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Abstract

Regression problems provide some of the most challenging research opportunities in the area of machine learning,
where the predictions of some target variables are critical to a specific application. Rainfall is a prime example, as it
exhibits unique characteristics of high volatility and chaotic patterns that do not exist in other time series data. More-
over, rainfall is essential for applications that surround financial securities, such as rainfall derivatives. This paper
extensively evaluates a novel algorithm called Decomposition Genetic Programming (DGP), which is an algorithm
that decomposes the problem of rainfall into subproblems. Decomposition allows the GP to focus on each subprob-
lem, before combining back into the full problem. The GP does this by having a separate regression equation for
each subproblem, based on the level of rainfall. As we turn our attention to subproblems, this reduces the difficulty
when dealing with data sets with high volatility and extreme rainfall values, since these values can be focused on
independently. We extensively evaluate our algorithm on 42 cities from Europe and the USA, and compare its perfor-
mance to the current state-of-the-art (Markov chain extended with rainfall prediction), and six other popular machine
learning algorithms (Genetic Programming without decomposition, Support Vector Regression, Radial Basis Neural
Networks, M5 Rules, M5 Model trees, and k-Nearest Neighbours). Results show that the DGP is able to consistently
and significantly outperform all other algorithms. Lastly, another contribution of this work is to discuss the effect that
DGP has had on the coverage of the rainfall predictions and whether it shows robust performance across different
climates.
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1. Introduction1

Regression based problems provide a unique challenge for researchers, where the prediction of outputs have a2

pivotal outcome in real-life problems. The complexity can be overcome through specific domain knowledge, but3

often this is not the case. Within complex and chaotic time series data, there is a lack of reoccurring patterns and4

domain knowledge can be scarce. A type of time series, which remains one of the most difficult and crucial to5

applications, is rainfall. This time series contains high volatility, little to no seasonality and is highly random. The6

effects of rainfall can lead to devastation, and unfavourable conditions can impact societies’ and ecosystems’ ability7

to survive.8

The phenomenon of rainfall has a direct impact on various domains such as water resource planning, agriculture9

and biological systems. Within finance, predicting the level of rainfall is important for protecting an individual’s10

income from the adverse rainfall effects. Over the years people have sought means of protecting their day-to-day11

income from unfavourable rainfall, but only until more recently has this been possible. Insurance from rain’s adverse12

effects has existed for many years, but often is of little use unless the impact is of high catastrophe, causing destruction.13

For instance, a farmer would only be able to receive compensation if s/he could demonstrate destruction of their crop,14

e.g. because of a severe flood. However, such business can also be affected by unfavourable rainfall, which is not15

1Corresponding author: Michael Kampouridis, School of Computing, Medway, ME4 4AG, UK. Tel: +44 1634 88 8837. Email:
M.Kampouridis@kent.ac.uk
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necessarily catastrophic. For example, if a certain year is drier than normal, there might be a significant effect in the16

crop production. In such cases, rainfall derivatives is a new method for reducing the financial risk posed by adverse17

or uncertain weather circumstances. A rainfall derivative has the advantage that no proof of damages caused by rain18

is required to exercise protectionism, only the contract purchased.19

Rainfall derivatives are part of the concept of weather derivatives, sharing many of the same aspects of normal20

financial derivatives (e.g., oil and grain). This derivative is an agreed contract between two or more parties and can21

be written on the level of rainfall expected over a certain period of time. This contract’s value is priced according22

to the level of rainfall predicted over that period in the future. Therefore, the problem of rainfall derivatives can23

be broken down into two parts. The first problem is predicting the accumulated rainfall over a specified period and24

the second problem is having a pricing framework. The latter has its own unique problematic features, as rainfall25

derivatives constitute an incomplete market2. To reduce the problem of mispricing, an algorithm that can predict26

rainfall accurately is key, before assigning a price. In this paper we focus on this first aspect of predicting the rainfall27

amount.28

As the concept of rainfall derivatives is relatively new, there exists little literature on this subject. Moreover,29

the difficulty in predicting rainfall has deterred the attention of researchers, unlike other weather derivatives such as30

temperature3. To estimate future levels of rainfall, the Markov-chain extended with rainfall prediction (MCRP) [7]31

method has been commonly applied in a wide range of the literature, including rainfall derivatives [8, 9, 10, 11]. The32

general MCRP approach is often referred to as a ‘chain-dependent process’ [12], which splits the model into capturing33

first the occurrence pattern, and then predicting the rainfall intensities. The occurrence pattern is produced by a34

Markov-chain, where state 0 is a dry day and state 1 is a wet day. If a wet day is produced then the rainfall intensity35

is calculated by generating a random number from a given distribution (typically Gamma or Mixed-Exponential36

distribution), otherwise a value of 0 is assigned (zero rainfall). We refer the reader to [7] for a complete description37

of MCRP. Despite being a popular approach, MCRP is very simplistic and does not truly capture the irregularities of38

rainfall. The final result tends to fluctuate around the observable mean of the training data. Moreover, there exists a39

large number of rainfall pathways that do not reflect future behaviour.40

A way of dealing with the difficulty of predicting rainfall and to overcome some of the difficulties in modelling41

the time series of rainfall, is through change point models. The idea is based on abrupt changes in the time series,42

those points are considered a change point, with a new model explaining the time series within each segment [13].43

They are frequently employed within econometrics [14] [15], climate [16] and hydrology [17], amongst other problem44

domains. The concept is similar to a decomposition method proposed in [18], but change point models split the time45

series into a typically larger number of smaller segments on the time axis. In [18], the time series of rainfall is split46

on the dependent variable according to whether the next day is expected to observe high, medium or low rainfall. The47

difference being, only three regression equations explain the whole time series of rainfall, instead of a larger number48

of regression models based on the abrupt changes in the time series.49

Machine learning methods can be seen as an alternative and have become more popular over recent years. Typical50

applications within machine learning revolve around short term predictions (e.g. rainfall-runoff models up to a few51

hours [19] or monthly amounts [20] [21]). For daily predictions, [22] used a feed-forward back-propagation neural52

network for daily rainfall prediction in Sri Lanka, which was inspired by the chain-dependent approach from statis-53

tics. The work in [23] also applied GP to daily rainfall data, but the GP performed poorly by itself, although when54

assisted by wavelets the predictive accuracy improved. In the context of rainfall derivatives a selection of machine55

learning algorithms was explored in detail in [24], which showed that Radial Basis Function (RBF), Support Vector56

Regression (SVR) and Genetic Programming (GP) outperformed the commonly applied method of MCRP following57

a transformation of the data. In addition, [25] presented in detail a tailored GP for the problem of rainfall prediction,58

and [26] extended the above work by exproring the use of feature extraction. Both works showed promising results,59

where the GP could outperform MCRP, the current-state-of-the art. Furthermore, [18] extended the above GP works,60

by proposing a new algorithm called Decomposition GP (DGP). This was a novel hybrid algorithm (comprising of a61

Genetic Algorithm (GA) part, and a Genetic Programming part) that decomposes the problem of rainfall into subprob-62

2In incomplete markets, the derivative can not be replicated via cash and the underlying asset; this is because one can not store, hold or trade
weather variables.

3In fact, temperature weather derivatives have attracted a lot of research, both from the statistical and mathematical community [1, 2], as well
as the machine learning community[3, 4, 5, 6].
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lems. The motivation for doing this was to allow the GP to focus on each subproblem, before combining back into the63

full problem. The GP did this by having a separate regression equation for each subproblem, determined based on the64

level of rainfall; in addition, the GA determined which regression equation should be used (solving a classification65

problem). As we turn our attention to subproblems, this reduces the difficulty when dealing with data sets with high66

volatility and extreme rainfall values, since these values can be focused on independently.67

The main novelty of our paper is to present an in-depth technical and experimental comparative approach of the68

DGP algorithm, by building on [18]. This algorithm is an important step for time series that exhibit extreme time series69

behaviour. It is especially important within rainfall derivatives, where the price of a derivative is determined based70

on the level of rainfall, a prime example of the types of problems that our algorithm is looking to overcome. More71

specifically, the current study expands our previous work in the following five ways: (i) we present a more in-depth72

presentation of the DGP algorithm, (ii) we double the number of cities tested to 42, and we include cities not only73

from Europe, but also from the USA, (iii) we increase the number of algorithms we use as benchmarks from three (GP74

without decomposition, MCRP, RBF) to seven, as we now also include results for SVR, the M5 algorithm (both model75

trees M5R, and rules M5P), and k-Nearest Neighbour (KNN), (iv) we provide an extensive analysis on the results in76

terms of the GA component, which handles a classification task, as we compare it to other well-known classification77

techniques, such as RBF, SVM, RIPPER, Discriminant Analysis (DA), and Naive Bayes (NB), and (v) we provide an78

extensive discussion on the effectiveness of the DGP algorithm, by investigating how well its predictions cover the79

range of all rainfall data, and also by looking into how robustly it performs across different climates.80

The remainder of this paper is organised as follows. In Section 2, we outline the data used. In Section 3, we81

present in detail the decomposition algorithm and its components. In Section 4, we outline the experimental setup for82

the DGP algorithm, and in Section 5, we discuss the results. In Section 6, we evaluate the effectiveness of DGP and83

also analyse the algorithm’s performance on different climates. Finally in Section 7, we conclude and present future84

work.85

2. The Data Used in the Experiments86

The daily rainfall data used is summarised in Table 1, which includes a total of 20 cities from around Europe and87

22 from around the United States of America (USA). The data was retrieved from NOAA NCDC4.88

The use of machine learning methods effectively requires a modification to the data to align it with the problem
domain of rainfall derivatives. Following [24] we use a sliding window accumulation method, given by:

rts =

te∑
t=ts

rt, (1)

where rt is the accumulated amount of rainfall over a number of days, with the day varying over a contract period89

from ts till te.90

This is consistent with pricing a contract, whereby the price of a contract is the total amount of rainfall within a91

specified period of time, otherwise known as the contract period. The most common contract traded is monthly and92

contracts are only available for the months of March through October. Given we are interested in pricing monthly93

contracts, we use a sliding window length that covers the modal length of contracts, which is 31 days. We do not94

look for an optimum period to accumulate to help with prediction, because our problem domain is set out as the95

accumulated rainfall amounts over the contracts that are currently traded — that is, the contract period is chosen by96

the user, not by the algorithm.97

3. Decomposed Genetic Programming98

3.1. Overview99

Within this section we outline how we achieve the decomposition and how we break the problem down into smaller100

subproblems.101

4https://www.ncdc.noaa.gov/
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Table 1: The list of all cities whose daily rainfall amounts will be used for experiments.

City State City Country

Akron Ohio Amsterdam Netherlands
Atlanta Georgia Arkona Germany
Boston Massachusetts Basel Switzerland
Cape Hatteras North Carolina Bilbao Spain
Cheyenne Wyoming Bourges Germany
Chicago Illinois Caceres Spain
Cleveland Ohio Delft Netherlands
Dallas Texas Gorlitz Germany
Des Moines Iowa Hamburg Germany
Detroit Michigan Ljubljana Slovenia
Jacksonville Florida Luxembourg Luxembourg
Kansas City Kansas Marseille France
Las Vegas Nevada Oberstdorf Germany
Los Angeles California Paris France
Louisville Kentucky Perpignan France
Nashville Tennessee Potsdam Germany
New York City New York Regensburg Germany
Phoenix Arizona Santiago Portugal
Portland Oregon Strijen Netherlands
Raleigh North Carolina Texel Netherlands
St Louis Missouri
Tampa Florida

Our DGP consists of a number of individuals split into two separate populations, a GP part and a GA part. The102

GP part consists of b expression trees, where nodes represent functions or terminals as usual in GP [27]. For our103

implementation we define b to equal 3, such that we have 3 GP equations to predict low, medium and high rainfall104

amounts. The GA part consists of a linear chromosome with a string of n rules, each with g genes.105

3.1.1. Decomposing Rainfall Amounts106

In order to decompose rainfall, we partition the data into three different partitions (low, medium and high rainfall107

amounts), thus simplifying the prediction process. Partitions are done for each data set separately, thus different data108

sets may not have the same criterion used for splitting the data. More partitions could be considered, but we anticipate109

that three partitions is sufficient by analysing previous experimentation, where the low and high levels of rainfall110

received little coverage by a single regression equation. We discuss the process of splitting the data in Section 3.1.2.111

Then, in Section 3.1.3, we will discuss how GP was adapted to create multiple regression equations, one for each112

partition.113

3.1.2. Splitting the Data114

As we are creating a separate equation for low, medium and high levels of rainfall, we require two constants to115

split the data into three partitions. We refer to these two constants as a lower criterion LC and upper criterion UC, as116

shown by Figure 1. Thus, anything below LC is considered low rainfall, anything between LC and UC is considered117

medium rainfall and above UC is considered high rainfall. We allow for each individual of DGP to have its own LC118

and UC, instead of having two fixed constants applied to all individuals within the population. By assuming two fixed119

constants, we would not be able to determine whether the values of LC and UC are optimal and would need a way of120

estimating them prior to running our DGP. Therefore, we allow the LC and UC to evolve along with the GP and GA121

part of DGP, by encoding the LC and UC values within the linear representation of a GA individual. The values of LC122

and UC are considered based on the training data of each individual city. One aspect that is open to future research is123

considering a dynamically changing LC and UC, taking into account the uncertainty around certain periods of time.124

3.1.3. Genetic Programming Trees125

Using the information from a given LC and UC the rainfall time series can be split into three partitions. As126

shown by Figure 1 we require an equation to predict within the boundaries specified, thus we map each partition to a127
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Figure 1: Rainfall data split into three partitions according to a lower criterion and upper criterion.

particular GP branch (bn), shown by Figure 2. The concept is that a rainfall equation should be capable of predicting128

all points within its specified range and is evolved based on its ability to do so, whilst restricting behaviour outside129

of this range. Thus, having independent equations allows the GP to evolve each branch to maximise the predictive130

performance within each partition. Keeping the branches independent is required given that the patterns of rainfall131

and available data will differ across partitions. To ensure that b1 does not consider information from b2 or b3, we keep132

each branch independent and separate throughout the evolutionary process. To achieve this behaviour we create a133

crossover and a mutation operator that can only act on the same branch amongst individuals. The procedure is similar134

to the standard genetic operators, but is performed branch-wise, once per branch, rather than once per individual.135

Using tournament selection to randomly select two parents based on their performance to solve the complete problem,136

DGP chooses a random node/leaf from one branch and combine it with the same branch from the other parent. This137

process is repeated for all branches. We choose to keep the same parents for the three crossovers associated with the138

three branches, rather than select a new parent for each branch, to avoid too much disruption and randomness during139

the evolutionary process. Mutation follows the same procedure, a parent is chosen and one node/leaf on each branch140

undergoes single-node mutation.141

Figure 2: The representation of the decision criteria and the three branches for regression. Upon evaluation of the decision criteria, this leads to
one of the three branches; each branch is a different GP tree, representing a different rainfall prediction equation.

Elitism places into the next generation a new individual formed by a combination of branches b1, b2 and b3 based
on the predictive performance of each branch. In order to create the elite individual, we merge the best from b1, b2
and b3 across the entire population, creating a new individual consisting of the three best branches from the previous
generation. Within this framework we use b1 to represent low rainfall, b2 to represent medium rainfall and b3 to
represent high rainfall, as shown by Equation 2.

GP individual


b1 if rt ≤ LC
b3 if rt ≥ UC
b2 otherwise.

(2)

The general algorithm of DGP can be found in Algorithm 1. The inputs for the algorithm are the parameters142
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controlling the decomposition of the time series, also the rainfall data, and the final output is the rainfall predictions.143

One variable that is unknown from Algorithm 1 and Equation 2 is rt, which is the actual level of rainfall. Within144

our framework of DGP, this is the crucial variable to compare against LC and UC. To do so we use a classification145

technique to determine the branch to evaluate, discussed in the next section.

Algorithm 1 Decomposing rainfall amounts

1: P← Number of individuals in population
2: B← Number of partitions
3: t ← Time period
4: for Individual i = 1, . . . , P do
5: for Branch b = 1, . . . , B do
6: initialise(branchi

b)
7: end for
8: Set LCi

9: Set UCi

10: end for
11: for Generation g = 1, . . . ,G do
12: for Individual i = 1, . . . , P ∀ t do
13: if rt ≤ LCi then
14: Evaluate b1
15: else if rt ≥ UCi then
16: Evaluate b3
17: else
18: Evaluate b2
19: end if
20: Calculate fitness
21: end for
22: Breed
23: end for

146

3.2. The GA Component of the DGP147

In this section we outline the GA to classify each data point into the correct partition of rainfall amount. First, we148

introduce the representation of our GA in Section 3.2.1. Then, we discuss the fitness criteria to be used in Section149

3.2.2. Finally, the breeding of our GA is described in Section 3.2.3.150

3.2.1. Decomposing the Problem with the GA Component151

Predicting levels of rainfall requires rebuilding the decomposition back into the original problem. Within our152

framework, DGP needs to choose which branch to evaluate on a given day. In order to do so, we use a GA with a153

linear representation, as part of a hybrid DGP individual, to classify. Figure 1 shows the importance of classifying154

correctly, especially when considering the impact of misclassifying by more than one class. For example, if the actual155

rainfall amount is within the high rainfall partition (amounts > 110mm) and a classifier predicts low rainfall, then156

this will point to the wrong branch (tree) in the GP-part representation of the DGP individual, leading to an equation157

predicting much lower rainfall amounts, possibly in the range of less than 50mm, thus causing an error of at least158

50%.159

The GA-part of the DGP individual representation consists of 5 genes; predictor, period, lower criterion, upper160

criterion and order. Our GA linear representation is essentially a rule list for a given period of time within a year. Each161

rule has the same number of outcomes as the number of specified partitions. Keeping the rules consistent will keep162

the understanding of the rules very intuitive and comprehensive. The rules will consist of making decisions based on163

the same attributes used within the GP’s terminal set, presented in Section 3.3. The rules will be kept very simple and164

will be based on a single attribute along with a > or < operator and a constant. For each period of time only one rule165
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will be present with three outcomes. We do not consider chaining rules involving logical operators such as AND, OR166

and NOT. Based on the outcome of the rule, the GA will decide the respective branch to evaluate.167

Table 2: All the possible values for each gene, except for order. As we have a rule for each month, only the total number of days per month is given.

Genes of the GA-part of an individual

Predictor {rt−1, rt−2 . . . rt−11},
{ry−1, ry−2 . . . ry−10}

Period 31, 30 and 28
Lower Criterion (predLC) 0.05 - 0.65
Upper Criterion (predUC) 0.35 - 0.95

The predictor refers to one of the attributes used within the GP’s terminal set, e.g. rt−1, rt−2 and so on. Period refers168

to the number of days covered by a rule — e.g., a value of 31 would cover the next 31 days. Within our methodology169

we keep the period consistent and apply a rule for each month of the year, however, variable period lengths could also170

be considered. The lower and upper criteria are the decision thresholds for choosing which class to predict, predLC171

and predUC respectively, based on the predictor’s value. For our experimentation we define the predLC and predUC172

in terms of percentiles of the training set, but this could be modified accordingly to any real number or function. The173

complete list (excluding order) of values of the genes in the GA is specified in Table 2. The order is one of the unique174

permutations of the three branches, given below:175

Order reference[
1
] [

2
] [

3
] [

4
] [

5
] [

6
]

 b1
b2
b3


 b1

b3
b2


 b2

b1
b3


 b2

b3
b1


 b3

b1
b2


 b3

b2
b1


(3)

where each permutation corresponds to the following criteria: predictor < predLC
predLC < predictor < predUC
predictor > predUC

 .
For example order 3, whenever the predictor is less than predLC we classify medium rainfall (b2). If greater than176

predUC we classify high rainfall (b3), otherwise low rainfall (b1).177

Due to rainfall features exhibiting very complex and chaotic processes, it is highly unlikely that a single predictor178

can classify accurately. Such low probability in classification motivates us to allow a larger number of rules to be179

created throughout the year, which is able to reduce complexity in rainfall prediction, hence the period criteria. To180

best describe the characteristics of each month throughout each year, we set 12 rules, one for each corresponding181

month. However, the number of rules can be adjusted according to the user’s or model’s preferences. Furthermore,182

the order of the three branches is an important aspect within the classification process, because the same predictor183

could be used in a different month under different criteria. Figure 3, shows a sample representation of the above184

description, where we demonstrate the rules for January, February and December.185

January February December︸                     ︷︷                     ︸ ︸                     ︷︷                     ︸ ︸                     ︷︷                     ︸[
rt−1, 31, 37, 91, 2, ry−3, 28, 22, 77, 2 . . . rt−1, 31, 11, 64, 6

]
Figure 3: An example of a GA for 3 out of 12 months

For the example in Figure 3, the classification rules for January, February and December are shown in Equation
4, Equation 5 and Equation 6 respectively, showing the impact of a different order (by cross-referencing Equation 3
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with Figure 3) and the different criteria to split the predictor. The period refers to the number of days the rules cover
and is expressed in each equation as the days covered during a year. Therefore, the rules shown below are the same
for every day in the respective months.

January (Days 1-31)


b1 if rt−1 ≤ 37thpercentile
b2 if rt−1 ≥ 91stpercentile
b3 otherwise,

(4)

February (Days 32-60)


b1 if ry−3 ≤ 22ndpercentile
b2 if ry−3 ≥ 77stpercentile
b3 otherwise,

(5)

December (Days 335-365)


b3 if rt−1 ≤ 11thpercentile
b1 if rt−1 ≥ 64thpercentile
b2 otherwise,

(6)

After the inclusion of our GA component into our DGP, we modify our general DGP algorithm as shown in186

Algorithm 2. The inputs for the algorithm are the parameters controlling the decomposition of the time series and for187

the GA, also the rainfall data. The output is the rainfall predictions after decomposing the rainfall time series.

Algorithm 2 Adding our decision criteria into DGP

1: P← Number of individuals in population
2: B← Number of partitions
3: t ← Time period
4: for Individual i = 1, . . . , P do
5: for Branch b = 1, . . . , B do
6: initialise(branchi

b)
7: end for
8: Set LCi

9: Set UCi

10: Initialise GA
11: end for
12: for Generation g = 1, ...,G do
13: for Individual i = 1, . . . , P ∀ t do
14: Evaluate individual i of the GA
15: Choose branch
16: Evaluate branch
17: Calculate fitness
18: end for
19: Breed
20: end for

188

3.2.2. Fitness Criteria189

Each individual of the hybrid DGP will have the output of its GP component (which is partly determined by the190

values of the GA-component genes) evaluated using RMSE (Root Mean Square Error). However, we also need to191

compute the fitness of the GA-part of an individual separately. To compute the GA-part’s fitness we use Kendall’s tau192

(τ) correlation coefficient, which is used to measure the rank correlation between two variables taking into account the193

natural ordering of our nominal classes (low, medium, high rainfall). This measure will help deter from misclassifying194

by more than one class. Kendall’s tau is given by:195

τB =
nc − nd

√
(n0 − n1)(n0 − n2)

,where
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n0 =
n(n − 1)

2
, n1 =

∑
i

ti(ti − 1)
2

, n2 =
∑

j

u j(u j − 1)
2

,

where nc = Number of concordant pairs, nd = Number of discordant pairs. ti = Number of tied values in the ith group196

of ties for the predicted values p and u j = Number of tied values in the jth group of ties for the actual values a. Let197

(p1, a1), (p2, a2), . . . , (pn, an) be a set of observations, in our case the predicted class and the actual class, where n198

refers to the number of training instances. A pair of observations is concordant if the ranks for (pi, ai) and (p j, a j)199

both agree, such that (pi > p j and ai > a j) or (pi < p j and ai < a j) and vice versa if discordant.200

3.2.3. Individual Evaluation and Breeding of the Genetic Algorithm201

Each individual of the GA will be evaluated based on the Kendall’s correlation mentioned above, which will return202

a value in the range of [−1, 1]. A value of 1 represents a perfect agreement between rankings of predicted and actual203

classes. Once the population has been evaluated, selected individuals undergo genetic operations. The GA-part of the204

individuals can undergo point mutation and a variety of crossover techniques. The mutation procedure will choose a205

random point within the individual and replace it with a random variable or value that is of the same type. Therefore,206

one can not replace a predictor (e.g. rt−4) with predLC, only with another predictor (e.g. ry−5). We will cover the207

process of elitism in Section 3.4, because it requires the interaction between the GP and GA components of the hybrid208

DGP. We opt for tournament selection to select the parents for breeding and discuss the variety of crossover methods209

below. All these methods will be used in our DGP and will be chosen at random to promote a good diverse balance of210

individuals.211

Multiple Split Points. We apply the multiple split point method, similar to the one-point crossover, where we choose212

a random point and take one section from the first parent and the other section from the second. However, given213

our chromosome is 60 genes (12 sets of 5 genes) in length and to increase the mixing of individuals, we choose a214

random number s in the range [1,12] and create s splits in random locations in our chromosome. Therefore, creating215

individuals with a mix from two parents through random split points.216

Multiple Rule Split. We use a crossover technique that swaps entire rules (without breaking a rule) among parents, i.e.217

choosing a crossover point located at the boundary between two adjacent rules, rather than arbitrary split points (which218

could be inside rules). One possible advantage is that we keep the rules intact and do not cause too much destruction219

of each GA individual. Therefore, we consider crossover on our 12 rules. We choose which rules to crossover by220

assigning a probability to the crossover process. The first step is to choose the number of rules s randomly in the range221

[1,11] to select from each parent and from that we assign the probability. For example, if s is 6, then the probability222

is 50% of selecting a rule from either parent and if s is 3 then the probability is 25% of choosing a rule from the first223

parent. We then sequentially move along each rule and sample a value from the uniform distsribution to decide which224

parent to choose from, based on the probability identified.225

Single Split Within Rule. An alternative is to mix the two crossover methods above. Sequentially moving along each226

rule, we choose at random a gene in the range [0,5]. A value of 0 means that no split is required and use all of the227

material from the first parent. A value of 1 would mean that the first 4 genes are from the first parent and the 5th gene228

would be from the second parent. We repeat this process for all rules.229

Uniform Crossover. The final alternative for crossover is adapting a uniform crossover procedure, where we use a230

probability (0.5) for each gene within each rule. Then, for each gene, we choose at random whether to pick from the231

first or second parent for the new offspring, when creating each child.232

3.3. The GP component of the DGP233

In this section we describe the GP-like part of the individual representation, which is based on a Strongly-Typed234

GP (STGP) [28] with modifications used in [25] for the problem of rainfall prediction. Hereafter we use the terms GP235

and GA, for short, to refer to the GP and GA components of the hybrid DGP.236
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3.3.1. Terminals237

The variables are defined by the rt’s and ry’s calculated based on the data from Section 2, where rt is the accumu-238

lated rainfall amount in the last known non overlapping sliding window t periods ago. Similarly, ry is the accumulated239

rainfall amount in the current sliding window y years ago.240

The second element is an ephemeral random constant (ERC), which will pick a uniformly distributed random241

number. The third element is a set of constants from -4 to 4, at 0.25 intervals, which will take a separate type from the242

terminals already discussed. These are constants that are specific to the power function. Due to using STGP, we can243

ensure that the second argument of the power function is always one of these constants and does not create an illegal244

tree.245

3.3.2. Function set246

The function set includes: Add (ADD), Subtract (SUB), Multiply (MUL), Divide (DIV), Power (POW), Square247

root (SQRT), and Log (LOG). The functions LOG, SQRT and DIV are protected. Additionally, the second argument248

for POW will be a constant in a specified range as mentioned in 3.3.1. Since we allow for fractional powers, we249

force a whole number for the second argument, if the first argument is negative. The function and terminal sets are250

summarised in Table 3.251

Table 3: GP function an terminal sets

Set Value

Functions ADD, SUB, MUL, DIV,
POW, SQRT, LOG

Terminals 11 rt periods {rt−1, rt−2 . . . rt−11},
10 ry periods {ry−1, ry−2 . . . ry−10},
ERC,
Constants in the range [-4,4]

3.3.3. Management of Trees252

Due to rainfall being a strictly non-negative variable, a wrapper around each individual is included to modify the253

prediction to zero if the tree evaluates to a negative amount. The final adjustment is to ensure a balance between254

variables and random numbers in an individual. Thus, the first child of each node is either a function or a variable.255

Whereas, the second child of each node can be a variable, ERC or a function. We initialise the population using the256

ramped-half-and-half method.257

3.3.4. Fitness Function258

The fitness function used for evaluation will be the root mean squared error (RMSE), given by:259

RMS E =

√√√
1
N

N∑
t=1

(rt − r̄t)2 (7)

where N is the length of the training set, rt represents the predicted rainfall amount and r̄t represents the actual260

rainfall amount for the tth data point (time index).261

3.4. Integrating the GP and GA Components262

In this section we outline three aspects of the integration of the GP-part and GA-part of the individual representa-263

tion of the hybrid DGP, namely: penalising the regression trees, elitism, and the evolution of the LC and UC criteria264

to partition the data for classification.265
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3.4.1. Penalising GP Regression Trees266

Following the decomposition approach, it is key that each regression equation (a GP tree) predicts values within its267

respective partition. For example, it makes little sense for an equation responsible for the low rainfall class, predicting268

values in medium and high rainfall class. Therefore, we implement a penalty function based on the distance away269

from the correct partition, as shown in Figure 4. To integrate the GP and GA components and maximise the usefulness270

of this idea, we implement a simple check before choosing whether to penalise or not. The GP-related penalty will271

only apply to situations where the GA has correctly classified. Therefore, we are not penalising GP for making a272

wrong prediction given that the GA was at fault. This modification should influence GP to predict within a range273

similar to that of the specified partition. From Figure 4 any deviation denoted by the dashed vertical lines is penalised274

by Equations 8.275

Actual class is low

pnew =

{
pold + m(pold − LC) if cp = ca AND pold > LC

0 otherwise.

Actual class is medium

pnew =


pold − m(UC − pold) if cp = ca AND pold < UC
pold + m(pold − LC) if cp = ca AND pold > LC

0 otherwise.

Actual class is high

pnew =

{
pold − m(UC − pold) if cp = ca AND pold < UC

0 otherwise.

(8)

where pnew represents the predicted rainfall amount by GP after penalising and pold represents the rainfall amount276

originally predicted by GP. m represents a scaling function on the penalty, cp is the predicted class and ca is the actual277

class (i.e. the observed rainfall amount). UC and LC are the upper and lower criteria for splitting the data into its278

respective classes. For example, let us assume that cp = ca, if GP predicted 1000 tenths of mm (pold), where the UC279

is 1100 and m was 2, but the true class is high rainfall. We would then update pnew by 1000−2× (1100−1000), hence280

pnew is penalised to 800. The idea is for GP to deter from assigning a good fitness to this individual, given the large281

penalty effect.282

An alternative method for handling the case of predicting in the wrong partition is to have a wrapper to round the283

equation up or down to the nearest partition. However, compared to the idea of penalising, this may encourage poor284

performers to get selected for future generations by forcefully rounding poor performers. An example is an equation285

for partition medium, predicting values excessively large or low. By penalising the DGP individual, they are further286

deterred, but through rounding they are comparable to equations predicting within the same range. Within Algorithm287

2, this step would be inserted before calculating the predictive accuracy.288

3.4.2. Elitism Merging Different Individuals289

The use of elitism in our evolutionary process relies on exchanging information to create the best individual to put290

into the next generation. Typically, elitism would take the best GP trees and GA genes separately and put them into291

the next generation. However, due to the close integration between the GP and GA components of an individual, we292

create our own elitism strategy.293

The first consideration was mentioned in Section 3.1.3, where we merge the best performing branches brank
number294

together in ranking order. The elitism strategy perceives the DGP as combination of three separate populations of295

individuals and the GA-part as a separate population as well. Each individual in the population of branches gets its296

fitness evaluated based on how it was able to solve its respective subproblem in terms of RMSE. Additionally, each297

GA individual has its fitness evaluated based on the Kendall’s tau correlation rank. Through this procedure we aim298

to promote the best branches to create an elite individual. Thus, the best branch b1
1 will merge with b1

2 and b1
3. Note299

that the GA component and the GP branches are jointly responsible for achieving a better RMSE. For instance, b1
1,300

b1
2 and b1

3 may not come from the same parent using the same GA-based partition rules. Potentially, we may have301

3 different GA-based rule lists influencing the performance. Thus, we need an intermediate step to decide which of302
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Figure 4: The distance from the predicted amount to either the lower bound or upper bound when GP predicts a rainfall amount in the wrong
partition. The deviance is then used to calculate a penalty.

the GA-based rule lists is responsible for the best overall individual using all 3 branches. Therefore, we evaluate in303

turn each GA-based rule list (i.e., each GA individual) associated with the best branches merged together. We also304

evaluate the best GA individual overall based on its Kendall’s tau correlation rank, which may not be attached to any305

branch. After re-evaluating the newly merged offspring, the partition rule list that was responsible for returning the306

best fitness in terms of RMSE is moved into the next generation as part of the offspring.307

This helps evolve the partition rules that can perform the best classification across the training period, helping the308

GP to solve the regression problem.309

3.4.3. Evolution of LC and UC310

The last aspect of the hybrid DGP is the process of evolving LC and UC (our decomposition approach). These311

criteria are required for the GP component to construct regression equations (trees) to predict within each data partition312

and for the GA-based rule lists to classify into the relevant classes. Recall that each individual consists of three GP313

regression trees and a GA-based rule list.314

The use of LC and UC is to split the initial data into the three partitions, such that GP creates an equation to315

predict within each partition and the GA assists by selecting the corresponding branch to evaluate on each day. By316

evolving the criteria that bind the two hybrid parts together, we hope to find an optimal point where both the GP and317

GA part can minimise the RMSE on the whole problem. We do not directly influence the behaviour of the LC and318

UC and leave it up to the GA through the evolutionary process to modify them as necessary. To ensure the split points319

for decomposition are evolved, during crossover the two parents’ LC and UC values undergo uniform crossover to320

create the future offspring. With uniform crossover on two points there is a 1
2 chance of both LC and UC coming321

from the same parent and 1
2 chance of a mixture, as shown in Figure 5. Moreover, we do allow these points to be322

mutable as well, but instead of mutating using a uniform selection of values, we opt for the number to be normally323

distributed around the old value with a variance of 0.1. The motivation is that we want to modify the split point by a324

small amount, otherwise mutation can be too disruptive by changing a LC value from, say, 0.02 to 0.53, which would325

have a massive effect on our performance. Unlike the previous two aspects, this aspect is more subtle and directly326

affects the performance of both GP and GA, and helps guide the evolutionary process of both in turn.327

3.4.4. Alternative Classification Techniques328

An extension to test the effectiveness of the combination of GA and GP is to consider the use of other classification329

techniques to act as the decision criteria. The GA part is modified to replace the rule list with a different classifica-330

tion method. Therefore, our GA is simplified by containing an LC and UC and a classification method to perform331

the selection for which branch to evaluate for our DGP. We use the following classification techniques: Support332
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Figure 5: An example showing the breeding of the LC and UC from two parents using uniform crossover

Vector Machines (SVM), Radial Basis Function (RBF), Repeated Incremental Pruning to Produce Error Reduction333

(RIPPER), Discriminant Analysis (DA) and Naive Bayes (NB).334

We use SVR and RBF as two powerful blackbox techniques that are well regarded for complex applications.335

Additionally, we use two versions of M5 to have a comparison against a decision tree algorithm (M5P) and decision336

rules (M5R). This will provide a suitable comparison to GP, as methods that are capable of producing whitebox337

interpretable models. Finally, we use KNN as a clustering technique for the regression problem.338

3.5. Algorithmic Complexity339

The computational complexity of DGP on top of a GP is dependent on five main elements: the size of a GA340

individual n, the length of the training data m, the population size p, the number of generations g and the elitism rate341

e. As the length of the GA and the population is kept constant throughout the evolution, the best case is equal to the342

worst case. The complexity can be broken down into the following parts:343

(i) Population initialisation344

Initialising the population for all decision criteria requires building GA individuals of size n. Thus, a single GA345

individual has complexity of O(n). This process then needs to be repeated p times, which is the population size.346

Therefore, the population initialisation complexity is O(np).347

(ii) Fitness calculation348

First, each GP individual is labelled the partition of rainfall it belongs into, in order to calculate the fitness of the349

decision criteria. The complexity for a single GP individual is O(p). Given that the fitness calculation has to go350

through each point of the training data m, the combined complexity of this step is O(pm). In addition, calculating351

Kendall’ms tau correlation has a complexity of O(m log m), and occurs for each individual in the population, i.e.352

O(pm log m). Thus, the total complexity of calculating the fitness for the decision criteria is O(pm + pm log m).353

(iii) Operators application354

Mutation has a complexity of O(p), based on changing a random position for each individual in the popula-355

tion. Crossover has a complexity of O(np), as the whole decision criteria must be visited for each individual.356

Additionally, the complexity remains the same for all variations specified in Section 3.2.3. Finally for elitism,357

there is an initial sorting overhead of O(p log p) to select the best e individuals for elitism at each generation.358

Furthermore, four evaluations of GP are required with the elitism strategy outlined in Section 3.4.2.5 As the359

regression error is calculated for each point in the training data, the complexity is O(4em). Hence, the overall360

complexity for the operators is O(p + np + p log p + 4em).361

5As a reminder, the elitism strategy merges the best three branches, where each branch may have a different decision criterion. Therefore, there
are three evaluations of each branch’s decision criteria. Moreover, we try the best overall decision criteria, which may be different to the decision
criteria corresponding to the best three branches.
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The process for steps (ii) and (iii) occurs for a total number of generations g, as per Algorithm 2. As a result, the362

overall complexity of the DGP algorithm is the combination of the previous three steps, i.e population initialisation,363

fitness and operators. It is equal to: O(np + g(pm(1 + log m) + p + np + p log p + 4em)), which can be simplified to:364

O(np + g(p(m log m + n + log p) + 4em)).6365

4. Experimental Setup366

The main goal of our experimentation is to establish whether the use of DGP is better than using a standard GP367

and other well known machine learning methods. As mentioned in the Introduction, producing more accurate rainfall368

predictions should lead to more accurate pricing.369

We have identified three key aspects to investigate for DGP. The first is the performance against the financial370

state-of-the-art MCRP, as well as several popular machine learning algorithms. The second is the performance of the371

different classification techniques and the GA, based on how accurately they are able to classify into one of the three372

classes of rainfall. The third is how each classification algorithm helps the overall problem of rainfall prediction.373

4.1. Benchmarks374

In order to test the predictive performance, we compare the DGP algorithm against six well known machine375

learning methods that are capable of performing regression, namely: Radial Basis Function (RBF), Support Vector376

Regression (SVR), M5 rules, M5 model trees and k-nearest neighbour. Also included is the most commonly used377

method in rainfall derivatives, Markov chain extended with rainfall prediction (MCRP) and a GP without problem378

decomposition, which has already been applied to the problem of rainfall derivatives [25].379

To determine the classification accuracy we use the following classification techniques to compare against the380

GA: Support Vector Machines (SVM), Radial Basis Function (RBF), Repeated Incremental Pruning to Produce Error381

Reduction (RIPPER), Discriminant Analysis (DA) and Naive Bayes (NB). SVM and RBF have been chosen as state-382

of-the-art classification techniques. Moreover, we use both of these algorithms for regression and have been shown383

to cope well with the problem landscape. RIPPER is chosen since it generates pruned comprehensive rules, and can384

thus act as a good comparison against our GA. DA is chosen as it offers different perspectives based on the statistical385

distribution of our input variables, for this paper we use quadratic DA. Finally, we use NB as a probabilistic approach386

to the classification problem.387

4.2. Parameter Tuning388

The general procedure for GP and GA parameters is outlined as follows. Firstly, 10 cities that are not used to389

evaluate the predictive performance of the methods are used only for the tuning procedure, with 65 years worth of390

data required for each city. We use the same 10 cities listed in [24] for consistency. Next is to break the data sets into391

20 years with 5 years overlap between each one, with the final year being the validation set used for determining the392

optimal parameter set. The 20 years are then used to construct the data into a training set of 10 years, with the final393

year being the validation check. 20 years is required, because we allow DGP to observe rainfall values 10 years ago394

and the final year is always the validation set to preserve the temporal nature of the data.395

Using a parameter tuning tool called iRace [29], we iteratively consider all tuning data sets, automatically test-396

ing many different parameter setups. Across its many iterations, iRace will resample algorithm configurations that397

performed well by eliminating poorer configurations via the Friedman test of significance. We need to specify three398

inputs for iRace, the data sets to calibrate on, the total running budget (number of program calls) and a parameter list.399

When iRace finishes its execution, the output is the best possible parameter setups, based on all tuning data sets. The400

optimal set of parameters along with the parameter list specified within iRace for DGP can be found in Table 4.401

As we have mentioned, we are also using different classification techniques to act as our decision criteria. We402

use the same process as tuning DGP for all classification algorithms individually. The only difference is that the403

classification accuracy is used to determine the best configuration, instead of the combined accuracy using DGP.404

Table 5 shows the optimal configurations found by iRace for SVM, RBF and RIPPER. NB and DA are not included,405

as no tuning was required.406

6Constants have been removed from the simplified equation, as they are irrelevant to big-O notation.
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Table 4: The optimal configuration of DGP found by iRace. Parameters with a * are used by both the GP-part and GA-part of DGP. The parameter
list passed to iRace is located in the third row. The brackets indicate a range in the given type, either a whole number or a decimal at 2 d.p.

GP Parameters DGP iRace parameter setup

Max depth of tree 8 (4, 10)
Population size 1000* (200, 1000)
Crossover 99%* (0.40, 1.00)
Mutation 30%* (0.00, 1.00)
Primitive 32% (0.30, 0.95)
Terminal/Node bias 64% (0.30, 0.95)
Elitism 3%* (0.00, 0.20)
Number of generations 70* (30, 100)
ERC negative low -288.42 (-500, 0)
ERC negative high -224.31 (-500, 0)
ERC positive low 210.43 (0, 500)
ERC positive high 432.23 (0, 500)

Table 5: Optimal parameters using iRace for the three benchmark classification algorithms: SVM, RBF and RIPPER

SVM RBF RIPPER

SVM Type C-SVC Minimum SD 28.3 Folds 4
Cost 0.85 Clusters 2 Weight 7.01
Gamma 0.34 Ridge 0.541 Optimisations 3
Kernel Type RBF Prune tree False

4.3. Training/Testing set up407

DGP will have its predictive error compared on all 42 different data sets across the USA and Europe against the408

performance from all methods. DGP will be trained on 10 years of data and be tested on one year of data based on the409

optimal parameter set found by iRace. The training set is from 01/01/2005 to 31/12/2014 and testing will be compared410

on the rainfall values from 01/01/2015 to 31/12/2015.411

We will then consider the impact of changing the underlying classification technique from GA to one of the412

techniques given in Section 3.4.4. We will first consider the classification performance and then observe how the DGP413

performs when the decision process is controlled via a different algorithm. The classification accuracy of our GA and414

benchmarks will be based on a predefined set of upper and lower criteria. To avoid bias and to have a fair comparison415

we will use the same set for all classification techniques. Our results will be based on randomly selecting 100 upper416

and lower criteria to partition our data and we will report the average results. If the algorithm is non-deterministic417

(which is the case for GA and RBF) then we will run the technique 50 times on the same split points. Following this418

we will show the performance of DGP with the new decision techniques and compare against DGP with the GA as419

the decision criteria.420

5. Results421

Within this section we outline the results for how DGP performs against the benchmarks highlighted earlier.422

Moreover, we test the classification ability of the original GA against other well known techniques and how this423

impacts our DGP’s predictive accuracy. To compare accuracy we use the Root Mean Squared Error (RMSE), because424

the data includes large deviations away from the mean of the data set. The idea is to have an algorithm that is able to425

cope with the extremes, thus analysing which algorithms perform well when large errors is an important part of the426

analysis. For derivative pricing, mispricing should be minimised and penalising extreme deviations is favourable to427

encourage this behaviour. In addition, for reference we also provide the Mean Absolute Error (MAE).428

5.1. Predictive accuracy of DGP429

We present the findings for all algorithms in Tables 6 and 7. Please note that the DGP algorithm displayed is the430

method using a GA as the decision criteria.431
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From looking at Tables 6 and 7, we can observe that DGP was able to outperform the original GP from [24]432

consistently, as shown by the underlined values. The percentage improvement is approximately 8% on average over433

the 42 cities, which is a positive result. Some noticeable results from the cities are Oberstdorf and Gorlitz, where the434

predictive error was reduced by 22% when using DGP. We also note that DGP performs better than GP in 33 data sets.435

Moreover, DGP was able to predict the best out of all 8 methods 16 times (4 times in Table 6 and 12 times in Table436

7), which again shows the real performance gains that can be realised by breaking the process of rainfall down and437

solving subproblems. By comparison, the second best algorithm regarding the number of victories overall was SVR,438

which achieved the lowest RMSE in 11 cities.439

In order to determine the effectiveness of DGP and to test whether the above results are statistically significant,440

we compare the eight algorithms by using the Friedman test, which is a non-parametric test based on the mean rank441

of all algorithms across all data sets (cities) [30]. Our null hypothesis is that all algorithms should perform similarly442

across the testing set at the 95% confidence level. The results of the Friedman hypothesis test can be found in Table443

8, where we also include the mean ranks based on the results from Tables 6 and 7. As our Friedman test statistic444

was significant at the 5% level (p-value was 1.11x10−32), we use the Holm post-hoc test to compare the control (best)445

algorithm against each of the others.446

From looking at the mean rank within Table 8, DGP is ranked top, achieving the lowest RMSE on average against447

all other algorithms, showing that the use of decomposition has helped to reduce the average predictive error. Table 8448

shows DGP as the control method statistically outperforming all algorithms except for SVR, RBF and GP at the 95%449

confidence level. We can see the effect that DGP has had on the mix of all algorithms, but the original GP was not450

significantly outperformed, even though DGP predicted more accurately in 33 (out of 42) cities against GP. Here we451

can see that DGP performed better in terms of mean rank than the top blackbox methods (RBF and SVR) and GP, and452

statistically outperformed all other algorithms. Therefore, the predictive error has clearly been reduced by the use of453

decomposition. Additionally, the runtime of DGP is only 4% greater than the original GP used as a benchmark.454
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Table 6: The average RMSE and MAE (in brackets) for Europe of DGP against the predecessor GP and other methods. Values in bold represent the best algorithm for each city. Underlined values
indicate the lowest predictive error between DGP and GP

City DGP GP SVR RBF M5R M5P KNN MCRP

Amsterdam 430.28 (340.50) 430.88 (343.32) 432.94 (353.38) 422.24 (336.41) 492.97 (393.29) 467.45 (367.31) 473.41 (357.30) 625.15 (494.71)
Arkona 296.66 (216.09) 272.16 (209.53) 235.08 (163.82) 221.70 (169.56) 306.28 (221.57) 319.63 (214.36) 283.35 (211.03) 414.26 (301.75)
Basel 303.90 (233.45) 293.26 (221.75) 269.35 (198.25) 309.50 (244.34) 387.07 (292.33) 374.88 (273.67) 277.00 (233.30) 373.18 (286.67)
Bilbao 774.16 (555.48) 783.58 (512.18) 787.14 (511.20) 729.30 (488.26) 878.28 (678.86) 885.94 (621.36) 949.61 (815.05) 1020.70 (732.38)
Bourges 304.95 (255.11) 322.63 (273.81) 295.80 (251.21) 289.09 (256.27) 397.57 (314.79) 386.09 (298.50) 325.89 (283.55) 425.89 (356.29)
Caceres 357.46 (287.49) 371.71 (293.81) 318.10 (223.17) 320.09 (282.48) 370.20 (290.24) 439.19 (327.84) 472.00 (434.54) 385.82 (310.30)
Delft 455.86 (334.30) 476.01 (375.90) 512.31 (361.16) 483.94 (347.20) 562.26 (423.81) 503.30 (355.80) 518.83 (377.32) 732.90 (537.47)
Gorlitz 257.82 (200.82) 330.30 (267.01) 253.04 (202.46) 329.80 (260.85) 363.04 (269.68) 406.87 (290.34) 272.46 (222.79) 304.21 (236.96)
Hamburg 332.21 (265.53) 330.08 (273.94) 318.09 (248.09) 298.62 (250.91) 349.39 (287.40) 355.81 (271.52) 325.05 (247.05) 476.22 (380.64)
Ljubljana 483.81 (398.34) 499.10 (401.69) 455.43 (372.17) 483.10 (380.62) 666.23 (539.67) 689.07 (551.42) 1183.07 (1088.27) 642.49 (528.99)
Luxembourg 331.67 (277.88) 390.91 (333.49) 364.88 (313.02) 370.43 (324.70) 463.58 (389.44) 509.14 (420.01) 300.47 (232.70) 384.44 (322.10)
Marseille 372.13 (314.53) 395.81 (331.13) 334.03 (291.22) 337.08 (297.22) 516.69 (408.83) 432.31 (337.86) 718.98 (653.08) 429.98 (363.43)
Oberstdorf 436.68 (341.36) 563.98 (408.11) 468.04 (363.31) 475.31 (357.64) 561.20 (450.20) 554.66 (460.34) 679.59 (547.66) 682.52 (533.54)
Paris 268.95 (213.43) 287.83 (227.67) 260.68 (206.25) 265.59 (212.50) 303.47 (234.93) 316.97 (245.95) 260.76 (216.20) 356.38 (282.82)
Perpignan 396.12 (292.45) 407.00 (323.28) 383.94 (238.95) 398.48 (306.63) 494.05 (314.00) 469.72 (300.25) 1492.69 (1446.05) 445.26 (328.73)
Potsdam 231.30 (188.94) 243.18 (205.30) 202.30 (164.75) 222.87 (182.18) 291.61 (253.17) 283.94 (224.19) 344.93 (264.73) 362.87 (296.42)
Regensburg 269.36 (205.25) 277.66 (211.39) 271.41 (203.76) 270.83 (202.40) 335.37 (253.95) 335.78 (252.14) 240.96 (193.83) 334.62 (254.98)
Santiago 860.67 (672.76) 1034.02 (773.82) 989.13 (697.74) 914.70 (729.68) 1127.44 (910.01) 1268.65 (987.68) 1379.51 (1176.56) 1068.89 (835.52)
Strijen 458.05 (306.82) 507.86 (362.69) 523.21 (347.94) 520.90 (345.40) 529.29 (357.57) 569.76 (365.57) 548.57 (361.82) 715.82 (479.48)
Texel 399.90 (303.94) 412.91 (322.70) 393.25 (281.68) 396.05 (289.97) 412.54 (311.50) 423.88 (292.42) 491.18 (434.87) 611.57 (464.82)
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Table 7: The average RMSE and MAE (in brackets) for the USA of DGP against the predecessor GP and other methods. Values in bold represent the best algorithm for each city. Underlined
values indicate the lowest predictive error between DGP and GP

City DGP GP SVR RBF M5R M5P KNN MCRP

Atlanta 764.76 (560.25) 799.73 (570.53) 857.53 (614.70) 800.03 (567.83) 868.86 (662.97) 851.39 (652.72) 919.44 (667.31) 1159.81 (849.65)
Boston 380.26 (322.17) 417.14 (352.21) 388.20 (333.17) 400.56 (341.17) 624.63 (490.70) 535.08 (427.68) 966.33 (912.34) 492.04 (416.87)
Cape Hatteras 866.71 (562.65) 938.51 (635.10) 1023.58 (651.26) 968.16 (650.66) 1062.44 (644.78) 1111.34 (719.07) 1171.89 (768.91) 1304.73 (847.00)
Cheyenne 342.81 (224.44) 339.62 (249.69) 344.60 (207.86) 353.29 (237.02) 353.58 (229.10) 297.42 (202.53) 443.19 (261.52) 455.40 (298.16)
Chicago 453.91 (368.56) 498.05 (414.11) 443.42 (358.69) 433.04 (362.29) 550.44 (429.31) 559.64 (452.43) 716.73 (577.96) 655.31 (532.09)
Cleveland 474.60 (361.12) 534.76 (418.38) 527.59 (383.25) 538.55 (425.09) 562.07 (437.50) 587.37 (459.37) 532.82 (376.60) 676.48 (514.73)
Dallas 1070.64 (761.83) 1223.09 (862.93) 1283.32 (892.74) 1248.00 (874.51) 1328.54 (950.38) 1273.65 (917.71) 1437.85 (1051.89) 1415.62 (1007.30)
Des Moines 553.35 (450.10) 582.78 (477.09) 564.35 (452.34) 498.90 (401.67) 678.43 (569.97) 701.12 (568.51) 1020.52 (820.67) 805.94 (655.55)
Detroit 358.96 (283.93) 387.56 (311.94) 381.69 (303.27) 363.39 (294.43) 429.08 (343.09) 437.55 (352.00) 450.84 (330.07) 486.93 (385.15)
Indianapolis 834.96 (557.30) 889.52 (589.66) 891.26 (561.02) 898.76 (625.51) 897.16 (630.90) 919.82 (642.73) 948.64 (582.90) 1047.53 (699.19)
Jacksonville 663.42 (501.32) 630.29 (466.20) 573.48 (418.20) 574.81 (447.87) 607.41 (488.89) 560.05 (435.64) 731.03 (514.07) 793.05 (599.28)
Kansas 667.69 (493.86) 700.58 (518.51) 691.15 (502.45) 701.07 (529.98) 743.62 (539.36) 835.84 (634.42) 1038.90 (758.93) 917.71 (678.78)
Las Vegas 104.68 (79.20) 97.71 (77.16) 99.57 (73.92) 86.26 (66.81) 112.69 (85.92) 151.49 (112.73) 101.03 (73.37) 120.97 (91.52)
Los Angeles 323.20 (239.17) 308.52 (221.04) 213.25 (143.15) 235.13 (185.46) 281.23 (184.75) 315.29 (210.34) 403.75 (379.33) 276.18 (204.38)
Louisville 784.55 (621.04) 894.04 (710.69) 899.69 (724.15) 895.82 (704.91) 915.28 (734.19) 981.09 (796.21) 1042.56 (781.04) 1172.18 (927.89)
Nashville 431.00 (348.34) 467.94 (383.12) 424.96 (354.67) 418.49 (342.25) 556.37 (442.33) 533.51 (412.10) 469.66 (380.73) 698.28 (564.36)
New York 454.65 (366.73) 505.07 (404.63) 390.83 (313.25) 427.85 (342.34) 764.03 (564.82) 531.26 (429) 683.14 (608.15) 551.05 (444.49)
Phoenix 175.79 (139.92) 148.53 (117.98) 160.45 (124.59) 128.06 (106.22) 217.63 (170.50) 175.75 (141.30) 133.11 (104.90) 182.97 (145.64)
Portland 661.44 (454.20) 787.17 (508.44) 777.84 (483.17) 729.94 (455.83) 819.96 (606.23) 841.69 (540.42) 1059.11 (897.26) 969.16 (665.51)
Raleigh 485.30 (375.89) 469.13 (361.01) 543.97 (418.54) 480.19 (371.24) 613.22 (475.03) 626.52 (494.54) 561.72 (433.19) 846.81 (655.89)
St Louis 838.33 (616.10) 933.92 (713.83) 1010.01 (711.15) 984.12 (719.05) 981.52 (740.37) 881.00 (649.79) 1091.14 (783.97) 1241.65 (912.50)
Tampa 1125.76 (670.43) 1219.45 (702.89) 1184.48 (679.99) 1112.94 (658.83) 1278.94 (806.02) 1355.24 (803.35) 1408.39 (855.95) 1491.53 (888.26)
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Table 8: The mean ranks of all algorithms, and the Friedman test statistic with the best performing algorithm (DGP) being the control method.
Values in bold represent a significant difference.

Friedman test p-value 1.11x10−32

Algorithm Mean rank p-value Critical value

DGP 2.52 - -
RBF 2.55 0.96 0.050
SVR 2.67 0.79 0.025
GP 3.62 0.04 0.017
M5P 5.81 7.90x10−10 0.013
M5R 5.83 5.96x10−10 0.010
KNN 6.00 7.85x10−11 0.008
MCRP 7.00 5.56x10−17 0.007

5.2. Classification Accuracy of the GA455

We will now investigate which classification accuracy provides the best predictive accuracy for the DGP algo-456

rithm. In order to determine the GA’s effectiveness we will compare it against other well-established techniques as a457

benchmark. The results can be found in Tables 9 and 10 based on the same randomly chosen set of LC and UC.

Table 9: Classification accuracy for Europe shown as a percentage of correctness on the test set. Values in bold show the best algorithm for each
city.

Data GA SVM RBF RIPPER DA NB

Amsterdam 51.10 47.87 48.92 44.01 39.63 48.82
Arkona 46.04 50.55 43.81 44.32 39.60 45.35
Basel 53.56 43.45 63.12 55.86 36.67 41.65
Bilbao 49.03 51.25 46.59 52.81 41.27 51.51
Bourges 45.85 47.17 51.18 44.42 23.03 46.53
Caceres 52.27 40.79 63.69 58.40 52.77 68.54
Delft 53.63 50.33 48.28 45.79 27.63 37.28
Gorlitz 36.02 40.00 46.77 47.45 25.58 40.26
Hamburg 46.19 51.02 44.45 47.52 32.24 49.18
Ljubljana 45.46 49.51 44.88 50.87 41.55 49.19
Luxembourg 46.27 35.60 44.43 38.87 29.61 38.86
Marseille 32.25 46.15 49.33 48.55 39.10 40.78
Oberstdorf 47.69 55.88 59.81 50.42 33.70 41.35
Paris 50.74 51.41 49.45 47.90 28.43 40.79
Perpignan 53.35 57.35 55.00 50.93 30.41 45.50
Potsdam 57.33 47.99 60.41 47.65 53.98 56.26
Regensburg 39.54 47.05 53.28 46.24 38.85 49.59
Santiago 46.80 46.47 52.18 44.21 39.17 49.11
Strijen 49.88 48.36 42.52 47.36 27.46 30.45
Texel 59.32 53.85 59.05 53.29 45.41 47.74

458

In Tables 9 and 10 we can observe that our GA performs well, just behind the best algorithms of RBF and SVM.459

More precisely, the GA, RBF and SVM were the winners in 10, 11 and 11 cities, respectively. The experimental460

setup of this was to test the robustness of each algorithm, which is why the average percentage of correctness for most461

algorithms appears to be near 50% accuracy. The results here are not directly the same as they will be inside the DGP462

algorithm, as the class boundaries specified by LC and UC are randomly selected and are not optimised. One issue463

with choosing random LC and UC for decomposition is that the chance of it being optimal is slim and does impact464

performance. Ideally, the algorithm should be able to perform well with a non optimal splitting of data. Considering465

the range of all classification techniques, in most cases our GA was very competitive, which was a positive sign. The466

random selection of the criteria was necessary to avoid bias and to allow for a fair comparison across all classification467

techniques.468

In order to determine whether there were any significant differences between classification techniques we perform469

the Friedman test at the 95% confidence level and show the results in Table 11. We observe a statistical difference,470
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Table 10: Classification accuracy for the USA shown as a percentage of correctness on the test set. Values in bold show the best algorithm for each
city.

Data GA SVM RBF RIPPER DA NB

Atlanta 49.64 49.68 46.55 42.21 25.44 27.98
Boston 45.63 36.20 42.25 40.43 28.19 41.32
Cape Hatteras 64.77 61.06 60.53 47.13 52.12 56.26
Cheyenne 43.46 66.50 57.11 57.28 48.10 46.65
Chicago 30.50 43.45 42.64 40.31 32.33 45.93
Cleveland 43.45 37.65 45.90 44.24 37.38 35.15
Dallas 42.39 43.21 41.79 31.70 39.05 29.36
Des Moines 40.95 53.16 56.32 44.84 48.35 57.21
Detroit 39.21 37.10 35.76 37.58 39.65 40.87
Indianapolis 36.40 39.79 50.89 39.71 41.74 40.88
Jacksonville 48.28 56.36 58.86 53.13 46.12 45.03
Kansas 45.61 58.40 50.76 49.00 48.91 46.83
Las Vegas 74.71 68.74 62.50 57.58 54.55 57.90
Los Angeles 75.70 65.08 74.21 72.14 73.54 77.83
Louisville 37.18 43.08 33.23 32.95 36.65 34.77
Nashville 41.04 52.28 49.45 50.56 25.28 38.65
New York 50.05 35.90 58.08 52.97 30.81 47.37
Phoenix 63.03 60.92 58.47 58.28 48.50 49.38
Portland 59.38 56.87 54.39 53.27 63.89 72.47
Raleigh 47.26 61.10 56.48 45.44 42.68 54.48
St Louis 46.14 47.04 45.81 40.79 46.76 48.82
Tampa 69.78 63.80 65.87 53.23 58.90 51.05

Table 11: The Friedman test statistic along with the results of the Holm post-hoc test at the 95% confidence level, with the best performing algorithm
(RBF) being the control method. Values shown in bold represent a significant difference in classification accuracy against the control algorithm.

Friedman test p-value 1.7925x10−10

Algorithm Mean rank p-value Critical value

RBF 2.64 - -
SVM 2.76 0.771 0.050
GA 3.14 0.221 0.025
NB 3.57 0.023 0.017
RIPPER 3.81 0.004 0.013
DA 5.07 2.702x10−9 0.010

as can be seen by the Friedman test p-value of 1.7925x10−10, which is much less than the 5% significance level.471

Therefore, one or more classification algorithms significantly outperformed at least one other algorithm.472

From the perspective of our GA, we observe that it is not significantly outperformed by the best performing473

classification algorithm of RBF. We believe that the better the classification accuracy the better the performance of474

DGP, given by classifying more data points accurately. Therefore, based on the mean rank, we would expect under475

this assumption RBF to perform the best when compared to our DGP with GA. However, a key difference is that the476

GA rules evolve alongside the GP equations, whereas the other classification algorithms are fixed throughout the GP’s477

evolution. We may observe a substantial number of misclassifications throughout the evolutionary process, which478

may hinder the generalising ability of DGP.479

5.3. DGP Performance Under Different Decision Criteria480

We now examine the predictive performance of DGP when we use an alternative classification algorithm. We481

hope to examine two aspects. Firstly, if using a technique that improves the classification accuracy has a greater effect482

on lowering the RMSE of DGP. Secondly, whether in the final generation of DGP the decision criteria that maximised483

the classification accuracy was used by the best performing individual (lowest RMSE) of DGP.484

Tables 12 and 13 show the average RMSE of DGP averaged over the testing period using each classification485

algorithm, along with the mean ranks located at the bottom of the tables. Similar to our previous experimentation, we486
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run DGP for 50 times and initialise 1000 randomly generated LC and UC combinations (population size) pairing them487

to a DGP individual throughout evolution. We present the order of algorithms according to the classification accuracy488

from Tables 9 and 10, with RBF performing the best and DA performing the worst. Interestingly, the respective RMSE489

of each algorithm is not too dissimilar between the first and last place and considering the mean ranks. One aspect490

we notice is that there does appear to be a negative correlation across the table looking at the mean ranks, where the491

higher the classification accuracy, the lower the RMSE error, which is exactly as we anticipated. Taking the combined492

mean rank across both tables, we notice that RBF ranks first (3.23), GA ranks second (3.26), SVM ranks third (3.48)493

and the remaining algorithms ranked in the same order as per the classification accuracy. GA was the only algorithm494

to increase its rank on its predictive error relative to its rank on the classification accuracy (from third to second).495

In order to determine whether this relationship does exist between the classification accuracy and the predictive er-496

ror, we calculate the Pearson product-moment linear correlation coefficient to measure the strength of the relationship.497

We observe based on the results provided in Tables 12 and 13, as well as Tables 9 and 10, that we obtain a coefficient498

value of -0.8924, indicating a strong negative linear relationship between classification accuracy and predictive error.499

We obtain a p-value of 0.0167, which is less than the 5% significance level and can conclude that a relationship does500

exist.501

We do notice that the use of GA had an irregular effect on the RMSE and is the anomaly that does not fit the trend.502

The GA’s average predicted error was similar to the classification technique ranked first (RBF), despite classifying503

third.504

We perform the Friedman hypothesis test to determine whether there was a significant effect on the RMSE from505

the use of different decision criteria. We discover the p-value is 0.6675, which is greater than the 5% significance506

level and so we cannot reject the null hypothesis. Although we do observe a trend that is consistent with our previous507

analysis of the classification accuracy, there is not enough evidence to suggest that one decision criteria leads to a508

significant change in RMSE.509

This shows promise for our algorithm of DGP, indicating that by having a more accurate classification technique510

does lead to a reduction in RMSE. As further analysis we also consider what effect each classification technique had511

on the standard deviation of our DGP predictions. We discover that the average standard deviation was 4.83%, 4.91%,512

9.12%, 5.10%, 5.37% and 5.25% for RBF, SVM, GA, NB, RIPPER and DA respectively. From this we can identify513

why the performance generally fitted the negative correlation between RMSE and the classification accuracy. Here514

we witness that all classification techniques, except GA, tended to increase the robustness of GP, indicated by the515

lower RMSE. However, we do see that the standard deviation does increase when using our GA respective to the other516

algorithms. This is quite an interesting discovery for our DGP, where we observe that keeping consistent decision517

criteria helps to improve the stability of our DGP’s performance, since the same model is used for all algorithms518

except for our GA.519

In the special case of our GA, we can have many rules sets explaining the same LC and UC class threshold520

combination, which adds more randomness into our model and hence reflects a larger spread of results. On the other521

hand, under all other classification algorithms the outcome of using a certain LC and UC combination is fixed across522

all DGP generations. We discovered that the best LC and UC combination is evolved much more efficiently with the523

final generation of DGP having more similar LC and UC; whereas with the GA we observe a more mixed set of LC524

and UC values. In both cases we did not count the effect from mutation in the previous generation.525

To further aid the analysis, we also consider whether the LC and UC that returned the highest classification526

accuracy from the final generation of DGP were responsible for the lowest RMSE of our final DGP individual. We527

include in Tables 14 and 15 the best overall classification accuracy on average from the final generation of DGP528

and, in brackets, the classification accuracy of the individual that minimised the RMSE of DGP. This analysis will529

help to understand how the classification part of DGP behaves, which may indicate why the individual with the best530

classification accuracy does not always lead to a lower RMSE.531

Tables 14 and 15 show in almost all cases DGP tended to choose the individual with the best classification accu-532

racy, except for our GA. This is interesting as it appears that one of the benefits is the relationship of our GA evolving533

alongside that of GP. Meaning that there is the potential for the GP part to be overfitting on the incorrect predictions534

from the classification algorithm, given that there is only a single model for each LC and UC combination. Alter-535

natively, there may exist a problem of early convergence, as we noticed little diversity in the LC and UC of each536

individual in the final generation. On the other hand, in the final generation the GA had many different classification537

outcomes with more diverse combinations of LC and UC. This analysis indicates that through the evolution of our538
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GA-part (outlined earlier in Section 3.4), DGP can learn from more frequently changing information to avoid early539

convergence and explore different classification rules.540

The results show that the GA was competitive with SVM and RBF (Table 11), and we find that the GA was541

computationally much more efficient than all classification algorithms. Therefore, we continue with this method as542

our chosen methodology with any future reference to DGP, referring to using the GA as the underlying classification543

method, to decide which categorical level of rainfall (low, medium, or high) should be predicted by a GP individual.544
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Table 12: The average RMSE and MAE in brackets for Europe obtained by DGP when applying different classification algorithms. The best results for each city are shown in bold.

Data GP + RBF GP + SVM GP + GA GP + NB GP + RIPPER GP + DA

Amsterdam 458.08 (363.92) 454.12 (351.09) 430.28 (340.50) 454.72 (368.58) 458.38 (384.84) 448.52 (365.57)
Arkona 274.71 (192.74) 300.34 (228.27) 296.66 (216.09) 310.63 (231.18) 318.23 (224.24) 304.76 (220.96)
Basel 296.91 (241.00) 309.92 (240.38) 303.90 (233.45) 307.70 (236.46) 306.36 (233.93) 283.30 (206.27)
Bilbao 775.86 (564.78) 765.18 (537.24) 774.16 (555.48) 716.64 (486.79) 777.88 (552.04) 813.80 (616.32)
Bourges 297.57 (262.00) 298.79 (262.96) 304.95 (255.11) 324.28 (257.45) 325.02 (266.81) 313.73 (274.24)
Caceres 381.91 (318.71) 366.68 (289.40) 357.46 (287.49) 380.95 (318.20) 368.83 (293.01) 357.60 (290.26)
Delft 449.07 (324.74) 458.60 (350.50) 455.86 (334.30) 438.45 (308.56) 455.54 (315.32) 472.91 (356.86)
Gorlitz 258.90 (193.15) 241.11 (183.38) 257.82 (200.82) 256.12 (209.56) 249.78 (192.24) 254.75 (203.79)
Hamburg 343.14 (257.61) 342.77 (264.99) 332.21 (265.53) 342.11 (286.05) 344.04 (297.54) 349.72 (276.44)
Ljubljana 480.23 (378.18) 517.53 (430.46) 483.81 (398.34) 483.71 (403.61) 461.51 (369.06) 454.73 (361.93)
Luxembourg 320.13 (267.88) 319.20 (262.17) 331.67 (277.88) 329.25 (270.18) 315.32 (270.52) 335.52 (269.08)
Marseille 372.39 (322.55) 349.76 (303.83) 372.13 (314.53) 344.93 (278.16) 345.45 (295.47) 368.97 (330.24)
Oberstdorf 408.51 (309.82) 456.07 (370.36) 436.68 (341.36) 446.42 (343.24) 439.39 (328.72) 404.85 (314.24)
Paris 287.88 (241.33) 274.95 (225.53) 268.95 (213.43) 283.77 (212.51) 288.58 (219.59) 278.23 (218.75)
Perpignan 382.34 (289.00) 373.74 (286.21) 396.12 (292.45) 366.41 (254.28) 384.24 (251.66) 410.38 (321.54)
Potsdam 240.27 (205.86) 243.10 (200.45) 231.30 (188.94) 232.27 (186.34) 242.19 (190.82) 228.13 (195.47)
Regensburg 254.41 (181.43) 258.34 (209.56) 269.36 (205.25) 266.96 (209.59) 264.46 (209.37) 254.09 (197.01)
Santiago 800.94 (637.49) 823.75 (632.42) 860.67 (672.76) 925.48 (717.34) 880.12 (658.20) 890.02 (715.76)
Strijen 428.41 (285.01) 440.96 (300.47) 458.05 (306.82) 449.67 (305.82) 439.73 (289.16) 436.80 (272.69)
Texel 380.10 (276.37) 389.62 (283.19) 399.90 (303.94) 384.54 (307.74) 383.62 (300.52) 428.45 (315.51)

Mean rank 3.10 3.40 3.45 3.65 3.90 3.50
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Table 13: The average RMSE and MAE in brackets for the USA obtained by DGP when applying the different classification algorithms. The best results for each city are shown in bold.

Data GP + RBF GP + SVM GP + GA GP + NB GP + RIPPER GP + DA

Atlanta 747.63 (538.61) 756.04 (565.76) 764.76 (560.25) 725.30 (544.66) 711.84 (569.15) 740.13 (566.62)
Boston 373.80 (302.44) 360.33 (309.08) 380.26 (322.17) 398.70 (333.49) 387.64 (317.97) 390.79 (333.80)
Cape Hatteras 866.19 (576.22) 861.94 (571.66) 866.71 (562.65) 914.99 (573.04) 918.71 (620.37) 839.84 (569.79)
Cheyenne 327.90 (210.01) 348.16 (232.54) 342.81 (224.44) 351.11 (228.42) 346.03 (239.98) 357.28 (247.71)
Chicago 475.15 (362.73) 472.52 (383.62) 453.91 (368.56) 473.70 (390.61) 456.91 (398.91) 482.14 (370.19)
Cleveland 497.05 (391.84) 483.95 (347.46) 474.60 (361.12) 492.87 (391.53) 485.28 (362.12) 483.90 (357.01)
Dallas 1021.28 (713.67) 992.06 (658.29) 1070.64 (761.83) 1022.03 (776.14) 1022.25 (762.16) 1048.16 (773.80)
Des Moines 515.94 (427.08) 542.17 (435.97) 553.35 (450.10) 526.90 (413.47) 512.57 (404.42) 566.19 (467.31)
Detroit 385.02 (322.10) 348.05 (265.85) 358.96 (283.93) 356.91 (288.56) 359.10 (305.24) 373.28 (277.04)
Indianapolis 783.53 (522.17) 783.61 (547.46) 834.96 (557.30) 772.34 (529.44) 797.47 (524.29) 887.73 (596.64)
Jacksonville 710.52 (530.10) 668.00 (516.63) 663.42 (501.32) 702.10 (561.14) 678.75 (561.86) 688.30 (495.67)
Kansas 631.03 (495.21) 685.32 (540.74) 667.69 (493.86) 622.69 (454.60) 625.69 (459.69) 695.07 (515.44)
Las Vegas 107.07 (84.08) 104.76 (79.4) 104.68 (79.20) 107.59 (80.94) 106.54 (80.13) 105.84 (82.86)
Los Angeles 339.04 (256.27) 324.53 (244.65) 323.20 (239.17) 313.83 (233.42) 345.95 (247.26) 300.48 (219.24)
Louisville 790.51 (620.97) 802.83 (634.56) 784.55 (621.04) 793.42 (637.4) 762.19 (629.99) 811.07 (650.31)
Nashville 426.17 (328.31) 438.93 (361.40) 431.00 (348.34) 427.25 (366.62) 401.39 (349.57) 436.82 (369.55)
New York 442.15 (367.22) 450.15 (352.04) 454.65 (366.73) 439.65 (367.29) 421.19 (367.24) 463.42 (369.72)
Phoenix 186.23 (155.18) 182.08 (147.15) 175.79 (139.92) 168.83 (135.21) 165.35 (138.76) 164.72 (126.56)
Portland 629.23 (411.17) 705.43 (485.26) 661.44 (454.20) 693.06 (474.28) 691.20 (461.35) 658.93 (424.98)
Raleigh 490.54 (363.38) 450.50 (352.62) 485.30 (375.89) 491.41 (380.61) 508.69 (406.52) 497.72 (365.20)
St Louis 869.01 (675.11) 891.23 (663.90) 838.33 (616.1) 845.2 (627.30) 874.63 (648.75) 881.25 (622.07)
Tampa 1112.70 (618.38) 1151.77 (681.40) 1125.76 (670.43) 1139.83 (681.58) 1153.00 (684.95) 1133.19 (711.47)

Mean rank 3.36 3.55 3.09 3.50 3.33 4.18
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Table 14: The average classification accuracy in the final generation of DGP for Europe, with the average classification accuracy that provided the lowest RMSE for DGP in brackets.

Data GP + RBF GP + SVM GP + GA GP + NB GP + RIPPER GP + DA

Amsterdam 0.717 (0.713) 0.797 (0.797) 0.756 (0.716) 0.735 (0.731) 0.750 (0.749) 0.831 (0.830)
Arkona 0.807 (0.803) 0.766 (0.765) 0.704 (0.643) 0.715 (0.715) 0.849 (0.845) 0.759 (0.753)
Basel 0.828 (0.821) 0.865 (0.862) 0.707 (0.652) 0.713 (0.713) 0.845 (0.845) 0.775 (0.768)
Bilbao 0.701 (0.700) 0.825 (0.817) 0.781 (0.732) 0.797 (0.796) 0.773 (0.773) 0.678 (0.676)
Bourges 0.761 (0.756) 0.763 (0.762) 0.832 (0.756) 0.836 (0.828) 0.817 (0.816) 0.735 (0.732)
Caceres 0.798 (0.791) 0.843 (0.838) 0.853 (0.806) 0.847 (0.841) 0.800 (0.800) 0.835 (0.833)
Delft 0.818 (0.817) 0.775 (0.775) 0.822 (0.771) 0.792 (0.784) 0.784 (0.784) 0.716 (0.715)
Gorlitz 0.682 (0.680) 0.691 (0.687) 0.679 (0.633) 0.646 (0.644) 0.649 (0.647) 0.672 (0.670)
Hamburg 0.865 (0.858) 0.781 (0.777) 0.846 (0.786) 0.704 (0.700) 0.810 (0.808) 0.794 (0.791)
Ljubljana 0.810 (0.805) 0.834 (0.834) 0.764 (0.701) 0.718 (0.712) 0.733 (0.733) 0.660 (0.654)
Luxembourg 0.845 (0.837) 0.743 (0.743) 0.701 (0.631) 0.848 (0.841) 0.861 (0.854) 0.761 (0.757)
Marseille 0.682 (0.680) 0.703 (0.699) 0.648 (0.592) 0.660 (0.653) 0.610 (0.604) 0.615 (0.614)
Oberstdorf 0.797 (0.792) 0.727 (0.722) 0.788 (0.747) 0.821 (0.817) 0.786 (0.786) 0.733 (0.726)
Paris 0.820 (0.812) 0.835 (0.834) 0.770 (0.693) 0.735 (0.734) 0.745 (0.739) 0.839 (0.838)
Perpignan 0.800 (0.798) 0.674 (0.669) 0.798 (0.750) 0.838 (0.829) 0.774 (0.769) 0.734 (0.730)
Potsdam 0.794 (0.794) 0.712 (0.712) 0.701 (0.666) 0.721 (0.714) 0.845 (0.837) 0.799 (0.798)
Regensburg 0.746 (0.746) 0.652 (0.647) 0.696 (0.651) 0.734 (0.732) 0.660 (0.654) 0.627 (0.621)
Santiago 0.815 (0.809) 0.854 (0.854) 0.742 (0.700) 0.739 (0.735) 0.709 (0.704) 0.807 (0.799)
Strijen 0.724 (0.720) 0.775 (0.774) 0.768 (0.705) 0.799 (0.792) 0.734 (0.734) 0.652 (0.650)
Texel 0.897 (0.892) 0.871 (0.864) 0.811 (0.762) 0.824 (0.822) 0.793 (0.787) 0.703 (0.699)
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Table 15: The average classification accuracy in the final generation of DGP for the USA, with the average classification accuracy that provided the lowest RMSE for DGP in brackets.

Data GP + RBF GP + SVM GP + GA GP + NB GP + RIPPER GP + DA

Atlanta 0.752 (0.750) 0.830 (0.824) 0.737 (0.665) 0.734 (0.734) 0.721 (0.720) 0.709 (0.702)
Boston 0.769 (0.763) 0.803 (0.800) 0.808 (0.758) 0.787 (0.784) 0.769 (0.766) 0.724 (0.722)
Cape Hatteras 0.661 (0.661) 0.707 (0.707) 0.785 (0.735) 0.806 (0.804) 0.753 (0.749) 0.692 (0.689)
Cheyenne 0.720 (0.713) 0.745 (0.738) 0.805 (0.750) 0.773 (0.767) 0.761 (0.757) 0.797 (0.793)
Chicago 0.732 (0.730) 0.735 (0.727) 0.672 (0.625) 0.714 (0.707) 0.667 (0.663) 0.616 (0.615)
Cleveland 0.653 (0.648) 0.720 (0.720) 0.771 (0.704) 0.765 (0.764) 0.739 (0.738) 0.711 (0.711)
Dallas 0.806 (0.806) 0.850 (0.842) 0.733 (0.670) 0.703 (0.699) 0.720 (0.715) 0.629 (0.625)
Des Moines 0.776 (0.772) 0.680 (0.674) 0.696 (0.637) 0.720 (0.718) 0.689 (0.688) 0.617 (0.612)
Detroit 0.551 (0.548) 0.553 (0.550) 0.617 (0.577) 0.583 (0.579) 0.604 (0.598) 0.568 (0.567)
Indianapolis 0.699 (0.694) 0.761 (0.757) 0.675 (0.632) 0.703 (0.702) 0.661 (0.655) 0.649 (0.647)
Jacksonville 0.841 (0.836) 0.836 (0.828) 0.726 (0.665) 0.739 (0.739) 0.869 (0.861) 0.824 (0.818)
Kansas 0.790 (0.788) 0.794 (0.787) 0.856 (0.795) 0.845 (0.845) 0.843 (0.838) 0.809 (0.808)
Las Vegas 0.872 (0.867) 0.958 (0.948) 0.827 (0.766) 0.848 (0.841) 0.800 (0.793) 0.796 (0.790)
Los Angeles 0.878 (0.871) 0.997 (0.990) 0.866 (0.796) 0.897 (0.894) 0.847 (0.842) 0.845 (0.837)
Louisville 0.629 (0.627) 0.638 (0.634) 0.641 (0.593) 0.678 (0.674) 0.622 (0.615) 0.639 (0.634)
Nashville 0.727 (0.722) 0.803 (0.802) 0.785 (0.714) 0.799 (0.799) 0.761 (0.760) 0.659 (0.657)
New York 0.820 (0.815) 0.786 (0.782) 0.853 (0.780) 0.818 (0.813) 0.822 (0.815) 0.848 (0.848)
Phoenix 0.702 (0.701) 0.867 (0.862) 0.816 (0.740) 0.773 (0.765) 0.804 (0.801) 0.805 (0.805)
Portland 0.813 (0.807) 0.746 (0.745) 0.843 (0.774) 0.821 (0.815) 0.830 (0.825) 0.835 (0.829)
Raleigh 0.728 (0.721) 0.732 (0.729) 0.819 (0.777) 0.838 (0.832) 0.776 (0.773) 0.700 (0.696)
St Louis 0.795 (0.791) 0.765 (0.760) 0.696 (0.646) 0.712 (0.706) 0.670 (0.668) 0.588 (0.583)
Tampa 0.755 (0.754) 0.804 (0.800) 0.836 (0.760) 0.864 (0.861) 0.786 (0.780) 0.778 (0.772)
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Table 16: Average run times of all algorithms presented in the results. The DGP average time represents the average across all types of classification
algorithms.

Average regression run times
DGP GP SVR RBF M5R M5P KNN MCRP
231.0sec 194.7sec 11.1sec 3.1sec 131.2sec 8.4sec < 1sec 242.5sec

Average classification run times

RBF SVM GA NB RIPPER DA
1.2sec 7.3sec 9.4sec < 1sec 3.8sec < 1sec

Lastly, the average computational time per run is provided in Table 16. Note, this is the average run time across545

all data sets for each run required of the algorithm. As we can observe, the DGP is slower than the other algorithms546

(with the exception of MCRP). This is expected, as many of the other algorithms (e.g. SVR) follow a deterministic547

procedure, while GP and DGP create multiple candidate trees before finding the best tree. In addition, computational548

time has a relatively minor importance in this field, since it represents an off-line application. Hence, the introduced549

improvements in DGP’s performance justify the slower execution speed of the algorithm. Furthermore, GP algorithms550

can be easily parallelised since each tree builds and evaluates a candidate solution independently from all other trees551

in the population. Therefore, a large speed up could be obtained by running a parallel version of the DGP algorithm.552

6. Effectiveness of the DGP algorithm553

Within this section, we consider the effect that the problem decomposition (i.e., evolving a separate equation for554

each rainfall class) has had on DGP’s ability to predict more similarly to the underlying data. [24] noted that GP555

without decomposition tended to produce equations with flat predictions and was unable to meet the oscillations of556

the time series. To consider this we analyse the effect that DGP has had on the coverage of the predictions and whether557

DGP is able to overcome any climatic issues.558

6.1. Effect on Increasing the Coverage of Predictions559

One of the motivations of DGP was to improve the behaviour of GP by the use of decision criteria to choose an560

equation that specialises in the wetter or drier periods.561

We show in Figure 6 an example comparing the predictions of a DGP individual against the predictions of a GP562

individual for three cities on the testing set. For each algorithm, we chose the individual that produced the lowest563

RMSE error on training over all 50 runs. What we observe from this, is that DGP does appear to predict the highs and564

lows more consistently. Moreover, the predictions are similar to the underlying data where we can observe the more565

volatile periods. We do generally witness the problem with coverage, where visually it appears that DGP does cover566

more points, and GP does tend to provide flatter predictions in some examples.567

Coverage is formally defined as the percentage between the range of each algorithm’s predictions and the range568

of rainfall in the data set, given by:569

Coverage =
rmax − rmin

r̂max − r̂min
(9)

where r represents the predicted rainfall amounts, and r̂ represents the rainfall amounts observed in the dataset. If570

rmin < r̂min, then we set rmin = r̂min. Similarly, if rmax > r̂max, then we set rmax = r̂max.571

We provide the full coverage results in Table 17 to compare DGP and GP across all data sets over 50 runs. From572

Table 17, we can observe in every city that DGP was able to cover a wider range of rainfall values than GP, when573

the coverage for GP was less than 100%. There were no occurrences where DGP covered less rainfall values than574

GP, and in several cities DGP’s coverage was much higher than GP’s coverage. Therefore, we can take away the575

advantage that DGP has over its predecessor and its ability to increase the coverage and as shown from the figures576

create equations that predict rainfall amounts more similar to that of the underlying data of accumulated rainfall.577
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(a) DGP - Luxembourg (b) GP - Luxembourg

(c) DGP - Santiago (d) GP - Santiago

(e) DGP - Strijen (f) GP - Strijen

Figure 6: Rainfall time series for Luxembourg, Santiago and Strijen on the testing set from Jan-01-2015 until Dec-31-2015 for DGP (left) and GP
(right). The orange line is the actual accumulated level of rainfall and the blue line is the rainfall level predicted by the best individual from training
over 50 runs.
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6.2. Effect on Climate578

Lastly, we discuss how the algorithm has performed considering the same climatic features outlined in [24] and579

whether the use of decomposition has helped predict the underlying data of rainfall better. We consider the effect of580

DGP using GA as our underlying classification method. The outlined research questions are as follows:581

• Is the predictive error similar between Europe and the USA?582

• Are drier or wetter climates associated with a lower predictive error?583

• Are more volatile cities associated with higher predictive error?584

• Are high rainfall intensities associated with higher predictive error?585

By investigating the above research questions, we hope to understand the effect of these issues in the predictive586

performance of DGP.587

Table 17: The coverage (in %) in terms of the range of observed rainfall values covered by the predictions of each algorithm on all cities, for GP
and DGP

Data GP DGP Data GP DGP

Amsterdam 37% 65% Boston 31% 44%
Arkona 85% 100% Capehatteras 23% 61%
Basel 66% 93% Cheyenne 46% 72%
Bilbao 35% 54% Chicago 58% 77%
Bourges 35% 61% Cleveland 16% 57%
Caceres 100% 100% Dallas 12% 49%
Delft 41% 72% Des Moines 59% 100%
Gorlitz 84% 99% Detroit 28% 53%
Hamburg 47% 62% Indianapolis 13% 71%
Ljubljana 57% 59% Jacksonville 46% 89%
Luxembourg 34% 62% Kansas 38% 83%
Marseille 80% 85% Las Vegas 81% 100%
Oberstdorf 76% 86% Los Angeles 92% 100%
Paris 71% 83% Louisville 21% 37%
Perpignan 57% 100% Nashville 59% 59%
Potsdam 75% 81% New York 50% 58%
Regensburg 78% 100% Phoenix 81% 100%
Santiago 36% 66% Portland 44% 71%
Strijen 22% 61% Raleigh 37% 49%
Texel 45% 72% St Louis 26% 64%
Atlanta 16% 41% Tampa 44% 78%

The first research question is the effect across the two distinct geographic regions of Europe and the USA. We588

apply the Mann-Whitney test to determine if the predictive error is consistent across both continents. For DGP we589

obtain a p-value of 0.7721 which is greater than the 5% significance level, thus we can confidently say that the590

predictive error is similar between Europe and the USA.591

In order to investigate the next three research questions we consider the correlation between the descriptive sta-592

tistical points and the predictive error of our DGP. We present the findings in Table 18, using the Pearson’s product-593

moment linear correlation coefficient (r) to measure the strength of the relationship. Additionally, we include the594

p-value computed by the Student’s t distribution, in order to determine whether there is a statistically significant rela-595

tionship between the predictive error and the descriptive statistics. The null hypothesis for the test is that r = 0. We596

only include our original GP as a comparison, because we are only considering whether DGP has lead to an improve-597

ment over that GP. The values highlighted in bold indicate a statistically significant relationship at the 5% significance598

level.599

Based on the information presented in Table 18, considering the dryness and volatility of cities, these city prop-600

erties are not significantly correlated with DGP’s and GP’s predictive error, given the p-value is higher than our601

significance level in both cases of Europe and the USA, for both algorithms.602
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Table 18: The linear correlation coefficient (r) and p-value for European and cities from the USA, in order to determine whether there is sufficient
evidence that a relationship exists between a data set property and an algorithm’s predictive error. The p-value is shown in brackets below the
correlation coefficient. Significant relationships (p < 0.05) are shown in bold.

Data set property DGP GP
USA Europe USA Europe

% of dry days
0.02

(0.9446)
0.27

(0.2571)
-0.30

(0.1683)
0.08

(0.7454)

Average dry spell
0.21

(0.3539)
0.08

(0.7256)
-0.42

(0.0539)
0.23

(0.3315)

Average wet spell
0.24

(0.3410)
-0.23

(0.3577)
-0.08

(0.7362)
0.13

(0.5811)

Annual rainfall
0.06

(0.7940)
0.27

(0.2528)
-0.37

(0.0926)
0.10

(0.6805)

Volatility of annual rainfall
0.28

(0.2140)
0.07

(0.7547)
-0.37

(0.0894)
0.26

(0.2745)

Highest intensity
-0.30

(0.1719)
-0.07

(0.7557)
0.49

(0.0199)
0.42

(0.0641)

Interquartile range of intensity
0.35

(0.1105)
-0.35

(0.1351)
-0.44

(0.0396)
-0.58

(0.0071)

Finally, considering the high rainfall intensities, we observe that this factor was significantly correlated with the603

GP’s predictive error in the USA, with a p-value of 0.038, but not for Europe. DGP’s predictive error shows no604

significant correlation with rainfall intensity within the USA and Europe, in both cases with a p-value greater than605

0.05.606

To conclude the above analysis, the relationships provided for DGP have shown us that the DGP algorithm is more607

robust than the GP algorithm against different climates, from across different geographical regions.608

7. Conclusion609

Within this paper, we presented an extensive evaluation of the Decomposed Genetic Programming (DGP) algo-610

rithm for the problem of rainfall within weather derivatives. DGP was proposed as a way to overcome the potential611

issues highlighted in previous work where we observed that GP was unable to consistently provide equations suitable612

for the underlying problem of rainfall. Therefore, we aimed to address this issue by thoroughly examining DGP to613

determine if the correct behaviour exists in our final equations.614

DGP is a novel algorithm (recently published in [18]) based on the use of decomposition on the problem of615

rainfall. The idea revolves around breaking the problem of rainfall into subproblems for our GP to solve, and then616

recombining the subproblems back into a solution for the original problem. A Genetic Algorithm (GA) was used as a617

classification technique, because DGP needed to choose which regression equation was evaluated (rebuild back into618

the whole problem). We additionally evaluated the use of other classification algorithms as the decision process to619

substitute for the GA. In this work we have extended our previous work on DGP [18] in five different directions, as620

discussed in the last but one paragraph of the Introduction.621

From the results we discussed, we can draw the following conclusions: (i) DGP is an effective regression algorithm622

for rainfall datasets, as its predictive error ranked the lowest, when compared to the state-of-the-art algorithm of MCRP623

and other six machine learning algorithms, (ii) GA is an effective algorithm for handling the classification task of DGP,624

as it demonstrated it is competitive to several other strong classification algorithms, (iii) DGP is able to predict rainfall625

amounts similar to the amount in the underlying data, as it consistently produces equations that are able to reflect the626

extreme oscillations that exist within the rainfall time series, and (iv) DGP is not very affected by climatic features, as627

its predictive error was not significantly correlated with variations in most climatic aspects.628

Future research should continue looking into the DGP algorithm by analysing it on other problem domains. Ad-629

ditionally, the GA can be extended further, as it shows great promise in solving the final problem. Extensions can630

include the creation of multiple rules for dynamically changing time landscapes, in an attempt to improve the problems631

caused by the irregularities of rainfall. Furthermore, considering change point models for the condition of switching632

regression models may lead to a more dynamic representation of rainfall and account for sudden irregular patterns.633
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