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SUMMARY 

Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes 

such as mammals, fish, birds, worms and Protista, including algae. There is still much to learn 

about how this nutrient is trafficked across the domains of life. Herein, we describe ways to 

make a number of different corrin analogues with fluorescent groups attached to the main 

tetrapyrrole-derived ring. A further range of analogues were also constructed by attaching 

similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of 

complete and incomplete corrinoids to follow uptake in bacteria, worms and plants. By using 

these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis 

is able to acquire both cobyric acid and cobalamin analogues, that Caenorhabditis elegans 

takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium 

sativum are also able to transport B12.  
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INTRODUCTION 

The cobamides encompass a group of closely structurally related nutrients, cofactors and 

coenzymes that harbour a cobalt-containing corrin ring, and are often loosely referred to as 

vitamin B12 (Figure 1)(Renz, 1999; Warren, et al., 2002). These molecules vary in the nature 

of the upper ligand attached to the cobalt and the character of the lower nucleotide loop. 

Cobalamin, for instance, contains dimethylbenzimidazole as the base in the nucleotide loop 

but this is replaced with adenine in pseudocobalamin (Figure 1) (Degnan, et al., 2014; Maggio-

Hall and Escalante-Semerena, 2003). In the biologically active forms of cobalamin the cobalt 

ion is normally either adenosylated (adenosylcobalamin) or methylated (methylcobalamin) 

(Banerjee and Ragsdale, 2003) whilst vitamin B12 represents the cyanolated derivative of 

cobalamin that is produced during the commercial extraction and isolation of the nutrient 

(Martens, et al., 2002). However, the term B12 is frequently used to refer to all forms of 

cobalamin. 

Cobamides are produced exclusively by certain prokaryotes (Roth, et al., 1996). Apart from 

cobalamin and pseudocobalamin, further variants with shorter nucleotide chain lengths and/or 

alternative nucleotide bases are synthesized by different bacteria (Degnan, et al., 2014; 

Krautler, et al., 2003; Renz, 1999). Cobamides are made via either an anaerobic or aerobic 

biochemical pathway, both involving around thirty enzyme-mediated steps (Blanche, et al., 

1995; Deery, et al., 2012; Moore, et al., 2013; Warren, et al., 2002). The key steps of the 

aerobic pathway are shown in Figure 1, which concisely depicts contraction of the tetrapyrrole 

ring, insertion of the cobalt ion and building of the nucleotide loop. Variations in the 

construction of the lower nucleotide loop, mediated by different substrate preferences for 

bases and linkers (Figure 1) during its biosynthesis, give rise to the assorted cobamides that 

are found in nature (Chan and Escalante-Semerena, 2011; Crofts, et al., 2013; Krautler, et al., 

2003; Maggio-Hall and Escalante-Semerena, 2003; Zayas, et al., 2007). Many prokaryotic 

microorganisms (Allen and Stabler, 2008; Degnan, et al., 2014; Gray and Escalante-

Semerena, 2009) and microbial eukaryotes (Croft, et al., 2005; Helliwell, et al., 2016) rely on 

other producers of cobamides, where both bacteria and archaea can be counted, and 

therefore have to recover the nutrient from the environment they inhabit. Such salvage 

systems often involve remodelling of the lower nucleotide loop to produce the corrin variant 

that suits the new host. 

In this respect bacteria, as well as archaea, can be divided into a range of classes with regards 

to their B12 requirements. There are bacteria that make their own cobalamin, those that are 

auxotrophic for the nutrient, those that require cobalamin for some non-essential processes 

and those that do not require the nutrient at all. In this way the nutrient plays an important role 
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in bacterial ecology, especially in complex microbial communities (Degnan, et al., 2014; 

Helliwell, et al., 2016). However, little is known about the movement of cobamides in such 

communities, whether it is specifically shared or exchanged in mutualistic or symbiotic 

relationships. 

Bacteria are also the source of cobalamin for a large number of eukaryotes that require the 

nutrient for either specific methylation or isomerisation reactions. For instance, approximately 

50% of all microalgal species require cobalamin for growth, and it has been shown that 

bacteria can provide this compound in course of a symbiotic exchange for photosynthate 

(Croft, et al., 2005). Similarly, enteric bacteria are the source of cobalamin (Roth, et al., 1996) 

in ruminants such as cattle and, as dairy products and meat represent a major form of human 

dietary cobalamin, are therefore also responsible for most of the cobalamin found in humans 

(Brito, et al., 2015; Girard, et al., 2009). Other eukaryotes, including nematode worms (Yilmaz 

and Walhout, 2014), fish (Greibe, et al., 2012) and birds (Zaman and Zak, 1989) have to 

acquire cobalamin as part of their diets from B12-producing bacteria. Within eukaryotic cells 

cobalamin is further compartmentalised, with methylcobalamin found in the cytoplasm 

associated with methionine synthase and adenosylcobalamin located within the mitochondria 

with its cognate enzyme methylmalonyl CoA mutase (Gherasim, et al., 2013; Watkins and 

Rosenblatt, 2013). There is the added complication of translocation through the body of 

multicellular organisms, requiring some form of vascular transport. 

Therefore, from their prokaryotic origins, cobamides such as cobalamin undergo a complex 

journey through many different domains and kingdoms of life, a journey that involves 

scavenging, recycling, modification and compartmentalisation. In terms of understanding the 

role played by cobamides in ecology, health and disease there is a need to devise sensitive 

methods to follow the nutrient on this biological voyage. Following the movement of cobamides 

has proved difficult as the nutrient is normally required in small quantities. One way of following 

cobamides along their transformation and transportation chain is to use fluorescent derivatives 

coupled to the cobalamin molecule to allow its detection via fluorescence microscopy (Lee 

and Grissom, 2009; Smeltzer, et al., 2001). The most common of these fluorescent cobalamin 

derivatives involve attachment of a fluorophore to either the cobalt ion or to the ribose ring of 

the lower nucleotide. However, attachment to the cobalt ion involves modifications that are 

usually light sensitive whereas conjugation to the ribose can be easily removed through 

nucleotide loop remodelling when such molecules are taken up by bacteria. Attachment of 

fluorophores to the side chains of the corrin macrocycle have also been reported. However, 

this attachment requires the hydrolysis of one of the amide side chain and the separation of a 

range of derivatives prior to the modification. This is low yielding process. Alternatively, a 

fluorophore could also be attached to the carboxylic acid side chain of cobyric acid, but this 
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would prevent the molecule from being converted into a cobalamin analogue in vivo. Herein, 

we describe ways to attach fluorophores directly to the C5 position of the corrin ring according 

to our understanding of how the corrin ring is constructed. We also report on which of these 

C5-modified corrin variants, together with some ribose-modified fluorophores, are taken up by 

a range of different organisms. 
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RESULTS  

 

Synthesis of C5-allyl HBA. The transformation of uroporphyrinogen III into a corrin involves, 

amongst other events, the addition of 8 S-adenosyl-L-methionine (SAM) derived methyl 

groups, the last of which is added to the C5 position (Deery, et al., 2012; Warren, et al., 2002). 

We hypothesized that it may be possible to use SAM analogues, with extended chain lengths, 

to alkylate the C5 position (Figure 2). This requires the isolation of precorrin-7, the substrate 

for the final methyltransferase, CobL. We recently reported the construction of a recombinant 

E. coli strain from which precorrin-7 can be purified (Deery, et al., 2012). Methylation of 

precorrin-7 by CobL generates precorrin-8, which is isomerised by CobH to generate 

hydrogenobyrinic acid (HBA). We sought to modify the C5 position by employing an allyl 

analogue of SAM (Dalhoff, et al., 2006; Dalhoff, et al., 2006) with a view to making the 

respective C5-modified HBA derivative (C5-allyl HBA) (Figure 2).  

 

When precorrin-7 was incubated with CobL, CobH and allyl-SAM the colour of the solution 

changed from yellow to orange consistent with the expected enzymatic transformation. The 

observed shift in the UV-visible spectrum of the starting material with a maximum absorption 

at 400 nm to a new species with maxima at 328, 520 and 555 nm is characteristic of the 

formation of a HBA-like molecule. Analysis of the reaction mixture by HPLC-MS identified a 

new compound with m/z 907.4 (Figure S1). The observed increase in mass and change in 

UV-visible spectrum confirms the addition of an allyl group to the macrocycle and indicates 

that migration of the C11 methyl group to C12 has occurred. 

 

The yield of allyl-HBA obtained from this initial reaction was less than 50%, with the other 

major product being allyl-precorrin-8. The presence of allyl-precorrin-8 suggested that CobH 

is the rate limiting step in this reaction sequence. We considered that the lower activity of 

CobH could be due to spatial constraints resulting from the larger substrate and therefore we 

decided to make a number of structure-based (Shipman, et al., 2001) mutations that would 

introduce more space into the active site, especially around the region of the protein where 

the C5 position of the substrate is found. One of these mutations, T85A, did indeed 

significantly improve the yield, such that the C5-allyl-HBA was obtained in greater than 85% 

yield. 

 

The structure of the product was further confirmed as being C5-allyl-HBA by X-ray 

crystallography. This was achieved by determining the structure of the CobHT85A-C5-allyl-HBA 

product complex at 1.6 Å resolution (Figure 3, Table S1). The extended alkyl group at the C5 
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position is clearly seen in the structure. Although the T85A mutation of CobH does increase 

the size of the active site around the C5 position, the allyl group is still constrained, suggesting 

that further enhancement could be afforded with more rational engineering. The PDB 

coordinates are deposited under the code 5N0G. 

 

We also explored the synthesis of C5-propargyl-HBA using a propargyl SAM derivative 

(Dalhoff, et al., 2006). To achieve this outcome it was necessary to prepare the respective 

SAM analogue in situ from Se-propargyl-L-homocysteine using a modified SAM synthetase 

(I117A mutant of hMAT 2A) as the propargyl-SAM analogue is not stable at physiological pH 

(Wang, et al., 2013; Wang, et al., 2014). Incubation of precorrin-7 with Se-propargyl-Hcy, Mg-

ATP, hMAT 2A I117A, CobL, CobHT85A, resulted in the same characteristic shift in the UV-

visible spectrum associated with the formation of a HBA like chromophore. Analysis of the 

purified product by HPLC-MS confirmed the addition of a propargyl group with an observed 

m/z of 905.4 (Figure S1). This approach demonstrated that a number of C5-derivatives could 

be made using activated SAM variants. The propargyl-compounds have the advantage of 

being able to be used with click chemistry approaches for further functionalisation. 

 

Conversion of the C5-allyl-HBA to its cobyric acid form. The conversion of HBA to HBA 

a,c-diamide (HBAD) is mediated by CobB, which amidates the acetic acid side chains attached 

to the C2 and C7 positions of the corrin framework (Figure 2) (Crouzet, et al., 1990). Incubation 

of CobB with C5-allyl-HBA, in the presence of glutamine and Mg-ATP, resulted in the 

production of C5-allyl-HBAD. The product of the reaction was found to have a shorter retention 

time on the HPLC column and a 2-mass unit decrease in comparison to the starting material, 

all of which is consistent with the amidation of the a and c sidechains. 

 

In the aerobic biosynthesis of cobalamin, HBAD undergoes cobalt chelation and adenosylation 

prior to the completion of the amidation reactions by CobQ (Blanche, et al., 1995). However, 

the light sensitive nature of the adenosylated intermediate make this a difficult compound with 

which to do further modifications. We thus sought a way to by-pass the metal-insertion stage 

of the pathway in order to complete the amidation of HBAD to generate hydrogenobyric acid 

(Hby), the cobalt-free analogue of cobyric acid. This was achieved by using the CobQ from 

Allochromatium vinosum, an organism that was shown to accumulate cobalt-free corrinoids 

when grown in the absence of cobalt (Koppenhagen, et al., 1973). The purified recombinant 

A. vinosum CobQ, in the presence of glutamine and Mg-ATP, did indeed catalyse the 

amidation of the b, d, e and g side chains of HBAD, to generate Hby. Similarly, the enzyme 

also accepted the C5-allyl-HBAD as a substrate and converted it into C5-allyl Hby (Figure 2), 
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whose structure was confirmed by HPLC-MS (m/z 901) (Figure S1) and 2D heteronuclear 

NMR spectroscopy (Figure S2 and Table S2). 

 

Transformation of the C5-allyl HBA analogues into cobyric acid analogues. The allyl-

group was modified to a primary amine through a thiol-ene reaction by reacting the C5-allyl-

Hby with cysteamine in the presence of the radical initiator VA-044 (2,2'-Azobis[2-(2-

imidazolin-2-yl)propane]dihydrochloride) (Figure 2). The reaction product, C5-(2-thiopropane-

1-aminoethane (TPEA))-Hby, was confirmed by HPLC-MS (Figure S1). Cobalt was inserted 

chemically using CoCl2 in dilute aqueous ammonia at elevated temperature. The reaction was 

quenched with KCN and the product was purified by RP18 chromatography. The structure of 

the C5-(TPEA)-cobyric acid was confirmed by HPLC-MS (Figure S1) and NMR (Figure S3 and 

Table S2). Together, all of these steps demonstrate how a combination of in vitro enzyme-

mediated transformations coupled with chemical approaches allow the construction of a 

regiospecifically derivatised form of cobyric acid (Figure 2). 

 

C5 Fluorophore attachment. To attach the fluorophores BODIPY® TR-X (BoD) and Oregon 

Green® 514 (OG) to the terminal amine of the C5 extension, the amine was reacted with the 

N-hydroxysuccinimide ester of the fluorophore (Figure 2). All of the products were analysed 

by HPLC-MS and purified by semi-preparative HPLC. As a result it was possible to generate 

both BoD and OG C5-linked forms of cobyric acid (Figure 4). These compounds were further 

characterised in terms of their functionality and uptake in biological systems as described 

below. 

 

Synthesis of ribose linked analogues. The ribose linked analogues were synthesised by 

carbonyldiimidazole coupling of ethylene diamine to the C5-OH of the ribose moiety of vitamin 

B12, then the primary amine was linked to the N-hydroxysuccinimide ester of either OG or BoD 

(Figure 4). These were made following previously published methods for the construction of 

ribose-linked analogues of cobalamin (Horton, et al., 2003; McEwan, et al., 1999). The 

products were analysed by HPLC-MS, and purified by semi-preparative HPLC. Making both 

fluorescently labelled cobyric acid and cobalamin derivatives provided the opportunity to 

compare their respective activities in terms of their ability to be transported into biological 

systems and ability to act as functionalised nutrients. 

 

Biological activity of the corrin analogues. The biological activity of the C5-cobyric acid 

analogues as well as the ribose-linked derivatives was investigated initially by comparing their 

effect in a B12-dependent microbial bioassay (Raux, et al., 1996). In this case, an agar plate 

embedded with B12-dependent reporter strain of Salmonella enterica (AR3612; cysG, metE) 
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was used to detect growth around an application point, where the size of any resulting growth 

circle can be measured against growth observed with known amounts of B12. With the 

microbial bioassay we looked at the efficacy of the C5-(TPEA) cobyric acid, the BoD and OG 

C5-cobyric acid as well as the BoD and OG ribose analogues of cobalamin to support growth 

of the strain. The observed growth circles can be seen in Figure 5. We were initially surprised 

to see that the C5-(TPEA)-cobyric acid and the two fluorescently labelled versions of cobyric 

acid and cobalamin all promoted growth, albeit they needed to be added at much higher 

concentrations than cyanocobalamin. The requirement for a higher concentration of the 

analogue not only likely reflects poorer molecular recognition by the uptake mechanism but 

also recognition by methionine synthase. The cobalamin-derivatives were more active than 

the C5-analogues, and the OG derivatives were more active than the corresponding BoD 

compounds. The reduced efficacy of the cobyric acid analogues in comparison to the 

cobalamin analogues is probably because the cobyric acid intermediates have to be converted 

into cobalamin forms before growth can occur.  

 

Uptake of analogues into bacteria. We next investigated the uptake of the fluorescent forms 

of cobyric acid and cobalamin into E. coli BL21 (DE3). The BL21 strain has a mutation in btuB, 

which encodes the outer membrane transport component of the cobalamin uptake system 

(Studier, et al., 2009). To overcome this limitation, the BL21 cells were transformed with 

pLysS-btuB and induced overnight with IPTG at which point 1 µM of the OG analogues were 

added. The bacteria were then imaged by widefield fluorescence microscopy and the resulting 

images demonstrated that whilst E. coli is able to take up both OG fluorescent analogues, 

significantly greater fluorescence was observed with the cobalamin derivative suggesting that 

it is taken up more efficiently. 

 

For the BoD analogues, E. coli OP50 cells were transformed with a plasmid harbouring both 

btuB and btuF (pET-BAD-btuB-btuF), where btuF encodes the periplasmic cobalamin binding 

protein of the B12 transporter. These were cloned in order to ensure maximal uptake of the 

corrin analogues, which were added to a final concentration of 1 µM at the same time as the 

cells were induced. Cells were incubated separately with either C5-BoD-cobyric acid, ribose-

BoD-cobalamin or the unattached BoD fluorophore. As judged by the internal fluorescence of 

the bacteria, both the C5-BoD and ribose-BoD analogues were seen to accumulate within the 

cells, indicating that these compounds can be used to monitor transport into E. coli (Figure 5). 

No internal fluorescence was observed with the unattached BoD fluorophore. The significance 

of using E. coli OP50 is that this strain can also be used as a source of food for nematodes 

such as C. elegans. 
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The BoD analogues of cobalamin were also incubated with E. coli BL21 (DE3) and JM109 

cells. No fluorescence was observed with the BL21(DE3) cells indicating that the defective 

btuB gene prevent uptake of the analogue even at high (1 µM) concentrations. In contrast, 

uptake of the C5-BoD-cobyric acid analogue into JM109 cells was detectable at levels of 10 

nM, whilst the ribose-BoD-cobalamin analogues was detectable at a concentration of 100 nM 

(Figure S4). These results demonstrate that the uptake of the analogues is dependent upon 

the presence of a functional BtuB and that there is some variance between the analogues in 

regard to molecular recognition by the uptake mechanism.  

 

There is always the possibility that the fluorescently labelled compounds undergo breakdown 

within the cell. To investigate the possibility of the breakdown of the analogues, we extracted 

both the ribose-OG-cobalamin and the C5-BoD-cobyric acid analogue from E. coli that had 

been grown in their presence. In both cases we were able to extract the analogues intact from 

the cells after several days growth. No evidence for degradation of the compounds was 

observed (Figure S5) 

 

We also investigated the uptake of the BoD analogues into Mycobacterium tuberculosis. 

Although M. tuberculosis has a B12 pathway it is missing CobF (Gopinath, et al., 2013; 

Rodionov, et al., 2003) and cannot make its own cobalamin. Moreover, M. tuberculosis has a 

different B12 uptake mechanism, employing BacA as a transporter (Gopinath, et al., 2013). We 

investigated B12 uptake into a B12-dependent strain of M. tuberculosis, H37Rv, which carries a 

mutation in metE (H37Rv-metE) (Warner, et al., 2007). After growth in Sauton’s defined 

medium, supplemented with either the C5-BoD-cobyric acid or the ribose-BoD-cobalamin, the 

cells were found to be fluorescent after 24 and 48 hours respectively using fluorescence 

microscopy (Figure 5). It is clear, therefore, that M. tuberculosis can take up analogues of both 

cobyric acid and cobalamin and that both of these can support growth. 

 

B12 uptake into C. elegans. Several recent papers have demonstrated that a free-living 

nematode C. elegans represents a good eukaryotic model system to study B12 as a nutrient 

(Bito, et al., 2013; Bito, et al., 2017; Watson, et al., 2014). Like humans, C. elegans requires 

B12 for the activities of both B12-dependent methionine synthase and methylmalonyl CoA 

mutase. Thereby, B12 deficiency causes infertility, retarded growth and reduced lifespan (Bito, 

et al., 2013). Bioinformatic analysis has revealed the presence in the C. elegans genome of 

genetic orthologues associated with human inherited B12 disorders but, interestingly, there is 

no evidence of the main B12 binding and trafficking proteins such as intrinsic factor or 

transcobalamin (Yilmaz and Walhout, 2014). To investigate B12 uptake into C. elegans, 

nematodes of the N2 Bristol strain were fed with E. coli OP50 that had been grown in the 
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presence of either C5-BoD-cobyric acid, ribose-BoD-cobalamin, or unattached BoD. L4 worms 

that had been grown in the presence of these analogues since their embryonic stage were 

imaged on a confocal microscope. Only worms fed on E. coli containing the ribose-BoD-

cobalamin revealed any fluorescence within the body. Interestingly, confocal microscopy 

revealed that in these worms the fluorescence was localised to discrete spots in the head, 

vulva and tail regions, corresponding to the coelomocytes (Figure 6). Even within this discrete 

cell type, the fluorescence appears to show a degree of sub-cellular localisation or 

compartmentalisation (Figure 6). This result demonstrates that C. elegans is able to absorb 

and retain the BoD-labelled cobalamin (which was concentrated in some organs), whereas 

retention of the C5-cobyric acid analogue was clearly absent. 

 

B12 uptake into higher plants.  

It is generally accepted that land plants neither make nor require B12 and live in a B12-less 

world. Early reports suggesting that some plants contained B12-dependent enzyme activity 

were later put down to bacterial contamination. However, there does appear to be some 

evidence suggesting that some plants can at least take up and transport cobalamin if the 

nutrient is cultivated with organic fertilisers or if plants are grown in B12-enriched media 

(Mozafar, 1994; Sato, et al., 2004). 

To investigate this observation further, we instigated an outreach project with a local 

secondary school, where pupils grew Lepidium sativum (garden cress) aseptically on an agar 

medium containing increasing concentrations of vitamin B12. After growth for 7 days the 

cotyledons from the germinating seedlings were removed, washed and homogenised. The 

soluble supernatant after centrifugation was then applied to bioassay plates, which 

demonstrated that the seedlings were able to absorb cobalamin from the growth medium in a 

concentration dependent manner (Figure S6). To confirm the ability of L. sativum to absorb 

cobalamin we repeated the uptake experiment using ribose-OG-cobalamin. L. sativum was 

therefore grown with ribose-OG-cobalamin and, after sectioning, was imaged by confocal 

microscopy. This approach confirmed that L. sativum absorbs ribose-OG-cobalamin, which 

was found to localise to the vacuoles of the cotyledons (Figure 7). These results provide 

definitive evidence that some plants can absorb and transport cobalamin, at least by passive 

diffusion. The linear shape of the concentration response and high amounts of Cbl used in the 

experiment (see supplementary Figure S6) indicate an unspecific uptake mechanism. 

DISCUSSION. 

In this research we have demonstrated that it is possible to functionalise the main corrin 

framework by substituting the methyl group of SAM with either an allyl or propargyl group. 
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Although this approach was used to modify the C5 position, in theory it may be possible to 

modify any of the positions on the corrin ring that are methylated by SAM-dependent methyl 

transferases. Through this development we have shown that it is possible to generate either 

C5-allyl or C5-propargyl derivatives of HBA, and outlined how these can be transformed into 

cobyric acid analogues. By attaching fluorophores to the activated C5 allyl group it was 

possible to make C5-BoD and C5-OG cobyric acid derivatives. This has been achieved 

through the application of enzymatic and chemical tools to functionalize the comparatively 

inert corrin framework of B12. In doing so, we have been able to make analogues that can be 

used to investigate specific biological processes, expanding upon our initial research that 

allowed us to make different metal isosteres of cobalamin (Widner, et al., 2016). Our chemical 

and biological synthesis approach allows for a regio-specific modification to the corrin 

molecule. Other have developed methods to generate a reactive group on the corrin molecule 

through non-specific acid hydrolysis of cobalamin in order to isolate variants with a free acid 

side chain, which was then subsequently modified (Waibel, et al., 2008). This involves 

elaborate purification procedures and overall low yields. 

The success of our approach relies on combining biosynthetic enzymes with chemical 

synthesis to produce new functional analogues. We wondered whether the additional chemical 

space occupied around the C5 position would present a steric hindrance especially with the 

downstream biosynthetic enzymes. Indeed, the presence of the C5-allyl group on precorrin-8 

did reduce the rate of reaction with CobH, which catalyses the methyl migration from C11 to 

C12 in the formation of HBA. However, with knowledge of the 3-dimensional structure of the 

enzyme (Shipman, et al., 2001) we were able to rationally engineer more space into the active 

site of CobH to make it significantly more active with the C5-analogues.  

The amide groups in cobalamin are added by CobB and CobQ. CobB accepts the C5-allyl 

modified substrate well and transforms it into C5-HBA a,c-diamide in high yields. Normally, 

the next steps in the aerobic cobalamin pathway involve metal chelation and adenosylation. 

The amidation of the remaining side chains is only completed after the chelation and 

adenosylation processes have taken place. We wanted to change sequence of pathway 

reactions by completing the amidations prior to metal chelation, ie to transform HBAD into 

Hby. We were aware that some organisms must be able to make Hby as an intermediate, as 

reports from 40 years ago had highlighted that bacteria such as A. vinosum, when grown in 

the absence of cobalt, are able to produce cobalt-free corrinoids such as hydrogenobalamin 

(Koppenhagen, et al., 1973). We thus cloned cobQ from A. vinosum and demonstrated that 

the encoded enzyme is indeed able to convert HBA-diamide into Hby and similarly convert the 

C5 analogues into the C5-Hby equivalents. With all these enzyme tools in hand we were able 

to produce the C5-allyl Hby on the tens of mg scale. After coupling of the fluorophore to the 
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C5-allyl position cobalt was then inserted to generate the C5-cobyric acid analogues 

containing either an OG or BoD fluorophore. These cobyric acid analogues were then 

compared to cobalamin analogues where the fluorophores were attached to the ribose 

position. 

The functional analysis of the various corrin and cobalamin analogues was surprising. Addition 

of the C5-TPEA-cobyric acid to a microbial B12 bioassay plate promoted growth around the 

application point, indicating that the C5-material must be taken up by the S. enterica reporter 

strain, which then presumably converted it into a functional cobalamin analogue. The other 

analogues such as the C5-OG and C5-BoD variants also promoted growth, albeit less well. 

The high levels of the analogues required to promote growth reflect several constraints on 

their molecular recognition in terms of their uptake and incorporation into methionine synthase. 

For instance, it is clear from our results that the ribose-OG-cobalamin is taken up more 

efficiently than the C5-linked cobyric acid analogue, whilst, conversely, the C5-BoD-cobyric 

acid analogue is taken up more easily that the ribose-linked cobalamin equivalent. What is 

most surprising of all is that all these analogues appear to fit into the active site of methionine 

synthase. The crystal structure of the E. coli methionine synthase suggests that there is a 

certain amount of room to accommodate some extra bulk on the ribose group (Drennan, et 

al., 1994). However, within the corrin binding site there is less room for the further chemical 

space required for the C5-attachment. Nonetheless, as mentioned above, the same is true 

with CobH, the enzyme required to convert the modified C5-allyl-precorrin-8 intermediate into 

C5-allyl-HBA, where the enzyme still catalyses the reaction albeit at a reduced rate in 

comparison to the natural substrate. So, with methionine synthase the extra group on the 

corrin ring may force some conformational change within the protein so that the extra bulk is 

accommodated. There is always the possibility that the fluorescent analogues are broken 

down in the cell to release the fluorophore from the corrin. However, extraction of C5-BoD-

cobyric acid from E. coli that had been grown with the compound resulted only in the 

identification of intact C5-BoD-cobyric acid. Overall, this tells us that the S. enterica and E. coli 

uptake mechanisms will accept corrin and B12 analogues with significant extra chemical bulk 

and that these compounds are relatively active inside the cell. 

We investigated whether these fluorescent corrin analogues were also taken up by M. 

tuberculosis. Interestingly, both the C5-BoD-cobyric acid and the ribose-BoD-cobalamin 

analogues were taken up by cultured M. tuberculosis cells with the C5-BoD analogue 

appearing to be taken up more quickly than the ribose analogue. Significantly, both analogues 

appear to support growth of this B12-dependent TB strain indicating that the molecules are 

able to get inside the cells. The B12 uptake mechanism in M. tuberculosis, which is different to 

that found in most other bacteria (Gopinath, et al., 2013), is clearly able to take up incomplete 
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corrinoids.  As humans are not able to take up cobyric acid, the use of cobyric acid conjugates 

could prove a useful method for specifically labelling and targeting TB infections. 

There is still much to learn about how B12 makes its journey from bacteria to specific 

compartments in eukaryotic cells. Several recent reports have highlighted the fact that C. 

elegans may prove to be a good model to learn more about the movement, distribution and 

storage of B12 (Bito, et al., 2013; Bito, et al., 2017; Watson, et al., 2014; Yilmaz and Walhout, 

2014). Indeed, we were able to show that a fluorescent B12 derivative is absorbed from bacteria 

by C. elegans and is observed to accumulate within coelomocytes. Interestingly, only the 

ribose-linked cobalamin analogue was absorbed indicating that the worm is able to 

differentiate between complete and incomplete corrinoids. It is not clear whether this is due to 

the B12 analogue being recognised as foreign material or whether the cells represent a storage 

area for excess cobalamin. Nonetheless, the results demonstrate that this is a powerful model 

to learn about how B12 is absorbed and, as this system is different to mammalian systems, 

there is the possibility of exploiting this difference to try and treat worm-based parasite such 

as hook worms. 

It is well documented that vegetarians are more prone to B12 deficiency as plants lack B12 

(Stabler and Allen, 2004). However, it has been suggested that some plants are able to absorb 

the nutrient if added exogenously to their growth media (Mozafar, 1994; Sato, et al., 2004). 

Through an outreach project we demonstrated that that garden cress, L. sativum, can indeed 

take up cobalamin. The amount of B12 absorbed by garden cress is dependent upon the 

amount present in the growth medium, and displayed a linear rather than a hyperbolic 

relationship. This would suggest an unspecific form of uptake.  Nonetheless, we were able to 

confirm B12 uptake using our OG analogue of cobalamin, showing that the nutrient ends up in 

the vacuole in the leaf. The uptake of B12 into plants is irrelevant in terms of plant metabolism, 

since plants do not possess any B12-dependent enzymes, but the finding that some plants are 

able to accumulate B12 is important as such nutrient-enriched plants would be important in 

helping overcome dietary limitations in countries such as India, which have a high proportion 

of vegetarians. 

 

SIGNIFICANCE. 

Vitamin B12, cobalamin, is an essential dietary component that is synthesised solely by certain 

prokaryotes. Although some eukaryotes, including mammals, require the nutrient, kingdoms 

such as Plantae and Fungi have evolved to live in a B12-less environment, which has 

implications for people on a vegan diet. In order to follow more closely the journey undertaken 

by cobalamin, from its prokaryotic inception, through sharing in microbial communities and its 
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uptake by animals, we devised ways to construct a range of fluorescent analogues of 

cobalamin. By manipulation of the B12 biosynthetic pathway we were able to modify the C5 

position of the corrin framework so as to incorporate an allyl substituent, where the vinyl group 

could be used to attach fluorophores to give tagged cobyric acid analogues. Fluorescent 

cobalamin variants were also constructed through attachment of fluorophores to the ribose 

group in the lower nucleotide loop. Together, these fluorescent analogues were used to show 

that M. tuberculosis is able to absorb both complete and incomplete corrinoids, demonstrating 

that cobalamin can be used to carry cargo into the cell. C. elegans was also found to absorb 

cobalamin, demonstrating that this approach can be used to follow intracellular trafficking in a 

model organism. Moreover, it also represents a target for parasites such as hook worms. 

Finally, and very surprisingly, certain plants were observed to be able to absorb B12 from their 

growth medium, accumulating the molecule in the leaf vacuole. This latter finding may be 

important as a way to address the global challenge of providing a nutrient-complete vegetarian 

diet, a valuable development as the world becomes increasingly meat-free due to population 

expansion. 
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FIGURE LEGENDS 

Figure 1. Biosynthesis of adenosylcobalamin from uroporphyrinogen III. Initially, 

uroporphyrinogen III is acted upon by the enzymes in the sequence of CobA, I, G, J, M, F, K, 

L and H to generate a cobalt-free corrinoid called HBA. Amidation of the a and c side chains 

followed by metal insertion, adenosylation and the remaining amidations by CobB, NST, R, O 

and Q gives rise to adenosylcobyric acid. The final stages of the biosynthesis see the 

attachment of an aminopropanol side chain and the alpha ribazole nucleotide, which contains 

the unusual base dimethylbenzimidazole. These reactions are mediated by the enzymes 

CobD, P, V and U. The numbering of the corrin macrocyle (1-20) is shown as is the lettering 

associated with the side chains (a-g). Different variants of cobalamin are found through 

changes in the highlighted areas of the molecule. The upper ligand (orange) can be a methyl, 

cyano or water group, the linking aminopropanol (purple) is an ethanolamine molecule in nor-

cobalamin, and a range of different bases can replace the dimethylbenzimidazole (blue). 
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Figure 2. The ChemBio synthesis of a C5 analogue of cobyric acid. Precorrin-7 is modified 

with an allyl-SAM derivative by the action of the C5 methyltransferase, CobL. This results in 

the production of C5-allyl-precorrin-8, which is acted upon by the enzyme CobH, B and Q to 

generate C5-allyl-Hby. Cysteamine is next chemically attached to the allyl group to generate 

C5-TPEA-Hby prior to the chemical insertion of cobalt to give C5-TPEA-cobyric acid. The 

coupling of a fluorophore via the free amine group on C5 generates the C5-fluorophore 

conjugate of cobyric acid. The fluorophore is represented by the filled red circle. 

Figure 3. Product complex of CobHT85A with C5-allyl-HBA. The figure shows the position 

of the reaction product bound at the active site of the enzyme. The proximity of the C5-group 

to Ala85 demonstrates how the removal of the threonine side chain has provided extra space 

to accommodate the allyl group. 

Figure 4. Chemical structures of the four fluorescent analogues of cobalamin.  The top 

two structures show the attachment of Orgeon Green and BoDIPY to the C5 position of the 

corrin ring, whereas the lower two structures show how these fluorophores are attached to the 

ribose moiety of the lower nucleotide loop. 

Figure 5. Effect of cobyric acid and cobalamin analogues on bacteria. Panel A shows a 

bioassay plate containing a S. enterica strain that requires cobyric acid or later pathway 

intermediates for growth. Addition of a known amount of vitamin B12 (spot 3) allows growth. 

Spots 1, 2 and 4 represent C5-Allyl-hydrogenobyrinic acid a,c-diamide (C5-Allyl-HBAD), C5-

Allyl-Hby and C5-TPEA-Hby, none of which promote growth. Spot 5 contains the C5-TPEA-

cobyric acid analogue and promotes growth. Panel B is the same bioassay plate assay as in 

panel A, with spot 3 containing a standard vitamin B12 solution. Spots 1, 2, 4 and 5 are 

solutions of C5-BoD-cobyric acid, ribose-BoD-cobalamin, C5-OG-cobyric acid and ribose-OG-

cobalamin, respectively. All the analogues support growth although the C5 analogues are 

weaker than the respective ribose-linked analogues. Panels C and D are overlay pictures of 

E. coli cells that have been grown in the presence of ribose-BoD-cobalamin and C5-BoD-

cobyric acid, respectively. The co-localisation of the red fluorescence with the cells indicates 

that E. coli has taken up both compounds. Panels E and F show cultures of M. tuberculosis, 

grown in the presence of ribose-BoD-cobalamin and C5-BoD-cobyric acid, respectively. 

Again, the presence of the red fluorescence with the cells indicates that M. tuberculosis is able 

to take up both analogues. 

Figure 6. Localisation of ribose-BoD-cobalamin to coelomocytes in C. elegans. C. 

elegans were fed with E. coli OP50 that had been grown in the presence of ribose-BoD-

cobalamin and were imaged after several days. The red fluorescence associated with the 
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fluorophore was found localised in the 6 coelomocytes, two of which are found at the head 

(Panel A), two near the vulva (Panel B) and two at the anus (Panel C). 

Figure 7. Localisation of ribose-OG-cobalamin to vacuoles in L. sativum (garden cress). 

Seeds were germinated in sterile media containing ribose-OG-cobalamin and were imaged 

after 5 days.  Thin sections of the cotyledons of cress grown in the presence of the ribose-

OG-cobalamin had highly fluorescent vacuoles (Panel A), whereas control plants grown in the 

absence of the cobalamin derivative lacked this fluorescence (Panel B). 



24 
 

STAR*METHODS 

 

CONTACT FOR REAGENT AND RESOURCES SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Professor Martin J. Warren (m.j.warren@kent.ac.uk) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All bacterial strains used in this study are listed in the Key Resources Table together with their 

source and genotypes. For E. coli, unless stated otherwise, the strains were grown in LB 

media supplemented with the appropriate antibiotics. All Mycobacterium tuberculosis cultures 

were grown in cobalamin deficient Sauton’s defined medium (0.5 g KH2PO4, 0.5 g  

MgSO4·7H2O, 2 g citric acid, 0/05 g ferric ammonium citrate, 60 mLs glycerol, 4 g asparagine 

and 500 µL TWEEN 80 in 1 L pH 7.0. Worm studies were carried out with Caenorhabditis 

elegans var. Bristol (strain N2) and maintained on nematode growth medium (NGM) agar.  

 

METHODS DETAILS 

Chemicals and reagents. Oregon Green® 514 (OG) and BODIPY® TR-X (BoD) succinimidyl 

ester were both purchased from Thermo Fisher Scientific, Inc., as was the P-Per for plant 

extraction. Allyl-Bromide, Cysteamine hydrochloride, Seleno-L-methionine, Dowex 50WX4 

hydrogen form, Diethylaminoethyl–Sephacel, and N, N-DiisopropylethylamineReagentPlus® 

were bought from Sigma Aldrich, Ltd. Other chemicals and equipment include LICHROPREP 

RP-18 from VWR, VA-044 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride from 

alpha laboratories Ltd. and crystal screens from Molecular Dimensions Ltd. 

 

Protein production and purification. All cobalamin biosynthetic genes were amplified by 

PCR using genomic DNA from either Rhodobacter capsulatus SB1003 (cobL, H and B), or 

Allochromatium vinosum ATCC 17899 (cobQ). The cob genes were amplified individually with 

primers then cloned into modified pET14b plasmids. These were then transformed into BL21 

star (DE3) pLysS. hMATIIA I117A was transformed into Rosetta 2 (DE3) pLysS. The 

recombinant strains were grown in LB at 37°C and protein overexpression was induced with 

0.4 mM of isopropyl-1-thio-β-D-galactopyranoside. The cells were resuspended in buffer A (20 

mM Tris pH 8, 500 mM NaCl, 10 mM Imidazole) and sonicated. The protein was purified using 

Chelating SepharoseTM charged with NiSO4. Unbound proteins were washed off with buffer A, 

buffer A containing 30 mM imidazole and buffer A containing 80 mM Imidazole. Proteins were 

eluted with buffer A containing 400 mM imidazole and passed through a PD10 column 

equilibrated with buffer B (20 mM Tris, pH 8.0, containing 100 mM NaCl) for CobL and H, or 

buffer C (20 mM Tris, pH 8.0, containing 500 mM NaCl) for CobB and Q.  

mailto:m.j.warren@kent.ac.uk)


25 
 

 

Production and purification of precorrin-7. E. coli BL21 star (DE3) pLysS was transformed 

with pET3a/cobA-I-G-J-M-F-K-LC-E and grown in 2TY at 28 °C for 24 hours (Deery, et al., 

2012). The cells were resuspended in 20 mM Tris, pH 8.0, and sonicated. Proteins were 

precipitated with acetonitrile and following clarification by centrifugation precorrin-7 was 

purified over DEAE-Sepherose. The column was washed with 20 mM Tris, pH 8.0, containing 

100 mM NaCl, before elution with 500 mM NaCl. The pH of the eluent was lowered to pH 4.0 

with TFA and the precorrin-7 was further purified over RP18. The column was washed with a 

stepwise gradient of methanol in 0.1% (v/v) TFA and elution was achieved with 50% methanol. 

 

Synthesis of SAM analogues. Allyl-SAM was prepared from homocysteine and allylbromide 

as described previously (Wang, et al., 2011). Allyl bromide (44 μL, 0.214 mmol) and AgClO4 

(6 mg, 0.025 mmol) were added to S-adenosyl-L-homocysteine (5 mg, 0.013 mmol) dissolved 

in a mixture of formic acid and acetic acid (1:1, 0.6 mL) at 0 °C. The mixture was allowed to 

warm up to room temperature and stirred continuously for 2.5 h. A further portion of allyl 

bromide (44 μL, 0.214 mmol) and AgClO4 (6 mg, 0.025 mmol) were added and the reaction 

mixture was stirred for another 2.5 h. following centrifugation to remove the precipitate, H2O 

(3 mL) was added and the residual allyl bromide was extracted with diethyl ether (5 mL × 3). 

The aqueous phase was then concentrated under vacuum. 

 

Synthesis of Se-propargyl-L-selenohomocysteine. Se-propargyl-L-selenohomocysteine 

was synthesized from L-selenomethionine as described previously (Singh, et al., 2014). L-

selenomethionine (100 mg) was dissolved in 20 mL liquid ammonia at -78 ºC and stirred. 

Small fragments of sodium metal (34 mg) were added until a deep blue colour persisted for at 

least 1 min. Progargyl bromide (46.5 μL) was then added followed by ammonium chloride (20 

mg). The reaction removed from the cooling bath and the flask was left open to the atmosphere 

for the ammonia to evaporate. The resulting residue was dissolved in H2O (5 mL) and the pH 

was adjusted to pH 5 - 7 by the addition of HCl (1 M). The solvent was removed under reduced 

pressure. 

 

Synthesis C5-allyl-HBA. Precorrin-7 (60 µM) was incubated with CobL (6 µM), CobH (30 

µM) and allyl-SAM (170 µM) in buffer B at 28°C for 16 hours in the dark. The reaction mixture 

was then heated to 65°C and the precipitate was removed by centrifugation. The resulting 

supernatant was applied to a DEAE-Sepharose column equilibrated in 20 mM Tris, pH 8.0. 

The column was washed with 20 mM Tris, pH 8.0, and the product was eluted with 20 mM 

Tris, pH 8.0, containing 500 mM NaCl. 
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Synthesis of C5-propargyl-HBA. C5-propargyl-HBA was prepared from precorrin-7 and Se-

propargyl-L-selenohomocysteine. Precorrin-7 (60 μM), Se-propargyl-L-selenohomocysteine 

(1.5 mM), ATP (2 mM), MgCl2 (5 mM), hMAT2A I117A (60 μM), CobL (6 μM), CobH (30 μM), 

Se-propargyl-Hcy (1.5 mM) and SAHH (50 μM) were incubated in 20 mM Tris, pH 8.0, 

containing 100 mM NaCl at 28°C in the dark for 16 h. The reaction mixture was heated to 

80°C for 15 minutes and the precipitate was removed by centrifugation. The supernatant was 

applied to DEAE column pre-equilibrated in 20 mM Tris, pH 8.0. The column was washed with 

20 mM Tris, pH 8.0, containing 100 mM NaCl, and eluted with 20 mM Tris, pH 8.0, containing 

500 mM NaCl. 

 

Synthesis of C5-allyl-Hby. C5-allyl-HBA (30 µM), CobB (2 µM), CobQ (5 µM), ATP (8 mM), 

L-Glutamine (8 mM), and MgCl2 (20 mM) were incubated in buffer C at 28°C for 16 hours in 

the dark. The reaction mixture was heated to 80°C, acidified to pH 4 with trifluoroacetic acid 

(TFA) and the precipitate removed by centrifugation. The supernatant was applied to an RP18 

column equilibrated in 0.1% TFA, washed with 0.1% TFA followed by 20% methanol before 

elution in 50% methanol. The product was then dried in a vacuum centrifuge. 

  

C5 allyl group extension. The C5-allyl group was modified through a thiol-ene coupling 

reaction with cysteamine. A solution of C5-allyl-Hby (30 μM) was incubated at 55°C in acetate 

buffer (pH 4.0, 0.25 M) containing cysteamine (100 mM) and VA-044 (20 mM) in the dark for 

15 mins. The product was purified over RP18 and analyzed by HPLC-MS. 

 

Cobalt insertion. Cobalt insertion was achieved through incubation of the desired metal-free 

corrinoid (20 μM) with CoCl2 (10 mM) in ammonium hydroxide (0.2 M) at 80 °C under an N2 

atmosphere. The reaction was followed UV-visible spectroscopy until deemed complete (~ 60 

mins) after which it was quenched with KCN and the product purified over RP18 and eluted in 

methanol. 

 

Synthesis of fluorescent C5-cobyric acid derivatives. CN2-C5-TPEA-cobyric acid was 

dissolved in DMSO and either the succinimidyl ester of OG or BoD along with 2 equivalents 

of DIPEA were added. The reaction was stirred at room temperature for 16 hours in the dark. 

The solvent was removed in vacuo and the compound was purified by semi-preparative HPLC. 

 

Ribose linked fluorescent vitamin B12 derivatives. The ribose-5’-hydroxyl group of vitamin 

B12 was activated with carbonyldiimidazole and coupled with 1,2-diaminoethane as described 

previously (McEwan, et al., 1999). The derivative was added to either the succinimidyl ester 

of OG or BoD with 2 equivalents of DIPEA in DMSO. The reaction was stirred for 16 hours in 
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the dark at room temperature. The product was precipitated with acetone and collected by 

filtration. Fluorescent derivatives were dissolved in 50% acetonitrile and purified by semi-

preparative HPLC. 

 

Crystal structure determination of CobHT85A with bound C5-allyl-HBA. Recombinantly 

produced CobHT85A was purified on a nickel affinity column. After affinity purification CobHT85A 

was subject to gel filtration on a G200 Superdex column (GE Healthcare). Protein fractions 

were collected and concentrated to 7 mg mL−1. Allyl-HBA was added to the protein in a 1:1 

ratio prior to crystallisation at 19°C using the hanging drop vapour diffusion method. Initial 

crystals were obtained in 0.2 M calcium acetate hydrate, 0.1 M sodium cacodylate pH 6.5, 18 

% (w/v) PEG 8000 (Molecular Dimensions, MD01 condition 20). Crystal optimisation required 

the addition of 20% methanol to the well condition and increasing the PEG 8000 to 20%. This 

resulted in multiple square shaped crystals which formed within three days. A single crystal 

was picked, transferred to a drop of in 0.2 M calcium acetate hydrate, 0.1 M sodium cacodylate 

pH 6.5, 20 % (w/v) PEG 8000 containing 20% glycerol as a cryoprotectant and then flash 

frozen in liquid nitrogen. The crystal diffracted to 1.6 Å and was found to belong to space group 

C 1 2 1 which is the same as the published structure of R. capsulatus CobH co-crystallised 

with HBA (PDB 4AU1) (Deery, et al., 2012). Data for the crystal was collected using beamline 

IO4-1 at the Diamond Light Source (UK). The data was auto-integrated and scaled using the 

Xia2 package using XDS (X-ray data software) and XSCALE (3dii) at the beamline. An initial 

model was generated by refinement of the scaled and merged data against PDB:4AU1 in 

Refmac 5. The model was then refined through cycles of manual model building in Coot and 

refinement with Refmac 5. The final model was validated in Coot and with wwPDB. The PDB 

coordinates were deposited with the code 5N0G. 

 

Bioassay plates. A quantitative bioassay using S. typhimurium AR3612 was performed as 

described previously (Raux, et al., 1996). The bioassay plates containing the indicator strain 

AR3612 were prepared from lawns of the corresponding bacteria. The bacteria were scraped 

from an overnight minimal medium (M9) plate containing methionine (50 mg/L) and cysteine 

(50 mg/L) and washed with 0.9 % (w/v) NaCl to remove traces of methionine. The cells were 

mixed with 300 mL of minimal medium (M9) containing cysteine (50 mg/L) agar at 47 °C, and 

poured into plates. 

 

Imaging in Escherichia coli. The OP50 E. coli was transformed with pET-BAD-btuBF and 

grown in a 4 mL LB culture after inoculation with 16 µL of starter culture. This was grown with 

1 µM of C5-BoD-cobyric acid or ribose-BoD-cobalamin overnight with induction with 0.02% 

arabinose. Cultures (1 mL) were spun down and washed three times with fresh LB to remove 
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external fluorophore. The final pellet was resuspended in 1 mL of fresh LB, 5 µL of this culture 

was dried on to a 1 % (w/v) LB-agarose pad and imaged on an Olympus IX81 widefield 

microscope with PlanApo 150 x OTIRFM-SP 1.49 numerical aperture lens mounted on ASI 

stage (Applied Scientific), and illuminated using LED light sources (Cairn Research Ltd) with 

appropriate filters (YFP and mCherry, Chroma). The samples were visualised using a 

Princeton ProEM 1024 back-thinned EMCCD camera (Princeton Instruments) on Metamorph 

software (Molecular Devices). Each 3D-maximum projection of volume data was calculated 

from 13 z-plane images, each 0.2 μm apart.  

Imaging in Mycobacterium tuberculosis. Relevant strains of M. tuberculosis were grown in 

150 µL cultures in a 96 well plate containing various concentrations of the BODIPY-labelled 

analogues of cobalamin and cobyric acid. The cells were grown for up to 48 h. After growth, 

the cells were spun down and washed three times to remove the fluorophore. Cells were 

pipetted directly onto a slide and imaged live on a Leica SP5 microscope using 594 nm 

excitation and imaging between 600-700 nm. The images were processed using Leica Lite 

confocal software and FIJI (Schindelin, et al., 2012).  

Extraction of cobalamin from Lepidium sativum using P-Per. Lepidium sativum seeds 

were sterilised by washing with 70 % ethanol three times then rinsed five times with sterile 

water. The seeds were placed on Murashige-Skoog agar containing different concentrations 

of cobalamin, and grown for one week in sunlight at room temperature. The cotyledons of the 

cress were collected and washed 5 times with water.  The residual water was removed by 

pipette, after centrifugation. The P-Per was prepared as instructed in the enclosed manual 

(Thermo Fisher): 283 µL reagent A, 2.9 µL of reagent B, and 214 µL of reagent C. A little sand 

was added to the cotyledons along with 100 µL of the P-Per. The cotyledons were ground 

using a hand-held pellet pestle for 2 minutes. The suspension was vortexed and then 

centrifuged for 3 minutes at 15,000 rpm rotation. The lower aqueous phase was collected and 

applied to the bioassay plate (see Section 2.6.1). 

Imaging in L. sativum. L. sativum seeds were sterilised by washing with 70 % ethanol three 

times, then rinsed five times with sterile water. The seeds were placed on the Murashige-

Skoog agar with 0.5 µM ribose-OG cobalamin, and grown at room temperature in the dark for 

five days. Whole cotyledons or sectioned cress were placed directly on the glass slide with 

water. The samples were imaged with a Leica TCS SP2 laser scanning confocal microscope 

(Leica Microsystems, Germany) with AOBS (Acoust-Optical Beam Splitter) detected using 

PMTs (photomultiplier tubes). Both the 40 x and 63 x HCX PL APO oil lenses, numerical 

aperture 1.25 and 1.4 respectively, were used. Samples were excited at 514 nm from an 

Argon–Krypton-mixed gas laser and images were acquired in the green/yellow region of the 
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light spectrum (525–590 nm). The software used to image was LCS (Leica Confocal Software) 

and the images were processed using Leica Lite confocal software and FIJI (Schindelin, et 

al., 2012). 

Imaging in Caenorhabditis elegans. C. elegans were maintained on normal E. coli OP50 at 

20 ˚C unless otherwise stated. A food source carrying the fluorescent analogues was made 

by transforming the OP50 with pET-BAD-btuBF and were grown in a 4 mL LB culture after 

inoculation with 16 µL of starter culture. This was incubated with 1 µM of C5-BoD-cobyric acid 

or ribose-BoD-cobalamin overnight with induction with 0.02% arabinose. 1 mL of culture was 

spun down and washed three times with fresh LB to remove external fluorophore. The final 

pellet was resuspended in 1 mL of fresh LB and 200 µL of the OP50 culture was pipetted on 

to the centre of NGM agar plates. These plates were left to dry in a sterile culture hood for 4 

hours and then stored at 4 °C until used. Three forth larval stage (L4) C. elegans were 

transferred to the seeded plates and left to grow at 20 °C for four days before imaging. Three 

third larval stage (L3) C. elegans were transferred to the seeded plates and allowed to lay 

eggs. These progeny were then imaged at the L4 stage. 

For each slide, 3-5 L4 stage C. elegans were mounted in M9 + 0.2 % levamisole on a 2 % 

agarose pad and imaged within 30 min at the University of Bristol on a Leica SP8X AOBS 

confocal laser scanning microscope attached to a Leica DMi8 inverted epifluorescence 

microscope with ‘Adaptive Focus Control’. The sample was excited with a white light laser at 

594 nm and detected between 599-712 nm using a hybrid gated detector for the fluorophore, 

and excited with a 405 nm laser, with images acquired between 410-505 nm for the gut granule 

autofluorescence. All images were taken using a 20 x numerical aperture 0.75 dry lens. Again 

the images were processed using Leica Lite confocal software and FIJI (Schindelin, et al., 

2012). 

HPLC MS analysis. Samples were separated on an Agilent 1000 series HPLC coupled to a 

micrOTOF-Q II (Bruker) mass spectrometer using an Ace 5 AQ column (2.1 x 150 mm; 

Advanced Chromatography Technologies) maintained at 30˚C and with a flow rate of 0.2 

mL/min. The mobile phase consisted of 0.1% TFA (v/v) in water (solvent A) and 100% 

acetonitrile (solvent B). Three different HPLC gradients were employed. Gradient 1 

(methionine and SAM and analogues):  Linear gradient from 0-30% solvent B over 30 mins. 

Gradient 2 (pathway intermediates): 5-20% B over 6 mins, 20-30% B over 19 mins followed 

by 30-90% B over 5 mins. Gradient 3 (fluorescent cobalamin analogues): Linear gradient from 

0-100% solvent B over 45 mins. Semi-preparative HPLC was performed on an Agilent 1000 

series HPLC using a CS SIL C18 column (250 mm x 10 mm; 5 μm; Charlton Scientific) at a 

flow rate of 5 mL/min running the gradients described above. 
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NMR analysis. NMR experiments were performed using a 600 MHz (1H) Bruker Avance III 

spectrometer with a 5 mm QCI-F cryoprobe. Assignments were completed using DQF-COSY, 

TOCSY (20 ms and 80 ms mixing times), NOESY (500 ms mixing time), 13C-HSQC-TOCSY, 

13C,1H-HSQC and 13C,1H-HMBC experiments with WaterGATE or excitation sculpting water 

suppression on 0.1-1 mM samples dissolved in deuterium oxide.  All 13C data was obtained 

using natural isotopic abundance. Data were processed and analysed using Bruker Topspin 

version 3.2 and CCPN analysis. 1H Chemical shift referencing was based on the position of 

the water resonance, 13C referencing used 1H/13C gyromagnetic ratios to define indirect carrier 

position (Wishart and Case, 2001) and all data were obtained at 25°C.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Bioassays (Figure 5 and Supplementary Figure 6) were performed three times (n=3) and the 

values for the amount of B12 present in the samples was generated from a standard curve. For 

B12 uptake into plants the averages of the separate measurements were then calculated and 

plotted using Microsoft Excel. The structure of CobH was refined with internal statistical 

analysis as reported in the deposition in the PDB 

No additional statistical tests were performed.  

 

DATA AND SOFTWARE AVAILABILITY 

All software used in this study is reported in Method Details and indicated in the Key 

Resources Table. The coordinates for the CobH T85A crystal structure were deposited in the 

Protein Data Bank PDB:5N0G (https://www.rcsb.org/structure/5n0g). 

 

 


