interpretation of sequential composition
seq :: Sf −> Sf−> Sf
seq None _ = None
seq ForallSuccess None = None
seq ForallSuccess ForallSuccess = ForallSuccess
seq ForallSuccess _ = Any
seq ExistsFailure _ = ExistsFailure
seq Any _ = Any

−− Abstract interpretation of left−biased choice
choice :: Sf −> Sf−> Sf
choice ForallSuccess _ = ForallSuccess
choice _ ForallSuccess = ForallSuccess
choice None _ = None
choice _ None = None
choice _ _ = Any

Fig. 22. Abstract interpretation for analyzing the success and failure behavior of traversal programs.

s :: ForallSuccess s :: ExistsFailure s ::Any
full_bu s None None None
full_td s None ExistsFailure Any
once_bu s ForallSuccess Any Any
once_td s ForallSuccess Any Any
stop_td s ForallSuccess None None
innermost s ForallSuccess ForallSuccess ForallSuccess

Fig. 23. Exercising success and failure analysis on traversal schemes.

The base cases can be guaranteed to succeed (Id) and to fail (Fail). The composition functions for the compound strategy
combinators can easily be verified to be monotone.

In the case of sequential composition, we infer success if both of the operands succeed, while (definite) failure can be
inferred only if the first operand fails. The reason for this is that the failure point in the domain of the second operand may
not be in the range of the first. Hence, we conclude with Any in some cases. In the case of choice, we infer success if either of
the components succeeds, while failure cannot be inferred at all. The reason for this is that two failing operands may have
different failure points. Hence, we have to conclude again with the imprecise Any value in some cases.

A reference to a Var simply uses the information it contains, and fixEq is the standard computation of the least fixed
point within a lattice, by iteratively applying the function to the bottom element (in our analysis None). We infer success
for an ‘all’ traversal if the argument strategy is guaranteed to succeed; likewise, the ‘all’ traversal has a failure point if the
argument strategy has a failure point (because we could construct a term to exercise the failure point on an immediate
subterm position, assuming a homogeneous as opposed to a many-sorted set of terms). We infer ExistsFailure for a ‘one’
traversal because it has a failure point for every constant term, regardless of the argument strategy. Fig. 23 shows the results
of the analysis.

The columns are labeled by the assumption for the success and failure behavior of the argument strategy s of the traversal
scheme. There is no column for None since this value is only used for fixed-point computation. There are a number of cells
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Γ ⊢ id : True [idSF]

Γ ⊢ fail : False [failSF]

Γ ⊢ s1 : True ∧ Γ ⊢ s2 : True

Γ ⊢ s1; s2 : True
[sequ.1SF]

Γ ⊢ s1 : False ∧ Γ ⊢ s2 : τ

Γ ⊢ s1; s2 : False
[sequ.2SF]

Γ ⊢ s1 : τ ∧ Γ ⊢ s2 : False

Γ ⊢ s1; s2 : False
[sequ.3SF]

Γ ⊢ s1 : False ∧ Γ ⊢ s2 : True

Γ ⊢ s1←+ s2 : True
[choice.1SF]

Γ ⊢ s1 : False ∧ Γ ⊢ s2 : False

Γ ⊢ s1←+ s2 : False
[choice.2SF]

Γ ⊢ s1 : True ∧ Γ ⊢ s2 : τ

Γ ⊢ s1←+ s2 : True
[choice.3SF]

Γ ⊢ s : τ

Γ ⊢ ✷(s) : τ
[allSF]

Γ ⊢ s : τ

Γ ⊢ ✸(s) : False
[oneSF]

v : τ , Γ ⊢ s : τ

Γ ⊢ µv.s : τ
[recSF]

Fig. 24. Typing rules for success and failure behavior

with the None value, which means that the analysis was not able to make any progress during the fixed point computation.
The analysis is patently useless in such cases. There are a number of cells with the Any value, which means that the analysis
concluded with an imprecise result: we do not get to know anything of value about the success and failure behavior in such
cases.

All the cells with values ForallSuccess and ExistsFailure are as expected, but overall the analysis fails to recover behavior in
most cases. For instance, we know that a stop-top-down traversal is guaranteed to succeed (see Section 2.3), but the analysis
reports None.

One may want to improve the abstract interpretation-based approach so that it computes more useful results. Here we
note that the informal arguments in support of fallibility and infallibility of traversal schemes typically rely on induction
over all possible terms. It is not straightforward to adjust abstract interpretation in a way to account for induction.

We abandon abstract interpretation for now. It turns out that a type-system-based approach provides useful results
rather easily because it has fundamentally different characteristics of dealing with recursion. In Section 5.2, we will revisit
abstract interpretation and apply it successfully to a reachability analysis for type-specific cases.

5.1.2. A type system-based approach
Let us use deduction based on a special-purpose type system to infer when a strategy can be guaranteed always to yield

a value if it terminates, that is, it fails for no input. We use the type True for such a situation and False for the lack thereof.
The rules in Fig. 24 describe a typing judgment such that Γ ⊢ s : True is intended to capture the judgment that the

strategy s does not fail for any argument t , in the context Γ . That is, there does not exist any t such that s@ t ❀ ↑, according
to the semantics in Figs. 4 and 5.

Fig. 25 rephrases Fig. 24 in a directly algorithmicmanner in Haskell—also providing type inference. The context Γ , which
carries fallibility information about free variables in a term, is needed so that the analysis can deal with recursively-defined
strategies.
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−− Type expressions
type Type = Bool −− Can we conclude that there is definitely no failure?

−− Type inference
typeOf :: T Type−> Maybe Type
typeOf Id = Just True
typeOf Fail = Just False
typeOf (Seq s s ’) = liftM2 (&&) (typeOf s) (typeOf s ’)
typeOf (Choice s s ’) = liftM2 (||) (typeOf s) (typeOf s ’)
typeOf (Var x) = Just x
typeOf (Rec f) = rec f True ‘mplus‘ rec f False
typeOf (All s) = typeOf s
typeOf (One s) = typeOf s >> Just False

−− Infer type of recursive closure
rec :: (Type−> T Type)−> Type−> Maybe Type
rec f t = typeOf ( f t) >>= \t ’ −>

if t==t’ then Just t else Nothing

Fig. 25. Type inference for success and failure behavior

s :: False s :: True
full_bu s False True
full_td s False True
once_bu s False True
once_td s False True
stop_td s True True
innermost s True True

Fig. 26. Exercising success and failure types on traversal schemes.

The property of infallibility is undecidable, and hence, the type system will not identify all strategies of type True, but it
is guaranteed to be sound, in that no strategy is mis-identified as being infallible by the type system when it is not.

When we compare this approach to the abstract interpretation-based approach, then False should be compared with
Any as opposed to ExistsFailure. That is, True represents guarantee of success, while False represents lack of such a guarantee,
as opposed to existence of a failure point. There is no counterpart for ExistsFailure in the type system. There is certainly no
counterpart for None either, because this value is an artifact of fixed point iteration, which is not present in the type system.

With this comparison in mind, the deduction rules of Fig. 24 (and the equations of Fig. 25) are very similar to the
equations of Fig. 22. For instance, the rules for base cases idSF and failSF state that the identity, id, is infallible, but that
the primitive failure, fail, is not. For a sequence to be infallible, both components need to be infallible (sequ.1SF to sequ.3SF).
If either component of a choice is infallible, the choice is too (choice.1SF, choice.3SF). A choice between two potentially
fallible programs might well be infallible, but this analysis can only conclude that this is not guaranteed, and it is here that
imprecision comes into the analysis. The type of an ‘all’ traversal coincides with the type of argument strategy (allSF). There
is no guarantee of success for a ‘one’ traversal (oneSF).

Finally, in dealing with the recursive case it is necessary to introduce a type context, Γ , containing typing assertions on
variables. To conclude that a recursive definition µv.s is infallible, it is sufficient to show that the body of the recursion, s, is
infallible assuming that the recursive call, v, is too.

Fig. 26 presents the results of using the type system for some common traversals. Again, the columns label the assumption
for the success and failure behavior of the argument strategy s of the traversal scheme. (We use the context parameter of the
type system, or, in fact, the Var form of strategy terms, to capture and propagate such assumptions; see the paper’s online
code distribution.) When compared to Fig. 23, guarantee of success is inferred for several more cases. For instance, such a
guarantee is inferred for the schemes of full top-down and bottom-up traversal, subject to the guarantee for the argument.
Also, the scheme for stop-top-down traversal is found to universally succeed, no matter what the argument strategy. The
abstract interpretation-based approach could not make a useful prediction for these cases.

5.1.3. Simple dead-code detection
As an aside, there is actually a trivial means to improve the usefulness of the type system. That is, we can easily exclude

certain strategies that involve dead code in the sense of Section 3.6. Specifically, we could remove the following rule:
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Γ ⊢ s1 : True ∧ Γ ⊢ s2 : τ

Γ ⊢ s1←+ s2 : True
[choice.3SF]

In this way, we classify a choice construct s1←+ s2 with an infallible left operand as ill-typed—the point being that the
composition is equivalent to s1 with s2 being dead code.

5.1.4. Soundness of the type system
We prove soundness of the type system in Fig. 24 relative to the established, natural semantics in Figs. 4 and 5.

Theorem 1. For all strategic programs s if ⊢ s : True then for no term t s@ t ❀ ↑.

Proof. We use a proof by contradiction. We suppose that there is some program s such that ⊢ s : True and that there is an
argument t so that s@ t ❀ ↑, and we choose s and t so that the depth of the derivation of s@ t ❀ ↑ is minimal; from this
we derive a contradiction. We work by cases over s.

Identity If s is id then there is no evaluation rule deriving id@ t ❀ ↑ for any t , contradicting the hypothesis.
Failure If s is fail then there is no typing rule deriving ⊢ fail : True, contradicting the hypothesis.
Sequence If s is s1; s2 then the only way that ⊢ s1; s2 : True can be derived is for the typing rule sequ.1SF to be applied to

derivations of ⊢ s1 : True and ⊢ s2 : True.
Now, by hypothesis we also have a term t so that s1; s2 @ t ❀ ↑: examining the evaluation rules we see that this can

only be deduced from s1 @ t ❀ ↑ by rule seq−.1 or from s2 @ t ❀ ↑ by rule seq−.2.
We choose i such that si @ t ❀ ↑; the corresponding derivation is shorter than s@ t ❀ ↑, a contradiction to the

minimality of the derivation for s.
Choice If s is s1←+ s2 then there are two ways that ⊢ s1←+ s2 : True can be derived: using choice.3SF from a derivation of
⊢ s1 : True or using choice.1SF from a derivation of ⊢ s2 : True.

Now, by hypothesis we also have a term t so that s1←+ s2 @ t ❀ ↑: examining the evaluation rules we see that this
can only be deduced from s1 @ t ❀ ↑ and s2 @ t ❀ ↑ by rule choice−.

We choose si to be the case where ⊢ si : True. Whichever we choose, the derivation of si @ t ❀ ↑ is shorter than
s@ t ❀ ↑, a contradiction to the minimality of the derivation for s.

All If s is ✷(s′) then ⊢ ✷(s′) : True is derived from ⊢ s′ : True. From the negative rules for evaluation we conclude that
t is of the form c(t1, . . . , tn) and for some i we have s′ @ ti ❀ ↑, and the derivation of this will be shorter than that of
s@ t ❀ ↑, in contradiction to the hypothesis.

One If s is ✸(s′) then ⊢ ✸(s′) : True cannot be derived, directly contradicting the hypothesis.
Recursion Finally we look at the case that s is of the form µv.s′. We have a derivation (d1, say) of ⊢ µv.s′ : True, and this

is constructed by applying rule recSF to a derivation d2 of v : True ⊢ s′ : True.
We also have the argument t so that µv.s′ @ t ❀ ↑. This in turn is derived from a derivation s′[v → µv.s′]@ t ❀ ↑,

shorter than the former. So, s′[v → µv.s′] will be our counterexample to the minimality of µv.s′, so long as we can
derive ⊢ s′[v → µv.s′] : True.

We construct a derivation of this from d2, replacing each occurrence in d2 of the variable rule applied to v : True
by a copy of the derivation d1, which establishes that the value substituted for v, µv.s′, has the type True, thus giving a
derivation of ⊢ s′[v → µv.s′] : True, as required to prove the contradiction.

5.2. Perform reachability analysis

Advice 7. Curb programming errors due to type-specific cases not exercised during traversal (see Section 3.6) by statically
analyzing reachability of the cases within strategies that are applied to a term of a statically known type. Such dead code detection
does not require programmer-provided reachability contracts; instead it is a general analysis of strategy applications.

For instance, using again the introductory company example, wewould like to obtain the kind of information in Fig. 27 by
a reachability analysis. In this example, we assume one type-specific case, incSalary, which is used in the traversal program
subject to the analysis. The case increases salaries and we assume that it is applicable to salary terms only.

Let us motivate some of the expected results in detail. When applying the strategy Id (see the first line of the figure),
which clearly does not involve any type-specific case, we obtain the empty set of reachable cases. When applying the type-
specific incSalary to a salary term (second line), then the case is indeed applied; hence the result is {incSalary}. We cannot
usefully apply incSalary to an employee (third line); hence, we obtain the empty set of reachable cases. We may though
apply All (try incSalary) to an employee (fourth line) because a salary may be encountered as an immediate subterm of an
employee. The last two lines in the table illustrate the reachability behavior of a traversal scheme, in comparison to a one-
layer traversal.

The abstract interpretation relies on many-sorted signatures for the terms to be traversed, as shown in Fig. 28; we
omit the straightforward definition of various constructors and observers. In the code for the abstract interpretation for
reachability, we will only use the observer sorts of type Signature −> Set Sort, to retrieve all possible sorts of a signature, and
the observer argSortsOfSort, to retrieve all sorts of immediate subterms for all possible terms of a given sort.
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Strategy Root type Reachable type-specific cases
1. Id Company ∅

2. incSalary Salary {incSalary}
3. try incSalary Employee ∅

4. All (try incSalary) Employee {incSalary}
5. All (try incSalary) Department ∅

6. once_bu (try incSalary) Department {incSalary}

Fig. 27. Exercising the reachability analysis for companies.

−− Representation of signatures
type Sort = String
type Constr = String
type Symbol = (Constr,[Sort ], Sort)
data Signature = Signature { sorts :: Set Sort

, symbols :: Set Symbol
}

−− Additional observer functions
argSortsOfSort :: Signature −> Sort−> Set Sort
...

Fig. 28. An abstract data type for signatures.

For simplicity’s sake, we formally represent type-specific cases simply by their name. Reachability analysis returns sets
of such cases (say, names or strings). Hence we define:

type Case = String
type Cases = Set Case.

For each case, we need to capture its ‘sort’. Only when a type-specific case is applied to a term of the designated sort, then
the case should be counted as being exercised. More generally: the abstract interpretation computes what type-specific cases
are exercised by a given strategy when faced with terms of different sorts. To this end, we use the following abstract domain:

type Abs = Map Sort Cases.

Here, Map is a Haskell type for finite maps: sorts are associated with type-specific cases. The analysis associates each
strategy with such a map—as evident from the following function signature:

analyse :: Signature −> T Abs−> Abs.

That is, for each Sort in the given signature the analysis is supposed to return a set of (named) type-specific cases which
may be executed by the traversal if the traversal is applied to a term of the sort. For instance:

> let incSalary = fromList [("Salary" ,Set . fromList ["incSalary" ])]
> analysis companySignature (All (All (Var incSalary)))
[("Unit",fromList ["incSalary" ]),( "Manager",fromList ["incSalary" ])].

The first input line shows the assembly of a type-specific case which is represented here as a trivial map of type Abs.
The second input line starts a reachability analysis. The printed map for the result of the analysis states that incSalary can be
reached from both Unit andManager. Indeed, salary components occur exactly two constructor levels below Unit andManager.

The analysis is safe in that it is guaranteed to return all cases which are executed on some input; it is however an over-
approximation, and so no guarantee is provided that all returned cases are actually executed.

The analysis proceeds by induction over the structure of strategies, and is parameterized by the Signature over which the
strategy is evaluated. The analysis crucially relies on the algebraic status of finite maps to define partial orders with general
least upper bounds subject to the co-domain of the maps being a lattice itself. (We use the set of all subsets of type-specific
cases as the co-domain.) The bottom value of this partial order is the map that maps all values of the domain to the bottom
value of the co-domain. Here we note that such maps are an established tool in static program analysis. For instance, maps
may be used in the analysis of imperative programs for property states as opposed to concrete states for program variables
as in [54,55].

The central part of the analysis is the treatment of the one-layer traversals All s and One s. The reachable cases are
determined separately for each possible sort, and these per-sort results are finally combined in a map. For each given sort
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$analyse :: Signature −> T Abs−> Abs
analyse sig = analyse’
where
analyse’ :: T Abs−> Abs
analyse’ Id = bottom
analyse’ Fail = bottom
analyse’ (Seq s s ’) = analyse’ s ‘ lub‘ analyse’ s ’
analyse’ (Choice s s ’) = analyse’ s ‘ lub‘ analyse’ s ’
analyse’ (Var x) = x
analyse’ (Rec f) = fixEq (analyse’ . f )
analyse’ (All s) = transform sig $ analyse’ s
analyse’ (One s) = transform sig $ analyse’ s

transform :: Signature −> Abs−> Abs
transform sig abs
= Map.fromList
$ map perSort
$ Set . toList
$ sorts sig
where
perSort :: Sort −> (Sort, Cases)
perSort so = (so,cases)
where
cases = lubs

$ map perArgSort
$ Set . toList argSorts

where
argSorts = argSortsOfSort sig so
perArgSort = flip Map.lookup abs

Fig. 29. Abstract interpretation for analyzing the reachability of type-specific cases relative to a given signature.

so, the recursive call of the analysis, analyse’ s, is exercised for all possible sorts of immediate subterms of terms of sort so.
Fixed point iteration will eventually reach all reachable sorts in this manner.

The analysis is conservative in so far that it distinguishes neither Seq from Choice nor All from One in any manner. Also,
the analysis assumes all constructors to be universally feasible, which is generally not the case due to type-specific cases
and their recursive application—think of the patterns in rewrite rules. As a result, certain reachability-related programming
errors will go unnoticed. Consider the following example:

stop_td (Choice leanDepartment (try incSalary)) myCompany

For the sake of a concrete intuition, we assume that leanDepartmentwill pension off all eligible employees, if any. Here we
assume that leanDepartment applies to terms of sort Department and it succeeds for all such terms. As a result of leanDepartment’s
success at the department level of company terms, the stop-top-down traversal will never actually hit employees or salaries
that are only to be found below departments.

This illustration clearly suggests that a success and failure analysis should be incorporated into the reachability analysis
for precision’s sake. To this end, itwould be beneficial to knowwhether a type-specific case universally succeeds for all terms
of the sort in question. Further, the analysis should treat sequence differently from choice, and an ‘all’ traversal differently
from a ‘one’ traversal. We omit such elaborations here.

5.3. Perform termination analysis

Advice 8. Curb various kinds of programming errors that may manifest themselves as divergent traversals. These includes wrong
decisions regarding the traversal scheme and misunderstood properties of rewrite rules. To this end, perform a static termination
analysis that leverages appropriate measures in proving termination of recursive traversals.

That is, we seek an analysis that determines, conservatively,whether a given recursive strategy is guaranteed to converge.
For instance, the intended analysis should infer the following convergence properties. A full bottom-up traversal converges
regardless of the argument strategy, as long as the argument strategy itself converges universally. A full top-down traversal
converges as long as the argument strategy converges universally and does not increase some suitable measure such as the
depth of the term.
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Fig. 30. Illustration of termination checking.

Based on experiences with modeling strategies in Isabelle/HOL [30], our analysis for termination checking essentially
leverages an induction principle; see Fig. 30 for an illustration. That is, the analysis is meant to verify that a measure of the
term (such as the depth of the term), as seen by the recursive closure as a whole, is decreased throughout the body of the
recursive closure until the recursive reference is invoked. The figure shows a few steps of interpretation when applying a
full bottom-up traversal to a term. The recursive reference is eventually applied to immediate subterms of the original term.
Hence, the mere depth measure of terms is sufficient here for the induction principle.

Wewill first develop a basic termination analysis that leverages the depthmeasure. However,many traversals in strategic
programming cannot be proven to converge just on the grounds of depth. For instance, a program transformation for macro
expansion could be reasonably implemented with a full top-down traversal, but such a traversal clearly increases term
depth. Accordingly, we will generalize the analysis to deal with measures other than depth.

5.3.1. Measure relations on terms and strategies
The key concept of the termination analysis is a certain style of manipulating measures symbolically. We will explain

this concept here for the depth measure for ease of understanding, but the style generalizes easily for other measures.
Based on the intuition of Fig. 30, the analysis must track the depth measure of terms throughout the symbolic execution

of a strategy so that the depth can be tested at the point of recursive reference. That is, the depth must be shown to be smaller
at the point of recursive reference than the point of entering the recursive closure. In this manner, we establish that the depth
measure is smaller for each recursive unfolding, which implies convergence.

Obviously, the analysis cannot use actual depth, but it needs to use an abstract domain. We use a finite domain Relwhose
values describe the relation between the depths of two terms: i) the term in a given position of the body of a recursive
closure; ii) the term at the entrance of the recursive closure. The idea is that the relation is initialized to ‘≤’ (or ‘=’ if the
abstract domain provided this option) as we enter the recursive closure, and it is accordingly updated as we symbolically
interpret the body of the closure. Ultimately, we are interested in the relation at the point of recursive reference. These are
the values of Rel; see Fig. 31 for a full specification:

−− Relation on measures
data Rel = Leq | Less | Any .

One can think of the values as follows. The value Leq models that the depth of the term was not increased during the
execution of the body of the recursive closure so far. The value Lessmodels that the depth of the termwas strictly decreased
instead. This is the relation that must hold at the point of the recursive reference. The value Anymodels that we do not know
for certain whether the depth was preserved, increased, or decreased.

So far we have emphasized a depth relation for terms. However, the analysis also relies on depth relations for strategies.
That is, we can use the same domain Rel to describe the effect of a strategy on the depth. In this case, one can think of the
values as follows. The value Leqmodels that the strategy does not increase the depth of the term. The value Lessmodels that
the strategy strictly decreases the depth of term. The value Anymodels that we do not know for certain whether the strategy
preserves, increases, or decreases depth.

For clarity, we use these type synonyms:

type TRel = Rel −− Term property
type SRel = Rel −− Strategy property .

We set up the type of the analysis as follows:

type Abs = TRel −> Maybe TRel
analyse :: T SRel −> Abs .

In fact, we would like to use variables of the T type again to capture effects for arguments of traversal schemes. Hence, we
should distinguish recursive references from other references; we use an extra Boolean to this end; True encodes recursive
references. Thus:
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−− Relation on measures
data Rel = Leq | Less | Any

−− Partial order and LUB for Rel
instance POrd Rel
where
_ <= Any = True
Less <= Leq = True
r <= r ’ = r == r ’

instance Lub Rel
where
lub Less Leq = Leq
lub Leq Less = Leq
lub r r ’ = if r == r ’ then r else Any

−− Rel arithmetic
plus :: Rel −> Rel−> Rel
plus Less Less = Less
plus Less Leq = Less
plus Leq Less = Less
plus Leq Leq = Leq
plus _ _ = Any

decrease :: Rel −> Rel
decrease Leq = Less
decrease Less = Less
decrease Any = Any

increase :: Rel −> Rel
increase Less = Leq
increase Leq = Any
increase Any = Any

Fig. 31. Relation on measures such as depth of terms.

analyse :: T (SRel ,Bool) −> Abs .

At the top level, we begin analyzing a strategy expression (presumably a recursive closure) by assuming a TRel value of
Leq. Also, we effectively provide type inference in that we compute an SRel value for the given strategy expression. Thus:

typeOf :: T (SRel ,Bool) −> Maybe SRel
typeOf s = analyse s Leq .

5.3.2. Termination analysis with the depth measure
The analysis is defined in Fig. 32. The analysis can be viewed as an algorithmically applicable type system which tracks

effects onmeasures as types. Just in the sameway as the standard semantics threads a term through evaluation, this analysis
threads a termproperty of type TRel through symbolic evaluation. The case for Id preserves the property (because Id preserves
the depth, in fact, the term). The case for Fail decreases depth in a vacuous sense. The case for Seq sequentially composes the
effects for the operand strategies. The case for Choice takes the least upper bound of the effects for the operand strategies.
For instance, if one operand possibly increases depth, then the composed strategy is stipulated to potentially increase
depth.

The interesting cases are those for variables (including the case of recursive references), recursive closures and one-layer
traversal. The case for Var checks whether we face a recursive reference (i.e., b == True) because in this case wemust insist on
the current TRel value to be Less. If this precondition holds, then the strategy property for the variable is combined with the
current term property using the plus operation (say, addition) for type Rel.

The case for Rec essentially resets the TRel value to Leq; see analyse ... Leq, and attempts the analysis of the body for all
possible assumptions about the effect of the recursive references; see [Less,Leq,Any]. If the analysis returnswith any computed
effect, then this result is required to be less or equal to the one assumed for the recursive reference; see ‘<=’. The ordering
on the attempts implies that the least constraining type is inferred (i.e., the largest value of SRel).
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analyse :: T (SRel , Bool) −> Abs
analyse Id = Just
analyse Fail = const ( Just Less)
analyse (Seq s s ’) = maybe Nothing (analyse s’) . analyse s

analyse (Choice s s ’)
= \r −>

case (analyse s r , analyse s ’ r) of
( Just r1, Just r2) −> Just (lub r1 r2)
_ −> Nothing

analyse (Var (r ,b))
= \r ’ −>

if not b || r ’ < Leq
then Just (plus r ’ r)
else Nothing

analyse (Rec f)
= \r −> maybe Nothing (Just . plus r) (typeOfClosure r)
where
typeOfClosure r = if null attempts

then Nothing
else Just (head attempts)

where
attempts = catMaybes (map wtClosure’ [Less,Leq,Any])
wtClosure r = maybe False (<=r) (analyse ( f (r ,True)) Leq)
wtClosure’ r = if wtClosure r then Just r else Nothing

analyse (All s) = transform (analyse s)
analyse (One s) = transform (analyse s)

transform :: Abs−> Abs
transform f r = maybe Nothing (Just . increase) ( f (decrease r))

Fig. 32. A static analysis for termination checking relative to the depth measure for terms.

s ::Any s :: Leq s :: Less
full_bu s Just Any Just Leq Just Less
full_td s Nothing Just Leq Just Leq
stop_td s Just Any Just Leq Just Leq
once_bu s Just Any Just Leq Just Leq
repeat s Nothing Nothing Just Leq
innermost s Nothing Nothing Nothing

Fig. 33. Exercising the termination analysis on traversal schemes.

Finally, the cases for All and One are handled identically as follows. The term property is temporarily decreased as the
argument strategy is symbolically evaluated, and the resulting term property is again increased on the way out. This models
the fact that argument strategies of ‘all’ and ‘one’ are only applied to subterms. It is important to understand that the
operations increase and decrease are highly constrained. In particular, once the TRel value has reached Any, decrease does
not get us back onto a termination-proven path.

The analysis is able to infer termination types for a range of interesting traversal scenarios; see Fig. 33. The table clarifies
that a full bottom-up traversal makes no assumption about the measure effect of the argument strategy, while a full top-
down traversal does not get assigned a termination type for an unconstrained argument; see the occurrence of Nothing.

The depth measure is practically useless for typical applications of repeat, but we can observe nevertheless that an
application of repeat will only terminate, if its argument is ‘strictly decreasing’. This property is useful once we take into
account other measures.

At this point, we are not yet able to find any terminating use case for innermost. This is not surprising because innermost
composes repeat and once_bu, where the former requires a strictly decreasing strategy (i.e., Less), and the latter can only be
type-checked with Leq as the termination type. Compound measures, as discussed below, come to the rescue.
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s ::[ Less ,Any]
full_td s Just [Less ,Any]
once_bu s Just [Less ,Any]
repeat s Just [Leq,Any]
innermost s Just [Leq,Any]

Fig. 34. Exercising compound measures.

5.3.3. Termination analysis with compound measures
The static analysis can be elaborated to deal with measures other than depth. In this paper, we demonstrate a measure

of the number of occurrences of a specific constructor in a term, i.e., the constructor count. This sort measure is applicable to
transformation scenarios where a specific constructor is systematically eliminated, e.g., in the sense of macro expansion.

This approach could also be generalized to deal with a measure for the number of matches for a specific pattern in a term,
such as the LHS of a rewrite rule. This elaboration is not discussed any further though.

The general idea is to associate strategy expressions and argument strategies of schemes in a traversal program with a
suitable measure. In this paper, we require that the programmer provides the measure, but ultimately such measures may
be inferred. We need a new type,Measure, to represent compound measure in a list-like structure. Here, we assume that the
depth measure always appears in the last (least significant) position.

data Measure = Depth | Count Constr Measure
type Constr = String .

The type of measure transformation and the signature of the program analysis must be changed such that we use non-
empty lists of values of type TRel as opposed to singletons before, thereby accounting for compound measures. Thus:

type Abs = [TRel] −> Maybe [TRel]
analysis :: T ([SRel ], Bool) −> Abs .

The initial list of type [TRel] is trivially obtained from (the length of) the measure by a function like this:

leqs Depth = [Leq]
leqs (Count _ m) = Leq : leqs m .

Thus, the analysis computes the effects of the strategywhile assuming that the declaredmeasure holds for the argument.
At this level of development, the analysis is oblivious to the actual constructor names because T does not involve any
expressiveness for dealing with specific constructors. Measure claims are to be verified for given rewrite rules that serve as
arguments, but this part is omitted here.

The power of such termination types is illustrated in Fig. 34. The new type for full_td shows that we do not rely on the
argument strategy to be non-increasing on the depth; wemay as well use a depth-increasing argument, as long as it is non-
increasing on some constructor count. The new type for once_bu is strictly decreasing, and hence, its iteration with repeat
results in a termination type for innermost. We refer to the paper’s online code distribution for details.

6. Related work

We will focus here on related work that deals with or is directly applicable to programming errors in traversal
programming with traversal strategies or otherwise.

Simplified traversal programming In an effort to manage the relative complexity of traversal strategies or the generic
functions of ‘‘Scrap Your Boilerplate’’, simplified forms of traversal programming have been proposed. The functional
programming-basedwork of [52] describes less generic traversal schemes (akin to those of Section 4.1), and thereby suffices
with simpler types, and may achieve efficiency of traversal implementation more easily. The rewriting-based work of [67]
follows a different route; it limits programmability of traversal by providing only a few schemes and few parameters. Again,
such a system may be easier to grasp for the programmer, and efficiency of traversal implementation may be achievable
more easily. Our work is best understood as an attempt to uphold the generality or flexibility and relative simplicity (in
terms of language constructs involved) of traversal strategies while using orthogonal means such as advanced typing or
static analysis for helping with program comprehension.

Implicit strategy extension It is fair to say that several challenges relate to strategy extension. When traversal schemes
are not parameterized with generic functions, as mentioned above, then strategy extension is no longer needed by the
programmer, but expressiveness will be limited. There exists a proposal [17] for a language design that essentially makes
strategy extension implicit in an otherwise typeful setting. This approachmay imply a slightly simpler programmingmodel,
but it is not obvious that it necessarily reduces programming errors. This question remains open, but we refer to [35] for a
(dated) discussion of the matter.
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Runtime checks With respect to our various efforts to declare, infer, and enforce fallibility properties it is useful to note
that Stratego supports thewith operator as alternative to thewhere clause for conditional rules (and as strategy combinator
as well), which indicates that its argument should be a transformation that always succeeds. When it does not succeed, a
run-time exception is raised. It is reported, anecdotally, for example, by a reviewer of this paper, that this feature has been
helpful for detection of programming errors. Such annotations can be useful for expressing the intent of programmers and
may be useful both for runtime checking and as input to static analyses in future systems.

Adaptive programming While the aforementioned related work is (transitively) inspired by traversal strategies à la
Stratego, there is the independent traversal programming approach of adaptive programming [56,47,42]. Traversal
specifications aremore disciplined in this paradigm. Generally, the focus ismore on problem-specific traversal specifications
as opposed to generic traversal schemes. Also, there is a separation between traversal specifications and computations or
actions, thereby simplifying some analyses, e.g., a termination analysis. The technique of Section 4.5 to statically check
for reachable types is inspired by adaptive programming. Certain categories of programming errors are less of an issue, if
any, in adaptive programming. Interestingly, there are recent efforts to evolve adaptive programming, within the bounds
of functional object-oriented programming, to a programming paradigm that is appears to be more similar to strategic
programming [1].

The XML connection Arguably, the most widely used kinds of traversal programs in practice are XML queries and
transformations such as those based onXPath [73], XSLT [75], andXQuery [74]. Some limited cross-paradigmatic comparison
of traversal strategies andXMLprogramming has been presented in [36,15].Most notably, there are related problems in XML
programming. For instance, one would like to know that an XPath query does not necessarily return the empty node set.
The XQuery specification [74] even addresses this issue, to some extent, in the XQuery type system.While XSLT also inherits
all XPath-related issues (just as much as XQuery), there is an additional challenge due to its template mechanism. Default
templates, in particular, provide a kind of traversal capability. Let us mention related work on analyzing XML programs.
[18] describes program analysis for XSLT based on an analysis of the call graph of the templates and the underlying DTD for
the data. In common with our work is a conservative estimation of sufficient conditions for program termination as well as
some form dead code analysis. There is recent work on logics for XML [19] to perform static analysis of XML paths and types
[21], and a dead code elimination for XQuery programs [20].

Properties of traversal programs Mentions of algebraic laws and other properties of strategic primitives and some
traversal schemes appear in the literature on Stratego-like strategies [70,41,72,67,29,38,35,58,15,30]. In [15], laws feed into
automated program calculation for the benefit of optimization (‘‘by specialization’’) and reverse engineering (so that generic
programs are obtained from boilerplate code). In [29], specialized laws of applications of traversal schemes are leveraged
to enable fusion-like techniques for optimizing strategies. We contend that better understanding of properties of traversal
strategies, just by itself, curbs programming errors, but none of these previous efforts have linked properties to programming
errors. Also, there is no previous effort on performing static analysis for the derivation of general program properties about
termination, metadata-based reachability, or success and failure behavior.

Termination analysis Our termination analysis is arguably naive in that it focuses on recursion patterns of traversals. A
practical system for a full-fledged strategic programming language would definitely need to include existing techniques
for termination analysis, as they are established in the programming languages and rewriting communities. We mention
some recent work in the adjacency of (functional) traversal strategies. [23,66] address termination analysis for rewriting
with strategies (but without covering programmable traversal strategies). [62,22] address termination analysis for higher-
order functional programs; it may be possible to extend these systems with awareness for one-layer traversal and generic
functions for traversal. [2] addresses termination analysis for generic functional programs of the kind of GenericHaskell [25];
the approach is based on type-based termination and exploits the fact that generic functions are defined by induction on
types, which is not directly the case for traversal strategies, though.

7. Concluding remarks

The ultimate motivation for the work presented here is to make traversal programming with strategies easier and safer.
To this end, strategy libraries and the underlying programming languages need to improve so that contracts of traversal
strategies are accurately captured and statically verified. That is, we envisage that ‘‘design by contract’’ is profoundly
instantiated for traversal programming with strategies. These contracts would deal, for example, with (in)fallibility or
measures for termination.

Throughout the paper, we have revealed pitfalls of strategic programming and discovered related properties of basic
strategy combinators and common library combinators. To respond to these, we have developed concrete advice on
suggested improvements to strategy libraries and the underlying programming languages:

• Hard-wire defaults into traversal schemes. (Section 4.1)
• Declare and check fallibility contracts. (Section 4.2)
• Reserve fallibility for modeling control flow. (Section 4.3)
• Enable families of type-specific cases. (Section 4.4)



R. Lämmel et al. / Science of Computer Programming ( ) – 37

• Declare and check reachability contracts. (Section 4.5)
• Perform fallibility analysis. (Section 5.1)
• Perform reachability analysis. (Section 5.2)
• Perform termination analysis. (Section 5.3)

Such advice comes without any claim of completeness. Also, such advice must not be confused with a proper design for the
ultimate library and language.

Arguably, some improvements can be achieved by revising strategy libraries so that available static typing techniques
are leveraged. We demonstrated this path with several Haskell-based experiments. This path is limited in several respects.
First, only part of the advice can be addressed in this manner. Second, the typing techniques may not be generally available
for languages used in traversal programming. Third, substantial encoding effort is needed in several cases.

Hence, our work suggests that type systems of programming languages need to become more expressive so that all
facets of traversal contracts can be captured at an appropriate level of abstraction and statically verified in a manner that
also accounts for language usability. We assert that, in fact, strategic programming is in need of a form of dependent types,
an extensible type system, or, indeed, an extensible language framework that admits pluggable static analysis.

The development of the paper is based on a series of programming errors as they arise from a systematic discussion of the
process of design and implementation of strategic programs. Empirical research would be needed to confirm the relevance
of the alleged pitfalls. However, based on the authors’ experience with strategic programming in research, education, and
software development, the authors can confirm that there is anecdotal evidence for the existence of the presented problems.

In this paper, we have largely ignored another challenge for strategic programming, namely performance. In fact,
disappointing performance may count as another kind of programming error. Better formal and pragmatic understanding
of traversal programming is needed to execute traversal strategies more efficiently. Hence, performance is suggested as
a major theme for future work. There is relevant, previous work on fusion-like techniques for traversal strategies [29],
calculational techniques for the transformation of traversal strategies [15], and complementary ideas from the field of
adaptive programming [47].
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