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Abstract

Extensive Reverse Monte Carlo model calculations have been performed for several
hydrogenated amorphous carbon systems, for which only one, or at most two, neutron
diffraction measurement(s) had been carried out. The possibility of determining the
microscopic density of the samples, of estimating the chemical composition of the

' materials, and of deriving reliable (partial) pair correlation functions from reduced-range
(Quax < 15A™) structure factors have been investigated in particular. The number density
could be determined within 10% in most of the (model) cases, whereas the estimation of
the composition proved to be successful only in one of the four cases studied here. Itis |
shown that an evaluation of the partial pair correlation functions for these materials is

possible on the basis of limited scattering vector range.
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1. Introduction

i) a-C:H

Amorphous materials have a history of successful technological exploitation extending
back more than two decades and in that period our knowledge of their properties has
grown steadily. However the materials at the core of this continuing fundamental and
technological interest are relatively complex and a large number of important questions
concerning their properties remain unanswered. ‘Moreover new materials continue to be
generated which open up the range of questions still further. A material that offers a
particularly intriguing, and certainly one of the broadest ranges of technological potential
is amorphous hydrogenated carbon a-C:H (also referred to as 'diamond-like’ carbon)
which may be prepared harder, denser and more resistant to chemical attack than any -
other solid hydrocarbon. These properties, along with opti.cal properties such as the
optical gap and refractive index, may be varied by changing the deposition parameters,
which has lead to a large number of potential applications [1]. High hydrogen content
films (>40at % hydrogen) are of polymeric nature (high sp3 content, but soft and with
low density) and low-hydrogen content films tend to be of graphitic character (soft films
consisting of large clusters of sp2 carbon. It should be noted however that it is possible,
under suitable conditions, to produce a low-hydrogen content, hard high density
amorphous film [2]). We address ourselves to the central problem of understanding their

structure and binding at the atomic level.

The structure giving rise to these useful properties is not yet completely understood,
although significant progress has been possible beyond the original models involving

clusters of sp? carbon linked by sp3 carbon. The reviews of Robertson [3] and Angus et




al [1] give a fuller account of these and other early models, with Robertson’s theoretical
modelling having been particularly potent in stimulating a great deal of research world- '
wide. Within the Robertson model, the hydrogen conteﬁt is seen to stabilise the sp3
regions reducing the size of any sp? clusters, but at the same time increasing the number
of network terminating bonds, leading to a maximum hardness at inferfnediate hydrogen
concentrations. However the unparalleled real space resolution provided by our neutron
diffraction data [4] to gether with complementary experimental data from inelastic
peutron scattering [5] and high resoluﬁoﬁ MAS/NMR [6] , allows us for the first time to
attempt to comment in detail on carbon bonding environments within the overa]i random
| network and the associated nature of the “decoration” of this network by bonded.
Interpretation of the new data [7] does not require heterogeneity on the scéle proposed
by Robertson, bﬁt rather suggests a broadly hbmo geneous distribution of the possible

local environments.

Durihg the past few years, mahy different forms of amorphous carbon [a-C(:H)]
prepared by various PVD/CVD methods have been extensively studied by diffraction
[7,8]. As it is extremely difficult to prepare relatively large (~0.5gm) isotopically
substituted (i.e. deuterated) samples with identical compositions, the three independent
measurements that would be nécessary for separating directly the three ppcf’s, could not
practicably be carried out for the majority of these materials [9]. Since the preparation
of a-C:H involves deposition from the gaseous phase onto a substrate at ambient
temperature, the resulting samples are usually porous, which makes the macroscopic
(bulk) denéity significantly different from the true density of scattering centres.
Additionally, the relatively high concentration of hydrogen can prove problematic during

the data analysis stage of a neutron diffraction measurement. ('H has a large cross




section for inelastic scattering, and this fact together with its similar mass to the neutron
makes inelasticity effects relétively large. In addition it should be noted that 'H - though
not *H - has a negative scattering length for coherent scattering). It is these diffiéulties,

to gethér with the generic limitation of having énly a 1-dimensional data set, that have

indicated the need for extensive model s%udies on a-C:H (see also [10,11]).

ii) RMC

The 1-dimensional nature of diffraction, and other structure-dependent data from

amorphous materials necessitates the adoption of a model-dependent analysis and

interpretation philosophy. The Reverse Monte Carlo method fof generating modelé has

béen widely used since its original design [12], and has been applied to a broad spectrum

of liquid and amorphous materials problems (and more recently to disorder in crystalline

" systems). Although it bears comparison with the Rietveld refinement method for crystal
structure determination using Bragg diffraction data, RMC is necessarily quite different at
the level of the basic algorithm: it is a very general, and ﬂlf;refore flexible, Monte Carlo-
based method of structural modelling which is designed to maké full use of available

_diffraction data together with other suitable constraints. Like all approaches, RMC has '
limitations, which derive both from the way in which the method operates and in the
range of experimental data that in practice can be incorporated into the model. An RMC-
generated model necessarily remains, in essence, a non-unique description based on an
arrangement of atoms which is consistent with available wide-angle diffraction data to

within experimental errors.




The essence of the RMC method is that "atoms" in a box are moved until the derived
pair distribution function, g(r), or more usually the structure factor, S(Q) matches the

experimentally measured curves:

a box is defined having edge dimensions at least t§vice the value of r at which

statistically significant oscillations in g(r) disappear;

e the bpx is filled with "atoms" (either at random, or using a simple lattice) to a given
number density; for a multicomponent system the correct partial number densities
must of course be used;

> this is compared with the experimental S(Q), and the new configuration accepted if
the asgociated 2 has been reduced (rejection is subject to a probability function
dependent on experimental errors);

e the atoms are then moved at random, and at each.stage a S(Q)model is calculated;

e the process is repeated until S(Q)modge1 reproduces experiment to within errors. The
process is further iterated until an "ensemble average” of configurat.ions is obtained;

o having established the model, one is then able to study coordination distributions,

bond angles, ring/chain statistics etc..

' RMC has the following advantages:

o A “real” 3-dimensional model is produced; it is non-parameterised and corresponds to
a possible physical structure.

e The model is self-consistent and agrees quantitatively with the available data to within
its errors.

e Under suitable circumstances complementary data may be combined (e.g. X-ray and
neutron diffraction).

o Constraints derived from prior chemical knowledge may be applied.




e No interatomic potential is required since the model is based directly on the data.
e The principals are quite general, so the method may be modified and developed for

other tasks.

Possibly the most useful, and potentially the most interesting, exploitation of the RMC
method is its application for multicomponent systems where the number of independent
(diffraction) experiments is less than the number of partial pair correlation functions

| (pvpcf’ s, see [13]). This is the situation that pertains, for instance, when there are no
suitable stable isotopes for isotopic substitution neutron diffraction; it is then not possible
to derive thé ppcf’s via traditional, direct methods. It has recently been shown [14] that
the RMC method in these cases becomes, not surprisingly, more sensitive to some
external parameters, such as the particle sizes. We stress that RMC is not a “cure-all’
method for determining unique solutions from poorly conditioned data. Rather it appears
a tractable and efficient method for exploring aspects of the materials’ structure by
generating models that are always consistent with the full dynamic range of the data
available and ~which may be further constrained by prior knowledge (e.g. by constrajn_ts

derived from basic chemistry).

More recently it has become apparent that the use of RMC is not limited to
‘conventional’ structural modelling of diffraction data, but it can also reveal information
that the structure factor, S(Q), does contain, but which is not directly accessible. An
obvious example is the determination of the micfoscopic number density (that is, the
number density of scattering centres as opposed to the measured macroscopic, or bulk
density), which was shown to be obtainable by RMC for a number Qf different rﬁaterials

[10]. This is an important point, since it is often not possible to determine the




' microscopic density directly. The fact that RMC is sensitive to the choice of the number
density is, in a sense trivial, since it is s quantity at the heart of all modelling methods;
however, what is not trivial is that RMC might consistently yield the correct number
density, at least if the structure factor is modelled. Another application was the
determination of (partial) pair corrélation function(s) on the basis of limited Q-space
information [11]. This latter appfoach works primarily because RMC, being an inverse
method for determining the pair correlation function, avoids most of the truncation
problems that occur when direct Fourier transformation is used. It is therefore better able
to isolate information from the S(Q), all sections of which contain information on all
Fourier components (limited, of course, by the associated experimental errors). This
application may prove important when the wide Q range of the most up to date neutron
(or X-ray) sources is not available, or when the data at high Q contains large statistical
and/or systematic errors. Botﬁ in [10] and [11] examples of experimental data were
chosen having a sufficient number of independent measurements such that the ppct’s
were also calculable via direct separation (i.e. by the direct solution of a set of linear
equations by matrix inversion); the effectiveness of the method could thereby be
established with more rigour.In this work the possible application of RMC for the above
two purposes is investigated for two component systems where the sufficient number of
independent experiments for the direct determination of the partials cannot be carried

out.

2. Determination of the number density of some model a-C:H samples
The computational studies described here follow the fashion of those presented in [10],

i.e. it was verified using model data that the correct number density was indeed




associated with the fit returning the lowest Y2 value. Details of the model systems

considered here are given in Table 1.

Asa de_msity search for a multicomponent system has never been carried out before on
the basis of only one (or possibly two) structure factor(s), initial investigati'ons were
based on the use of model partial stﬁcmré factors (which were then used as though they
were, in fact, total S(Q)s - sese CYHEL, PROP1, PROP2, PROP3). The necessary model
partial structure factors were obtained from the best RMC fits to real experimental data,
i.e. to the experimental S(Q). Density search calculation series for a given model were
started from identical initial box configurations, and during the calculations rovughly the
same number of accepted moves, usually >10°, were completed. As can be seen from
Tables 2 and 3, even if only one partial structure factor was used, the correct model
density could be found with no difficulty. Note that for finding one single density' quite a
number of relatively long calculations have to be carried out (this number was usually 5
for our systems). We believe that more precise minima could have been found; however,
we have'opted for exploring wider density ranges, keeping the quantity of calculations
within manageable limits. It was thought to be more important to demonstrate that
densities found via RMC are unique, i.e. that there is only one minimum for each system,

than to find them more precisely (especially since there does not seem to be any

ambiguity, such as an asymmetry of the density - Y2min CUIVES).

It is apparent from Table 2 that less ideal ‘measurements’ could be dealt with almost as
easily. Closer inspection reveals that the definition of the minimum (that is, the
narrowness of the ‘curve’) does depend on the actual weighting factors adopted (see

CYHE3 and CYHE4). It seems that the negative scattering length associated with 'H




- causes the minimum to be more vaguely defined, although for practical purposes the °

CYHES3 value is almost as good as CYHEA4.

3. Composition search

For materials like amorphous hydrogenated silicon-carbon alloys, a-Si:C:H, it is
prohibitively difficult to determine with precision the composition of the sample using
either chemical or conventional spectroscopic methods [15]; similar pfoblems occur in
the case of mixed sol-gel glass systems [16]. In principle, the measured structure factor
(ér more precisely, the normalised intensity) contains this information inherently, so that
RMC might be able to help to estimate the concentrations of the components in an

analogous way as it was for density determination.

Four calculation series have been carried out, for model systems described in Table 4.
Note that in order to find the composition corresponding to the minimum disagreement
between theory and experiment (the smallest Y2min ), Separate initial particle
configurations had to be generated for each trial composition (and naturally, the
weighting factors had to be calculated for them individually as well). For this reason the
series could not be standardised as much as it was possible during the density search
since no identical initial states were possible. It should also be mentioned that the most
problematic systems, from the point of view of their unknown compositions, often have:
three or more chemical components; hence, a similar search through parameter space to

determine them would involve a considerably larger number of RMC calculations.
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Our results are summarised in Table 5 . As it can be seen, there is usually a minimum
value of ” for each series (although these minima are quite shallow), but the minimum is
rarely found at the composition determined by standard chemical methods (- in the
present case of a—_C:H this was by combustion analysis). Itis interesting to note that the
least meaningful results come from the series where partial, rather than total, structure
factors were modelled. This finding might seem to be in contradiction with common
sense, but in fact it is not, since if one of the partials totally outweights the others in the
total S(Q) (see CYHES), then by definition the S(Q) contains less information about the
other (pairwise) concentrations. (In the CYHE] case, where there are three partials
in%/olved, the situation is perhaps somewhat better.) It must therefore be concluded that
using the RMC method for finding an unknown composition is, in general, not
applicable. Before applying it for real data, careful model studies have first to be
performed in order to test if a given weighting factor combination allows an accurate

estimate of the correct composition.

4. Determination of the partial pair correlation functions from reduced range
S(Q)’s

~ As was noted in earlier work [11], only fully determined examples had previously been
considered (i.e. where the numbef of independent measurements is sufficient for the
number of partials involved) . Here we investigate whether the partial pair correlation
functions could be obtained from limited Q-space information using just one structure
factor. The general strategy followed in the present work is in accord with that of [11]:
the full structure factor was shortened by 2-3 A™ at a time, until the partial pair

correlation functions, obtained via the Reverse Monte Carlo method on the basis of the

11




shortened version of the S(Q), have notably deviated from the ones derived on the basis
of the fuil structure factor. (By ‘notable deviation’ we mean alterations that would be
comparable to those associated with truncation effects that occur when direct Fourier
transforms are carriéd out after identical reductions of the Q range. See the case of

model amorphous Si in Ref. [11].)

As the separation of the ppcf’s on the basis of only one measurement has its own
ambiguities (see [13] and [17]), it was of primary importance to make sure that during
the process only the effects of shortening the ‘experimental’ (model) structure factor
were to be detected. Two model systems, corresponding in this case to real systems,
were applied in the current study: CYHEA and PROP4. The full model.structure factors
for both were best RMC fits to the corresponding real systems (see [7,17]). In both
cases only the high Q end of the structure factors have been cut gradually (unlike in [1 1]
where the progressive cutting of the low Q data was also studied in the context of
different materials). Individual calculations for PROP4, starting from identical initial
configurations and completing approximately the same number of accepted moves, have
been carried out for model S(Q)s exténding up t0 Quax = 50 (full version), 25, 15, 12 and
7 A, For CYHE4, S(Q)s extended up to Quae = 40 (full version), 20, 15, 11 and 7 A™.
The number density for the PROP4 series was 0.160, whereas for the CYHE4 series it

was 0.100 A, which in both cases may be slightly higher than the real values.

Some of the resulting partial pair correlation functions for the PROP4 series are shown in
Figure 1. (Partials that were obtained on the basis of a model S(Q) extending up to 25
A™ are indistinguishable from the originals.) Apart from the statistical fluctuations, that

. are due to the rather fine spacing of r (0.02 A), there are some visible systematic
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discrepancies around the first and second peaks of the C-C partial. This is espécially
apparent when the Q-range of the S(Q) extended up to only 7A™, but also for the case
Quax = 12 A™'. The C-H ppcf is also affected in the former case, but the H-H ppcf is
largely invariant with respect to decreasing the Q-range. (The H-H partial, on the other
hand, is the most affected by statistical noise, due to the smaller number of H atoms in
the simulation box. This may hide some effects of the shortened Q-range.) It seems
that, in accordance with the expectations, the partial pair correlation functions here are
more sensitive to the shriﬁking of the dynamic range of the structure factor than théy
were in the fully determined cases (see the example of Ni%sz3g in [11]). However, the
general outcome is still rather encou,raging: even when there is only one measurement,
and that is only up to 7 A, the ppcf’s obtained by RMC are still in reasonable agreement

with the ones that would be obtainable on the basis of the full Q-range.

There is one more point to add here: if one considers the unfortunate weighting factors
of PROP4, burdened by the highly emphasised negative scattering length of H, then the
results shown in Figure 1 might seem more than satisfactory. Indeed, similar calculations
for CYHE4 provided even better agreement between ppcf’s derived on the basis of large
and small Q-ranges. (Weighting factors for CYHEA4 were calculated via a small rescaling
of the Faber-Ziman formalism, and the sample was deuterated, so that no negative

scattering length was involved. )

Perhaps the most remarkable result that has come out-of the original experimental
measurements [7] was that it was possible to distinguish between double (olefinic) and
single carbon:carbon bonds, on the basis of an asymmeitry observed at the main peak of

the (total) pcf. The former has a bondlength of 1.34A, whereas the latter is 1.52/4A

13




long. The ability of the data to reveal this splitting in a quantitative wéy (the ratio of
single:double bonds was determined to be ~2.5:1) was ascribed to the wide dynamic
range for diffraction measurements at a pulsed neutron source. It was of interest to
check whether this asymmetry of the first peak of the C-C ppcf could be reproduced on
the basis of shorter structure factors. Figure 2 shows an enlargement of the C-C ppcf
around the first peak. Statistical fluctuations due to the box size tend to mask some
features, but the asymmetry on the low-r side of the peak is at least qualitatively revealed
for each curve, although its extent varies. It is only the partial obtained on the basis of
the S(Q) extending up to 15 A or higher, however, that agrees quantitatively with the
original. It is therefore suggested that such fine details can still be detected by RMC on
the basis of sﬁort structure factors, but for a quantitative analysis and hence definitive
statement, a more careful model RMC calculation series and much better model étatistics

are needed.

5. Conclusions

Some relatively complicated model structure factors, associatéd with amorphous
hydrogenated carbon samples, have been analysed by the Reverse Monte Carlo method.

" It has been shown that RMC can be applied for the estimation of the microscopic number
density, and for evaluéting partial radial ciistribution functions on the basis of limited Q-
range information, even when only one (or two) structure factor(s) has(have) been
measured for a two-component system. However, the importance of a wide range of
model calculations for each individual sample is emphasised. The possibility of using
RMC for the estimation of the composition of the sample was also investigated; it was

found that RMC was unable to give an accurate estimate.
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Table 1. Some cha_racteﬁstics of the model systems studied during the density search. Names are
constructed so that they indicate therprecursor gas (CYHE: cyclohexane; PROP: propane).
Weighting factors were calculated using the Faber-Ziman formalism (or, in the cases of CYHE2,
CYHE3 and CYHE4, a simple rescaled version of it). The correct model densities do nét

necessarily correspond to the macroscopic densities of real materials.

System Composition Weighting factors Correct model density
/data set (%C - %H) (CC-CH-HH partials) | (A%
-| CYHE1 75-25 1.0,0.0, 0.0 0.100
0.0, 1.0, 0.0
0.0,0.0, 1.0
CYHE2 75-25 1.0, -0.38, 0.04 0.100
1.0,0.67,0.11
CYHE3 75-25 1.0, -0.38, 0.04 0.100
CYHEA4 75-25 1.0,0.67,0.11 0.100
PROP1- 68-32 1.0,0.0,0.0 0.160
0.0, 1.0, 0.0
0.0,0.0, 1.0
 PROP2 , 68-32 11.0,0.0, 0.0 0.160
: 0.0, 1.0,0.0
PROP3 68-32 1.0, 0.0, 0.0 0.160
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Table 2. %’ui vs. number density for CYHE-systems. (¥*ain is the quantity measuring the deviation

of the calculated structure factor from the ‘experimental’, that is, in our case, from the model

S(Q).) The correct number density is 0.100 A7,

Minimum ¥ for the number density (densities are given in A®)

Name 0.060 0.080 0.100 0.120 0.140
CYHEI1 17.96 5.14 0.47 6.27 16.02
CYHE2 4.22 1.65 0.80 2.1 4.18
CYHE3 3.47 2.01 1.41 2.45 3.6
CYHEA 6.67 2.48 1.01 2.27

Table 3. X% vs. number density for PROP-systems. The correct number density is 0.160 A”.

4.62

Minimum %~ for the number density (densities are given in A?)

Name 0.140 0.150 0.160 0.170 0.180
PROP1 5.8 2.01 0.82 1.58 3.63
PROP2 14.46 3.8 0.66 3.4 11.1
PROP3 18.34 5.02 0.57 4.94 169
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Table 4. Details of model systems used in the composition search.

System/ Correct atomic Weighting factors Correct model density
data set composition | (CC-CH-HH partials) (A™)
' ~ (%C - %H)
CYHE1 75-25 1.0, 0.0, 0.0 0.100
0.0, 1.0, 0.0

: 0.0,0.0, 1.0
CYHE3 75-25 1.0, -0.38, 0.04 1 0.100
CYHES 75-25 1.0, 0.0, 0.0 0.100
PROP4 | 68-32 0.3,-0.34, 0.05 0.160

Table 5. ¥’mi vs. composition data for the composition search. Note that for the CYHE series 68-
32 compositions have not been calculated. The correct composition for CYHE systems is 75-25,

whereas for the PROP4 system it is 68-32.

Minimum Y for the composition (compositions are given in %C-%H)
Name 50-50 60-40 68-32 75-25 85-15
CYHEL 19.19 9.05 - | 4.12 3.97
CYHE3 3.43 1.69 - 2.43 14.19
CYHES 2.99 3.02 - 3.03 3.12
PROP4 7.43 5.06 ' 4.50 5.02 12.84
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Figure captions

Figure 1. Partial pair correlation functions for the PROP4 series. a) C-C; b) C-H; c) H-H partials.

Figure 2. The C-C partial pair correlation function for the PROP4 series, in the region of the first

peak.
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