
McKay, Fraser (2012) A Prototype Structured but Low-viscosity Editor for
Novice Programmers. In: Proceedings of BCS HCI 2012- People and Computers
XXVI, Birmingham, UK. . pp. 363-368. BCS

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/30787/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.cs.kent.ac.uk/pubs/2012/3254

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/30787/
http://www.cs.kent.ac.uk/pubs/2012/3254
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Prototype Structured but Low-viscosity
Editor for Novice Programmers

Fraser McKay
School of Computing, University of Kent,

Canterbury, UK. CT2 7NF.
fm98@kent.ac.uk

This paper presents work in progress on a prototype programming editor that combines the
flexibility of keyboard-driven text entry with a structured visual representation, and drag-and-drop
blocks. Many beginners learn with Java, a traditional text-based language. While text entry is ideal
for experts desiring speed and efficiency, there is evidence in the literature that a significant
portion of novice errors are related to syntax. Some beginners learn with Scratch, Alice and Star
Logo, all of which have drag-and-drop, “block”-based interfaces. Validation makes them less prone
to syntax errors, but they are very “viscous” – there is resistance to changing or rearranging
statements once they have been entered. The new system combines keyboard input with
statements that can still be manipulated with the mouse as whole blocks. Standard text idioms can
be used – highlighting code by dragging the mouse, copying & pasting (as text), etc. With CogTool
cognitive/keystroke models, we show that the new system effectively overcomes the viscosity
found in block-based languages, but it retains much of the error-proofing. Work is ongoing, but
there are implications for the design of a new novice programming system.

Programming, Greenfoot, Java, Scratch, Alice, CogTool, viscosity, cognitive dimensions.

1. INTRODUCTION

This paper introduces a new prototype novice
programming editor. Its target users are those who
have picked up enough programming skill to know
what they want to do, but who sometimes make
mistakes in the execution of their ideas. The
system combines the keyboard-driven editing used
by most experts – and intermediate learners, like
those who use Greenfoot and BlueJ – with the
structured view and drag-and-drop blocks used in
Alice and Scratch. Greenfoot is Java-based, with a
code editor that uses some highlighting for
emphasis, but that is still based on text. In Alice
and Scratch (and a few less-common systems, like
Star Logo TNG) the programmer uses the mouse
to drag-and-drop statement blocks into the editor
space. This prevents syntax errors caused by
incorrect/missing characters (the most common
type of errors that beginners make (Robins, Haden
& Garner 2006, Denny et al. 2011)), but is very
“viscous” – program statements are difficult to edit
once they have been entered.
The new prototype is less viscous than block-based
peers, but still presents the program as structured
blocks, visually, and prevents many kinds of syntax
error. The keyboard controls seem similar, at first,
to autocompletion, so they do not feel out of place
or completely new. The programmer does not need
to remember all of the syntax (unlike pure text), but
can have a selection of statements to choose from

(as in Alice or Scratch). Factors like the prototype’s
visual style (its “look”) are being designed in
parallel with new usability heuristics for this domain
(McKay 2012), which we are currently evaluating.
Future versions of the prototype are intended to be
compatible with the existing Greenfoot tool.
Though there are a range of novice programming
systems written about in computing education, we
are aware of no systematic studies investigating
their specific interactions. Through CogTool – an
HCI tool for measuring and predicting user
behaviour – it is possible to estimate the time it
would take to do something. Since viscosity can be
described partly as the effort expended in doing a
certain task, this paper uses CogTool models to
explore viscosity in Greenfoot, Alice, Scratch, and
the prototype. For a selection of entry and
manipulation tasks, the new prototype is less
viscous than Alice and Scratch, and is similar to
Greenfoot. After explaining the prototype’s
interaction style, this paper describes the tasks
used to test the prototype in CogTool. The results
are summarised, and the prototype is then
discussed in relation to the three other systems.

2. RELATED WORK

2.1 Viscosity

Green (1989) introduced viscosity as one of the
“cognitive dimensions” (CDs) of notational systems

© The Authors. Published by BISL.
Proceedings of the BCS HCI 2012
People & Computers XXVI, Birmingham, UK

363 Work In Progress

A Prototype Structured but Low-viscosity Editor for Novice Programmers
Fraser McKay

(such as programming languages). Viscosity is a
measure of local resistance to change. In this
context, viscosity can refer to the amount of effort,
or the number of steps, needed to add a new
statement to a program, to change the condition of,
say, an if statement, or to find and delete a
particular method or block. It is a particular
problem, for example, in diagram-based languages,
where inserting something new can force the
programmer to rearrange much of the diagram
(Green, Blackwell 1998). It is referred to in Pane &
Myers’s usability heuristics for novice programming
systems (Pane, Myers 1996), and is discussed in
the new heuristics (McKay 2012). Excessive
viscosity frustrates expert programmers – who
know what they want to do, and get held up by the
system – but after a time it can also demotivate
novices. Simply operating the interface can take up
effort meant for the task at hand.

2.2 Existing systems

Greenfoot (Henriksen, Kölling 2004)
(www.greenfoot.org) is a Java-based system
developed at Kent, used for teaching object-
oriented programming through games. In
Greenfoot, the programmer enters code in a colour-
highlighted text editor, similar to that in many IDEs.
A similar code editor is used in BlueJ (from which
Greenfoot originates) to teach undergraduates. The
editor uses subtle background colours to highlight
structure, putting boxes around if statements,
loops, and other constructs. It also highlights
keywords.
In Alice (Cooper, Dann & Pausch 2003)
(www.alice.org), the programmer drags-and-drops
“blocks” of code into the editor. The blocks can be
rearranged with the mouse. Because of the drag-
and-drop validation, syntax errors are avoided (it is
not possible to enter an invalid statement).
Parameters can be added or changed through
blocks’ context menus, but the structure of the
statement itself cannot be changed, nor can its
label/caption. To “change” the statement, it has to
be removed and replaced with something else. The
drag-and-drop editor makes it relatively easy to
insert new blocks, but it is more tedious to
rearrange or replace blocks once they are in place.
The third main system in this area is Scratch
(Maloney et al. 2004) (www.scratch.mit.edu). It has
a visually-similar block-based interface, with drag-
and-drop, but fewer right-click context menus.
Another major difference in Scratch is that blocks
“stick” to the blocks above them when they are
dragged. This means that additional steps are
needed to move a single block, since it must be
detached from its neighbours first (so as not to
bring them with it). As shown later in this paper, this
is a critical point in discussing Scratch’s viscosity.
StarLogo TNG, developed by some of the same
group, uses visually similar blocks, and exhibits the

same “sticky” effect. Like Alice, these systems
prevent text-based syntax errors.

2.3 CogTool

Keystroke-level models can be used to measure
the “overt” movements that a user makes (Card,
Moran & Newell 1980). Cognitive models
additionally measure hidden “mental” operators,
like eye-movement, and reading- and thinking-time.
These models, however, are quite complex, and
difficult to construct accurately by hand. Non-
experts, in particular, can easily introduce errors. It
can be difficult to know which mental operators to
include and where/when to use them (John 2010).
CogTool (John et al. 2004) is a prototyping tool that
automates the creation of cognitive models. The
evaluator leads CogTool through screenshots or
storyboards step-by-step, demonstrating what the
user would do for the task being measured (e.g.
clicking a certain button or menu item). CogTool
then uses the “Adaptive Control of Thought –
Rational” (ACT-R) architecture – a computer model
of human cognition (Anderson et al. 2004) – to
generate a model of the task. CogTool automates
error-prone parts of the modelling process,
improving the accuracy of the prediction
considerably (John 2010).

2.4 Cognitive activities

The cognitive dimensions refer to several activities:
“incrementation”, transcription (copying code from a
design), modification, exploratory design,
searching, and exploratory understanding (Green,
Blackwell 1998). Not all cognitive activities are
relevant to all systems. Different programming
tasks can be mapped to the different activities:
adding a statement, deleting a statement,
modifying a statement, rearranging the program
structure, etc. In this paper, viscosity is primarily
measured in the incrementation and modification
activities – that is, adding and modifying
statements, and moving/rearranging them once
they are in place.

3. PROTOTYPE

Figure 1 is a screenshot from the new prototype. In
this notation, the cursor can be in either of two
states: either horizontal (between blocks) or vertical
(the normal text caret, used in text areas). The text
caret behaves as standard. When focus moves off
of a line of text, either through Enter, the down
arrow key, or clicking elsewhere, the cursor
becomes horizontal (marked as “1” in the figure).
This cursor indicates an insertion point between
blocks. When arrow keys are used to move again,
focus moves inside the next block. The focus can
be either on a block (or part of it), or between
blocks. Inside a block’s text areas (marked as “2”),

364

A Prototype Structured but Low-viscosity Editor for Novice Programmers
Fraser McKay

pressing a key enters text as normal. Pressing
Space or a left/right arrow key moves focus to any
bordering textbox, as in the “var” and “set”
statements in the figure. Between blocks, pressing
a key inserts a new block, the type depending on
the letter pressed. The pseudocode language that
the editor “understands” has a relatively short (but
complete) list of statements, each of which has its
own accelerator-like letter. Pressing ‘F’ inserts a
“for” block, ‘V’ declares a new variable, ‘I’ adds an
“If” statement, and so on. The block is added
immediately; there is only one block for each
character key. It is possible, of course, that the key
pressed is not one that is mapped to a block. In
that case, we have experimented with three
different strategies. Either:

 The character (and any subsequent text) is
put in a text prompt-style block. A red
underline shows that this is not syntactically
correct, like a word processor’s spell-
checker (marked 3 in Figure 1);

 Focus moves to a popup window that
suggests alternatives; this filters results with
a live search from the keyboard, to save the
programmer having to switch between
keyboard and mouse;

 In the first instance, the system ignores the
event, or shows only a passive indicator
that there is a mistake. If the programmer

presses a second, successive incorrect
key, the popup dialog appears. This means
that a focus-taking popup does not have to
appear for every single incorrect key (there
is a chance to correct it, by pressing a valid
key again).

Delete and Backspace behave as they would with
text; in an empty textbox, they delete the block. As
with most text editors, Shift+Up and Shift+Down
selects a range.
The prototype also has a rich set of mouse
interactions. Dragging over a block, or blocks,
selects and highlights a range (the same as drag-
selecting over text in most editors). Control+click
adds an individual block to the selection, and
Shift+click adds a range. Blocks can be rearranged
with drag-and-drop. Though it is not the primary
use case, a Scratch/Alice-like block palette could
be used to insert blocks (meaning that statements
do not have to be remembered). Nesting blocks,
like loops and conditional statements, can be
resized along their bottom edge (marked 4).
Moving the border moves subsequent statements
in or out of scope. Individual blocks can also be
collapsed or expanded if desired (marked 5).
Right-clicking a block (or selection range) opens a
context menu (Figure 2). Most of the menu items
have live mouse-over previews, showing which
block(s) will be affected. As well as the extra

Figure 1. Annotated screenshot of the prototype

Figure 2. Context menu, delete preview

365

A Prototype Structured but Low-viscosity Editor for Novice Programmers
Fraser McKay

information this provides, it is a deliberate error
avoidance mechanism – showing a confirmation
dialogue every time something is deleted would
disrupt the programmer’s flow; the live preview is
unobtrusive, but does give some warning that this
will change the program (though it can always be
undone). Deleting a block deletes the whole block,
and any other blocks inside it. Many can also be
“dissolved”: dissolving a loop or if-statement, for
example, deletes the parent block, but leaves its
contents intact. Dissolving the block in Figure 2
would leave the two “Do” statements alone, but
delete the “If” that surrounds them. A block can
also be commented-out (surrounded by a
comment), or replaced with another, similar, kind of
block. The latter makes it possible to swap a loop,
for example, with another construct (another kind of
loop, or an “if”). The context menu operations
reduce viscosity by providing shortcuts to
operations that usually require a number of mouse
or keyboard actions (like replacing a block).

4. COGTOOL MODELS

CogTool task scripts are called “demonstrations”.
The demonstrator carries out each task, taking
screenshots or video along the way. Key frames
are loaded into CogTool, and then made into
storyboards. CogTool is walked through the
storyboards, similar to how they would be
demonstrated to a human user who had not used
that interface before. CogTool uses statistical
norms to simulate an “average” user’s experience,
predicting how long would be spent on each sub-
part of the task. Because it uses standardised
values, it can be used to compare several
alternative designs that tackle the same task (so,
for example, the Greenfoot, Alice and Scratch
designs for adding a new loop). Results can be
visualised as a “trace” in CogTool, or, more usefully
here, exported to a spread sheet. The trace shows
state-changes that occur between sub-tasks –
moving a hand from the keyboard to the mouse, for
example. The spread sheet contains values
measured in seconds, the estimated time(s) it
would take a user to complete each sub-task
(moving the mouse to a particular place, etc.).
184 CogTool tasks were compared in total: 46
tasks in each of Greenfoot, Alice, Scratch and the
prototype. Additional sets of tasks have previously
been tested with Greenfoot, Alice and Scratch.
Those tasks are very similar, and produced a
similar pattern of results in those three systems, but
they have not yet been used with the prototype (the
work is ongoing). The tasks can be divided into five
groups: adding/inserting a statement (n=6),
modifying part of the statement (n=8), deleting it
(n=12), moving it to somewhere else in the
program (n=13), and removing and replacing it with
another kind of statement (n=7). Adding and

modifying statements map to the cognitive
dimensions’ “incrementation” and “modification”
activities, respectively. In the dimensions
framework, viscosity is usually considered “harmful”
for these, especially for modification (Green,
Blackwell 1998). The complete task list is lengthy,
but examples are listed as Table 1. Similar
programs, notwithstanding the language syntax,
were used in each system for carrying out the
same tasks (there are equivalent statements in the
languages). The tasks were chosen as examples of
real life edits that are likely to be made in many
programs. The reason there are more tasks of
some types is that adding a statement, for
example, takes broadly the same effort whatever
and wherever that statement is; replacing or
deleting a loop with contents can be more complex
than deleting a simple one-line statement – this can
also depend on whether any other statements are
listed after it (see Scratch discussion).

Table 1. Example task types

Type Example

Insertion Declare a new variable

Modification Change a string parameter in a
method call

Deletion Delete the whole of a loop structure

Moving Reverse the order of two variable
declarations

Replacement Replace a “for” loop with “while”

When analysing the individual tasks, some
design(s) stand out as especially good, or bad,
compared to others. It is possible to qualitatively
look at each result for a short selection of tasks. In
a longer task set, to produce a concise analysis, it
might be beneficial to filter out the most significant
results for further investigation. On the data for
these tasks, we calculated a z-score to highlight the
most important differences. For the z-score of a
result, x:

where µ is the mean for that task, and σ is the
standard deviation, we calculated a score for each
task in each system. We may use a filter to pick out
results for which the absolute of z was greater than
1. This highlights those results that are significantly
higher or lower than their peers, so that they can be
further investigated. In a longer task set, this may
help to pick out the most significant results quickly.
However, for completeness, each of the 46 tasks
has been looked at here anyway. That kind of filter
is more of an extension, which might be
appropriate to consider in future, longer, work.

5. RESULTS

Comparing a single value of viscosity that
encompasses all tasks does not provide a

366

A Prototype Structured but Low-viscosity Editor for Novice Programmers
Fraser McKay

complete picture; they all have particular strengths
and weaknesses (none are “better” all of the time).
As already discussed, the tasks can be grouped
into different categories. In Table 2, the results are
organised in these groups. This is more meaningful
for discussing broad trends in the different
notations.

Table 2. Mean task time summary

 Alice Scratch G.ft New

Insertion 6.560 4.868 3.803 1.644*

Modification 7.051 5.613 5.836 5.005*

Deletion 2.555 5.440 6.530 2.418*

Moving 3.093* 5.480 12.197 4.843

Replacement 8.902 9.796 4.693 2.289*

* = least viscous/most efficient

6. DISCUSSION

6.1 Comparison – Greenfoot

Greenfoot programs are written in Java syntax;
Greenfoot is the development environment. Though
the tests were conducted in Greenfoot, the results
could be expected to be similar in any Java text
editor. In general, text editing was less viscous than
the block-based models; however literature
elsewhere suggests that its error-proneness is a
significant drawback (Robins, Haden & Garner
2006, Denny et al. 2011).
Like many text editors, Greenfoot has an auto-
completion feature. This is interesting for
comparing to the key-character-driven entry in the
prototype. Both are less viscous than the block
syntaxes (Table 2), but the prototype is actually
less viscous than Greenfoot (for those tasks, at
least). Although Greenfoot can auto-complete
typing, there are two things that mean this is not
quite as fast as the alternative interface: firstly, it
requires some level of confirmation. Pressing ‘a’ for
the common Greenfoot “act()” method does not
automatically add the whole statement – even
assuming that the first suggested method is the
one that is wanted, the user has to either press
Enter or double-click. Secondly and already
touched on, there might be dozens of valid
statements that begin with any given letter. That is
primarily because Java’s syntax (like many
languages) means assignments and method calls
do not require an initial keyword like “call” or “let”.
This is generally a good thing, and makes sense in
plain Java (it removes extraneous words and is
faster to type), but it has been helpful to reintroduce
these kinds of keywords for the new kind of
interface. It makes it possible to have only one kind
of statement associated with each key.
Also of note is that for the moving/rearranging
tasks, Greenfoot was significantly more viscous
than the block syntaxes. From following the
detailed traces from those tasks, it becomes clear
that there are two factors involved: when moving

several statements, rather than just one, it is
necessary to highlight all the statements before
they can be dragged anywhere else (which is not
unusual, of course). If, however, the selection end-
point is a small punctuation mark like a bracket or
semicolon (and it is likely to be, in Java), this is a
comparatively small target, and the user must slow
down to accurately drag over it (an example of
Fitts’s law, whereby smaller targets are harder to
hit (Fitts 1954)). In a language like BASIC, there
are not as many punctuation marks. The second
factor is that it is not possible to drag selected text
to move it – the programmer must cut/paste from
either a context menu or a key combination.
Overall, these factors add time to the task.

6.2 Comparison – Alice

In Alice, it is necessary to go through a (very large)
menu tree to change the parameter in a method
call, the counter variable in a loop, etc. Whereas
Scratch has small text boxes for these, in Alice they
must be entered via the mouse. Complex
expressions make this even more viscous – the
menus are hierarchical, so that, instead of
changing only the “-” to “+” in the expression “5 - (y
* 2)”, the whole expression has to be re-written.
To change a Java keyword in Greenfoot, it is
relatively trivial to overwrite a few characters of
text. It is therefore possible to change the keyword
of an if-statement to make it a while loop, keeping
the brackets and the loop body as they already are.
In Alice, the whole block needs to be replaced. For
the same if-to-while example, the condition part
and the block contents both have to be put aside
and then, afterwards, put back into the new block.
As seen in Table 2, it takes longer to do this in the
block languages than in Greenfoot or the prototype.
In the latter, some blocks have menu shortcuts for
this (if -> until, until -> for, etc.), removing the need
for excess steps.

6.3 Comparison – Scratch

As with Alice, it is not simple to replace a block with
another. This even means that it is not possible to
quickly replace “turn left” with “turn right”, as these
are separate statements (separate types of block).
This seems a particularly egregious example.
Unlike in Alice, parameters appear as text boxes (in
Alice they have to be entered from menus). This
makes changing simple literals (numbers and
strings) similar to doing so in a text language; less
viscous than Alice’s menus (as seen in the table).
In Scratch, there is no way to select a specific
range of statements at once. When a block is
selected/moved from the middle of a program, all of
the blocks below it “stick” to it. Moving a block, or
range of blocks, means splitting the program just
after the part being moved, dragging away the first
block of the range, and reattaching the original split

367

A Prototype Structured but Low-viscosity Editor for Novice Programmers
Fraser McKay

part to close up the gap. This takes much more
mouse effort than just dragging a box around some
specific blocks (which can be done with text and
the prototype’s blocks).
Another difference, though less critical, is that
Scratch (also Alice) has no way to move the end of
a nesting block, like a loop or an ‘if’. The
equivalent, in Greenfoot, is to insert a new closing
brace. In the prototype, the end “border” of those
blocks can be dragged up or down to change the
end point, and move nearby blocks in or out of
scope. Though this is a more occasional task than
moving statements (which is quite a basic
interaction), it is a task that is more viscous in
Scratch than in other editors.

7. CONCLUSIONS

The code editor presented in this paper is still
under development. Simulations with CogTool have
shown that the new interface can be less viscous
than other block-based systems, but its design
retains the clear visibility of structure, and the error
prevention, normally found in those systems. There
are still areas where the constraints need further
investigation and refinement – for example, what
tone of feedback, if any, is appropriate when an
unexpected key is entered? It is also still possible
to produce some syntax errors in-line, but this
appears to be better than the alternative Alice-like
menu hierarchy looked at in CogTool. The research
has implications for the design of new systems; it is
not a given that editors such as these can only
ever be viscous by design. Certain small
enhancements can have an effect on the feel of the
system, and can greatly speed up editing for more
intermediate to advanced users. The context
menus in the prototype, that allow a block to be
swapped for something similar, are unobtrusive,
but provide quick shortcuts for otherwise-viscous
tasks. Block-based languages can still make use of
the keyboard without feeling unnatural, and without
the constant need to change hands from keyboard
to mouse. Even without the validation that drag-
and-drop supplies, removing minor punctuation
marks like semicolons and braces makes the code
more efficient to enter, and importantly, manipulate
later. Automatic previews give simple feedback that
might avoid the need to repeatedly try something,
and then undo it, just to see what it does. We
believe that these design changes would suit
existing Greenfoot users, as one example.

8. ACKNOWLEDGEMENTS

The author wishes to thank his supervisor, Michael
Kölling, and others at the University of Kent who
have given feedback on the prototype.

9. REFERENCES

Anderson, J. R. et al. (2004) An integrated theory
of the mind. Psychological Review, 111 (4). 1036-
1060.
Card, S. K., Moran, T. P., & Newell, A. (1980) The
keystroke-level model for user performance time
with interactive systems. Communications of the
ACM, 23 (7). 396-410.
Cooper, S., Dann, W., & Pausch, R. (2003)
Teaching objects-first in introductory computer
science. ACM SIGCSE Bulletin, 35 (1). 191-195.
Denny, P. et al. (2011) Understanding the syntax
barrier for novices. In: Proceedings of the 16th
Annual Joint Conference on Innovation and
Technology in Computer Science Education. 208-
212.
Fitts, P. M. (1954) The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47
(6). 381-391.
Green, T. R. G. (1989) Cognitive dimensions of
notations. In: People and Computers V:
Proceedings of the Fifth Conference of the British
Computer Society Human-Computer Interaction
Specialist Group. 443-460.
Green, T. R. G., & Blackwell, A. F. (1998) Design
for usability using cognitive dimensions. Tutorial
Session at British Computer Society Conference on
Human Computer Interaction HCI’98.
Henriksen, P., & Kölling, M. (2004) Greenfoot:
Combining object visualisation with interaction. In:
Proceedings of the Conference on Object Oriented
Programming Systems Languages and
Applications. 73-82.
John, B. E. (2010) Reducing the variability between
novice modelers: Results of a tool for human
performance modeling produced through human-
centered design. In: Proceedings of the 19th
Annual Conference on Behavior Representation in
Modeling and Simulation. 22-25.
John, B. E. et al. (2004) Predictive human
performance modeling made easy. In: Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems. 462-470.
Maloney, J. et al. (2004) Scratch: A sneak
preview. In: Proceedings of the Second
International Conference on Creating, Connecting
and Collaborating through Computing. 104-109.
McKay, F. (2012) HCI for beginner
programmers. Interfaces, (90), British Computer
Society. 22-23.
Pane, J. F., & Myers, B. A. (1996) Usability issues
in the design of novice programming systems
CMU-CS-96-132. Pittsburgh, Pennsylvania:
Carnegie Mellon University.
Robins, A., Haden, P., & Garner, S. (2006)
Problem distributions in a CS1 course. In:
Proceedings of the 8th Australian Conference on
Computing Education. 165-173.

368

