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Abstract. In this paper, we describe an approach to understanding data quality issues in field data used for 

the calculation of reliability metrics such as availability, reliability over time, or MTBF. The focus lies on 

data from sources such as maintenance management systems or warranty databases which contain 

information on failure times, failure modes for all units. We propose a hierarchy of data quality metrics 

which identify and assess key problems in the input data. The metrics are organized in such a way that they 

guide the data analyst to those problems with the most impact on the calculation and provide a prioritized 

action plan for the improvement of data quality. The metrics cover issues such as missing, wrong, 

implausible and inaccurate data. We use examples with real-world data to showcase our software prototype 

and to illustrate how the metrics have helped with data preparation. This way, analysts can reduce the 

amount of wrong conclusions drawn from the data due to mistakes in the input values. 

1 Introduction 

Many critical business decisions in equipment-heavy industries require a good understanding of the 

reliability of these assets. However, if the reliability is calculated using field data, any data quality problems 

will affect the quality of the results. In this paper, we briefly describe the key data quality issues in reliability 

data (Section 2) and show that there is currently no good way to detect them (Section 3). We propose a series 

of metrics (Section 4) as well as a 3-tiered hierarchy which simplifies the discovery of the most relevant 

issues (Section 5). We use an example to illustrate our approach and discuss its practical use. The paper 

concludes with an outlook on future work (Section 6). 

2 Reliability data and its data quality issues 

In order to estimate the reliability of a product, a series of key data elements is needed. These are often found 

in one or more tables. However, for the sake of generalization we assume that data consists of multiple 

properties associated with events and units (e.g. individual motors, machines, etc.). The events in turn are 

associated with units. The core failure data needed are start date, failure date, and an ID characterizing the 

unit for tying the two dates together. Also, the product type or version needs to be known to properly group 

the failure data. Additionally, we need censoring data for products which have not failed. Sometimes, we 

can impute missing core data through substitution data (e.g. a delivery or production date instead of a start 

date). Finally, there is a series of data sets which provide added value such as failure modes and information 

that allows a clustering such as application, customer, or even stress levels. 

Missing and recognizably wrong data are the most obvious data quality issues. Data is recognizably 

wrong, if it violates some universally accepted rule, natural law (absolute zero temperature) etc. Both 

missing and recognizably wrong data, most importantly, cause information loss as events or even whole units 

have to be removed. Wrong data which cannot be detected can distort the results of the reliability calculation. 

Implausible data is data which is not necessarily wrong but there is a strong suspicion that it might be. It is 

no easy decision what to do with such data but in general a lot of implausible data means that the data quality 

is poor. If the data lacks in richness of information, there will be a lack of detail that makes the results of a 

reliability analysis less accurate. For example, accurate failure dates are preferable to just knowing the year 

of failure. Finally, there are several statistical properties that identify a good sample selection, avoiding 

problems such as bias and small sample size. For a detailed discussion see Gitzel et al 2015. 
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3 Related work 

There is rather large body of papers that addresses the topic of data quality. Data quality is a multi-

dimensional problem (Kahn et al 2002, Balou and Pazer 1985) and several dimensional frameworks (see 

Borek at al 2014, pg. 13 for a survey of frameworks) as well as an ISO standard (Benson 2008) have been 

developed. Most of these frameworks (with the exception of Ban et al 2008) are based on relatively simple 

metrics.  

However, there is little work which targets data quality in the industrial context, especially with a focus 

on reliability data analysis. Since data quality is a highly domain-specific topic, this means that there is a 

large gap in the prior art which needs to be filled. While there are papers which identify data quality 

problems in industrial data (e.g. IEEE 2007, Vadlamani 2007, Bendell 1988, Montgomery and Hodkiewicz 

2014) and there is a supposition that the results of an analysis performed on poor reliability data is “severely 

misleading” (Bendell 1988), there is little work on quantifying these problems. A notable exception besides 

our own prior work (Gitzel 2014, Gitzel et al 2015) is a paper on assessing reliability data quality by 

Montgomery and Hodkiewicz which focuses on the “availability of specific data fields or individual records, 

the relevance of the data in specific fields, and the accuracy of the data” (Montgomery and Hodkiewicz 

2014). Also of note should be algorithms which are designed to deal with “coarse” data, i.e. data of poor 

quality (for a review, see Wu 2013). A common approach is to use estimations to correct errors (e.g. Ala, and 

Suzuki 2009). These algorithms can be used in conjunction with our proposed metrics to address the 

problems discovered. 

4 Data quality metrics 

In order to understand the data quality problems of a particular case, we use a series of metrics, which 

represent an updated version of the metrics developed in Gitzel et al 2015. All metrics range from 0 to 100% 

where a high value means a good quality. Note that some of the names do not follow the literature at the 

request of our stakeholders. 

4.1 Completeness metrics 

A common problem is incomplete data. Missing data can either be empty properties such as “N/A” or 

“unknown”. For our data quality analysis we have created a list of such terms. In a database, incomplete data 

takes the form of empty cells. For each property of each event and unit (see section 2), we need a 

completeness metric. The metric reflects the percentage of properties which are not empty. 

4.2  Free-of-error 

Errors in the data are one of the most common data quality problems. While not all errors can be discovered, 

there are some rules which can be used to discover them. For the purpose of our discussion, we distinguish 

between logical, set-membership and syntactical errors. For each rule there is a metric which covers one or 

more properties. The metric is the percentage of units or events that violate a particular rule. 

Logical errors can be discovered through rules based on one or more data elements, many of which 

depend on the domain. Set membership errors occur if a data element should be one of several possibilities 

but the actual value is not one of those. Syntactical errors are typos that let a value deviate from a given 

pattern. For example, an event type could be failure or censoring but not “break-down” (set-membership 

error). As another example, the start date of a product cannot occur after the failure date (logical error). 

Providing the string “Q2.02.2015” as a date is a syntax error. 

4.3 Inconsistency 

Inconsistency is a data quality problem of lesser importance. It mostly refers to consistency of notation (e.g. 

format of serial numbers) or units (cm vs. inches). Inconsistency is not a problem if it does not hide 

duplicates (e.g. the same unit registered under different serial numbers) or leads to mixing different units of 

measurement. However, it does increase the probability of such errors occurring. Metrics measuring 

inconsistency can count the number of elements which conform to a specific pattern, e.g. a predefined 

structure for serial numbers. 



 

4.4 Plausibility 

Like free-of-error metrics, plausibility metrics are based on a series of rules. Many of these rules are highly 

domain-specific but there are some recurring plausibility issues.  For example, there are some basic sanity 

checks associated with events. Normally, we know the release date of a product, so we can check whether 

there are any start dates before the corresponding release date, which is not impossible (e.g. pilot 

installations) but improbable in larger numbers. In the context of events, a common problem is the “double 

tap”, where a failure occurs very shortly (ca. 24h) after another one. In many cases, this is a reporting artifact 

and needs to be removed.  

Finally, there should be one or more rules to check the distribution of dates. If there are dates which occur 

with great frequency, this could be an assumed date for old data. Our metric for this rule is 1 minus the 

highest percentage of occurrences. Also, if there are large areas devoid of failures, it could be that no records 

exist for that period of time. If there is a suspicion about such an area, a simple metric can measure the 

percentage of units which start and fail before or after the gap and are thus not affected. More advanced 

metrics could discover such voids. 

Plausibility can also be applied to maximum and minimum values for a particular property. It is possible 

to have one free-of-error metric which convers impossible values (running hours that exceed the time 

between installation and failure) and one plausibility metric to identify unlikely values (running hours above 

x% of the time span as appropriate for the product).  

A special kind of plausibility rule covers sub-population membership. If you want to base your 

subpopulation on certain properties (e.g. a specific customer and failure mode) there is a problem if these 

properties are affected by poor data quality. We use a metric which is 1 minus the percentage of units that 

might or might not be part of the fleet. This includes empty values as well as names that are similar (as 

identified by means of a Damerau-Levenshtein algorithm). Often the latter problem is quick to fix once 

identified. 

Data that is not trustworthy comes from dubious sources, e.g. data collected by people we do not know 

for purposes other than reliability analysis. Unfortunately, the metadata required to judge the trustworthiness 

of data is rarely available. If such data is available, metrics can count all units and events coming from 

trustworthy sources. 

4.5 Richness of information 

If there are no details in the information, we consider the information to lack in richness. For example, a 

temperature could be described as “hot” or as “38°C”. Both statements can describe the same temperature 

but the second description is far more accurate. A typical issue in reliability data is inaccurate dates 

(production month instead of exact day). In a few cases, we do not have information about individual 

failures, i.e. we know the number of units that failed in a time period but not which units. In many cases, 

richness is a static assessment. For example, if there is only a property “manufacturing year” instead of 

“manufacturing date”, the richness is low throughout the sample because the exact day within the year is not 

known. However, it is also possible to search for properties that are suspicious (e.g. “1.1.20xx” or “6’000”). 

If the majority of running hours entries is multiples of 10, 100, or 1000, the information is probably less rich 

than numbers which are non-zero in multiple digits. In this case, a metric would measure the percentage of 

units that are not as accurate as the units of a property would suggest. 

Information richness also covers machine readability. For example free-text failure descriptions are less 

accurately interpretable to a software-based algorithm than failure codes. An issue related to richness is the 

excessive use of a category “other”. While using “other” to cover exotic cases is perfectly acceptable, a 

property that is “other” in 90% of the cases is quite useless for the purpose of identifying sub-populations.  

4.6 Sample selection 

In statistical analysis, sample selection is an important quality factor. It is not possible to measure all aspects 

of sample selection, however, there are a few factors which can be quantified easily. Typically, the sample 

size is of great importance for the quality of the calculated reliability. What makes a good sample size 

depends on the standard deviation of the population the sample is taken from (which can be estimated from 



 

the standard deviation of the sample). We propose to use a metric which is reduced by the relative standard 

error of the mean for sample sizes of 30 or more and 0% for sample sizes below 30. 

Furthermore, the selection of the sample must be unbiased, i.e., the sample should represent the 

population from which the sample is collected from. In other words, the composition of the sample regarding 

environmental factors, maintenance policy, applications, industry etc. should be very close or identical to 

that of the total population. For example, if a sample contains 30% assets from the chemical industry and 

70% from food & beverage while the installed base for a product is 50/50, the sample will be unbiased. The 

metric to measure unbiasedness can be based on the Chebychev distance between the percentages in the 

sample and the percentages in the population, calibrated to give 100% if the distance is 0.  

A special form of bias is warranty bias, i.e. samples where the majority of products come from the 

warranty period. A strong warranty bias implies that the reliability analysis focuses on those products with 

the poorest performance. A simple metric just counts the percentage of data originating from the warranty 

period. 

Another problem occurs if we only know about failures and not about non-failures. In order to get an 

unbiased sample, we also have to include non-failures as censored data. However, in some cases (e.g. if we 

only know warranty data) the censoring date has to be based on an assumption for many or all of the units. 

We call this phenomenon unconfirmed censoring and have found that it can greatly impact on warranty data 

analysis and needs to be addressed with additional data collection (e.g., questionnaire surveys).  

4.7 Substitution quality 

Ideally, our reliability calculation uses start dates and failure dates. However, in some cases, this information 

is not available and we substitute dates which are correlated to these, e.g. delivery dates. If there is a high 

level of substitution, this affects the quality of the calculation. We use a metric that tracks the percentage of 

units which use the real start date instead of substitutes like the manufacturing date. A second metric tracks 

the same for failure dates as opposed to reporting dates. 

5 Data quality metrics hierarchy 

When using our first version of the metrics (Gitzel et al 2015), we found that it was difficult to identify 

the key problems if there was a lot of less important information in the database. For example, an 

implausible company name is not as problematic as a missing failure date. Using a hierarchy of metrics 

allows data analysts to quickly understand the key issues in order to react to them. 

5.1 Importance of metrics 

Our hierarchy of metrics is based on different levels of importance for data quality problems. We use 5 

different levels of importance, as described in the following. 

“Critical” metrics address problems which will remove an event or unit from the calculation, thus 

reducing the sample size, or which might falsify the results (an implausible failure date). If any of the critical 

metrics is low, action is required before the results of the reliability calculation can be used.  

“Substitution for Critical” metrics identify the degree to which the real critical values are replaced by 

inaccurate values that need to be used because the real value is not known (see Section 0). These problems 

are often not worth the effort to fix but improvements in the data collection process can improve the 

accuracy of the reliability calculation. 

“Subfleet” metrics cover problems which only become relevant if we want to examine subpopulations. 

For example, without good data about failure modes, we can hardly identify the reliability curve for a 

particular one such as “explosion”. Subfleet metrics should be treated as critical metrics once we actually 

focus on a particular sub-population but only require action if such calculations are desired. 

“Added Value” metrics cover information that was included but is not directly used in neither the 

calculation nor the creation of subpopulations. However, such information might be useful to a human 

scanning the data for some reason, e.g. to identify a unit for further investigation.  

The category of “Other/Unspecified” metrics only exists for the purpose of “debugging” as it contains 

any metric that was not assigned to a specific category. In a correctly designed metrics hierarchy, this 

category is empty.  



 

5.2 Hierarchical approach based on box-plots 

In order to quickly track down key problems, we suggest a hierarchy of criticality (see Section 5.1), category 

(see Section 4), and individual metrics. We represent each level as a boxplot of all metrics in each category. 

Consider the anonymized example shown in Figure 1. The chart on the left shows all metrics, grouped by 

criticality. (In the example, there are no subfleet and unspecified metrics, so these columns are empty.) We 

can see at a glance, that the average critical metric is quite poor (as indicated by the bar) with a few metrics 

being quite good (the outlier dots). If we drill down into a view of all CRITICAL metrics (shown on the 

right), we find that the key problems are associated with the sample selection and the completeness, with 

most other metrics being quite good. Sample selection is quite poor on average, completeness metrics on the 

other hand cover a wide range as indicated by the box plot and its rather long whisker.  

A closer investigation of all critical sample selection metrics brings us to the level of individual metrics 

for a particular category and criticality (see Figure 2). As we can quickly discern, the main problem in this 

scenario is that for each of the product types the sample size is too small (left). Completeness of data is quite 

good except for the missing disposal date which is missing for all cases (right). 

5.3 Practicality of use 

As can be seen by the example, the hierarchy of data quality metrics can be used to quickly identify the key 

problems in a data set. However, each data set has its unique problems. We have therefore developed a 

software framework, which can be used to calculate the metrics for a particular data set. Including the 

configuration of the metrics, it took us two person days to implement a set of metrics tailored to the 

particular problem. (This does not include the initial assembly of the data.) Using several iterations, we were 

able to fix multiple problems in the data up to the quality level shown in the example graphics. For example, 

in the first go, many of the product types where missing, leading to a poor performance of the critical 

completeness metric. 

6 Conclusions and future work 

In this paper, we have presented a hierarchy of metrics which allows the quick identification to data quality 

problems in a data set used for survival analysis. The metrics and their classification are based on several test 

data sets we had available in our company. The metrics have been implemented in a prototypical API based 

on Java and R which can be used to quickly program report generators for a particular data set. 

Figure 1: Level 1 and Level 2 Boxplots 



 

We plan to further refine our metrics by gaining a better understanding of the impact the data quality has 

on the results. Currently, the metrics measure the extent of the problem within the data (e.g. how many 

properties are empty) but not the impact (by how much is the reliability curve distorted by this). A low 

hanging fruit in this context is to weave the estimated power of the test into the sample selection metrics. 
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