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Abstract 

Recent advances in functional neuroimaging have demonstrated novel potential for informing 

diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious 

states. However, these technologies come with considerable expense and difficulty, limiting 

the possibility of wider clinical application in patients. Here, we show that high-density 

electroencephalography, collected from 104 patients measured at rest, can provide valuable 

information about brain connectivity that correlates with behaviour and functional 

neuroimaging. Using graph theory, we visualise and quantify spectral connectivity estimated 

from electroencephalography as a dense brain network. Our findings demonstrate that key 

quantitative metrics of these networks correlate with the continuum of behavioural recovery 

in patients, ranging from those diagnosed as unresponsive, through those who have emerged 

from minimally conscious, to the fully conscious locked-in syndrome. In particular, a 

network metric indexing the presence of densely interconnected central hubs of connectivity 

discriminated behavioural consciousness with accuracy comparable to that achieved by 

expert assessment with Positron Emission Tomography. We also show that this metric 

correlates strongly with brain metabolism. Further, with classification analysis, we predict the 

behavioural diagnosis, brain metabolism and one-year clinical outcome of individual patients. 

Finally, we demonstrate that assessments of brain networks show robust connectivity in 

patients diagnosed as unresponsive by clinical consensus, but later re-diagnosed as minimally 

conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain 

network identified each of these misdiagnosed patients as minimally conscious, corroborating 

their behavioural diagnoses. If deployed at the bedside in the clinical context, such network 

measurements could complement systematic behavioural assessment and help reduce the 

high misdiagnosis rate reported in these patients. These metrics could also identify patients in 

whom further assessment is warranted using neuroimaging or conventional clinical 
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evaluation. Finally, by providing objective characterisation of states of consciousness, 

repeated assessments of network metrics could help track individual patients longitudinally, 

and also assess their neural responses to therapeutic and pharmacological interventions. 

 

Keywords 

Disorders of Consciousness, Electroencephalography; Positron Emission Tomography; 

Resting state; Brain Networks 

 

Abbreviations 

DoC disorders of consciousness 

UWS/VS Unresponsive Wakefulness Syndrome/Vegetative State 

MCS- Minimally Conscious Minus 

MCS+ Minimally Conscious Plus 

CRS-R Coma Recovery Scale-Revised 

LIS Locked-In Syndrome 

GOS-E Glasgow Outcome Scale-Extended 

FDG Fludeoxyglucose 

dwPLI debiased weighted Phase Lag Index 

ROC Receiver Operating Characteristic 

AUC Area Under the Curve 

SVM Support Vector Machine 

 

Abbreviated Summary 

Can we track the neural signatures of the recovery of consciousness after severe brain injury? 

Chennu et al. show that assessing brain networks in patients at their bedside predicts 
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metabolic activity, diagnoses consciousness and prognosticates recovery. Such repeatable 

assessments could help reduce clinical misdiagnosis and track responses to therapies. 

 

Introduction 

Recent years have seen rapid advancement of research that has built the evidence base for 

neurotechnology in assessment of consciousness after brain injury, which can result in 

prolonged DoC, including UWS, MCS- and MCS+. The exclusive use of clinical consensus 

of behaviours observed at the bedside has repeatedly been shown to result in high rates of 

misdiagnosis of the true level of consciousness in such patients (Childs et al., 1993; 

Schnakers et al., 2009). This misdiagnosis can be due to the inability to communicate with 

patients, who might have no or inconsistent behavioural signs of consciousness. To help 

address the diagnostic and prognostic challenge in DoC, a range of neuroimaging 

technologies have been proposed for assessing ongoing brain activity with sophisticated 

analytical techniques. These include MRI (Demertzi et al., 2015), PET (Thibaut et al., 2012; 

Stender et al., 2014) and high-density EEG (Lehembre et al., 2012; King et al., 2013; 

Lechinger et al., 2013; Chennu et al., 2014; Sitt et al., 2014). 

 

EEG in particular is an attractive option in this context as it is portable, cost effective, and 

relatively feasible to deploy at the patient’s bedside. Recent research has shown that both 

qualitative assessment by experts (Forgacs et al., 2014; Bagnato et al., 2016; Estraneo et al., 

2016; Piarulli et al., 2016) and quantitative assessment using quasi-automated machine 

learning (Sitt et al., 2014) can be effective for identifying the state of consciousness based on 

ongoing electrical brain activity measured non-invasively from the scalp. Further work has 

also shown that the methodology for quantitative analysis of EEG data could be eventually 

entirely automated, enabling the estimation of the state of consciousness at the patient’s 
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bedside using a validated analytical pipeline (Engemann et al., 2015). In this context, we 

have previously shown that quantitative analysis of high-density EEG using network analysis 

tools developed for brain connectomics research (Rubinov and Sporns, 2010) can identify 

specific spectral signatures of reorganised brain networks in DoC patients (Chennu et al., 

2014). 

 

To build upon this work and advance the case for developing reliable clinically useful 

applications of such neurotechnology-based assessments in DoC, key challenges have yet to 

be addressed. One particular question pertains to the extent to which assessments with 

different neuroimaging modalities are concordant with each other. This is particularly 

important as both false positives and false negatives can have serious clinical and ethical 

implications in each individual case (Peterson et al., 2015). However, in the absence of a gold 

standard to identify the true subjective state of consciousness of a patient who does not 

exhibit reliable behavioural evidence of consciousness, an approach based on consilience 

between multiple independent assessments might be a rational way forward (Peterson, 2016). 

 

Another question pertinent to understanding the real-world utility of bedside assessments of 

EEG is the extent to which it can complement clinical interpretation and management, by 

providing clinicians with additional, fine-grained information for more informed decision 

making on behalf of individual patients. While previous research has demonstrated that EEG-

based assessment of consciousness has diagnostic value, systematic behavioural assessment 

conducted by an expert using the CRS-R (Kalmar and Giacino, 2005) has often been used as 

the ground truth against which EEG-based assessments are evaluated for their efficacy. 

However, it has yet to be demonstrated that quantitative EEG assessments, if eventually 
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deployed at the bedside, could in fact be used to complement the CRS-R at non-specialist 

centres that commonly assess patients with standard clinical examination. 

 

A further issue worth considering is whether EEG assessments have prognostic value for 

predicting longer term recovery in patients. This has been shown with PET (Stender et al., 

2014) and hinted in previous research with EEG (Sitt et al., 2014). If verified, it would speak 

to the value of repeatable EEG assessments in not only tracking the recovery of behaviourally 

evidenced awareness, but also their ability to detect progressive improvements in the 

underlying neurological functions that support such recovery before they can be observed at 

the bedside. 

  

Here, we directly tackle these challenges aimed at elaborating the clinical utility of high-

density EEG assessments in DoC. Combining a rich set of clinical, behavioural, PET, and 

EEG data from a large cohort of patients, we test multiple hypotheses. These include the 

evaluation of EEG-based assessments for diagnosis and prognosis of consciousness in DoC, 

the presence of concordance across EEG and PET (employed here as a neuroimaging 

reference method), and the role for EEG to complement systematic behavioural assessment at 

the bedside. Further, we train and validate classification algorithms that use EEG-derived 

metrics as inputs to predict the behavioural diagnosis, brain metabolism and clinical 

outcomes of individual patients with high accuracy. 

 

Materials and Methods 

 

Participants 
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We assessed patients referred to the University Hospital of Liège, Belgium to assess the level 

of consciousness, prognosis and treatment options. Patients were referred from clinical 

centres across Europe. Data from patients referred between January 2008 and October 2015, 

either diagnosed with a DoC, or having emerged from one, were included. 

 

The study was approved by the Ethics Committee of the University Hospital of Liège. 

Patients’ legal guardians gave written informed consent. LIS patients were included as a 

clinically relevant group for comparison (see Supplementary Methods). We also collected 

data from healthy controls as a reference group (CTRL), all of whom gave informed written 

consent before participation. There were no significant differences between patients and 

controls in gender or age.  

 

Neurobehavioral and PET assessments 

Patients were assessed on the day of the PET and EEG assessments using the CRS-R. A 

patient’s diagnosis was based on the highest score obtained over 5-7 CRS-R assessments 

during the day. 12 months after the EEG and PET assessments, a GOS-E assessment (Wilson 

et al., 1998) was obtained in collaboration with the patient’s referring physician or legal 

guardian to assess the patent’s outcome. Following Stender et al. (2014), a GOS-E score 

threshold of 2 was used to categorise patients as unconscious, i.e., ‘Outcome negative’ (GOS-

E score 2 or lower), or conscious, i.e., ‘Outcome positive’ (GOS-E score higher than 2).  

 

PET scans were acquired and interpreted using methodology described in Stender et al. 

(2014) and the Supplementary Methods. Briefly, complete bilateral hypometabolism of the 

associative frontoparietal cortex with no voxels with preserved metabolism led to a diagnosis 

of ‘PET negative’, whereas incomplete hypometabolism and partial preservation of activity 
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within these areas yielded a diagnosis of ‘PET positive’ (Laureys et al., 2004; Nakayama et 

al., 2006; Thibaut et al., 2012). PET diagnoses of the first 51 patients listed in Supplementary 

Table 1 have been included in a previous publication (Stender et al., 2014). EEG data 

analysis was blinded to the behavioural and PET assessments. 

 

 

EEG Data Collection 

We collected high-density EEG recordings from 256 scalp sensors using a saline electrode 

net designed by Electric Geodesics (EGI, Eugene, Oregon, USA), at a sampling rate of either 

250Hz or 500Hz (which were downsampled offline to 250Hz). Importantly, EEG data were 

collected during FDG uptake, for 20-30 minutes until just before the start of the PET data 

acquisition, to allow for an accurate comparison of the two modalities. During data 

collection, we ensured that patients were awake and had their eyes open. 

 

EEG data from nine DoC patients were unusable either due to technical problems, 

insufficient data, or excessive movement artefacts. Data from 89 DoC patients, 11 Emerged 

from MCS (EMCS) patients, four LIS patients and 26 controls was retained for further 

analysis. After behavioural assessment of the 89 DoC patients with the CRS-R, 23 were 

diagnosed to be in UWS (Laureys et al., 2010), 17 in MCS-, and 49 in MCS+ (Giacino et al., 

2002; Bruno et al., 2011). From each of these patients, we also collected the following 

demographic details (listed in Supplementary Table 1): age at the time of assessment, days 

since onset of brain injury that resulted in a DoC, etiology of the injury, specifically traumatic 

or non-traumatic, and clinical consensus diagnosis (UWS/MCS) as noted by the referring 

clinical centre. 
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EEG Data Analysis 

Please refer to the Supplementary Methods for details of EEG pre-processing and artefact 

rejection. We calculated spectral and cross-spectral decompositions from cleaned high-

density EEG datasets (see Supplementary Fig. 1), using the FieldTrip toolbox (Oostenveld et 

al., 2011). Power was estimated at bins of 0.1Hz between 0.5-45Hz, using a multitaper 

method with five Slepian tapers. At each channel, magnitude power within three canonical 

frequency bands, delta (0–4 Hz), theta (4–8 Hz) and alpha (8–13 Hz), were converted to 

relative percentage contributions to the total power over all three bands. Alongside, the cross-

spectrum between the spectral decompositions of every pair of channels was used to calculate 

the dwPLI measure (see Supplementary Methods for further details) introduced by Vinck et 

al. (2011). We used this tried and tested measure (Chennu et al., 2014; Chennu et al., 2016; 

Kim et al., 2016) to estimate brain connectivity between pairs of EEG channels in our 

dataset. Further, we restricted analysis to the delta, alpha and theta bands, as the impact of the 

considerable electromyographic artefact observed in patients was relatively negligible in 

these bands. Within each band, dwPLI values at the peak frequency of the oscillatory signal 

across all channels were used to represent the connectivity between channel pairs. From each 

subject’s dataset, the dwPLI values across all channel pairs were used to construct symmetric 

173x173 dwPLI connectivity matrices for the delta, alpha and theta bands. 

 

Brain Network Analysis 

Each dwPLI matrix estimated as above was proportionally thresholded to vary the 

‘connection density’ parameter D, retaining between 90–10% of the largest dwPLI values 

(see Supplementary Fig. 1). Values below this threshold were set to zero, and non-zero values 

were set to one, effectively binarising the thresholded connectivity matrix. This procedure 

was repeated at each value of connection density D, which ranged between 90-10% in steps 
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of 2.5%. At each value of D, the thresholded and binarised matrix was modelled as a network 

with the electrodes as nodes and non-zero values as edges or connections. These networks 

were submitted to graph theory algorithms implemented in the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). These algorithms were employed to calculate metrics that 

captured key topological characteristics of the graphs at multiple scales: the micro-scale 

clustering coefficient, macro-scale characteristic path length (Watts and Strogatz, 1998), 

mesoscale modularity (using the Louvain algorithm, see Blondel et al., 2008) and 

participation coefficient (Guimera and Nunes Amaral, 2005). We also calculated the 

network-level modular span (Chennu et al., 2014), a metric that captures how the topology of 

the network is embedded in topographical space over the scalp, by combining the community 

structure estimated by the Louvain algorithm with the normalized distance between channel 

pairs (see Supplementary Methods for details of these metrics). While clustering coefficient 

and participation coefficient were calculated for each node in a network, characteristic path 

length, modularity and modular span were calculated for the network as a whole. Together, 

seven metrics were calculated for each frequency band: mean relative power over all 

channels, median connectivity over all channel pairs, clustering coefficient, characteristic 

path length, modularity, participation coefficient and modular span. Each of these was 

calculated in three bands (delta, theta and alpha), making a total of 21 metrics. 

 

The EEG data analysis pipeline detailed above was implemented with MATLAB scripts 

based on EEGLAB (Delorme and Makeig, 2004). All steps except the identification of 

excessively noisy channels, epochs, and independent components were completely automated 

and run in exactly the same way for every EEG dataset, using a fixed set of algorithmic 

hyperparameters. 
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Statistical and Classification Analysis 

We used ROC analysis to generate AUC measures to estimate the ability of each of the 21 

brain network metrics to discriminate consciousness evidenced by behaviour or PET, and to 

prognosticate recovery. We calculated the absolute value of the AUC measure between 0.5 

and 1, which indicated the extent to which a particular EEG metric discriminated a particular 

pair of subject groups. A Mann-Whitney test was used to generate a non-parametric p-value 

quantifying the level of statistical significance associated with an AUC value. Multiple 

comparisons were accounted for with a false discovery rate correction. The Jonckheere-

Terpstra test was used to test for trends in network metrics as a function of the level of 

behavioural awareness. 

 

Across the 21 metrics estimated from the EEG datasets, the metric that generated the highest 

AUC for discriminating a pair of subject groups was selected for training a classifier to make 

predictions about individual patients in the groups. For example, the participation coefficient 

metric was the best discriminator of UWS vs. MCS- diagnosis, while delta band power was 

the best discriminator of MCS- vs. MCS+ diagnosis. These metrics were used to train two-

class classifiers to discriminate the respective pairs of patient groups. We used SVMs with 

Radial Basis Function kernels to train and cross-validate classifiers (see Supplementary 

Methods for details). The input features (columns) for training the classifiers were values of 

the selected metric at each network node (or the value for the whole network in case of 

network-level metrics), calculated after thresholding the network at the connection density D 

that generated the best AUC. The samples (rows) were individual subject networks. The 

labels corresponding to each sample were either the CRS-R based diagnosis (UWS/MCS-

/MCS+), PET-based diagnosis (positive or negative) or GOS-E outcome (positive or 

negative). For discriminating UWS, MCS- and MCS+ patients from each other, we employed 
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Error Correcting Output Codes (Dietterich and Bakiri, 1995; Allwein et al., 2000) with an 

exponential loss function to combine two-class classifiers into a three-class classifier. �
2 
tests 

were used to assess the statistical significance of the match between the labels predicted by 

the classifiers and the true class labels. 

 

Results 

 

EEG metrics and behavioural awareness 

We quantified key properties of each subject’s resting brain activity in the delta, theta and 

alpha bands, organised into increasing levels of analytical depth, namely: mean spectral 

power over all channels, median spectral connectivity (dwPLI) over all channel pairs, and 

graph-theoretic metrics including local (clustering coefficient) and global (characteristic path 

length) efficiency, modularity, inter-modular hub strength (participation coefficient) and 

topographical modular span (see Methods for details). 

 

Fig. 1A plots the resting dwPLI-based alpha band connectivity topographs for each group of 

DoC patients ordered by increasing level of behavioural responsiveness as quantified by the 

CRS-R, alongside the EMCS, LIS and control (CTRL) groups for comparison. Progressive 

increase in the strength of EEG connectivity matched the re-emergence of behavioural 

awareness, with UWS patients showing a prominent lack of structured connectivity. Visually, 

MCS- and MCS+ patients showed similar levels of connectivity, but the topographical 

pattern in MCS+ patients showed the presence of a discernible frontoparietal focus for the 

strongest connections. This pattern was further enhanced in EMCS patients, and was 

strikingly evident in LIS and controls. We have previously demonstrated that such 

frontoparietal patterns of alpha connectivity are neural markers of behaviourally evidenced 
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consciousness, not only in DoC patients (Chennu et al., 2014), but also during propofol 

sedation (Chennu et al., 2016). The connectivity patterns in Fig. 1A confirmed this finding in 

a different, much larger and more diverse cohort of DoC patients. However, this analysis of 

dwPLI-based networks was based on sensor-level EEG data, and hence references to regions 

allude to areas over the scalp rather than specific regions of underlying brain anatomy. 

 

Fig. 1B plots the group-wise distribution of participation coefficients in alpha connectivity 

networks. For each group, the figure plots the average topographic distribution of 

participation coefficient Z-scores. These topoplots depict the re-emergence of hub regions 

(consisting of nodes with high participation coefficients) in frontal and parietal areas along 

with increasing levels of awareness. We captured this with the standard deviation of 

participation coefficients over all nodes, a single scalar metric capturing the diversity of 

participation coefficients. As shown in Fig. 1B, this metric demonstrated a statistically 

significant positive trend with increasing CRS-R diagnosis (Jonckheere-Terpstra JT trend 

statistic = 3.26, p = 0.0006), and quantified properties that differentiated the networks 

visualised in Fig. 1A, i.e., the presence of strong connectivity hubs in brain networks. These 

hubs, supported by pathways of underlying structural connectivity, are thought to create a 

small-world functional network in the brain (Watts and Strogatz, 1998; Achard et al., 2006). 

In the context of clinical applications, the topographs and trend in Fig. 1B suggested that 

assessing the presence of such hubs might be a valuable bedside diagnostic for measuring the 

potential for consciousness using resting high-density EEG data. Additionally, the within-

group correlations in the topographical distribution of alpha participation coefficients also 

increased with CRS-R diagnosis (JT trend statistic = 2.56, p = 0.0053; see Supplementary 

Fig. 2), demonstrating that these brain connectivity hubs were more consistently observed as 

patients became more behaviourally aware. 
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Fig. 1C plots the results of ROC analyses conducted to estimate the discriminative power of 

each EEG metric, and depicts only the metrics with statistically significant AUCs in 

descending rank order (see Methods for the 21 metrics estimated). The top three metrics for 

discriminating behaviourally evidenced consciousness from the lack thereof, i.e., the UWS vs 

MCS- categories, were participation coefficient (AUC = 0.83, p = 0.0006), median 

connectivity (AUC = 0.82 Mann-Whitney p = 0.0007), and modular span (AUC = 0.78, p = 

0.0026), all in the alpha band. At the optimal ROC threshold (Youden, 1950) the alpha 

participation coefficient was 79% accurate in discriminating these two categories (�
2
 = 11.52, 

p = 6.9e-4). This was comparable with the 81% accuracy (�
2
 = 17.15, p = 3.4e-5) achieved 

by expert assessment of PET images acquired from the same patients, and also close to the 

85% accuracy reported by Stender et al. (2014). These connectivity-based measures also 

outperformed relative alpha power in its ability to discriminate awareness, highlighting that 

connectivity captured fundamentally distinct information about the neural interactions 

underlying consciousness. This diagnostic utility of alpha connectivity metrics was preserved 

within patients with traumatic and non-traumatic etiologies. 

 

While alpha network metrics were good at distinguishing UWS vs MCS- patients, relative 

delta band power averaged over all channels was very good at discriminating MCS- from 

MCS+ patients (AUC = 0.79, p = 0.0005). Relative delta power in patients decreased 

progressively along with increase in their behavioural diagnosis (JT trend statistic = 3.18, p = 

0.0007; see Supplementary Fig. 4A), potentially reflecting the relative degree of cortical 

deafferentation (Timofeev et al., 2000; Williams et al., 2013). The presence of this 

information in the EEG signal enabled us to combine metrics extracted from different 
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frequency bands to accurately place an individual patient along a stratified scale of 

awareness. 

 

We investigated the generalisability of the above results by training a three-class SVM 

classifier (see Methods) to predict the diagnosis of individual UWS, MCS- and MCS+ 

patients. The inputs to the classifier were the subject-wise values of the best performing 

metrics for discriminating UWS vs. MCS- and MCS- vs. MCS+, namely alpha participation 

coefficient and delta band power at each channel. Fig. 1D plots the confusion matrix 

generated by the SVM after stratified cross-validation. A chi-squared test used to statistically 

estimate the classifier’s performance was highly significant (�
2
 = 94.63, p = 1.4e-19; see Fig. 

1D). In particular, as shown in the confusion matrix, it diagnosed UWS, MCS- and MCS+ 

patients with 74%, 100% and 71% accuracy, all well above the chance level of 33%. Further, 

the classifier was 100% sensitive to an MCS diagnosis. While a proportion of UWS patients 

were classified as MCS- (6 of 23), it is possible that these patients had some degree of 

awareness not evident in their behaviour even with the systematic assessment conducted by 

the CRS-R (Owen et al., 2006; Monti et al., 2010). A greater proportion (3 of 6) of such 

potentially misdiagnosed UWS patients had positive outcomes (mean GOS-E score = 2.75; 

see Fig. 1D, insets) as compared to patients in whom the CRS-R and EEG classifier agreed 

on a diagnosis of UWS (3 of 17; mean GOS-E score = 2.0). However, the number of patients 

in these groups was too small to generate sufficient power for statistical analysis of these 

proportions. Finally, we also found that the classifier generalised very well to previously 

unseen participation coefficient metrics of EMCS, LIS and CTRL subjects, which were not 

used for training. Specifically, all EMCS patients, LIS patients and CTRL subjects were 

classified as MCS (either MCS- or MCS+). 
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EEG network centrality correlates with PET metabolism 

We investigated whether resting EEG metrics measured at the bedside could predict PET 

metabolism, to establish the concordance between these very different imaging modalities. 

We used data from a subset of 98 patients for whom PET scans were available and 

interpretable. Each patient was first labelled PET negative or PET positive using previously 

established criteria (See Methods and Stender et al., 2014). 17 patients were labelled PET 

negative, and the remaining 81 as PET positive.  

 

Fig. 2A plots the average alpha connectivity topographs for PET negative/positive patients, 

depicting the striking difference in the strength and pattern of connectivity. Positive 

metabolism in PET was correlated with strong EEG connectivity between hubs in frontal, 

parietal and central regions. Indeed, the participation coefficients of these EEG hubs were 

distinctly higher in PET positive patients across a wide range of connection density 

thresholds (Fig. 2B), establishing that the observed difference was not an artefact of the 

thresholding applied prior to estimation of graph-theoretic metrics (see Methods for details). 

 

Using a similar ROC analysis as above, we found that the standard deviation of participation 

coefficients over the nodes in each patient’s alpha network was by far the most discriminative 

metric, able to distinguish PET negative/PET positive patients with an AUC of 0.82 (p = 

4.1e-05; Fig. 2C). Further, an SVM classifier trained on this metric performed well (�
2 
= 

27.48, p = 1.6e-07), and was able to identify the PET-based diagnosis of individual patients 

with high sensitivity (81%) and specificity (82%). Further, as evidence of the classifier’s 

generalisability to previously unseen data, all controls were classified as PET positive. This 

suggested that EEG was a reliable bedside predictor of PET activation at an individual patient 

level. In comparison, the patient’s etiology (�
2
 = 3.84, p = 0.05), days since injury (AUC = 
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0.56, p > 0.05) and age at assessment (AUC = 0.44, p > 0.05) did not predict their PET 

diagnosis. 

 

These results represent strong evidence of the correlation between the presence of highly 

active and interconnected hub nodes in functional brain networks measured at the bedside by 

EEG, and the energetic demands of these hubs, as measured with PET. This is perhaps best 

exemplified by the comparison of the alpha networks of two demographically similar MCS+ 

patients in Fig. 3, both of whom were MCS+ after traumatic brain injury. Despite these 

similarities however, patient 79 was PET negative while patient 110 was PET positive, as is 

evident in their PET scans (Figs. 3A and 3B). In keeping with this difference in their PET 

scans, there was a large and obvious difference in their EEG-derived brain networks (Figs. 

3C and 3D). The latter patient had strong, right-lateralised frontoparietal connectivity in their 

alpha network, which was completely absent in the former. 

 

EEG delta network centrality predicts outcomes 

Information about GOS-E outcomes at approximately one year after EEG assessments 

enabled us to assess the prognostic value of resting EEG network activity in presaging 

recovery from DoC. GOS-E scores of 61 patients was available for inclusion into this 

analysis. Following Stender et al. (2014), we dichotomised these GOS-E scores into Outcome 

positive and Outcome negative (see Methods). 39 of the 61 patients had positive outcomes by 

this definition. 

 

In contrast to the relationship between alpha band connectivity and behavioural/PET 

diagnosis, we found a clear relationship between delta band connectivity and outcomes. Fig. 

4A shows delta band network connectivity topographs averaged over patients with positive 
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and negative outcomes. Strong connections across large parts of central and parietal areas 

were prominent in patients who eventually had negative outcomes as per the GOS-E. In 

contrast, patients who had positive outcomes had diminished delta connectivity (Fig. 4A, 

right). 

 

We separated patients with non-traumatic (n = 53) and traumatic etiologies (n = 51) to 

explore this relationship between delta connectivity and outcomes quantitatively. Patients 

with positive outcomes after non-traumatic brain injury had higher mesoscale modularity, 

highlighting the maladaptive nature of delta connectivity and the loss of strong synchronous 

oscillations in the delta band as a positive predictor of recovery (see Supplementary Fig. 4B). 

Patients with positive outcomes after traumatic injury had higher microscale clustering 

coefficients in their delta networks, suggesting local topological connectivity in the delta 

band was a positive predictor in this group (Fig. 4B). These two delta band metrics 

significantly predicted outcomes (Fig. 4C), with an AUC of 0.77 (p = 0.015) and 0.78 (p = 

0.019) in non-traumatic and traumatic etiologies respectively. We also found that standard 

deviation of participation coefficients in delta band networks was the best discriminator of 

etiology itself (AUC = 0.67, p = 0.003; see Supplementary Fig. 5). 

 

Demographic factors like the patient’s age also predicted outcome (AUC = 0.72, p = 0.030), 

as did etiology itself (�
2
 = 4.35, p = 0.040). The ability of the CRS-R total score to predict 

outcomes was similar (AUC = 0.66, p = 0.038), as was the case with the CRS-R based 

UWS/MCS diagnosis (accuracy = 69%, �
2
 = 4.94, p = 0.026). This finding highlights EEG 

network metrics as valuable predictors of recovery that can complement demographic and 

behavioural information. 
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We constructed SVM classifiers trained with cross-validation on the above two metrics, 

namely delta modularity and clustering coefficients. They were able to significantly predict 

future GOS-E dichotomised outcomes in individual patients (accuracy = 82%, �
2
 = 21.89, p = 

2.9e-06) better than the CRS-R diagnosis, and closely matched the predictive strength of 

PET-based diagnosis (accuracy = 81%, �
2
 = 19.05, p = 1.3e-05). Fig. 4C (inset) depicts the 

confusion matrix generated, which produced 92% sensitivity and 64% specificity in 

discriminating positive and negative outcomes. Further, we verified that the classifier was 

able to predict outcomes within the subgroups of UWS and MCS patients with 80% and 87% 

accuracy respectively, confirming its prognostic utility within these CRS-R diagnoses. 

 

EEG network centrality can improve clinical diagnostics 

82 patients had a diagnosis available at referral, as ascertained by clinical consensus. This 

consensus diagnosis was either UWS/vegetative or MCS. We compared these to the CRS-R 

diagnoses during the week of hospitalisation to identify three groups of patients: 17 whose 

consensus diagnosis of UWS agreed with their CRS-R based UWS diagnosis, 45 whose 

consensus diagnosis of MCS agreed with their CRS-R based MCS diagnosis, and 20 who had 

been misdiagnosed as UWS, relative to their MCS diagnosis when reassessed with the CRS-

R (Fig. 5A). Hence 20 of 37 patients who were UWS as per their consensus diagnosis were 

reclassified as MCS after reassessment with the CRS-R. 

 

We examined whether EEG assessments of brain networks, if available at the bedside, could 

help inform more accurate diagnoses. Fig. 5C plots the alpha network connectivity 

topographs averaged over patients in the three groups above. It was evident that patients who 

had been misdiagnosed as UWS by clinical consensus (Fig. 5C, right) had robust 

frontoparietal brain networks similar to patients who had been correctly diagnosed as MCS 
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(Fig. 5C, middle), and dissimilar to patients correctly diagnosed as UWS (Fig. 5C, left). To 

quantify this visual pattern, Fig. 5B plots the standard deviation over participation 

coefficients of these networks. In keeping with the intuition from the visualisations in Fig. 

5C, the patients misdiagnosed as UWS had significantly higher values of this metric than 

patients who were indeed in UWS as per the CRS-R (U = 87, p = 0.01). In fact, we did not 

find significant differences between patients correctly diagnosed as MCS and those 

misdiagnosed as UWS, in any of the 21 metrics we estimated. 

 

Finally, we evaluated whether the classifier we previously constructed to distinguish between 

the UWS, MCS- and MCS+ categories was able to detect the misdiagnosis of consciousness. 

We found that all 20 patients misdiagnosed as UWS were classified as MCS- or MCS+ by 

the EEG-based classifier. That is, the presence of hub nodes in the alpha network, as 

measured by participation coefficients, was able to diagnose the presence of consciousness in 

patients who had been misdiagnosed as UWS based on clinical consensus. 

 

Discussion 

Our findings have described how EEG-derived networks of electrical activity in patients are 

associated with behavioural consciousness, the metabolic demand of the brain, and clinical 

outcomes. Further, we have demonstrated that this association is robust enough to build 

reliable predictors of behavioural diagnosis, PET diagnosis and outcomes in individual 

patients. In doing so, we have set out the evidence base to evaluate the key questions 

articulated in the Introduction, which are important for demonstrating the clinical utility of 

EEG-based assessments in disorders of consciousness. 
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Firstly, our results have reiterated the positive link between sensor-level connectivity in the 

alpha band and conscious states indexed by behaviour. We have shown that the progressive 

re-emergence of connectivity hubs in EEG brain networks, as measured by participation 

coefficients, tracks the consistency with which consciousness can be measured with the CRS-

R, with accuracy comparable to PET-based assessment by an expert. Indeed, the notion that 

connectivity hubs in specific frontal and parietal loci are important for the recovery of 

consciousness after brain injury is consistent with evidence from both PET (Stender et al., 

2014; Stender et al., 2015; Stender et al., 2016) and fMRI (Vanhaudenhuyse et al., 2010b; 

Achard et al., 2012). Further, as patients recover beyond MCS, it appears that both positive 

and negative correlations of activity within and between networks also reappear (Thibaut et 

al., 2012; Di Perri et al., 2016). This relationship between the complexity of activity in brain 

networks and the state of consciousness has been demonstrated across mechanistically 

diverse natural, pharmacological and pathological modulations of consciousness using 

transcranial magnetic stimulation (TMS, see Casali et al., 2013; Casarotto et al., 2016) as 

well as resting state EEG (Schartner et al., 2015). Further, recent literature has highlighted 

high-frequency (20-50Hz) activity in the parietal cortex (a ‘posterior hot zone’) as a neural 

correlate of conscious contents (Koch et al., 2016; Siclari et al., 2017). We complement this 

finding by highlighting frontoparietal connectivity in the alpha band as a potential correlate 

of the level of consciousness. 

 

Our finding is also consistent with previous literature that has analysed EEG data with 

complementary methods based on clinical expertise (Forgacs et al., 2014) and information 

theory (King et al., 2013). This engenders confidence in the reliability of EEG as a valuable 

tool, as it suggests that different analytical methods could be employed to deliver similarly 

capable diagnostic capabilities. Further, the strength of the relationship between the best 
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brain network metrics we employ here and the CRS-R based diagnosis is comparable to that 

reported in previous literature that has employed EEG-based analysis (King et al., 2013; Sitt 

et al., 2014). PET (Stender et al., 2016) and TMS-EEG (Casarotto et al., 2016) have been 

shown to perform better, but both require much more complex technology that is either 

impossible or difficult to deploy at the patient’s bedside. Hence bedside EEG assessments of 

brain connectivity, potentially estimated with fewer sensors than the high-density 

configuration employed here (Engemann et al., 2015), could valuably complement other 

neuroimaging technologies. Indeed, we replicated the finding by Engemann et al. (2015) that 

the positive trend in median dwPLI connectivity alongside increasing behavioural diagnosis 

is relatively robust against a progressive reduction in the number of electrodes included (see 

Supplementary Fig. 3). Going further, we evaluated the usefulness of a subset of frontal and 

parietal electrodes, delineated by the regions with high participation coefficients seen in 

conscious healthy controls (Fig. 1B, CTRL topoplot). Connectivity within this spatially 

circumscribed subset of electrodes demonstrated a stronger trend with the level of 

consciousness as compared to an evenly distributed configuration with a similar number of 

electrodes. This suggested that customised placement over connectivity hubs could reduce 

the number of electrodes needed, while also preserving discriminative power and clinical 

utility of the signals measured. 

 

Secondly, we have shown that there is also a strong association between the presence of 

EEG-based brain connectivity hubs and glucose metabolism itself. PET is an established tool 

in clinical imaging, and recent advances in clinical neuroimaging in DoC have highlighted 

the potential for brain metabolism measured by PET imaging to diagnose the level of 

consciousness (Stender et al., 2014; Stender et al., 2016). This previous research has shown 

that normal metabolic activity in key brain areas including lateral and medial frontoparietal 
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networks are strong predictors of the level of behavioural consciousness indexed by the CRS-

R, and even the recovery thereof. Further, this evidence has been linked with the notion that 

these brain areas are considered to be key connectivity hubs supporting internal (self) and 

external (stimulus) awareness (Vanhaudenhuyse et al., 2010a). Building upon this work, we 

studied the relationship between EEG and PET in DoC, ensuring that the two modalities 

could be reliably correlated by performing EEG assessments during the period of FDG 

uptake. The concordance we have demonstrated between EEG and PET builds confidence in 

the basis of the EEG assessments, which could eventually be deployed at the patient’s 

bedside. Though EEG cannot provide the same kind of information as that can be inferred 

from PET, our findings provide evidence for a consilience-based approach to diagnosis in the 

absence of a gold-standard test for consciousness (Peterson, 2016). Convergent with this 

approach, Bodart et al. (2017) have recently demonstrated a strong correspondence between 

PET and the complexity of TMS responses measured with EEG. Their findings strengthen 

the conceptual basis of the link between EEG-derived network metrics and PET metabolism 

demonstrated here. Here, we have exploited this evidence to train classifiers that predict the 

PET diagnosis of individual patients based on the presence of connectivity hubs measured 

with resting EEG. 

 

Thirdly, in contrast to the positive association between increasing alpha network connectivity 

and behavioural diagnosis, we have shown that there is a significant link between 

maladaptive delta band connectivity in EEG brain networks and outcomes. This link was 

modulated by the etiology of brain injury and the potential extent of partial deafferentation of 

cortical and subcortical neurons (Williams et al., 2013) known to produce oscillations within 

the delta band (Timofeev et al., 2000). This knowledge could be valuable for ensuring the 

timeliness of pharmacological interventions that can accelerate positive outcomes (Giacino et 
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al., 2012). We propose that repeated and regular bedside EEG assessments would cover a 

greater range of arousal fluctuations, would improve our ability to accurately track and 

predict the recovery of consciousness in individual patients. Indeed, Casarotto et al. (2016) 

have shown that taking the maximum value of the complexity of brain activity measured over 

multiple TMS-EEG assessments can considerably improve the reliability of the estimation. 

Hence, developing a framework and analytical pipeline for repeatable bedside assessments 

could enable robust estimation of EEG-based metrics for quantifying brain networks in DoC. 

 

With regard to repeatable assessments, it is worth pointing out that despite the complexity of 

the network analysis and classification algorithms we have presented here, these steps are 

completely automated from an application perspective. We highlight relevant work by Sitt et 

al. (2014), who conducted a comprehensive analysis of a large number of measures from 

high-density EEG to test their ability to discriminate UWS from MCS. These measures 

included event-related potentials, spectral power, connectivity, entropy, complexity and 

mutual information, amongst others. They showed that different measures extracted from 

EEG signals could be beneficially combined to build automated tools for discriminating 

consciousness in patients. Our results concur with and complement their work, demonstrating 

that brain networks estimated at rest can also predict the stratified level of consciousness in 

patients, their brain metabolism, and their clinical outcomes. However, a current limitation of 

the EEG-based assessments proposed here stems from expert intervention required for 

artefact removal, specifically for inspecting and identifying noisy data and independent 

components. There have been many recent methodological advances in automating this step 

(Nolan et al., 2010; Mognon et al., 2011; Jas et al., 2016), and future work towards validating 

these methods with patient datasets could help develop the analytical pipeline for clinical 

applications. 
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Finally, juxtaposing patients misdiagnosed as UWS by clinical consensus against those 

correctly diagnosed as MCS, we have highlighted the value of EEG in complementing 

behavioural assessment with the CRS-R. The CRS-R has been shown to considerably 

improve on standard clinical examination by performing an assessment of behaviour, and 

thereby reduce the risk of misdiagnosis (Schnakers et al., 2009). However, a well-trained 

expert is required to apply the CRS-R consistently and reliably (Løvstad et al., 2010), and 

EEG-based assessments could complement such expert knowledge. In doing so, they could 

provide treating clinicians with multiple sources of convergent evidence for better diagnosis 

and prognosis, and for evaluating the effectiveness of specific interventions. 
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Fig. 1 – EEG brain networks and levels of consciousness. Panel A plots 3D alpha network 

topographs for each subject group (see Supplementary Fig. 1 and Methods for details). 

Increasing level of consciousness from left to right was correlated with re-emergence of 

stronger interhemispheric connectivity between frontal and parietal areas. In each topograph, 

the colour map over the scalp depicts degrees of nodes in the network. Arcs connect pairs of 

nodes, and their normalised heights indicate the strength of connectivity between them. 

Topological modules within the network were identified by the Louvain algorithm. For visual 

clarity, of the strongest 30% of connections, only intra-modular connections are plotted. The 

colour of an arc identifies the module to which it belongs, with groups of arcs in the same 

colour highlighting connectivity within a module. See Methods for further details. The 

standard deviation of participation coefficients over network nodes in each subject’s alpha 

network (panel B) showed a linear trend with increasing level of consciousness. This metric 

was averaged over all connection densities considered. In each box in panel B, the group-

wise mean of this metric is indicated by a red line, and standard error of this mean by the red 

window. Individual patient metrics are shown in the overlaid scatter plot. Above each box, 

the group-wise mean topoplots of participation coefficient Z-scores highlighted the re-

emergence of hub nodes with high participation coefficients in frontal and parietal areas, 

along with increasing level of consciousness. Rank ordering of the best discriminability 

achieved between UWS vs MCS- and MCS- vs. MCS+, as measured by AUCs (panel C), 

highlighted participation coefficient, median connectivity, and modular span metrics, all in 

the alpha band, as the most effective for discriminating UWS from MCS- patients. Only 

metrics with significant AUCs are shown (see methods for a full list of the 21 metrics 

estimated from each subject’s EEG). For the graph-theoretic metrics, AUC was calculated at 

each connection density, and the best one obtained is plotted. An SVM trained with cross-
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validation on patient-wise alpha participation coefficient metrics of UWS, MCS- and MCS+ 

patients showed significantly above chance performance in predicting the behavioural 

diagnosis of individual patients (panel D). Confusion matrix shows percentages of patients in 

each row category classified into each column category, with total number of patients in each 

row category indicated in parentheses. UWS patients classified as MCS- or MCS+ by this 

EEG-based classifier had an improved likelihood of better outcomes than patients who were 

correctly classified as UWS (panel D, insets). 

 

Fig. 2 – EEG brain networks and PET. Patients were labelled as PET positive (+ve) based 

on partial preservation of activity within associative frontoparietal cortex, and PET negative 

(-ve) otherwise (Stender et al., 2014). The average EEG alpha network topograph displayed 

robust connectivity along a frontoparietal axis in PET positive patients who registered 

relatively high metabolism (panel A). Quantitatively, the participation coefficient metric was 

higher in PET positive than in PET negative patients, over a wide range of connection 

densities (panel B). This metric was also able to discriminate PET negative and PET positive 

patients better than any other EEG metric, when comparing their AUCs (panel C). A cross-

validated SVM trained on the alpha participation coefficients of patients produced very good 

performance in predicting their individual PET-based diagnoses, as shown in the confusion 

matrix in panel C, inset. 

 

Fig. 3 – Exemplars of PET positive and negative patients. Panels A and C depict PET 

glucose uptake scans of two patients 79 and 110, both of whom were diagnosed as MCS+ 

after traumatic brain injury. PET negative (-ve) patient 79 showed hypometabolism while 

PET positive (+ve) patient 110 had stronger metabolic activity. Their corresponding EEG 

alpha brain networks (panels B and D) showed striking differences in the strength of 
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frontoparietal connectivity. PET scan (panel E) and EEG alpha network (panel F) of a 

representative healthy control are shown for comparison. 

 

Fig. 4 – EEG networks and outcomes. Patients were labelled as Outcome positive (+ve) if 

their one-year GOS-E score was higher than 2, and Outcome negative (-ve) otherwise 

(Stender et al., 2014). Delta networks were stronger in patients with negative outcomes 

(panel A), indicating synchronised delta band oscillations across many EEG electrodes. The 

modularity (non-traumatic injury) and clustering coefficients (traumatic injury) of delta 

networks were higher in patients with positive outcomes. (panel B). These metrics were best 

able to discriminate positive and negative outcomes in both etiologies, as measured by AUC 

(panel C). When used to train a cross-validated SVM, they contributed to significant 

performance in predicting individual patient outcomes (panel C, inset). 

 

Fig. 5 – EEG networks and misdiagnosis. Panel A depicts the mismatch between diagnosis 

of patients based on clinical consensus, and diagnosis based on CRS-R assessment. Patients 

misdiagnosed as UWS by clinical consensus but reclassified as MCS by the CRS-R had 

robust frontoparietal connectivity in their alpha networks (panel C, right), similar to patients 

in whom the clinical consensus and CRS-R agreed on a diagnosis of MCS (panel C, middle). 

This characteristic pattern of connectivity was missing in patients in whom the consensus and 

CRS-R agreed on a diagnosis of UWS (panel C, left). 
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Fig. 1 – EEG brain networks and levels of consciousness. Panel A plots 3D alpha network topographs for 
each subject group (see Supplementary Fig. 1 and Methods for details). Increasing level of consciousness 

from left to right was correlated with re-emergence of stronger interhemispheric connectivity between 
frontal and parietal areas. In each topograph, the colour map over the scalp depicts degrees of nodes in the 

network. Arcs connect pairs of nodes, and their normalised heights indicate the strength of connectivity 
between them. Topological modules within the network were identified by the Louvain algorithm. For visual 
clarity, of the strongest 30% of connections, only intra-modular connections are plotted. The colour of an 

arc identifies the module to which it belongs, with groups of arcs in the same colour highlighting connectivity 

within a module. See Methods for further details. The standard deviation of participation coefficients over 
network nodes in each subject’s alpha network (panel B) showed a linear trend with increasing level of 

consciousness. This metric was averaged over all connection densities considered. In each box in panel B, 
the group-wise mean of this metric is indicated by a red line, and standard error of this mean by the red 

window. Individual patient metrics are shown in the overlaid scatter plot. Above each box, the group-wise 
mean topoplots of participation coefficient Z-scores highlighted the re-emergence of hub nodes with high 
participation coefficients in frontal and parietal areas, along with increasing level of consciousness. Rank 

ordering of the best discriminability achieved between UWS vs MCS- and MCS- vs. MCS+, as measured by 
AUCs (panel C), highlighted participation coefficient, median connectivity, and modular span metrics, all in 

the alpha band, as the most effective for discriminating UWS from MCS- patients. Only metrics with 
significant AUCs are shown (see methods for a full list of the 21 metrics estimated from each subject’s EEG). 
For the graph-theoretic metrics, AUC was calculated at each connection density, and the best one obtained 

is plotted. An SVM trained with cross-validation on patient-wise alpha participation coefficient metrics of 
UWS, MCS- and MCS+ patients showed significantly above chance performance in predicting the behavioural 

diagnosis of individual patients (panel D). Confusion matrix shows percentages of patients in each row 
category classified into each column category, with total number of patients in each row category indicated 

in parentheses. UWS patients classified as MCS- or MCS+ by this EEG-based classifier had an improved 
likelihood of better outcomes than patients who were correctly classified as UWS (panel D, insets).  
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Fig. 2 – EEG brain networks and PET. Patients were labelled as PET positive (+ve) based on partial 
preservation of activity within associative frontoparietal cortex, and PET negative (-ve) otherwise (Stender 
et al., 2014). The average EEG alpha network topograph displayed robust connectivity along a frontoparietal 

axis in PET positive patients who registered relatively high metabolism (panel A). Quantitatively, the 
participation coefficient metric was higher in PET positive than in PET negative patients, over a wide range of 

connection densities (panel B). This metric was also able to discriminate PET negative and PET positive 
patients better than any other EEG metric, when comparing their AUCs (panel C). A cross-validated SVM 

trained on the alpha participation coefficients of patients produced very good performance in predicting their 

individual PET-based diagnoses, as shown in the confusion matrix in panel C, inset.  
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Fig. 3 – Exemplars of PET positive and negative patients. Panels A and C depict PET glucose uptake scans of 
two patients 79 and 110, both of whom were diagnosed as MCS+ after traumatic brain injury. PET negative 

(-ve) patient 79 showed hypometabolism while PET positive (+ve) patient 110 had stronger metabolic 

activity. Their corresponding EEG alpha brain networks (panels B and D) showed striking differences in the 
strength of frontoparietal connectivity. PET scan (panel E) and EEG alpha network (panel F) of a 

representative healthy control are shown for comparison.  
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Fig. 4 – EEG networks and outcomes. Patients were labelled as Outcome positive (+ve) if their one-year 
GOS-E score was higher than 2, and Outcome negative (-ve) otherwise (Stender et al., 2014). Delta 

networks were stronger in patients with negative outcomes (panel A), indicating synchronised delta band 
oscillations across many EEG electrodes. The modularity (non-traumatic injury) and clustering coefficients 

(traumatic injury) of delta networks were higher in patients with positive outcomes. (panel B). These 
metrics were best able to discriminate positive and negative outcomes in both etiologies, as measured by 
AUC (panel C). When used to train a cross-validated SVM, they contributed to significant performance in 

predicting individual patient outcomes (panel C, inset).  

 
301x240mm (300 x 300 DPI)  

 

 

Page 39 of 59

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

  

 

 

Fig. 5 – EEG networks and misdiagnosis. Panel A depicts the mismatch between diagnosis of patients based 
on clinical consensus, and diagnosis based on CRS-R assessment. Patients misdiagnosed as UWS by clinical 

consensus but reclassified as MCS by the CRS-R had robust frontoparietal connectivity in their alpha 
networks (panel C, right), similar to patients in whom the clinical consensus and CRS-R agreed on a 

diagnosis of MCS (panel C, middle). This characteristic pattern of connectivity was missing in patients in 
whom the consensus and CRS-R agreed on a diagnosis of UWS (panel C, left).  
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Supplementary Methods 

 

Locked-in Syndrome (LIS) Patients 

LIS patients were diagnosed by their injury as seen on MRI scans (two patients had lesions in 

the medulla while the other two patients had lesions in the pons). They were all able to 

communicate with eye or limb movements. They also underwent psychological tests to assess 

and confirm their cognitive function, which was preserved in all patients. Further, LIS 

patients obtained high scores on the CRS-R assessment. 

 

PET Data Collection and Analysis 

Flurodesoxyglucose-PET (FDG-PET) scans were acquired from all subjects using 

methodology described in (Stender et al., 2014), about 30 minutes after intravenous injection 

of 150 or 300 MBq of FDG on a Philips Gemini TF PET-CT scanner (Philips Medical 

Systems). An examiner was present during the whole acquisition to ensure that the patient 

remained awake and eyes open in a silent and dark room (tactile or auditory stimuli were 

administered when patients were closing their eyes). Data analysis and interpretation 

followed what was used in (Stender et al., 2014). Briefly, Statistical Parameter Mapping 

(SPM8) was used to identify regions with relatively decreased and preserved metabolism in 

patients as compared to controls. A ‘PET positive’ or ‘PET negative’ diagnosis based on the 

PET scan was made by visual examination of the results of this analysis result: following 

previous findings, complete bilateral hypometabolism of the associative frontoparietal cortex 

with no voxels with preserved metabolism led to a PET negative, whereas incomplete 

hypometabolism and partial preservation of activity within these areas yielded a diagnosis of 

PET positive (Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al., 2012). 
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EEG Data Pre-processing 

EEG data from 173 channels on the scalp were retained, discarding channels on the neck, 

forehead and cheeks, as these channels contributed most of the movement-related noise in 

patients. Data from the selected channels were filtered between 0.5-45Hz, and segmented into 

10-second epochs. Time points within each epoch were baseline-corrected relative to the 

mean voltage over the entire epoch. 

 

Data with excessive eye movement or movement artefact were removed as follows: 

abnormally noisy channels and epochs were first identified by calculating their normalised 

variance, and then manually rejected or retained by visual inspection. On average, 

approximately 11% of channels (mean = 20, S.D. = 17) were rejected and interpolated. 

Independent Components Analysis (ICA) based on the Infomax ICA algorithm (Bell and 

Sejnowski, 1995) was then used to identify and remove components that were generated by 

non-neural noise sources.  

 

Channels previously removed as noisy were interpolated with the cleaned data using 

spherical spline interpolation. Each channel was re-referenced to the average of all channels. 

The first 60 clean epochs (i.e., 10 minutes) from each subject were retained for further 

analysis. This ensured that there was no difference between subject groups in the number of 

epochs contributing to the estimation of brain connectivity. An average of 11 minutes (S.D. = 

1.6 minutes) of EEG data had to be collected to obtain at least 60 clean epochs. 

 

Brain Connectivity Estimation 

We used the debiased weighted Phase Lag Index (dwPLI) to estimate spectral connectivity 

between pairs of channels. The dwPLI (and its precursor, the Phase Lag Index) measure of 
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phase relationships is an estimator of scalp-level connectivity that is more robust and partially 

invariant to volume conduction in comparison to other estimators (Peraza et al., 2012). 

dwPLI between a pair of EEG channel time series is a number between 0 and 1 indexing the 

extent to which the phases of the oscillations in each channel within a particular band have a 

consistent phase relationship with respect to each other. Importantly, dwPLI down-weights 

phase differences near 0° and 180°, as these could arise simply due to volume conduction 

rather than true interactions between underlying brain sources. 

 

Brain Network Metrics 

Clustering coefficient is a measure of the local efficiency in the connectivity of individual 

network nodes, while characteristic path length measures the whole network’s global 

efficiency. The modularity of a network captures the extent to which the network can be 

divided up into interconnected sub-networks. Given a particular division of network nodes 

into modules, the participation coefficient of an individual node measures the diversity of its 

inter-modular connections. Nodes with high participation coefficients interconnect multiple 

modules together, and hence can be seen as key connectivity hubs. Both modularity and 

participation coefficient were calculated from the community structure estimated in the 

network by the heuristic Louvain algorithm (Blondel et al., 2008). The algorithm was 

repeatedly run 50 times to account for the inherent randomness in the heuristic, and values of 

these two metrics obtained after each run were averaged over the repetitions. 

 

Given a thresholded graph and a community structure identified by the Louvain algorithm, 

the modular span S of a non-degenerate module M (i.e., a module with more than one 

member), was defined as: 
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where nM is the number of nodes in the module, and (i, j) are a pair of member nodes therein, 

dij is the normalised Euclidean distance between the pair of corresponding electrodes over the 

scalp, and cij = 1 if there is an edge between nodes i and j, and zero otherwise. As dij is the 

normalised distance (i.e., dij = 1 for the most distant pair of electrodes), modular span is 

dimensionless. Modular span can be interpreted as the sum of the topographic lengths of all 

the edges between the nodes comprising a module, scaled by the size of the module. Greater 

values of modular span indicate that modules identified by graph theory span greater physical 

distances over the scalp, hence capturing long-distance connectivity. As with modularity and 

participation coefficient, values of modular span calculated after each repetition of the 

Louvain heuristic were averaged over the 50 repetitions. We have previously shown that 

modular span of brain networks in particular is specifically impaired in DoC patients relative 

to controls (Chennu et al., 2014). Here, we evaluated its comparative efficacy in 

differentiating groups of DoC patients. 

 

 

Brain Network Visualisation 

We developed a method to visualise brain networks in 3D, drawing upon related approaches 

(King et al., 2013) and previous work (Chennu et al., 2016), to depict the pattern of sensor-

level connectivity overlaid with topological information from graph-theoretic analysis. We 

used this method to plot both group-averaged (e.g., Fig. 1A) and individual brain networks 

(Fig. 3). Given with a 173x173 symmetric connectivity matrix of dwPLI values between 0 

and 1, we used the steps below to plot each visualisation: 
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1. The connectivity matrix was proportionally thresholded to retain only the top 30% of 

dwPLI values. Values below this threshold were set to zero. This was done to highlight 

the strongest connections with visual clarity. 

2. The weighted degree of each electrode was calculated by taking the sum of all the above-

threshold dwPLI values between that electrode and all other electrodes.  

3. These degree values were then plotted as a heat map over a 3D scalp, using EEGLAB’s 

headplot function. Hence red regions over the scalp indicate electrodes with high dwPLI 

connectivity with other nodes. 

4. The Louvain modularity algorithm (Blondel et al., 2008) was used to identify a modular 

decomposition of the thresholded network. This heuristic algorithm identified ‘modules’ 

within the connectivity network, which are non-overlapping subsets of electrodes with 

higher connectivity between each other than with electrodes in other modules. 

5. For each non-zero dwPLI connectivity value between a pair of electrodes, arcs were 

plotted over the scalp such that either end of the arc intersected with the scalp at the 

location of the electrodes. 

6. The height of the arc over the scalp was scaled by the strength of the corresponding 

dwPLI value, such that a dwPLI value of 0 would produce an arc which was 

approximately parallel to the surface of the scalp and a maximal value of 1 would 

generate an arc 50% of the height of the 3D head. 

7. Each arc was coloured based on the module to which it belonged. For this, first an 

arbitrary colour was assigned to each module, ensuring that modules were assigned 

visually distinctive colours. Then, arcs corresponding to intra-modular connectivity 

values between electrodes belonging to a particular module were all coloured with the 

colour of the module. For visual clarity, inter-modular connectivity values between 

electrodes in two different modules were not plotted. 
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Classification Analysis 

Classifiers were built using four-fold cross-validation, with each train/test fold containing 

constant proportions of each subject group (also known as stratification) to prevent any fold-

specific effects. The SVM regularisation (soft margin) parameter C, the RBF kernel scaling 

parameter K, and the connection density parameter D were chosen using cross-validation 

combined with an exhaustive grid search method. D ranged between 90-10% of the strongest 

edges in steps of 2.5% (see above), while C and K were picked from the following set of 

possible values: 2-5 to 2+5, 5-3 to 5+3 and 10-3 to 10+3. 

 

From the cross-validated classifiers built using the above method, posterior probabilities of 

class affiliation were estimated using Platt’s method (Platt, 1999). A ROC analysis was run 

on these posterior probabilities to identify the best decision threshold or criterion, defined by 

Youden’s Index (Youden, 1950), which optimised the balance between sensitivity and 

specificity in the classification labels generated by the cross-validated classifier. These 

predicted class labels were compared with the true labels using the 𝜒2 test to statistically test 

the classifier’s performance. We also tested the generalisability of classifiers trained on 

patient data by evaluating their performance on other patient and healthy controls datasets 

that were not used (kept in a ‘lock box’) for training and parameter optimisation (Skocik et 

al., 2016). 

 

Supplementary Figures 
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Supplementary Fig. 1 – Data processing pipeline for EEG brain network analysis. 

Cross-spectral density between pairs of channels was estimated using dwPLI. Resulting 

symmetric connectivity matrices were proportionally thresholded before the estimation of 

graph-theoretic metrics. As an example, in the alpha connectivity matrix shown (bottom left), 

the threshold has been set to plot the top 30% of strongest connections. Thresholded 

connectivity matrices were visualised as 3D connectivity topographs (bottom middle, see 

Methods for details of visualisation). Graph-theoretic metrics were calculated after binarising 

the thresholded connectivity matrices. 
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Supplementary Fig. 2 – Inter-subject correlation of alpha participation coefficient 

topographies. Panel A plots a matrix of correlations between the topographies of 

participation coefficients of every pair of subjects. For each subject, panel B plots the mean 

correlation with other subjects in the same group, which became progressively stronger as the 

level of behavioural awareness increased. 

 

 

Supplementary Fig. 3 – Median dwPLI connectivity as a function of electrode 

configuration. Trend in median dwPLI connectivity vs. behavioural diagnosis, as quantified 

by the Jonckheere-Terpstra (JT) statistic was relatively robust against a progressive reduction 

in the number of electrodes included in the analysis from 173 down to 11. Further, median 
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connectivity within electrodes in frontal and parietal regions with high participation 

coefficient z-scores in controls (see Fig. 1B, CTRL topograph) produced the strongest trend. 

 

 

Supplementary Fig. 4 – Relative power and median connectivity in the delta band as a 

function of level of consciousness. Relative power in the delta band averaged over all 

channels decreased progressively with increase in the behavioural diagnosis of patients (panel 

A). Median dwPLI connectivity in the delta band was lower in patients with positive 

outcomes, separated by etiology (panel B; JT trend statistic = 2.02, p = 0.0217). 
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Supplementary Fig. 5 – EEG networks and etiology. Delta networks were stronger in 

patients with non-traumatic etiology (panel A). Standard deviation of participation 

coefficients in the delta band were significantly different between etiologies (panel B). This 

metric was also best able to discriminate etiologies, as measured by AUC (panel C). 

 

Supplementary Table 1 – Demographic and diagnostic details of patients included in the 

study. 
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PatientReferral diagnosisCRS-R diagnosisBest CRS-R scorePET diagnosis GOS-E scoreGOS-E outcome

P1 MCS UWS 7 Positive 3 Positive

P2 MCS MCS+ 15 Positive 4 Positive

P3 UWS MCS+ 10 Positive - -

P4 UWS UWS 7 Negative 1 Negative

P5 UWS UWS 7 Negative 2 Negative

P6 - MCS+ 9 Positive 1 Negative

P7 MCS MCS- 10 Positive 3 Positive

P8 UWS UWS 7 Negative 1 Negative

P9 UWS MCS+ 9 Positive - -

P10 - MCS+ 12 Positive 1 Negative

P11 MCS MCS- 9 Positive 3 Positive

P12 UWS MCS+ 11 Positive 3 Positive

P13 UWS MCS+ 13 Positive 2 Negative

P14 - MCS+ 11 Positive 3 Positive

P15 UWS UWS 7 Positive 3 Positive

P16 UWS MCS+ 13 Positive 3 Positive

P17 MCS MCS- 9 Positive 3 Positive

P18 UWS MCS- 11 Positive - -

P19 - MCS- 9 Positive 1 Negative

P20 - MCS+ 16 Positive 3 Positive

P21 UWS UWS 6 Negative - -

P23 MCS MCS- 17 Positive 2 Negative

P24 MCS MCS- 8 Positive - -

P25 UWS UWS 7 Positive 4 Positive

P26 UWS MCS+ 8 Negative 2 Negative

P27 UWS MCS+ 8 Positive - -

P29 UWS UWS 6 Negative 2 Negative

P30 MCS MCS+ 13 Positive 5 Positive

P31 UWS UWS 6 Negative 2 Negative

P33 MCS MCS+ 8 Positive 7 Positive

P35 MCS MCS- 12 Positive - -

P36 MCS MCS+ 17 Positive 3 Positive

P37 - UWS 7 Negative 2 Negative

P38 UWS UWS 4 Positive 3 Positive

P39 MCS MCS+ 16 Positive 3 Positive

P40 MCS MCS- 14 Positive - -

P41 MCS MCS+ 17 Positive 3 Positive

P42 MCS MCS- 10 Positive 1 Negative

P43 - MCS+ 14 Positive 3 Positive

P44 - MCS+ 14 Positive - -

P46 MCS MCS+ 12 Positive 1 Negative

P47 UWS MCS+ 9 Positive 1 Negative
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P48 UWS UWS 6 Positive 3 Positive

P50 MCS MCS+ 17 Positive 3 Positive

P51 - MCS+ 16 Positive - -

P52 MCS EMCS 16 Positive 2 Negative

P53 UWS MCS+ 11 Positive - -

P54 LIS LIS - Positive - -

P56 MCS MCS+ 13 Positive - -

P57 MCS MCS- 11 Positive 3 Positive

P58 MCS EMCS 23 Positive 3 Positive

P59 MCS MCS+ 17 Positive - -

P60 UWS UWS 6 Negative - -

P61 UWS EMCS 23 Positive 3 Positive

P62 MCS MCS- 10 - - -

P63 - EMCS 23 Positive - -

P64 - EMCS 23 Negative - -

P65 - EMCS 19 - - -

P67 MCS UWS 6 Positive 3 Positive

P68 MCS MCS+ 12 Positive 3 Positive

P69 MCS EMCS 23 Positive - -

P71 UWS UWS 5 Negative - -

P72 - MCS+ 11 Positive - -

P73 MCS MCS+ 15 Positive - -

P74 EMCS LIS 17 Positive 1 Negative

P75 UWS UWS 9 Negative - -

P76 MCS MCS- 8 Positive - -

P77 MCS UWS 8 Negative - -

P78 - EMCS 15 - 1 Negative

P79 UWS MCS+ 13 Negative 2 Negative

P80 MCS MCS+ 12 Positive 3 Positive

P81 MCS MCS+ 13 Positive 3 Positive

P82 MCS MCS- 9 Positive 3 Positive

P83 UWS UWS 7 Positive 2 Negative

P84 - MCS- 9 Positive - -

P85 - EMCS 21 Positive 3 Positive

P86 MCS MCS+ 8 Positive - -

P87 MCS LIS 20 Positive - -

P88 MCS MCS+ 14 Positive - -

P89 UWS UWS 7 Negative - -

P90 UWS MCS+ 11 Positive 3 Positive

P91 MCS MCS+ 12 Positive 3 Positive

P92 UWS MCS+ 7 Positive - -

P93 - LIS - Positive 3 Positive

P94 MCS MCS+ 13 Positive 3 Positive
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P95 UWS MCS+ 11 Positive - -

P96 UWS UWS 9 Negative - -

P97 MCS EMCS 21 Positive - -

P98 MCS MCS- 10 Positive 3 Positive

P99 MCS MCS+ 15 Positive - -

P101 UWS MCS- 11 Positive 3 Positive

P102 - UWS 5 Negative - -

P103 UWS UWS 7 - 1 Negative

P104 UWS MCS+ 8 - - -

P105 MCS MCS+ 18 Positive 3 Positive

P106 MCS MCS+ 10 Positive - -

P107 MCS MCS+ 16 Positive - -

P108 MCS MCS+ 12 Positive - -

P110 UWS MCS+ 16 Positive 3 Positive

P111 UWS MCS+ 8 Positive - -

P112 UWS MCS+ 12 Positive 3 Positive

P113 MCS MCS+ 16 Positive 3 Positive

P114 - UWS 7 - 1 Negative

P115 EMCS EMCS 22 Positive - -
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Etiology Age (years)Time since injury (days)

Non-traumatic 49 2884

Non-traumatic 27 1570

Traumatic 27 1542

Non-traumatic 73 86

Non-traumatic 35 6950

Non-traumatic 60 9

Traumatic 24 319

Non-traumatic 29 738

Non-traumatic 30 2406

Traumatic 18 -

Traumatic 30 563

Traumatic 30 583

Traumatic 50 -

Traumatic 30 -

Traumatic 22 180

Traumatic 46 528

Non-traumatic 48 -

Non-traumatic 37 1869

Non-traumatic 59 -

Traumatic 5 -

Traumatic 31 843

Non-traumatic 30 33

Traumatic 43 3139

Non-traumatic 45 491

Non-traumatic 57 390

Non-traumatic 25 308

Non-traumatic 59 1210

Traumatic 23 421

Non-traumatic 28 66

Non-traumatic 66 11

Non-traumatic 53 1235

Traumatic 24 -

Traumatic 26 480

Non-traumatic 36 -

Traumatic 54 196

Traumatic 22 2972

Traumatic 23 2035

Non-traumatic 73 28

Traumatic 23 639

Traumatic 30 3337

Non-traumatic 47 -

Traumatic 65 674
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Traumatic 38 293

Non-traumatic 55 -

Non-traumatic 7 1476

Traumatic 57 1398

Traumatic 19 426

Non-traumatic 52 143

Traumatic 18 118

Traumatic 39 1437

Traumatic 34 375

Non-traumatic 61 858

Non-traumatic 40 815

Traumatic 37 6177

Non-traumatic 22 1211

Traumatic 32 845

Non-traumatic 37 263

Non-traumatic 14 185

Non-traumatic 26 112

Non-traumatic 35 4154

Non-traumatic 60 406

Non-traumatic 62 672

Non-traumatic 67 1464

Traumatic 32 657

Traumatic 54 2122

Non-traumatic 23 456

Non-traumatic 42 220

Non-traumatic 35 398

Non-traumatic 63 168

Traumatic 32 655

Non-traumatic 72 3062

Traumatic 24 528

Traumatic 19 1304

Traumatic 21 257

Traumatic 30 402

Traumatic 28 2423

Traumatic 32 1009

Traumatic 41 7387

Traumatic 59 709

Non-traumatic 51 347

Traumatic 45 4778

Traumatic 25 1283

Non-traumatic 21 508

Non-traumatic 28 2130

Non-traumatic 37 544
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Non-traumatic 45 138

Traumatic 32 5378

Traumatic 42 1186

Traumatic 25 737

Traumatic 59 1989

Non-traumatic 24 333

Traumatic 43 40

Non-traumatic 56 170

Traumatic 55 669

Non-traumatic 39 252

Non-traumatic 41 264

Non-traumatic 54 252

Non-traumatic 54 387

Traumatic 38 541

Non-traumatic 43 98

Traumatic 22 423

Traumatic 32 4681

Non-traumatic 49 359

Non-traumatic 33 308
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