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Synthesis
Using Matching Methods to Link Social and Physical Analyses for
Sustainability Planning

Eric J. Kemp-Benedict 1, Sukaina Bharwani 1, and Michael D. Fischer 2

ABSTRACT. Sustainability planning requires an understanding of social and physical systems and their
interactions. However, there is a mismatch between the methods of the social sciences and those of the
natural sciences. Although there have been numerous attempts to adapt the methods of the natural sciences
for use in the social sciences, the results are usually unsatisfactory. Key features of societies such as
institutions and power relationships, and of individuals such as the rich symbolic systems by which
individuals transmit knowledge, do not lend themselves to the standard analytical methods of the natural
sciences. We argue that rather than transfer the methods of one discipline to the other, an appropriate goal
can be to seek “matching methods” that work at the boundary between the social and natural sciences. We
discuss how knowledge elicitation tools (KnETs) can be used to develop matching methods. An explicit
example is provided by combining a KnETs-derived decision tree with a physical water allocation model
that was built using the scenario-based Water Evaluation and Planning (WEAP) software. We conclude
that, through a relatively weak link, the social and physical domains can be effectively combined for
integrated planning using matching methods, thereby permitting a more holistic approach to sustainable
resource planning.

Key Words: decision making; integrated analysis; matching methods; natural resources; planning;
sustainability science

INTRODUCTION

Sustainability planning seeks to balance human
needs against the need for maintaining the health
and viability of the natural environment. When
considering how to support and enhance the
livelihood possibilities of the poor, an important
sustainability consideration is how current and
potential livelihood strategies might affect
resources. An effective analysis must therefore
consider the social dynamics guiding the individuals
and groups who have relationships with their
environment, and it must consider the physical
processes by which the natural resources—such as
water, energy, and land—are conveyed, transformed,
and used.

Anyone embarking on such a study quickly faces
the lack of correspondence between the methods of
the social sciences and the natural sciences. The

natural sciences involve comparatively more
stringent techniques for hypothesis testing,
verification, and validation, while the social
sciences use complex dynamics and confounding
effects that introduce both variability and
uncertainty into observed phenomena. The
differences are not due to the faults or the virtues of
the practitioners in these fields, but to the subject
under study. Any study that seeks to understand
coupled socio-ecological systems must face the
intrinsic difficulty of studying people.

The approach pursued in this paper is to allow both
the social scientist and the natural scientist to use
the methods with which he or she is most
comfortable. The task then becomes a search for
“matching methods” that work at the boundary
between the social and natural sciences. We discuss
how knowledge elicitation tools (KnETs), which are
based in the social sciences, can be combined with
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a physically based analytical tool as a matching
method.

Variations on the approach to reconciling social and
physical models presented in this paper have been
reported by Berkes and Folke (1998), Lynam et al.
(2007), and Letcher et al. (2006), and by researchers
using agent-based modelling and Bayesian
approaches. Although the use of agent-based
models in the social sciences is still relatively new,
and in need of development (Kohler 2000),
considerable progress is being made to include
stakeholder participation and expert knowledge
under the rubric of Companion Modelling (Barretau
et al. 2003, Gurung et al. 2006). This has been
extended through other role-playing elicitation
techniques (Ziervogel et al. 2005), and by using
output from the KnETs process to verify and
validate expert knowledge and to populate the
agents in an agent-based model (Bharwani 2004,
Bharwani et al. 2005, Ziervogel et al. 2006).
Bayesian networks have also been used to express
and elicit behavioural models in environmental
planning (Bromley 2005, Varis 2002).

While this paper focuses on the bridge between
social and physical models, rather than the process
of creating the models, it should be recognized that
the process of building models contributes
importantly to the legitimacy of the model
produced, depending on how open the process is.
Substantially participatory exercises include those
described in Argent et al. (1999), Argent and
Grayson (2003), Barretau et al. (2003), Calder
(2004), Costanza and Ruth (1988), and Loucks et
al. (1996). An ongoing participatory process can
(and, in the view of the authors, should) be used in
the implementation of the approach described in this
paper.

This paper uses a water planning environment for
purposes of demonstration. However, the basic
framework should be relevant for a wide range of
issues related to sustainable livelihoods, beyond
those issues that are most visible in the water sector
alone. In particular, it should be possible to use this
approach with little modification for energy and
land-use planning. Because these various sectors
intersect, the use of a common matching method
between social and physical domains could assist in
carrying out joint analyses of water, energy, and
land use, and their contributions to livelihoods.

MATCHING METHODS

An effective “matching method” provides a link
between a social scientific description of a part of a
system and a physical description of a part of the
same system. To do this, a matching method must
mediate between a social science model and a
natural science model, and must therefore provide
the necessary inputs, and accept the outputs, of each
type of model while respecting the distinctive
features of the modeling approaches in each domain.
The link could be dynamic or static. With a dynamic
link, the models are run simultaneously, and
information is actively transferred back and forth.
With a static link, one model is run first, and the
output is used as an input to the other model, which
is run subsequently. In the demonstration provided
in this paper, a dynamic link is created.

Models in both the natural and social sciences
generally feature some deterministic elements;
uncertainty is also present to a greater or lesser
degree. When adapting either physical or social
models that have been tested in the laboratory or in
controlled studies to real-world situations, the role
of uncertainty rises significantly. The point of
controlled and laboratory studies, after all, is to
isolate specific features of the system under study
in order to answer very specific questions. In the
world of policy and planning, the system cannot be
isolated, and key model parameters cannot be
decisively calculated (Oreskes 1998, 2003). This
highlights a further common feature of social
science and natural science models, especially in
the policy domain—that of contingency. The
behavior of the system is contingent on local
conditions and historical processes. This makes the
job of model validation a challenging exercise.

In addition to these common features, there are
distinctive elements of models in the social and
natural sciences. At the broadest level, models of
social systems are frequently qualitative, or have
important qualitative elements, while natural
science models are mostly quantitative. In many
situations this is not a serious problem, because the
qualitative categories that emerge from social
scientific investigations can be translated into
quantitative terms, or can be compared against each
other to form a ranked hierarchy of options, and
there are standard approaches for manipulating such
data (Kaplan 2004). For example, qualitative
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categories such as “dry year” and “wet year” that
may be used by an informant in a study can be
translated into (fuzzy) ranges of annual or seasonal
precipitation, while ranking assignments such as
“much more important”, “less important”, etc. can
either be translated into values on a numerical scale
or given a relative rank. Alternatively, it is
sometimes possible to link qualitative states
probabilistically—that is, given that one part of the
system is in one qualitative state, there may be a
corresponding probability that another part of the
system is in another qualitative state. With such
associations, qualitative categories can be mapped
to quantitative values (Bromley 2005, Pearl 2001),
though this is subjective, and requires assumptions
regarding the relation between informant
judgements of probability or likelihood and the
actual frequencies of occurrence (O’Hagan 2006).

More serious discrepancies appear when probing
the dynamics of social systems—that is, the
processes that drive and constrain changes in
systems. Three features prevalent in social systems
are the role of autonomy and agency, the layered
nature of social dynamics, and the possible nature
of social systems as complex adaptive systems
(CAS). These will be considered one at a time.

Autonomy and agency

Although research in cognitive science and artificial
intelligence has made strides toward understanding
the physical basis of human intelligence, no current
or envisioned biophysical model can explain the
vicissitudes of human will. A model intended for
policy must start with human autonomy and agency
as givens, and in any situation, it can be expected
that people or households will display any of a range
of possible behaviors. Combined with the
importance of socially specific (“emic”) categories
of thought, and the role of tacit knowledge (Harris
1979, Gladwin 1989), this consideration may lie
behind the difficulty of matching rational choice
models with empirical observation, at least in the
political realm (Green and Shapiro 1994). The range
of possible behaviors is not infinite—human agency
is bounded by physical constraints, social norms,
family behaviors, and physiological endowments.
However, the range can be large and the interactions
of these elements, complex.

Layers of meaning

A second challenge with matching social and
natural science models is that people act at different
levels of meaning, so that social dynamics are
layered. As Geertz famously pointed out (Geertz
1973), even the simplest actions—such as winking
—can have multiple and layered meanings. Other
authors (e.g., Bailey 1988) have pointed to the
multiple cultural strands that people respond to: as
individuals view themselves through one cultural
lens or another, their behavior changes accordingly.
A conceptual or mathematical model that relies on
behavior at only one level (say, the economic) will
miss critical dynamic processes that act at other
levels (Slaughter 2004, Inayatullah 2002).

Approaches to eliciting the inputs to societal models
should respect these layers of meaning. Knowledge
elicitation tools (KnETs) are designed to provide
such inputs, because KnETs are built around the
ethnographic interview (Ellen 1984, Spradley 1979)
in which the interviewer endeavours to elicit the
cultural frame of reference of the informant.

Social systems as complex adaptive systems

Societies share many aspects of complex adaptive
systems (CAS) (Miller and Page 2007, Rihani 2002;
see also Berkes 2007, Costanza et al. 1993). In a
CAS, interactions between system components are
non-linear. Macroscopic behavior of the system is
sometimes described as “emergent” in that it is
expressed only when parts of the system interact,
and cannot be inferred from local dynamics.
Depending on the values of a relatively small
number of parameters, any given CAS can exist in
a wide variety of macroscopic states. Smooth
changes in parameters can move the system into a
situation in which the current macroscopic state is
no longer stable, in which case it can transition into
a newly stable macroscopic state. Thus, from the
point of view of an observer of a CAS, the system
can begin an apparently inexorable change into a
new configuration with little warning. In physical
CAS, the dynamics are well-defined, but the
macroscopic expression of those dynamics can be
surprising and it can be difficult—even impossible
—to predict. In social systems, especially in a policy
context in which novel behavior is expected, such
surprising transitions pose a fundamental challenge
for planning.
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KNOWLEDGE ELICITATION TOOLS

Knowledge elicitation tools (KnETs) are an
approach and a set of tools for eliciting cultural,
social, and tacit knowledge from domain experts.
KnETs have been applied to farming communities
in the United Kingdom: in East Kent to explore
cropping decisions based on climate change
(Bharwani 2004), and in Suffolk to look at decision
criteria driven by irrigation quota and licensing
criteria (Weatherhead et al. 2005). In Limpopo
Province in South Africa (Ziervogel et al. 2006)
KnETs have been used to explore the crop choices
of small-scale subsistence farmers in a community
garden project where there is an unreliable source
of irrigation but good seasonal forecast information.
The output of this process—a set of decision rules
—was then incorporated in an agent-based model
representing decision making at the household
level, to further explore the dynamics of the system
(Bharwani et al. 2005). The approach is also being
used in the European Commission NeWater project
[1], and it is being compared in the Orange (Lesotho),
Upper Guadiana (Spain) and Tisza (Hungary and
the Ukraine) river basins.

The approach draws on the techniques and insights
of ethnographic research, knowledge engineering,
and artificial intelligence (AI). The task is to capture
the cultural models that are employed by social
actors when responding to their environment, in
order to represent them in a formal way as part of a
sustainability assessment. The approach is similar
in spirit to companion modeling (Barretau et al.
2003, Barreteau et al. 2001), in which stakeholders
and local actors collaborate to create agent-based
models that represent their behaviors under different
circumstances. The KnETs process is based on an
innovation in knowledge engineering by Wooten
and Rowley (1995), who used Wood and Ford's
(1993) ethnographic interview model as a starting
point. Wooten and Rowley adapted the
ethnographic interview to knowledge engineering.
Carrying out an ethnographic interview requires the
interviewer to pose questions within the cultural
frame of reference of the informant, and therefore
requires the interviewer to elicit not only answers
but also questions from informants (Ellen 1984,
Spradley 1979). This process enables the
anthropologist to broach the realm of tacit
knowledge and make inferences based on what is
said and observed without being influenced by his
or her own cultural assumptions. Furthermore, it is
the role of the ethnographer or knowledge engineer

to make generaliations and abstract statements
based on these inferences, without distorting the
terminology of the informant by expecting them do
so. Part of the ethnographic process is knowing what
questions to ask. However, formulating questions
requires derivation from one’s own cultural frame
of reference, which may be different from the frame
of reference the respondent uses to provide answers,
and thus distortion can emerge. Therefore, in
ethnographic interviewing both questions and
answers must be discovered from informants (Ellen
1984, Spradley 1979). This is the significant
difference between the interview that may be
conducted by the journalist, and the ethnographic
interview, where the former imposes a question
based on a framework that is possibly very different
from that of the domain expert (Ellen 1984).
Furthermore, the latter can often result in the
discovery of new and unexpected areas as a basis
for study as a result of “tuning in” to local discourse
in order to discover issues that enable the
ethnographer to ask competent questions which will
be meaningful to the informant (Ellen 1984). Such
a process provides more substantive insights into an
informant’s cultural model than does an interview
based on the interviewer’s frame of reference and
his or her underlying cultural assumptions.

KnETs introduce a further innovation that can be
thought of as an elaboration on the standard
concurrent verbalization method of knowledge
engineering, in which the informant “thinks aloud”
about what he or she knows (McGraw and Harbison-
Briggs 1989). KnETs structures the concurrent
verbalization by focusing informants on a sequence
of (informant-derived) “scenarios”, or collections
of prompts for different conditions. (These
scenarios are more focused, but less wide ranging
than the scenarios produced in a participatory
scenario exercise: see Slaughter 2004, Bishop et al.
2007.) The KnETs process follows the steps
outlined in Fig. 1.

Open-ended and exploratory fieldwork (Fig. 1) is
followed by the development of a more focused and
structured interactive game, which is developed in
the KnETs software (Fig. 2). In the course of playing
the game, the informant is taken through a large
number of scenarios that are derived from variables
provided by informants during the fieldwork phase.
Therefore, as explained above, the game and
resulting scenarios are formed using the informant’s
own frame of reference; and, as a result, every game
will be different because the actors and the context

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 1. Steps in the KnETs process

will be differernt in each case. The informant then
explains what he or she would do under the
circumstances described and this is recorded.

After a large number of runs (the number of runs
depends on the number of variables the informant
has mentioned as being important to the decision),
an algorithm is applied to the responses in order to
find a parsimonious decision tree that represents the
decision-making process. The current KnETs
software uses, by default, an implementation (J48)
of the C4.5 learning algorithm (Quinlan 1993). The
C4.5 algorithm uses an information entropy
criterion for taking the unclassified set of responses
from the informant and splitting them into a series
of yes/no decisions as a decision tree. Different
possible splits are tested, and the one that results in
the greatest increase in information is selected. The
process is then applied iteratively to the two sub-
trees generated by each split, until the entire set of
responses is placed into the decision tree. The
decision tree takes information about the
environment and, through the series of yes/no
questions, narrows down to a single response. A
partial decision tree is shown in Fig. 3. In this
example tree, an environment in which the soil is
light, the climate is warmer, and overseas
production is poor would lead the informant to a
decision to plant vegetables.

Figure 3 is an example of a decision tree that
includes some emic (cultural) criteria. The KnETs
process does not end with the automated
construction of the decision tree. As shown in Step
4 in Fig. 1, the interviewer takes the automatically

produced decision tree (the knowledge representation
rules) as a starting point, but then uses his or her
own insight and continued interaction with
informants and others to refine the decision tree. An
important aspect of this further work is to capture
the motivation for taking various actions. From the
results of the game, the KnETs interviewer develops
several decision trees outside of the KnETs software
itself—for example, on paper—and then tests the
different trees by conducting further interviews.
This allows the interviewer to fill gaps in the
knowledge elicited and, most importantly, to access
the realm of tacit knowledge, which is difficult to
do using ordinary interview techniques (Bharwani
2006).

MATCHING TO A PHYSICAL MODEL

The thesis in this paper is that “matching methods”
can be used to link social-scientific models with
models from the physical sciences. The goal with
such matching methods is that the social scientist
can use the methods that are most congenial to him,
while the physical scientist can use the techniques
that she finds most familiar. To make this idea more
explicit, a demonstration model was constructed.
The demonstration model uses one sample decision
tree developed from interviews with farmers in
South Africa and links it to a physical model of water
flows using the Water Evaluation and Planning
(WEAP) software (Yates et al. 2005a, 2005b).[2]

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 2. KnETs interactive questionnaire

The WEAP water planning model

The Water Evaluation and Planning System
(WEAP) is an integrated water resources
management (IWRM) model. Its design is
motivated by several goals. In terms of focus, it aims
for a balanced approach to social and institutional
aspects of water management (allocation, use, and
distribution) and the physical aspects (the
hydrology). Otherwise, it aims to be useful, easy to
use, affordable, and readily available (Yates et al.
2005b). It is a scenario-based tool, in that it has
special support for forward-looking studies, and

allows the user to easily modify a handful of
variables within a large model and study the effects
of that change on key outputs such as water
availability, flow through rivers, and groundwater
levels.

WEAP has many built-in calculations, but also
offers the modeler the option of user-specified
variables and user-specified calculations. This
feature of WEAP was used to implement the link
between KnETs and WEAP.

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 3. Portion of a decision tree.

Linking KnETs and WEAP

In order to link KnETs with WEAP, some additional
programming was thought necessary. A direct link
between the KnETs software and WEAP was
considered, but was rejected. One reason for this is
that the final stages of the KnETs process (Fig. 1)
require the interviewer to actively develop decision
trees that are different from the tree automatically
generated by the C4.5 algorithm. A second reason
is that there is no natural matching between the
variables in the decision tree and WEAP variables.
Instead, the analyst must specify them. However, it
was decided that a supporting tool could be created
that would offer a decision tree building
environment for the interviewer, while simplifying
the task of matching variables in the decision tree
to WEAP variables. The resulting tool, the decision
tree builder, is shown in Fig. 4.[3]

As shown in Fig. 4, the decision tree builder
interface allows the interviewer to develop decision

trees, implemented as a series of yes/no questions.
Each of the nodes in the tree is potentially related
to a variable within a WEAP model for the system
being described. Where no variable already exists,
one can be introduced into WEAP. For example,
“normal rainfall” may be related to the precipitation
variable in a WEAP application, while “market
demand” may be added to the WEAP model in order
to further distinguish WEAP scenarios. The
decision tree builder extracts each of the variables
in the decision tree, and prompts the WEAP analyst
for corresponding WEAP expressions. By
combining these correspondences with the rules as
expressed in the decision tree, the decision tree
builder can generate a WEAP expression that
implements the decision tree. The WEAP
expression from the decision tree builder can be
copied and pasted directly into a WEAP application.

For purposes of demonstration, this was done with
a modified version of the “Weaping River” tutorial
application that is distributed as part of the WEAP

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 4. Decision tree builder.

package. Weaping River is not an actual locale—it
is used for demonstrating WEAP’s features, for
training, and as a reference for people developing
their own WEAP models. The Weaping River
application was modified by determining the
headflow on the Weaping River through runoff and
groundwater infiltration from a catchment. With the
addition of the catchment object in WEAP, the
headflow is determined by the hydrological
processes in the catchment, in which water enters
as precipitation and leaves as either surface runoff,
evapotranspiration, or groundwater flow. The crop
choice is affected, through KnETs, by the forecast

for available precipitation, while crop choice itself
affects evapotranspiration; and so, though the
catchment hydrology, the KnETs link leads to a
modification in the headflow. Two further scenario
variables were also added, corresponding to
variables in the KnETs decision tree: the priority for
crops (assumed to be “home use” throughout each
scenario) and the market demand for crops
(assumed to be “medium” throughout each
scenario). Different choices for those variables,
which could represent alternative scenarios, would
lead to different hydrological effects. The modified
Weaping River network, with the additional

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 5. Modified Weaping River application

catchment and groundwater nodes (“Weaping River
Headflow” and “Weaping River GW”, respectively)
is shown in Fig. 5.

In the newly added catchment node, farmers decide
which crop to plant using the decision tree
developed through the KnETs process and
translated into a WEAP expression using the
decision tree builder. In this simple example, this is
an “all or none” decision, in which all farmers in the
catchment plant the same crop each year. In a more
realistic application, the result of the decision could
be a crop mix, or different decision trees could be
used to represent different types of farmers in the
catchment. The result is shown in Fig. 6, where the

choice of crop that emerges from the decision tree
has a noticeable effect on the evapotranspiration
from the catchment. Evapotranspiration for
rapeseed is lower than that for sunflower, and
evapotranspiration for corn is higher than that for
sunflower. In none of the years was soya chosen as
a result of evaluating the decision tree. The
evapotranspiration in the catchment has an effect on
the headflow to the Weaping River, as shown in Fig.
7, and therefore for downstream water availability.
While there is no feedback from the changed
hydrology to the decision tree in the simple example
used here, it is certainly possible that farmer
decision could affect the watershed in such a way
that the consequences of those decisions influence

http://www.ecologyandsociety.org/vol15/iss3/art4/
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Fig. 6. Evapotranspiration due to crop choice

future farmer decisions, thus creating a feedback
loop link between the decision tree and the WEAP
application.

Discussion

Farmer and other human actions can significantly
affect the hydrology of a catchment. Hydrological
and water allocation scenario models must represent
these actions in some fashion, and KnETs provide
a uniquely informative approach to capturing and
representing the decisions of farmers and other
actors. As demonstrated with the KnETs-WEAP
link described above, to the extent that farmers are
influenced by physical variables present in a
physical water model (in this case, a rainfall
forecast), and make choices that affect physical
outcomes (crop choice, with consequences for
evapotranspiration), the decision model that KnETs
provide can be combined with the physical model
to capture the feedback between the physical and
the social systems.

A further advantage of the process outlined above
is that the link between KnETs and WEAP is
minimal, which is essential for a “matching method”

as proposed in this paper. Considerable work can
be carried out separately by the social scientist,
using KnETs in the field, and by the physical
modeler, representing hydrological processes and
physical water flows through a distribution network.
The link between the social and physical systems is
created by matching the decision tree produced from
the KnETs process to variables and statements in
the physical model, as shown in Fig. 4. This weak
coupling allows the social scientist to use the
methods most familiar to him, and for the physical
scientist to use the tools and techniques with which
she is most familiar. The tool illustrated in Fig. 4
acts as a boundary object between the disciplines
where the social and physical scientists can discuss
the relationship between the variables and
statements in their separate representations.

CONCLUSION

Sustainability planning requires a combination of
models from the social sciences and the physical
sciences. We have argued that an effective way to
do this is via “matching methods” that mediate
between the two types of models. Such matching
methods can allow practitioners in either the social
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Fig. 7. Percent difference in headflow, with decision tree vs. only sunflower

or physical sciences to use familiar approaches, with
the dialog between practitioners taking place in a
way that does not require them to learn an entirely
new set of methods.

In order to demonstrate the approach, the knowledge
elicitation tools (KnETs) process was combined
with a scenario-based physical water planning
model (WEAP). KnET uses computer learning to
support an anthropological interview. Through the
anthropological interview, the interviewer avoids
placing an interpretive frame on informants’
responses (Ellen 1984, Spradley 1979). The
resulting representation of actors’ decision making
is much richer than that normally available to a
physical modeler, who would typically resort either
to fixed behavioral patterns or to rational choice
models.

To implement the “matching” between the two
tools, an additional software tool was developed, i.
e., the decision tree builder. The decision tree
builder provides a boundary object around which
the social and physical scientist can meet and
discuss the relationship between variables,
concepts, and statements in their respective
domains. The KnETs interviewer uses the decision

tree builder to devise a decision tree that represents
his or her understanding of decision-making
processes within a community, while the WEAP
modeler uses the decision tree builder to assist him
or her in generating a WEAP expression that
implements the decision tree in WEAP, thus
allowing the WEAP model to dynamically
incorporate the behavioral model represented by the
decision tree that emerges from the KnETs process.

A modest example was constructed for purposes of
demonstration. The results are plausible and
interesting: changes in WEAP variables lead, via
the KnETs-derived decision tree, to behavior that
modifies the hydrology in subsequent time steps.
These environmental changes could also conceivably
be re-implemented in a new KnETs game to gauge
the responses of informants to altered resource
availability. The implementation allows social and
physical scientists to work substantially with tools
that are comfortable to them. The result is a linked
social and physical model that captures decision
making in terms that the informants themselves
define, while providing concrete physical feedback
to the social model that could affect subsequent
decisions.

http://www.ecologyandsociety.org/vol15/iss3/art4/
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The techniques presented in this paper, and the
broader concept of “matching methods”, demonstrate
how a more holistic link to sustainable resource
planning can be achieved and used to evaluate the
effects of interventions on people’s livelihoods. The
conceptual framework and example presented in
this paper show how a relatively weak link between
the social and physical domains can support a
significantly more integrated planning approach
that combines the social and physical sciences into
a holistic approach.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol15/iss3/art4/responses/

Acknowledgments:

The authors would like to acknowledge David
Michaud for collecting information about decision-
support systems and Chris Swartz for undertaking
a close reading of the draft manuscript. All errors
are our own.

LITERATURE CITED

Argent, R. M., and R. B. Grayson. 2003. A
modelling shell for participatory assessment and
management of natural resources. Environmental
Modelling and Software 18(6):541-551.

Argent, R. M., R. B. Grayson, and S. A. Ewing. 
1999. Integrated models for environmental
management: issues of process and design.
Environment International 25(6-7):693-699.

Bailey, F. G. 1988. Humbuggery and manipulation:
the art of leadership. Cornell University Press,
Ithaca, New York, USA.

Barretau, O., M. Antona, P. d'Aquino, S. Aubert,
S. Boissau, F. Bousquet, W. Daré, M. Etienne, C.
Le Page, R. Mathevet, G. Trébuil, and J. Weber.
2003. Our companion modelling approach. Journal
of Artificial Societies and Social Simulation 6(2):1.
[online] URL: http://jasss.soc.surrey.ac.uk/6/2/1.html
.

Barreteau, O., F. Bousquet, and J.-M. Attonaty. 
2001. Role-playing games for opening the black box

of multi-agent systems: method and teachings of its
application to Senegal River Valley irrigated
systems. Journal of Artificial Societies and Social
Simulation 4(2):5. [online] URL: http://jasss.soc.su
rrey.ac.uk/4/2/5.html.

Berkes, F. 2007. Understanding uncertainty and
reducing vulnerability: lessons from resilience
thinking. Natural Hazards 41:283-295.

Berkes, F, and C. Folke. 1998. Linking social and
ecological systems for resilience and sustainability.
Pages 1–26 in F. Berkes and C. Folke, editors.
Linking social and ecological systems: management
practices and social mechanisms for building
resilience. Cambridge University Press, Cambridge,
Cambridgeshire, UK.

Bharwani, S. 2004. Adaptive knowledge dynamics
and emergent artificial societies: ethnographically
based multi-agent simulations of behavioural
adaptation in agro-climatic systems. Dissertation.
University of Kent, Canterbury, Kent, UK.

Bharwani, S. 2006. Understanding complex
behavior and decision making using ethnographic
knowledge elicitation tools (KnETs). Social
Science Computer Review 24(1):78-105.

Bharwani, S., M. Bithell, T. E. Downing, M. New,
R. Washington, and G. Ziervogel. 2005. Multi-
agent modelling of climate outlooks and food
security on a community garden scheme in
Limpopo, South Africa. Philosophical Transactions
of the Royal Society B. 360: 2183-2194.

Bishop, P., A. Hines, and T. Collins. 2007. The
current state of scenario development: an overview
of techniques. Foresight 9(1):5-25.

Bromley, J. 2005. Guidelines for the use of
Bayesian networks as a participatory tool for water
resource management: based on the results of the
MERIT project. Management of the Environment
and Resources Using Integrated Techniques
(MERIT), project for the European Union 117,
Centre for Ecology and Hydrology, Wallingford,
Oxfordshire, UK.

Calder, I. R. 2004. Forests and water – closing the
gap between public and science perceptions. Water
Science and Technology 49(7):39-53.

Costanza, R., and M. Ruth. 1988. Using dynamic

http://www.ecologyandsociety.org/vol15/iss3/art4/
http://www.ecologyandsociety.org/vol15/iss3/art4/responses/
http://jasss.soc.surrey.ac.uk/6/2/1.html
http://jasss.soc.surrey.ac.uk/4/2/5.html
http://jasss.soc.surrey.ac.uk/4/2/5.html


Ecology and Society 15(3): 4
http://www.ecologyandsociety.org/vol15/iss3/art4/

modeling to scope environmental problems and
build consensus. Environmental Management 22
(2):183-195.

Costanza, R., L. Wainger, C. Folke, and K.-G.
Mäler. 1993. Modeling complex ecological
economic systems. BioScience 43(8):545-555.

Ellen, R. F., editor. 1984. Ethnographic research:
a guide to general conduct. Academic Press,
London, UK.

Geertz, C. 1973. Thick description: toward an
interpretive theory of culture. Pages 3-30 in The
interpretation of cultures: selected essays. Basic
Books, New York, New York, USA.

Gladwin, C. H. 1989. Ethnographic decision tree
modelling. Save Publications, Beverly Hills,
California, USA.

Green, D. P., and I. Shapiro. 1994. Pathologies of
rational choice theory: a critique of applications in
social science. Yale University Press, New Haven,
Connecticut, USA.

Gurung, T. R., F. Bousquet, and G. Trébuil. 2006.
Companion modeling, conflict resolution, and
institution building: sharing irrigation water in the
Lingmuteychu Watershed, Bhutan. Ecology and
Society 11(2):36. [online] URL: http://www.ecolo
gyandsociety.org/vol11/iss2/art36/

Harris, M. 1979. Cultural materialism: the
struggle for a science of culture. Random House,
New York, New York, USA.

Inayatullah, S. 2002. Layered methodology:
meanings, epistemes, and the politics of knowledge.
Futures 34(6):479-491.

Kaplan, D. 2004. The Sage handbook of
quantitative methodology for the social sciences.
Sage Publications, Thousand Oaks, California,
USA.

Kohler, T. A. 2000. Putting social sciences back
together again: an introduction to the volume. Pages
1–18 in T. A. Kohler and G. J. Gumerman, editors.
Dynamics in human and primate societies: agent-
based modeling of social and spatial processes.
Oxford University Press, New York, New York,
USA.

Letcher, R. A., B. F. W. Croke, W. S. Merritte,

and A. J. Jakeman. 2006. An integrated modelling
toolbox for water resources assessment and
management in highland catchments: sensitivity
analysis and testing. Agricultural Systems 
89:132-164.

Loucks, D. P., P. N. French, and M. R. Taylor.
1996. Development and use of map-based
simulation shells for creating shared-vision models.
International Association of Hydrological Sciences,
Vienna, Austria.

Lynam, T., W. De Jong, D. Sheil, T. Kusumanto,
and K. Evans. 2007. A review of tools for
incorporating community knowledge, preferences,
and values into decision making in natural resources
management. Ecology and Society 12(1): 5. [online]
URL: http://www.ecologyandsociety.org/vol12/iss1/
art5/.

McGraw, K. L., and K. Harbison-Briggs. 1989.
Knowledge acquisition. Prentice Hall, Englewood
Cliffs, New Jersey, USA.

Miller, J. H., and S. E. Page. 2007. Complex
adaptive systems: an introduction to computational
models of social life. Princeton University Press,
Princeton, New Jersey, USA.

O’Hagan, A. 2006. Uncertain judgments: eliciting
experts’ probabilities. John Wiley and Sons, New
York, New York, USA.

Oreskes, N. 1998. Evaluation (not validation) of
quantitative models. Environmental Health Perspectives 
106(Supplement 6):1453-1460.

Oreskes, N. 2003. The role of quantitative models
in science. Pages 13–30 in C. D. Canham, J. J. Cole,
and W. K. Lauenroth, editors. Models in ecosystem
science. Princeton University Press, Princeton, New
Jersey, USA.

Pearl, J. 2001. Causal inference in statistics: a
gentle introduction. Pages 84–103 in E.J. Wegman,
A. Braverman, A. Goodman, P. Smyth, editors.
Computing Science and Statistics, Interface ’01,
Frontiers in Data Mining and Bioinformatics,
Proceedings of the 33rd Symposium on the
Interface, Costa Mesa, Orange County, California,
June 13–16, 2001. Volume 33, Interface Foundation
of North America, Fairfax, Vermont, USA. [online]
URL: http://www.interfacesymposia.org/I01/master.
pdf. And, Technical Report TR-289, Cognitive
Systems Laboratory, Computer Science Department,

http://www.ecologyandsociety.org/vol15/iss3/art4/
http://www.ecologyandsociety.org/vol11/iss2/art36/
http://www.ecologyandsociety.org/vol11/iss2/art36/
http://www.ecologyandsociety.org/vol12/iss1/art5/
http://www.ecologyandsociety.org/vol12/iss1/art5/
http://ftp.cs.ucla.edu/pub/stat_ser/R289.pdf
http://ftp.cs.ucla.edu/pub/stat_ser/R289.pdf


Ecology and Society 15(3): 4
http://www.ecologyandsociety.org/vol15/iss3/art4/

University of California, Los Angeles, California
USA. [online] URL: http://ftp.cs.ucla.edu/pub/stat_ser/
R289.pdf.

Quinlan, R. 1993. C4.5: programs for machine
learning. Morgan Kaufmann, Burlington, Massachusetts,
USA.

Rihani, S. 2002. Complex systems theory and
development practice: understanding non-linear
realities. Zed Books, London, UK.

Slaughter, R. A. 2004. Futures beyond dystopia:
creating social foresight. RoutledgeFalmer,
London, UK.

Spradley, J. P. 1979. The ethnographic interview.
Rinehart & Winston, New York, New York, USA.

Varis, O. 2002. Belief networks: generating the
feared dislocations. Pages 162–176 in M. B. Beck,
editor. Environmental foresight and models: a
manifesto. Elsevier, Amsterdam, The Netherlands.

Weatherhead E. K., J. W. Knox, T. T. de Vries,
S. Ramsden, J. Gibbons, N. W. Arnell, N. Odoni,
K. Hiscock, C. Sandhu, A. Saich, D. Conway, C.
Warwick, S. Bharwani, J. Hossell, and B.
Clemence. 2005. Sustainable water resources: A
framework for assessing adaptation options in the
rural sector. Tyndall Centre Technical Report 44,
Tyndall Centre for Climate Change Research, UEA,
Norwich, Norfolk, UK.

Wood, L. E., and J. M. Ford. 1993. Structuring
interviews with experts during knowledge
elicitation. International Journal of Intelligent
Systems 8(1):71-90.

Wooten, T. C., and T. H. Rowley. 1995. Using
anthropological interview strategies to enhance
knowledge acquisition. Expert Systems with
Applications 9(4): 469-482.

Yates, D., D. Purkey, J. Sieber, A. Huber-Lee, and
H. Galbraith. 2005a. WEAP21: A demand-,
priority-, and preference-driven water planning
model: part 2: aiding freshwater ecosystem service
evaluation. Water International 30(4):501-512.

Yates, D., J. Sieber, D. Purkey, and A. Huber-Lee.
2005b. WEAP21: A demand-, priority-, and
preference-driven water planning model: part 1:
model characteristics. Water International 30

(4):487-500.

Ziervogel, G., S. Bharwani, and T. Downing. 
2006. Adapting to climate variability: pumpkins,
people and policy. Natural Resources Forum 
30:294-305.

Ziervogel, G., M. Bithell, R. Washington, and T.
Downing. 2005. Agent-based social simulation: a
method for assessing the impact of seasonal climate
forecasts among smallholder farmers. Agricultural
Systems 83(1):1-26.

 
[1] Information available at http://www.newater.info/.

[2] WEAP is available from http://www.weap21.org/
. The current version (ver. 21) is referred to as
WEAP21. While this is the version that was used
for the calculations described in this paper, the
generic name for the software, WEAP, will be used
throughout.
[3] The decision tree builder program and a sample
input file are available from ftp://sei-us.org/Decisio
nTreeBuilder/.
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