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On the algebraic classification of K-local spectra

Constanze Roitzheim

Abstract

In 1996, Jens Franke proved the equivalence of certain triangulated categories
possessing an Adams spectral sequence. One particular application of this theorem
is that the K(p)-local stable homotopy category at an odd prime can be described as
the derived category of an abelian category. We explain this proof from a topologist’s
point of view.

In 1983 Bousfield published a paper about the category of E(1)-local (or, equivalently,
K-local) spectra at an odd prime. There, he gave an algebraic description of isomorphism
classes of E(1)-local spectra in their homotopy category via E(1)-homology and a certain
“k-invariant” coming from a d2-differential in the Adams spectral sequence. However,
with this setup he could only describe the morphisms up to Adams filtration.

In 1996, Jens Franke constructed an abstract equivalence between certain triangulated
categories possessing an Adams spectral sequence. Applying Franke’s main theorem to the
special case of E(1)-local spectra, one obtains an algebraic description of the homotopy
category of E(1)-local spectra also covering the morphisms. In this paper, we give a
streamlined exposition of Franke’s result adapted to this special case:

Theorem[Franke] There is an equivalence of categories

R : D2p−2(B) −→ Ho(L1S)

whereD2p−2(B) denotes the derived category of twisted cochain complexes over the abelian
category B, and Ho(L1S) the homotopy category of E(1)-local spectra.

This paper is organised as follows: In the first chapter, the categories playing the
main role for the construction are introduced: firstly, the category of so-called twisted
cochain complexes of E(1)∗E(1)- comodules and secondly, a certain diagram category of
spectra with a fixed diagram shape and a model structure related to the model structure
of E(1)-local spectra.

In the next section, a functor Q is constructed which gives an equivalence of twisted
cochain complexes and the homotopy category of above diagram spectra. In the third
section this equivalence Q is extended to an equivalence of the derived category of twisted
cochain complexes and the homotopy category of E(1)-local spectra. Further, as section 4
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will show, this equivalences gives an “exotic model” for E(1)-local spectra: the homotopy
categories of the cochain complexes and E(1)-local spectra are equivalent as categories,
yet there is no Quillen equivalence between them.

We do not claim any originality, it is just the proof of Franke’s Main Uniqueness
Theorem applied to Bousfield’s case with the notation adapted and some technical details
filled in. My special thanks go to Stefan Schwede for his motivation and support.

1 The main ingredients

1.1 E(1)∗E(1)-comodules

We begin with describing an abelian category denotedA which is equivalent to the category
of E(1)∗E(1)-comodules (see [Bou85], 10.3). Bousfield describes A as follows: Let p be
an odd prime and let B = B(p) denote the category of Z(p)-modules together with Adams

operations ψk, k ∈ Z∗
(p) satisfying the following:

For each M ∈ B(p),

• There is an eigenspace decomposition

M ⊗Q ∼=
⊕

j∈Z

Wj(p−1)

such that for all w ∈Wj(p−1) and k ∈ Z(p):

(ψk ⊗ id)w = kj(p−1)w.

• For all x ∈M there is a finitely generated submodule C(x) containing x satisfying:
for all m ≥ 1 there is an n such that the action of Z∗

(p) on C(x)
/

pmC(x) factors

through the quotient of (Z
/

(pn+1))∗ by its subgroup of order p− 1.

To build the category A out of the above category, we additionally need the following:
Let T j(p−1) : B −→ B, j ∈ Z, denote the following self-equivalence:

For all M ∈ B, T j(p−1)(M) = M as a Z(p)-module, but on T j(p−1)(M), the Adams

operation ψk now equals kj(p−1)ψk : M −→M for all k ∈ Z.
Now an object M ∈ A is defined as a collection of modules M = (Mn)n∈Z,Mn ∈ B,

together with isomorphisms

T p−1(Mn) −→Mn+2p−2 for all n ∈ Z.

In this paper we will often make use of the following: Let X be a spectrum. Then
the E(1)∗E(1)-comodule E(1)∗(X) is an object of A in the above sense by taking Mn :=
E(1)n(X), and the operations ψk being the usual Adams operations.
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From now on B will be viewed as the subcategory of A consisting of those objects
(Mn)n∈Z such that

Mn =

{

M : n ≡ 0 mod 2p − 2
0 : else

This describes a so-called split of period 2p− 2 of A: B ⊂ A is a Serre class such that
⊕

0≤i<2p−2

B −→ A

(Bi)0≤i<2p−2 7−→
⊕

0≤i<2p−2

Bi[i]

is an equivalence of categories, where [i] denotes the i-fold internal shift in the grading,
i.e. M [i]n = Mn−i.

Remark. There exists a similar splitting of period 2p− 2 for the category of E(n)∗E(n)-
comodules with arbitrary n and p odd. Moreover, the proof of the uniqueness theorem will
not only work for the case p odd and n = 1 but for all p and n such that n2 + n < 2p− 2,
i.e. when the maximal injective dimension of E(n)∗E(n)-comodules is smaller than the
splitting period.

1.2 Twisted cochain complexes

In this section we describe the source of the equivalence to be constructed. Let A for
the next paragraphs denote an arbitrary abelian category, N a natural number and
T : A −→ A a self-equivalence.

Definition 1.2.1. The category C(T,N)(A) of (T,N)-twisted cochain complexes with
values in A is defined as follows:

The objects are cochain complexes C∗ with Ci ∈ A for all i together with an isomor-
phism of cochain complexes

αC : T (C∗) −→ C∗[N ] = C∗+N .

The morphisms are morphisms of cochain complexes f : C∗ → D∗ that are compatible
with those isomorphims, i.e. the following diagram commutes:

T (C∗)
αC

//

T (f)
��

C∗[N ]

f [N ]
��

T (D∗)
αD

// D∗[N ].

Such a cochain complex C∗ is called injective if each Ci is injective in A. A morphism
in C(T,N)(A) is called a quasi-isomorphism if it induces an isomorphims in cohomology.
C∗ is called strictly injective if it is injective and for each acyclic complex D∗, the cochain
complex Hom∗

C(T,N)(A)
(D∗, C∗) is again acyclic.
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Notation. In our particular case, let A be again the category equivalent to E(1)∗E(1)-
comodules described in the last section. The self-equivalence of A we work with from now
on is last section’s T p−1. We denote the category C(T p−1,1)(A) by C1(A).

Secondly, we are interested in the category C(T (2p−2)(p−1) ,2p−2)(B), where B denotes
again the split of A introduced in the last section. This category of cochain complexes
will be denoted by C2p−2(B).

1.3 A model structure for twisted cochain complexes

Proposition 1.3.1. [Franke] There is a model structure on C1(A) resp. C2p−2(B) such
that

• weak equivalences are the quasi-isomorphisms

• cofibrations are the monomorphisms

• fibrations are the degreewise split epimorphisms with strictly injective kernel.

Remark. The analogous model structure exists on arbitrary C(T,N)(A), given that there
are enough injectives in A.

Notation. D1(A) resp. D2p−2(B) denotes the derived category of C1(A) resp. C2p−2(B),
i.e. the homotopy category of these model categories with respect to the above model
structure.

1.4 The relation between C1(A) and C2p−2(B)

Now we will describe in which ways C1(A) and C2p−2(B) contain the same data and
therefore are equivalent as categories.

Let C∗ = ( ... → C0 → C1 → C2 → ... ) be an object of C1(A), i.e. Ci ∈ A

and T p−1(Ci) ∼= Ci+1 via αC . Since A splits into 2p − 2 copies of B, each Ci splits into
Ci = Ci

(0) ⊕ C
i
(1) ⊕ ... ⊕ C

i
(2p−1) with Ci

(j) ∈ B[j]. So C∗ gives us a complex taking values
in B by setting

C∗
(0) := ( ...→ C0

(0) → C1
(0) → C2

(0) → ... ).

The self-equivalence T p−1 acts on each Ci by cyclically permuting the summands:

T (Ci
(j))
∼= T (Ci)(j+1)

∼= Ci+1
(j+1)

, j ∈ Z
/

(2p−2).

Consequently we have

T (2p−2)(p−1)(Ci
(0))
∼= T (2p−3)(p−1)(Ci+1

(1) ) ∼= ... ∼= C
i+2p−2
(0) ,
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and thus C∗
(0) is 2p− 2-twistperiodic, i.e. C∗

(0) ∈ Obj(C
2p−2(B)).

On the other hand, an object of C2p−2(B) carries the same information as an object of
C1(A): given

D∗ = ( ...→ D0 → D1 → D2 → ... ) ∈ C2p−2(B)

one obtains a corresponding complex D
∗
∈ C1(A) by setting

D
i

(j) := T j(p−1)(Di−j).

So all in all, it is of no significant relevance which of those two categories we choose to
work in.

1.5 Diagram categories of spectra

By a spectrum we mean the following: A spectrum X is a collection of simplicial sets Xn

for n ≥ 0 together with morphisms of simplicial sets σn : ΣXn → Xn+1. A morphism
f : X → Y of spectra is a collection of morphisms fn : Xn → Yn of simplicial sets that
commute with the structure maps σn, i.e. σn ◦ Σfn = fn+1 ◦ σn (see [BF78]). Let L1S

denote the category of spectra together with the following model structure which is a
localisation of the Bousfield-Friedlander model structure: f : X −→ Y is a

• weak equivalence if E(1)∗(f) is an isomorphism in A

• cofibration if each gn : Xn

⋃

ΣXn−1

ΣYn−1 −→ Yn is a cofibration of simplicial sets.

• fibration if f has the right lifting property with respect to acyclic cofibrations

(This model structure is rather well-known, however, we do not know any reference
in literature.) Note that Ho(L1S) is equivalent to the homotopy category of E(1)-local
spectra denoted Ho(L1S).

By a poset we mean a partially ordered finite set. For a poset C, L1S
C denotes the

category of C-shaped diagrams with values in L1S. For each c ∈ C and X ∈ L1S
C , let

Xc denote the value of X at the vertex c. For example, taking the poset 1 = (0→ 1), an
object of L1S

1 is determined by a morphism X0 −→ X1 in L1S.

For fixed C, there is a model structure on L1S
C : A morphism f : X −→ Y of diagrams

is a

• a weak equivalence if it is a vertexwise weak equivalence in L1S (i.e. fc : Xc → Yc

induces an isomorphism in E(1)-homology for each c ∈ C)

• a fibration if it is vertexwise a fibration in L1S

• a cofibration if for all c ∈ C, Xc

∐

colimc′<c Xc′

Y ′
c −→ Yc is a cofibration.
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This gives L1S
C the structure of a stable model category, thus Ho(L1S

C) is a trian-
gulated category (see e.g. [Hov99]).

From now on, C will be the poset consisting of elements βi and γi for i ∈ Z
/

(2p−2) such
that βi > γi and βi > γi+1 for i ∈ Z

/

(2p−2), i.e.

β1 ... βi−1 βi β2p−2

γ1

OO
22

γi−1

OO
aa

γi

OOaaCCCCCCCC

...

__

γ2p−2.

OO

So an object X of Ho(L1S
C) is a diagram of spectra

Xβ1
... Xβi−1 Xβi

Xβ2p−2

Xγ1

OO
22

Xγi−1

OO
aa

Xγi

OObbFFFFFFFF

...

``

Xγ2p−2 .

OO

N.B. It should be pointed out that we work in the homotopy category of a diagram
category of spectra and not with diagrams taking values in the homotopy category of
spectra.

In this particular case it it not too hard to characterise the fibrant and cofibrant objects
of L1S

C :

• X ∈ L1S
C is fibrant iff each Xβi

,Xγi
is fibrant in L1S

• X ∈ L1S
C is cofibrant iff each Xβi

,Xγi
is cofibrant in L1S and for all i ∈ Z

/

(2p−2).

Xγi+1 ∨Xγi
−→ Xβi

is a cofibration in L1S.

2 The functor Q

2.1 Defining Q

We would now like to build twisted cochain complexes out of diagrams of spectra. Let X
be an object of Ho(L1S

C). The given morphism

pi : Xγi
−→ Xβi

as a part of the diagram X induces a morphism in A

πi := E(1)∗(pi)[i] : E(1)∗(Xγi
)[i] −→ E(1)∗(Xβi

)[i].
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Notation. Gi(X) := E(1)∗(Xγi
)[i] and Bi(X) := E(1)∗(Xβi

)[i].

The objects Bi(X) will play the role of the boundaries in the cochain complex C∗(X)
to be built, and the Gi(X)’s will play the role of the quotient of the cochains by the
boundaries.

Now we would like to assign to each ki : Xγi+1 −→ Xβi
∈ Ho(L1S

1) (see section 1.5)
an exact triangle

Xγi+1

ki
−→ Xβi

−→ cone(ki) −→ ΣXγi+1 .

in a functorial (!) way. This is done by using Franke’s cone functor

cone : Ho(L1S
1) −→ Ho(L1S), (f : A→ B) 7→ Hocolim(∗ ← A

f
→ B).

Notation. Define Ci(X) := E(1)∗(cone(ki))[i] ∈ A.

Applying E(1)∗ to the above exact triangle we obtain a long exact sequence

...→ Gi+1(X)[−1]→ Bi(X)→ Ci(X)→ Gi+1(X)→ Bi(X)[1]→ ... (1)

Now let L be the full subcategory of Ho(L1S
C) consisting of all objects X such that

• Gi(X) and Bi(X) are not just objects of A but actually objects of the splitting B
of A (see section 1.1).

• πi : Gi(X) −→ Bi(X) is surjective for all i.

So if X is an object of L, what does this mean for the long exact sequence (1)? If
X ∈ L, then by definition

Gi+1(X)[−1] ∈ B[−1] and Bi(X) ∈ B.

Therefore, by definition of B, the maps Gi+1(X)[−1] −→ Bi(X) and
Gi+1(X) −→ Bi(X)[1] in the long exact sequence (1) are zero. Thus, (1) splits into
short exact sequences

0 −→ Bi(X)
ιi
−→ Ci(X)

ρi
−→ Gi+1(X) −→ 0. (2)

To make a cochain complex out of the objects Ci(X), we need a differential
d : Ci(X) −→ Ci+1(X) which we define as the composition

Ci(X)
ρi
−→ Gi+1(X)

πi+1
−→ Bi+1(X)

ιi+1
−→ Ci+1(X). (3)

Then d2 is zero indeed since it factors over ρi+1 ◦ ιi+1 which is part of the short exact
sequence (2) and thus zero itself. The morphisms ρi and πi are surjective since X ∈ L, so
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im(d) = B∗(X). Also, because of the shape of the underlying poset we work with, C∗(X)
is 2p − 2-twistperiodic. So this construction gives a functor

Q : L −→ C2p−2(B), X 7−→ C∗(X).

The next aim is to show that Q is an equivalence of categories which will be done in
the next two subsections.

2.2 Q is full and faithful

We have to prove that for objects X and X̃ of L, the map

M := HomHo(L1SC)(X, X̃)
q
−→ N (4)

with

N :=
⊕

i

HomB1

(

((Bi(X)→ Ci(X̃)), (Bi(X̃)→ Ci(X̃))
)

induced by Q is injective and its image consists of those morphisms that are morphisms
of cochain complexes. A morphism f = (fi)i ∈ N is also a morphism of cochain complexes
iff it is compatible with the differentials, i.e. (remembering the definition of d) makes the
outer square in the following diagram commute:

Ci(X)
ρi

//

f i

��

Gi+1(X)
πi+1

//

f
i

��

Bi+1(X)
ιi+1

//

f i+1

��

Ci+1(X)

f i+1

��

Ci(X̃)
ρi

// Gi+1(X̃)
πi+1

// Bi+1(X̃)
ιi+1

// Ci+1(X̃)

Since f ∈ N and Gi+1 ∼= Ci
/

Bi, we know that the first and the third small square
commute. So, f is a morphism of cochain complexes if and only if the middle small square
commutes, i.e. iff f lies in the kernel of the map

D : N −→
⊕

i

HomA

(

Gi(X), Bi(X̃)
)

where D sends f = (fi)i ∈ N to f i+1 ◦ πi+1 − πi+1 ◦ f
i
, with f

i
: Gi+1(X)→ Gi+1(X̃)

induced by f i.
So, showing that Q is full and faithful is equivalent to showing that

0 −→M
q
−→ N

D
−→

⊕

i

HomA

(

Gi(X), Bi(X̃)
)

(5)
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is exact. To show the exactness of (5), we would first like to get a description of M
and N in terms of some other exact sequences.

We start with M . A morphism of HomHo(L1SC)(X, X̃) consists of the following data:
the morphisms at each vertex plus commutativity conditions coming from the shape of C.
To be more precise, the mapping space mapL1SC (X, X̃) (see Section 4) is the upper left
corner of the following pullback square of mapping spaces

mapL1SC (X, X̃) //

��

∏

i

mapL1S
(Xβi

, X̃βi
)

��
∏

i

mapL1S
(Xγi

, X̃γi
) //

∏

i

mapL1S
(Xγi+1 , X̃βi

)×
∏

i

mapL1S
(Xγi

, X̃βi
)

where the lower left and upper right corner contain the information about the maps
at each vertex and the lower right corner plus the maps into it give the commutativity
conditions. The right vertical map is the precomposition with the maps

Xγi+1 ∨Xγi
−→ Xβi

(6)

and the lower horizontal map is the composition with the maps

X̃γi
−→ X̃βi

resp. X̃γi
−→ X̃βi−1

.

Without loss of generality one can assume X to be cofibrant and X̃ to be fibrant (see
section 1.3). Since (6) is then a cofibration for each i and L1S is a simplicial model
category (see e.g. [GJ99], section II.3), the right vertical map in the pullback square is
a fibration. Therfore, the pullback square is a homotopy pullback square, and the left
vertical map is a fibration as well.

From a homotopy pullback square one gets a long exact homotopy sequence. Since X
is cofibrant and X̃ fibrant, we have as homotopy groups

πk mapL1S
(Xγi

, X̃γi
) ∼= [Xγi

, X̃γi
]
E(1)
k

(analogously for the other indices), and

π0 mapL1SC (X, X̃) = M ∼= HomHo(L1SC)(X, X̃).

Here, [A,B]
E(1)
k denotes HomHo(L1S)(Σ

kA,B). Writing down the first five terms of the
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long exact homotopy sequence we obtain

⊕

i

[Xγi
, X̃γi

]
E(1)
1 ⊕

⊕

i

[Xβi
, X̃βi

]
E(1)
1

��
⊕

i

[Xγi+1 , X̃βi
]
E(1)
1 ⊕

⊕

i

[Xγi
, X̃βi

]
E(1)
1

��

M

��
⊕

i

[Xγi
, X̃γi

]
E(1)
0 ⊕

⊕

i

[Xβi
, X̃βi

]
E(1)
0

��
⊕

i

[Xγi+1 , X̃βi
]
E(1)
0 ⊕

⊕

i

[Xγi
, X̃βi

]
E(1)
0

(7)

Next, we would like to simplify the terms of this sequence with the help of the E(1)-
Adams spectral sequence

E
s,t
2
∼= ExtsA(E(1)∗+t(Y ), E(1)∗(Z))⇒ [Y,Z]

E(1)
t−s (8)

for Y,Z ∈ L1S. Since in our case X, X̃ ∈ L, we have

E(1)∗(Xβi
), E(1)∗(X̃βi

) ∈ B[−i].

It follows that

ExtsA(E(1)∗+t(Xβi
), E(1)∗(X̃βi

))

is actually ExtsB(E(1)∗+t(Xβi
), E(1)∗(X̃βi

)), and by definition of B, this Ext-term can only
be nonzero if t is a multiple of 2p − 2. This is because for an object of B, all objects in a
injective resolutions are in B themselves again. Bousfield also proved that Exts

A(−,−) = 0
for s ≥ 3. Consequently, the spectral sequence collapses, as seen in the following picture
of the E2-term for p = 3:
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✲

✻

r

r

r

r

r

r

r

r

r

0 0 0 0

0 0 0 0

d2

✁
✁
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✁
✁
✁✕

t−s=0

t−s=1

s

t
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

The E2-term can only be nonzero at the location of the dots. In particular, as this
picture indicates, for all odd primes, Es,t

2 is zero if t = s, s 6= 0 and t− s = 1. Therefore,

[Xβi
, X̃βi

]
E(1)
1 = 0 = [Xγi

, X̃γi
]
E(1)
1 = [Xγi

, X̃βi
]
E(1)
1

and

[Xβi
, X̃βi

]
E(1)
0
∼= HomB(E(1)∗(Xβi

), E(1)∗(X̃βi
))

[Xγi
, X̃γi

]
E(1)
0
∼= HomB(E(1)∗(Xγi

), E(1)∗(X̃γi
))

[Xγi
, X̃βi

]
E(1)
0
∼= HomB(E(1)∗(Xγi

), E(1)∗(X̃βi
))

Similarly, ExtsA(E(1)∗+t(Xγi+1), E(1)∗(X̃βi
)) can only be non-zero if s ≤ 2 and

t ≡ 1(2p − 2), in particular it is zero for t − s = 1, s 6= 0 and s = t, s 6= 1. So this
spectral sequence also collapses, and it follows that

[Xγi+1 , X̃βi
]
E(1)
1
∼= HomB(E(1)∗+1(Xγi+1), E(1)∗(X̃βi

))

and

[Xγi+1 , X̃βi
]
E(1)
0
∼= Ext1B(E(1)∗(Xγi+1), E(1)∗(X̃βi

)).
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Putting this into the sequence (7), we obtain the exact sequence

0

��
⊕

i

HomB(Gi+1(X), Bi(X̃))

��

M

��
⊕

i

HomB(Gi(X), Gi(X̃))⊕
⊕

i

HomB(Bi(X), Bi(X̃))

��
⊕

i

Ext1B(Gi+1(X), Bi(X̃))⊕
⊕

i

HomB(Gi(X), Bi(X̃)).

(9)

Now we would like to find a similar description of

N =
⊕

i

HomB1

(

((Bi(X)→ Ci(X)), (Bi(X̃)→ Ci(X̃))
)

.

As mentioned before, morphisms in N can be viewed as morphisms of the short exact
sequences

0 // Bi(X) //

fi

��

Ci(X) //

fi

��

Gi+1(X) //

f i

��

0

0 // Bi(X̃) // Ci(X̃) // Gi+1(X̃) // 0.

Thus, we get a canonical map

N −→ N ′ :=

⊕

i

HomB(Bi(X), Bi(X̃))

⊕
⊕

i

HomB(Gi(X), Gi(X̃))

(10)

by sending f ∈ N to (fi, f i)i. The kernel of this map consists of morphisms of the
same exact sequences of the form

0 // Bi(X) //

0
��

Ci(X) //

Φ
��

Gi+1(X) //

0
��

0

0 // Bi(X̃) // Ci(X̃) // Gi+1(X̃) // 0.

12



Every Φ of the form

Ci(X) −→ Gi+1(X)
φ
−→ Bi(X̃) −→ Ci(X̃)

lies in the kernel of (10). From applying the snake lemma to the above diagram it also
follows that every Φ in the kernel looks exactly like this. Therefore, the kernel of (10) is
isomorphic to

⊕

i

HomB(Gi+1(X), Bi(X̃)). Consequently,

0 −→
⊕

i

HomB(Gi+1(X), Bi(X̃)) −→ N −→ N ′ (11)

is exact.
The next question is: when is an element of N ′ hit by an element of N? In other

words, given fB : Bi(X) → Bi(X̃) and fG : Gi+1(X) → Gi+1(X̃), when is there a map
fC : Ci(X)→ Ci(X̃) making the following diagram commute?

0 // Bi(X) //

fB

��

Ci(X) //

fC

��

Gi+1(X) //

fG

��

0

0 // Bi(X̃) // Ci(X̃) // Gi+1(X̃) // 0

The upper sequence corresponds to an element S ∈ Ext1B(Gi+1(X), Bi(X)), the lower
one to an element S̃ ∈ Ext1B(Gi+1(X̃), Bi(X̃)). The maps fB and fG give rise to maps

(fB)∗ : Ext1B(Gi+1(X), Bi(X)) −→ Ext1B(Gi+1(X), Bi(X̃))

(fG)∗ : Ext1B(Gi+1(X̃), Bi(X̃)) −→ Ext1B(Gi+1(X), Bi(X̃)).

So for given fB and fG there is a morphism fC making the above diagram commute if
and only if (fB)∗(S) = (fG)∗(S̃).

13



It follows that

0

��
⊕

i

HomB(Gi+1(X), Bi(X̃))

��

N

��

N ′ =
⊕

i

HomB(Bi(X), Bi(X̃))⊕
⊕

i

HomB(Gi(X), Gi(X̃))

��
⊕

i

Ext1B(Gi+1(X), Bi(X̃))

(12)

is exact where the last map sends a pair of tupels (fB, fG) to (fB)∗(S)−(fG)∗(S̃). Putting
this sequence together with the sequence (9), we obtain

0

��

0

��
⊕

i

HomB(Gi+1(X), Bi(X̃))

a

��

⊕

i

HomB(Gi+1(X), Bi(X̃))

b

��

M

��

q
// N

��
⊕

i

HomB(Bi(X), Bi(X̃))

⊕
⊕

i

HomB(Gi(X), Gi(X̃))

��

⊕

i

HomB(Bi(X), Bi(X̃))

⊕
⊕

i

HomB(Gi(X), Gi(X̃))

��

⊕

i

Ext1B(Gi+1(X), Bi(X̃))

⊕
⊕

i

HomB(Gi(X), Bi(X̃))

pr
//

⊕

i

Ext1B(Gi+1(X), Bi(X̃))

where the second horizontal arrow is the morphism induced by the functor Q and the
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last one is the projection onto the first summand. One has to check that all the squares
actually commute, which they do.

Then, a small diagram chase shows that q is injective. Also, by construction of q, in

0 −→M
q
−→ N

D
−→

⊕

i

HomA

(

Gi(X), Bi(X̃)
)

, (13)

the image of q lies in the kernel of D. With a slightly bigger diagram chase it follows
that the image of q is the entire kernel of D.

This completes the proof that Q is full and faithful.

2.3 Q is essentially surjective

To complete the proof of the claim that

Q : L −→ C2p−2(B)

is an equivalence of categories, it is left to show that Q is essentially surjective, i.e. each
C∗ ∈ C2p−2(B) is isomorphic to an object the image of Q. So let C∗ be an object of
C2p−2(B) ∼= C1(A), and let B∗(C) denote the boundaries of C∗ and G∗(C) the quotient of
C∗ by its boundaries. We will prove our claim by induction on the injective dimension of
the Bi(C)’s and Gi(C)’s. That means, we will perform an induction on k where

maxi(injdimBi(C), injdimGi(C)) ≤ k ≤ 2.

Let I ∈ A be an injective object, and consider the following cochain complexes:

V (I)∗ with V (I)n := T n(p−1)(I), d = 0

C(I)∗ with C(I)n := T n(p−1)(I)⊕ T (n−1)(p−1)(I), d =

(

0 0
id 0

)

with the structure isomorphisms αV (I) and αC(I) (see 1.2) being the identity. Both
complexes are injective in C1(A) ∼= C2p−2(B). The complex V (I)∗ belongs to the essential
image of Q: Without loss of generality, let I be an object of B. First, this complex can
be realized by spectra Xi ∈ L1S such that

E(1)∗(Xi)[i] ∼= T i(p−1)(I),

see e.g. [Bou85], Prop. 8.2. Now look at the following diagram X ∈ Ho(L1S
C):

∗ ∗ ∗ ∗

Σ−1X1

OO
11

Σ−1Xi−1

OO
cc

Σ−1Xi

OOffMMMMMMMMMMM

bb

Σ−1X2p−2

OO

15



with Xi as above. Clearly, X ∈ L. Applying Q to this diagram X one sees that

Ci(X) = E(1)∗(cone(Σ−1Xi → ∗))[i] = E(1)∗(Xi)[i] ∼= T i(p−1)(I) = V (I)i

together with the correct zero differential. This means that V (I)∗ is in the essential image
of Q, and similarly, also C(I)∗.

Now, to begin the induction, let C∗ be a complex such that

maxi(injdimBi(C), injdimGi(C)) = 0.

It follows that H0(C) and B0(C) are injective objects of A, and one checks that

C∗ ∼= V (H0(C))∗ ⊕C(B0(C))∗.

Consequently, C∗ lies in the essential image of Q which starts the induction.
Next, let our claim be true for k − 1 and let C∗ be an arbitrary complex with

maxi(injdimBi(C), injdimGi(C)) ≤ k.

C1(A) has enough injectives ([Fra96], Prop. 1.3.3), i.e. there is an embedding

C∗ i
−→ K∗ such that K∗ is strictly injective and i is a weak equivalence. Consequently,

maxi(injdimBi(K), injdimGi(K)) = 0.

We have already proved that K∗ is in the essential image of Q. Looking at

0 −→ C∗ i
−→ K∗ −→ L∗ := coker(i) −→ 0, (14)

we now prove that

maxi(injdimBi(L), injdimGi(L)) ≤ k − 1.

For example, if injdimBi(C) ≤ k, then

0 −→ Bi(C) −→ Bi(K) −→ Bi(L) −→ 0

is exact and Bi(K) is injective. If

Bi(L)→ J0 → J1 → ...→ Jm → 0

is an injective resolution of Bi(L), then

16



Bi(C)→ Bi(K)→ J0 → J1 → ...→ Jm → 0

is an injective resolution of Bi(C). Since there is a resolution of Bi(C) of length ≤ k,
it follows that there is also a resolution for Bi(L) of length ≤ k − 1.

This shows that

maxi(injdimBi(L), injdimGi(L)) ≤ k − 1,

and by our induction, L∗ lies in the essential image.
The fact that C∗ now lies in the essential image of Q as well is a consequence of the

following:
Let Y1 → Y2 → Y3 → Y1[1] be an exact triangle in Ho(L1S

C), and Y2, Y3 ∈ L,
Q(Y2) → Q(Y3) an epimorphism of cochain complexes and H∗(Q(Y2)) → H∗(Q(Y3)) be
surjective. Then

0 −→ Q(Y1) −→ Q(Y2) −→ Q(Y3) −→ 0

is exact and Y1 is an object of L.
(To prove this, one frequently uses the five lemma and has to remember that B is a

Serre class in A.)
Back to our short exact sequence (14). We have proved that there are objects

X2,X3 ∈ Ho(L1S
C) such that Q(X2) ∼= K∗ and Q(X3) ∼= L∗. Since we also know that Q is

full, we see that the mapQ(X2)→ Q(X3) is induced by a morphismX2 → X3 ∈ Ho(L1S
C)

which can be completed to an exact triangle X1 → X2 → X3 → X1[1]. Q(X2) → Q(X3)
is an epimorphism that also induces an epimorphism in cohomology and thus satisfies the
condition above. It follows that X1 ∈ L, that

0 −→ Q(Y1) −→ Q(Y2) −→ Q(Y3) −→ 0

is exact and that therefore C∗ ∼= Q(X1). This completes the proof that Q is essentially
surjective and consequently is an equivalence of categories.

3 The reconstruction functor R

3.1 Defining R

In the last section we showed that

Q : L −→ C2p−2(B)

is an equivalence of categories. To prove the main theorem, we would like to build an
equivalence of categories

17



R : D2p−2(B) = Ho(C2p−2(B)) −→ Ho(L1S)

with the help of Q. Define

R′ := Hocolim ◦ Q−1 : C2p−2(B) −→ Ho(L1S
C) −→ Ho(L1S).

We would like to show that R′ factors over the derived category of C2p−2(B). This will
gives us the desired reconstruction functor R of which we would like to show that it is an
equivalence of categories.

However, we first look at some properties of

E(1)∗ ◦ R
′ : C2p−2(B) −→ A.

Lemma 3.1.1.

E(1)∗(HocolimCX) ∼=
⊕

i

H i(Q(X))[−i]

Proof. By definition,

HocolimCX = colimCX
cof

where Xcof denotes the cofibrant replacement of X ∈ L1S
C . Now let us look at the

colimit of a diagram

Xβ1
... Xβi−1 Xβi

Xβ2p−2

Xγ1

OO
22

Xγi−1

OO
aa

Xγi

OObbFFFFFFFF

...

``

Xγ2p−2 .

OO

We have morphisms

Xγi
∨Xγi+1 −→ Xβi

for each i. Taking the wedge of those morphisms for even i, one obtains a morphism

2p−2
∨

i=1

Xγi
−→

∨

i even

Xβi
,

and simultaneously, for odd i,

2p−2
∨

i=1

Xγi
−→

∨

i odd

Xβi
.

18



The colimit of the diagram X is the same as the colimit of the following diagram:

∨

i odd

Xβi
←−

2p−2
∨

i=1

Xγi
−→

∨

i even

Xβi
,

i.e. the colimit of X is the pushout of the upper left corner in

2p−2
∨

i=1
Xγi

��

//

∨

i even
Xβi

��∨

i odd

Xβi // colimCX.

Without loss of generality, letX be cofibrant, so that the colimit ofX models the homotopy
colimit. Then the left vertical and upper horizontal maps in the square are cofibrations,
and the pushout diagram is also a homotopy pushout diagram. Therefore,

2p−2
∨

i=1

Xγi
→

∨

i odd

Xβi
∨

∨

i even

Xβi
∼=

2p−2
∨

i=0

Xβi
→ HocolimCX → Σ

(

2p−2
∨

i=1

Xγi

)

is an exact triangle in Ho(L1S). Applying E(1)-homology, one obtains a long exact se-
quence

...
⊕

i

E(1)n(Xγi
)→

⊕

i

E(1)n(Xβi
)→ E(1)n(HocolimCX)→

→
⊕

i

E(1)n−1(Xγi
)→

⊕

i

E(1)n−1(Xβi
)... (15)

The map

⊕πi[−i+ 1] :
⊕

i

E(1)n−1(Xγi
)→

⊕

i

E(1)n−1(Xβi
)

is surjective for all n since X ∈ L, so

⊕

i

E(1)n(Xγi
) −→ E(1)n(HocolimCX)

is the zero map. So we get a short exact sequence in A

0→ E(1)∗(HocolimCX) −→
⊕

i

E(1)∗−1(Xγi
)

⊕πi[−i+1]
−−−−−−→ E(1)∗−1(Xβi

)→ 0.

Therefore,

E(1)∗(HocolimCX) ∼=
⊕

i

ker(πi)[−i+ 1].
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Now we prove that ker(πi) is isomorphic to H i−1(Q(X)). Let us remember how the
differential d of C∗(X) = Q(X) had been defined (see section 2.1). Here is d2:

Ci(X)
ρi
→ Gi+1(X)

πi+1
→ Bi+1(X)

ιi+1
→ Ci+1(X)

ρi+1
→ Gi+2(X)

πi+2
→ Bi+2(X)

ιi+2
→ Ci+2(X)

We have im(ιi+1) = ker(ρi+1) since they are part of the short exact sequence (2). Since
ρi and πi+1 are surjective, im(d) = im(ιi+1). We also have ker(d) = ker(πi+2 ◦ ρi+1). By
basic algebra,

ker(πi+2) ∼=
ker(πi+2 ◦ ρi+1)

ker(ρi+1)
∼=

ker(d)

im(ιi+1)
∼=

ker(d)

im(d)
∼= H i+1(Q(X)).

It follows that

E(1)∗(HocolimCX) ∼=
⊕

i

H i(Q(X))[−i].

Because of the lemma we now see that the functor E(1)∗ ◦ R
′ sends weak equiva-

lences (i.e. quasi-isomorphisms) in C2p−2(B) to isomorphisms in A and thus factors over
D2p−2(B) = Ho(C2p−2(B)). In other words, for C∗,D∗ quasi-isomorphic cochain complexes
we get

E(1)∗(R
′(C∗)) ∼=

⊕

i

H i(C∗)[−i] ∼=
⊕

i

H i(D∗)[−i] ∼= E(1)∗(R
′(D∗)).

However, two objects of Ho(L1S) are isomorphic if and only if there is a morphism
of spectra inducing an isomorphism in E(1)-homology, so R′(C∗) ∼= R′(D∗) for quasi-
isomorphic C∗ and D∗, and consequently R′ itself factors over the derived category
D2p−2(B). So we have obtained a functor

R : D2p−2(B) −→ Ho(L1S).

3.2 The main theorem

Theorem 3.2.1. R is an equivalence of categories.

Proof. First again, we prove that R is full and faithful, i.e. for

C∗
1 , C

∗
2 ∈ D

2p−2(B) ∼= D1(A),

the map

r : HomD1(A)(C
∗
1 , C

∗
2 ) −→ [R(C∗

1 ),R(C∗
2 )]E(1)
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induced by R is an isomorphism.

To show this, we once more make use of the Adams spectral sequence ([Fra96] 2.1.1)

E
s,t
2 = ExtsA

(

⊕

i

H i(C∗
1 )[−i− t],

⊕

i

H i(C∗
2 )[−i]

)

⇒ HomD1(A)(C
∗
1 [t− s], C∗

2 ) (16)

where C∗
1 , C

∗
2 ∈ D

1(A). This spectral sequence arises as follows: We begin with an
injective resolution of

⊕

i

H i(C∗
2 )[−i]:

⊕

H i(C∗
2 )[−i]

�

�

// I0
d1

//

����

I1
d2

//

����

I2 // 0

im(d1)
,

�

::tttttttttt

im(d2)
-




<<yyyyyyyyy

(17)

(This resolution stops at I2 since the injective dimension of an object in A is at most
2.)

This resolution gives rise to an Adams resolution

C∗
2 = C

(0)
2

��

C
(1)
2

oo

��

C
(2)
2

oo

��

0oo

EI0

+

::tttttttttt

EI1

+

==zzzzzzzz

EI2

+

??���������

(18)

The Adams resolution is characterised by the following: First, by applying

⊕

i

H i(−)[−i]

to the diagram

C∗
2 = C

(0)
2

// EI0 //

��

EI1 //

��

EI2 // 0

C
(1)
2

==||||||||

C
(2)
2

>>}}}}}}}}

(19)

one obtains exactly the diagram (17). Besides, each triangle in (18) is an exact triangle
in D1(A) (the diagonal maps are maps raising the degree by one), and EI denotes the
Eilenberg-MacLane object for I ∈ A, i.e.

HomA(
⊕

i

H i(C∗)[−i], I) ∼= HomD1(A)(C
∗, EI) for all C∗ ∈ D1(A),
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and for C∗ = EI , the image of the identity in

HomA(
⊕

i

H i(EI)[−i], I)

is an isomorphism. (Note that by Lemma 2.1.1 of [Fra96], C
(2)
2 is an Eilenberg-MacLane

object for I2 indeed!) Applying HomD1(A)(C
∗
1 ,−) to the resolution (18) gives an exact

couple, and with it the desired spectral sequence.
We now apply the reconstruction functor R to (18) and claim that the result

R(C2) = R(C
(0)
2 )

��

R(C
(1)
2 )oo

��

R(C
(2)
2 )oo

∼=

��

0oo

R(EI0)

+

77nnnnnnnnnnnn

R(EI1)

+

99sssssssss

R(EI2)

+

<<zzzzzzzzzz

(20)

is an Adams resolution for R(C∗
2 ) with respect to E(1)-homology.

We have to prove:

• applying E(1)∗ to (20) gives an injective resolution of E(1)∗(R(C∗
2 ))

• each triangle in (20) is exact

• R(EI) is again an Eilenberg-MacLane object in Ho(L1S)

The first point is clear after the Lemma 3.1.1, which says that

E(1)∗(R(C∗)) ∼=
⊕

i

H i(C∗)[−i].

To prove the second point we make use of the following fact without giving the details of
its proof:

Let C∗
0 → C∗

1 → C∗
2 → C∗

0 [1] be an exact triangle in D1(A) with H∗(C∗
0 )→ H∗(C∗

1 ) a
monomorphism. Then

R(C∗
0 )→R(C∗

1 )→R(C∗
2 )→ R(C∗

0 [1])

is an exact triangle in Ho(L1S).

Using the Lemma 3.1.1 again, we see that the vertical arrows in (18) give monomor-
phisms in cohomology. So, applying the above fact, we have that the triangles in (18) are
exact indeed.

To show that R(EI) is again an Eilenberg-MacLane object in Ho(L1S) for injective
I ∈ A, we have to show that

HomA(E(1)∗(X), I) ∼= [X,R(EI)]
E(1) for all X ∈ Ho(L1S).
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We know that

E(1)∗(R(EI)) ∼=
⊕

i

H i(EI)[−i] ∼= I,

so R(EI) has injective E(1)-homology. Now we look at the classical Adams spectral
sequence

E
s,t
2 = ExtsA(E(1)∗(X), E(1)∗(R(EI))[t]) = ExtsA(E(1)∗(X), I[t])

⇒ [X,R(EI )]
E(1)
t−s

for X ∈ Ho(L1S). Since I is injective in A, the Ext-term vanishes unless s = 0, so the
spectral sequence collapses, and

Ext0A(E(1)∗(X), I[t]) = HomA(E(1)∗(X), I[t]) ∼= [X,R(EI)]
E(1)
t

as desired.

Applying [R(C∗
1 ),−]E(1) to (20) gives an exact couple leading to the Adams spectral

sequence

E
s,t
2 = ExtsA(E(1)∗(R(C∗

1 )), E(1)∗(R(C∗
2 ))[t])⇒ [R(C∗

1 ),R(C∗
2 ))]

E(1)
t−s .

So R induces a morphism of exact couples that is also an isomorphism on the E1-terms

r : Homt
D1(A)(C

∗
1 , EIs) −→ [R(C∗

1 ),R(EIs)]
E(1)
t :

by definition of an Eilenberg-MacLane object, the left side is isomorphic to

Homt
A(

⊕

i

H i(C∗
1 )[−i], Is).

Since R(EIs) is an Eilenberg-MacLane object with respect to E(1)∗, the right side is
isomorphic to

Homt
A(E(1)∗(R(C∗

1 ), Is).

So because of Lemma 3.1.1, both sides are isomorphic. It follows that r is an isomorphism
on the targets of the spectral sequences, and thus, R is full and faithful.

Now it is left to show that R is essentially surjective. Let Y be an object of Ho(L1S)
and let

Y = Y (0)

��

Y (1)oo

��

Y (2)oo

∼=
��

0oo

EI0

+

99tttttttttt

EI1

+

<<xxxxxxxx

EI2

+

>>}}}}}}}}

(21)
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be an Adams resolution for Y . First, we show that all Eilenberg MacLane objects
EI ∈ Ho(L1S) lie in the essential image of R: Let EI be the Eilenberg-MacLane ob-
ject for I in D1(A). We already showed that R(EI) is an Eilenberg-MacLane object for I
in Ho(L1S), and thus, EI ∼= R(EI), so EI lies in the essential image of R.

Next, we would like to show that Y lies in the essential image. We start with showing
this for Y (1). We know that there are Eilenberg-MacLane objects EI1 , EI2 ∈ D1(A) such
that R(EI1) ∼= EI1 and R(EI2) ∼= EI2. We started with an injective resolution

E(1)∗(Y )→ I0 → I1 → I2 → 0

for E(1)∗(Y ) ∈ A. Using Lemma 3.1.1, this resolution equals

E(1)∗(Y )→
⊕

i

H i(EI0)[−i]
d1

→
⊕

i

H i(EI1)[−i]
d2

→
⊕

i

H i(EI2)[−i]→ 0 (22)

with above Eilenberg-MacLane objects in D1(A). We take those Eilenberg-MacLane ob-
jects and complete them to an exact triangle

EI2 → D → EI1 → EI2[1] (23)

in D1(A). Applying

⊕

i

H i(−)[−i]

to this triangle gives a long exact sequence in A. Since d2 in (22) is a surjection, the third
morphism in this triangle induces a surjection in cohomology as well. Consequently, the
second morphism D → EI1 must give an injection in cohomology. So we can apply the
formerly stated fact at the end of section 2 again that

R(EI2)→R(D)→R(EI1)→R(EI2 [1])

is an exact triangle in Ho(L1S).
Consider

EI2 //

∼= R

��

Y (1) //

��

EI1 //

∼= R

��

ΣEI2

∼= R

��

R(EI2) // R(D∗) // R(EI1) // R(EI2 [1])

with the upper triangle coming from (21). The third square commutes since R is full.
By the axioms of a triangulated category there exist a morphism Y (1) →R(D∗) making the
whole diagram commute. By the 5-lemma, this is an isomorphism, thus Y (1) ∼= R(D∗),
and so Y (1) lies in the essential image of R. Similarly, this also follows for Y , which
completes the proof that R is an equivalence of categories.
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Corollary 3.2.2. R preserves the Adams filtration.

Remark. Nora Ganter recently proved in that for the case of E(1)-local spectra R is not
just an equivalence of categories but R also carries tensor products of cochain complexes
into smash products of spectra. (This is not known to be true for arbitrary n with
n2 + n < 2p− 2.)

4 A further application

As proved,R provides an abstract equivalence of triangulated categories which also happen
to be homotopy categories of model categories. The next question now is if D2p−2(B)
and Ho(L1S) are equivalent as categories, can their model structures also be positively
compared, i.e. is there a Quillen equivalence between them?

The answer to that is remarkable:

Proposition 4.0.3. The categories D2p−2(B) and Ho(L1S) are not Quillen equivalent.
In particular, R is not a Quillen equivalence.

Proof. To prove this, we compare the homotopy types of certain mapping spaces for each
category. Let us first collect the necessary definitions. For a pointed simplicial model
category C there is a mapping space functor

mapC(−,−) : Cop × C −→ sSet*

to the category of pointed simplicial sets satisfying

mapC(X,Y )0 = HomC(X,Y )

for all X,Y ∈ C and certain adjointness properties (see e.g. [GJ99], Definition II.2.1).
However, D1(A) and D2p−2(B) are not simplicial categories. The next best thing we can
achieve is a notion of a mapping space that is well-defined up to homotopy, which will do
for our purposes.

To achieve this, we look at the category C∆ of cosimplicial objects in C and view X as
constant object in C∆. The category C∆ of cosimplicial objects in a model category C can
be given a model structure, the so-called Reedy model structure. For details of this, see
[Hov99] Section 5.2. We now define a special replacement of X in C∆, so-called frames.
To do this, we first need the following:

Definition 4.0.4. Via the methods of [Hov99], Remark 5.2.3. and Example 5.2.4., there
are functors l•, r• : C −→ C∆ with the following properties:
Let X ∈ C:

• the nth level space of the object l•X is the n+ 1-fold coproduct of A

• l• : C −→ C∆ is a left adjoint to the evaluation functor ev0 : C∆ −→ C that sends A•

to A•[0]
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• the nth level space of the object r•X is X itself

• r• : C −→ C∆ is a right adjoint to ev0 : C∆ −→ C

Remark. One can prove that r• is the constant cosimplicial functor. There is a natural
transformation l• −→ r• that is the identity in degree zero and the fold map in higher
degrees.

With these functors, we can now define cosimplicial frames:

Definition 4.0.5. Let C be a model category, X an object of C. A cosimplicial frame for
X is a cosimplicial object X• ∈ C∆ together with a factorisation of the map l•X −→ r•X

in C∆

l•X // // X• ∼
// r•X

where the weak equivalence X• ∼
−→ r•X in degree zero induces a weak equivalence in C.

For the existence of such framings, see [Hov99], Theorem 5.2.8.

We now use this definition to define mapping spaces:

Definition 4.0.6. Let X,Y be objects of C, X• a cosimplicial frame for X and

Y //
∼

// Y fib // // ∗

a factorisation of Y → ∗. Then the (left) mapping space for X and Y is defined via

mapC(X,Y ) := C(X•, Y fib) ∈ sSet*,

where C(X•, Y fib) is the simplicial set with

C(X•, Y fib)n := HomC(X
•[n], Y fib).

However, it is not clear whether this definition actually deserves to be called a definition
since it depends on two choices: firstly, the cosimplicial frame for X and secondly, the
fibrant replacement for Y . So, for this definition to make sense we need the following:

Lemma 4.0.7. Let X•
1 ,X

•
2 be two cosimplicial frames for cofibrant X in C, and let

Y fib
1 , Y fib

2 be two fibrant replacements for Y . Then

C(X•
1 , Y

fib
1 ) ≃ C(X•

2 , Y
fib
2 )

in sSet*.

Proof. First, let X•
1 and X•

2 be two cosimplicial frames for X. By definition, the frames
X•

1 and X•
2 are linked by a zig-zag of weak equivalences

X•
1

∼
−→ r•X

∼
←− X•

2 .
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For fibrant Y , the functor C(−, Y ) preserves weak equivalences ([SS02] Lemma 6.3), so for
fibrant Y and X•

1 , X•
2 as above, we have

C(X•
1 , Y ) ≃ C(X•

2 , Y ).

For the second part we quote [Hov99], Corollary 5.4.4, which says that for fibrant X
in C, the functor

C(X•,−) : C −→ sSet*

preserves fibrations and acyclic fibrations, in particular between fibrant objects. So Ken
Brown’s lemma applies (see e.g. [Hov99], Lemma 1.1.12), and it follows that C(X•,−)
takes weak equivalences between fibrant objects in C to weak equivalences in sSet* which
proves the claim of our lemma.

Now we look at the behaviour of mapping spaces under Quillen functors and Quillen
equivalences.

Lemma 4.0.8. Let L : C ⇄ D : R be a Quillen equivalence, X,X ′ ∈ C both cofibrant.
Then

mapC(X,X
′) ∼= mapD(LX,LX ′)

in Ho(sSet*).

Proof. First of all, let L : C ⇄ D : R be a Quillen adjoint functor pair, X ∈ C and Y ∈ D.
Then

mapD(LX,Y ) = D((LX)•, Y fib)

by definition. Since L is a left Quillen functor, L(X•) ∈ D∆ is also a cosimplicial frame
for LX ([Hov99], Lemma 5.6.1), so

D((LX)•, Y fib) ∼= D(L(X•), Y fib)

by Lemma 4.0.7. By adjointness,

HomD(L(X•)[n], Y fib) ∼= HomC(X
•[n], R(Y fib)),

so

D(L(X•), Y fib) ∼= C(X•, R(Y fib)).

Since R is a right Quillen functor, R(Y fib) is a fibrant replacement for RY , consequently
by Lemma 4.0.7,

C(X•, R(Y fib)) ≃ C(X•, (RY )fib) = mapC(X,RY ).
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Thus, altogether we have

mapC(X,RY ) ≃ mapD(LX,Y ). (24)

Next, let L : C ⇄ D : R be a Quillen equivalence and X ′ ∈ C cofibrant. Then

LX ′ ∼
−→ (LX ′)fib

is a weak equivalence in D with cofibrant source and fibrant target, so by definition of a
Quillen equivalence, the adjoint map

X ′ ∼
−→ R((LX ′)fib)

is a weak equivalence in C. Since R is a right Quillen functor, R((LX ′)fib) is fibrant in
C. Consequently, R((LX ′)fib) is a fibrant replacement for X ′ in C. By Lemma 4.0.7 and
above adjointness result for mapping spaces (24), it follows that

mapC(X,X
′) ≃ mapC(X,R((LX ′)fib)) ≃ mapD(LX,LX ′)

in sSet* which proves the lemma.

Back to our special case: We will see that for all C,D ∈ C2p−2(B), mapC2p−2(B)(C,D)
is weakly equivalent to a product of Eilenberg-MacLane spaces. However, the mapping
space mapL1S

(S0, S0) is not a product of Eilenberg-MacLane spaces, so as a consequence
of Lemma 4.0.8, there is no Quillen equivalence between those two model categories which
was the claim of the proposition.

The category C2p−2(B) is abelian, so for all C1, C2 ∈ C
2p−2(B), the n-simplices of

mapC2p−2(B)(C1, C2)

C(C•
1 , C

fib
2 )n = Hom(C•

1 [n], C2)

form an abelian group, and the simplicial structure maps are group homomorphisms, so

C(C•
1 , C

fib
2 ) = mapC2p−2(B)(C1, C2)

is not just a simplicial set but a simplicial abelian group. From Proposition III.2.20 of
[GJ99], it follows that

mapC2p−2(B)(C1, C2) ∼=
∏

n≥0

K(πn mapC2p−2(B)(C1, C2)n, n)

where K(G,n) denotes the nth Eilenberg-MacLane space for the abelian group G.
However, there are spectra for which the mapping spaces over L1S are not products

of Eilenberg-MacLane spaces, for example mapL1S
(S0, S0) ∼= QL1S

0 = colimn ΩnL1S
n.

Thus, C2p−2(B) and L1S cannot be Quillen equivalent and C2p−2(B) provides an exotic
model for L1S.

In other words, C2p−2(B) provides an exotic model for L1S. For the stable homotopy
category itself such exotic models do not exist, as proved by Schwede in [Sch05]. However,
this is not true for the chromatic localisations of the stable homotopy category in the cases
n2 + n < 2p − 2 (shown here explicitly for n = 1). It is not yet known how many such
exotic models exist and what can be said about the other chromatic localisations.
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