
Hopkins, Tim and Kılıç, Emrah (2018) An analytical approach: Explicit inverses
of periodic tridiagonal matrices. Journal of Computational and Applied Mathematics,
335 . pp. 207-226. ISSN 0377-0427.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/66997/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.cam.2017.11.038

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/66997/
https://doi.org/10.1016/j.cam.2017.11.038
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An analytical approach: Explicit inverses of periodic tridiagonal matrices

Tim Hopkinsa, Emrah Kılıçb,∗,

aComputing Laboratory University of Kent, Canterbury, Kent CT2 7NF, UK
bTOBB University of Economics and Technology, Mathematics Department, 06560 Ankara, Turkey

Abstract

We derive an explicit formula for the inverse of a general, periodic, tridiagonal matrix. Our approach is
to derive its LU factorization using backward continued fractions (BCF) which are an essential tool in
number theory. We then use these formulae to construct an algorithm for inverting a general, periodic,
tridiagonal matrix which we implement in Maple1. Finally, we present the results of testing the efficiency
of our new algorithm against another published implementation and against the library procedures
available within Maple to invert a general matrix and to compute its determinant.

Keywords: Matrix inversion, LU-Factorization, Inverse, Backward continued fraction

1. Introduction

Tridiagonal matrices have been frequently used in various application areas ranging from engineering
to economics (see [1, 2, 3, 4, 5, 6, 7, 8]) as well as in the computation of special functions, PDEs and
number theory (see [9, 10, 11, 12, 13, 14]). Various features of tridiagonal matrices are used to solve
the systems of linear equations that arise from these applications (see, for example, [10, 12]) and many
authors (for example, [15, 16, 17, 18, 5, 19, 20, 21, 22]) have studied various tridiagonal matrices and
their properties such as LU decompositions, determinants and inverses.

Define the n × n periodic tridiagonal matrix G (δ, µ), or briefly G, with Gkk = xk for 1 ≤ k ≤ n,
Gk+1,k = zk and Gk,k+1 = yk for 1 ≤ k ≤ n− 1, G1n = δ, Gn1 = µ and 0 otherwise. This has the form

G =



x1 y1 δ
z1 x2 y2

z2 x3
. . .

. . .
. . . yn−1

µ zn−1 xn

 . (1.1)

Many methods have been reported for solving systems of linear equations whose coefficient matrix is
periodic tridiagonal; see, for example, [23, 24, 25, 26, 27]. The efficacy of a particular algorithm is often
dependent both on the type of data used to define G (floating point numbers, rational values or algebraic
expressions) and the required result (inverse matrix, solution of a linear system, determinant, etc.).

For some particular forms of (1.1) simple closed form inverses are known; see, for example, [28, 17,
29, 13, 22]. However, in general, such closed forms are not available and obtaining exact inverses to (1.1)
efficiently, when the elements are rational numbers or algebraic quantities, requires a symbolic algebra
(SA) system like Maple [30] or Mathematica [31]. Experience with computing the inverse of (1.1) when
the elements are floating point values suggests that we should be able to construct SA algorithms which
are far more efficient that a general matrix inversion procedure by taking account of the special structure.

When δ = µ = 0, the periodic, tridiagonal matrix G is reduced to the general tridiagonal matrix
T . Mallik [29] gives an explicit formula based on linear difference equations for the elements of T−1.

1Maple is a trademark of Waterloo Maple Inc.
∗Corresponding author
Email addresses: T.R.Hopkins@kent.ac.uk (Tim Hopkins), ekilic@etu.edu.tr (Emrah Kılıç)

Preprint submitted to Elsevier November 10, 2017

Two kinds of LU decompositions for the matrix T may be found in [15]. Another derivation of the LU
decomposition of T where the entries of L and U are expressed via backward continued fractions (BCF)
is given in [32] along with explicit forms for the determinant and inverse of T also in terms of BCFs.

Recently the authors of [25] show that the elements of the inverse matrix G−1 = (fij), for 1 ≤ i, j ≤ n,
are given by:

fij =
1

∆


(−1)

i+j

[
S (j, i)

j−1∏
k=i

yk − δ∆j−1
i+1

n−1∏
k=j

zk
i−1∏
k=1

zk

]
if i ≤ j,

S (i, j)
i−1∏
k=j

zk + (−1)
i+j+n

µ∆i−1
j+1

j−1∏
k=1

yk
n−1∏
k=i

yk if j ≤ i,

where
S (i, j) = ∆j−1

1 ∆n
i+1 − δµ∆j−1

2 ∆n−1
i+1

and

∆ = xn∆n−1
1 − δµ∆n−1

2 + zn−1yn−1∆n−2
1 − (−1)

n
µ

n−1∏
k=1

yk + δ

n−1∏
k=1

zk

with
∏k
k+1 (·) = 1. The sequence of determinants

{
∆j
i

}
is computed using recurrence relations of order

two, which are given in [25, Equations (3.4)–(3.6)].
In Sections 3 and 4 we consider the LU decomposition of (1.1) and find explicit formulae for the

elements of L and U as well as their inverses, L−1 and U−1, in terms of BCFs. From these we are then
able to generate explicit formulae for the elements of G−1. A simple illustrative example of how to use
these formulae to compute the inverse of an order 4 matrix with integer elements is given in Section 5.
In Section 6 we look in detail at the computational implementation of both our proposed algorithm and
the one presented in [25] and we show how to improve the execution speed of the latter. We also provide
comparisons, using a number of test examples, of the efficiency of the two algorithms and the Maple
library functions for computing the inverse and the determinant of a general matrix on a number of test
problems. Finally, in Section 7, we present our conclusions.

First, we recall some basic definitions and results related to the backward continued fractions (for
more details, see [32]).

2. Backward Continued Fractions – Basic Definitions and Results

A continued fraction representation of a real x is

x = a1 +
b1

a2 +
b2

a3 +
.. . +

bn

an+1

, (2.1)

where the ai and bi are integers. This representations may also be written in condensed form as

x = a1 +
b1
a2+

b2
a3+

. . .
bn
an+1

.

Definition 1. The fraction

Ck =

[
a1 +

b1
a2+

b2
a3+

. . .
bk
ak+1

]
with k = 1, 2, . . . , where k ≤ n, is called the kth convergent of (2.1).

Convergents are denoted by Cn = Pn/Qn with C1 = a1, for n > 1, where the recurrences {Pn} and
{Qn} are given by [33]:

Pn = anPn−1 + bn−1Pn−2, P0 = 1, P1 = a1

Qn = anQn−1 + bn−1Qn−2, Q0 = 0, Q1 = 1.

2

The concept of backward continued fraction was first used in [34] for vector valued continued fractions
but in a different context.

Let the ai and bi be real numbers. We recall the definition of a general backward continued fraction.

Definition 2. The general backward continued fraction has the form

an+1 +
bn

an +
bn−1

an−1 +
.. . +

b1

a1

with the compressed form

CB =

[
a1 +

b1
a2+

b2
a3+

. . .
bn
an+1

]
B

for compactness. The kth convergent is denoted by

CBk =

[
a1 +

b1
a2+

b2
a3+

. . .
bk
ak+1

]
B

.

Convergents of a backward continued fraction are given by the following Theorem:

Theorem 1 ([32]). Given a backward continued fraction A =

[
a1 +

b1
a2+

b2
a3+

. . .
bn
an+1

]
B

. If 1 ≤ k ≤ n

and CBk is the kth backward convergent to A, then

CBk =
Pk
Pk−1

,

where Pk is the kth term of the sequence {Pn}.

Corollary 2 ([32]). Given a usual continued fraction

[
a1 +

b1
a2+

b2
a3+

. . .
bn
an+1

]
and a backward contin-

ued fraction

[
a1 +

b1
a2+

b2
a3+

. . .
bn
an+1

]
B

. Then the numerators of these fractions are the same, Pn.

3. LU Factorization of a periodic tridiagonal matrix

We give the LU -decomposition of the matrix G using backward continued fractions. Suppose we have
the entries of G, that is, xi for 1 ≤ i ≤ n, yi and zi for 1 ≤ i ≤ n− 1, µ and δ.

Define the backward continued fraction CBn via elements of the matrix G as

CBn =

[
x1 +

−y1z1
x2+

−y2z2
x3+

. . .
−yn−1zn−1

xn

]
B

. (3.1)

The first few convergents of CBn are

CB1 = [x1]B =
P1

P0
= x1, CB2 =

[
x1 +

−y1z1
x2

]
B

=
P2

P1
=
x1x2 − y1z1

x1
,

CB3 =

[
x1 +

−y1z1
x2+

−y2z2
x3

]
B

=
P3

P2
=
x3x2x1 − x3y1z1 − x1y2z2

x1x2 − y1z1
,

where the three-term recurrence {Pn} is defined, for n > 0, by the rule

Pn = xnPn−1 − yn−1zn−1Pn−2, (3.2)

where P0 = 1 and P1 = x1.

3

For any sequence {an}, we assume that

an! = anan−1 . . . a1 (3.3)

with a0! = 1.
Define the n× n upper triangular matrix U as

Uij =



CBi i = j; 1 ≤ i ≤ n− 1

Unn i = j = n

yi j = i+ 1; 1 ≤ i ≤ n− 2

δ (−1)
i−1

zi−1!/CBi−1! j = n; 1 ≤ i ≤ n− 2

yn−1 + (−1)
n
zn−2!δ/CBn−2! i = n− 1, j = n.

0 otherwise

where

Unn = xn −
yn−1zn−1

CBn−1

− (−1)
n
yn−1!µ

CBn−1!
− δ (−1)

n
zn−1!

CBn−1!
− δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!
,

which, with some rearrangement and (3.2), becomes

Unn =
xnC

B
n−1 − yn−1zn−1

CBn−1

− (−1)
n µyn−1! + δzn−1!

CBn−1!
− δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!

= CBn − (−1)
n yn−1!µ+ δzn−1!

CBn−1!
− δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!
,

where CBi is the ith convergent of the BCF given in (3.1) for 1 ≤ i ≤ n.
Using (3.3) and noting that P0 = 1 we have

CBn ! =
P1

P0
. . .

Pn−1

Pn−2

Pn
Pn−1

=
Pn
P0

= Pn. (3.4)

Clearly

U =



CB1 y1 z0!δ/CB0 !
CB2 y2 −z1!δ/CB1 !

CB3
. . .

...
. . . yn−2 − (−1)

n
zn−3!δ/CBn−3!

CBn−1

(
yn−1 − (−1)

n−1
zn−2!δ/CBn−2!

)
0 Unn


, (3.5)

where Unn is defined as before.
Define the n× n unit lower triangular matrix L as

Lij =



1 i = j; 1 ≤ i ≤ n
zi−1/C

B
i−1 j = i− 1; 2 ≤ i ≤ n− 1

(−1)
j+1

yj−1!µ/CBj ! i = n; 1 ≤ j ≤ n− 2

zn−1/C
B
n−1 + (−1)

n
µyn−2!/CBn−1! i = n, j = n− 1

0 otherwise

Clearly

L =



1 0
z1
CB1

1

z2
CB2

1

. . .
. . .
zn−2

CBn−2

1

µy0!

CB1 !
−µy1!

CB2 !
· · ·

{
(−1)

n−1 µyn−3!

CBn−2!

} {
zn−1

CBn−1

+ (−1)
n µyn−2!

CBn−1!

}
1


, (3.6)

4

where CBi is the ith convergent of the BCF given by (3.1) for 1 ≤ i ≤ n.
We can now explicitly define the LU decomposition of G with the following Theorem.

Theorem 3. The LU decomposition of the matrix G is given by

G = L · U,

where L and U given by (3.6) and (3.5), respectively.

Proof. We consider three main cases. First, the case i = j for 1 ≤ i ≤ n−1. By a matrix multiplication,
we have for 1 ≤ i ≤ n− 1

Gii =

n∑
k=1

LikUki = Li,i−1Ui−1,i + LiiUii = yi−1
zi−1

CBi−1

+ CBi ,

which, from Theorem 1 and (3.2), gives
Gii = xi,

as claimed. For i = j = n, we write

Gnn =

n∑
k=1

LikUki = Ln1U1n + Ln2U2n + . . .+ LnnUnn,

which, by the definitions of L and U , gives

Ln1U1n + Ln2U2n + · · ·+ Ln,n−1Un−1,n + Unn

= µδ
y0!z0!

CB1 !CB0 !
+ · · ·+ µδ

yn−3!zn−3!

CBn−2!CBn−3!

+

(
zn−1

CBn−1

+ (−1)
n
µ
yn−2!

CBn−1!

)(
yn−1 − (−1)

n−1
δ
zn−2!

CBn−2!

)
+ Unn

= δµ

n−2∑
k=1

zk−1!yk−1!

CBk !CBk−1!
+
yn−1zn−1

CBn−1

+ µ
(−1)

n
yn−1!

CBn−1!

− δ (−1)
n−1

zn−1!

CBn−1!
+
δµzn−2!yn−2!

CBn−1!CBn−2!
+ Unn,

and hence, by the definition of Unn, we have

Gnn = xn,

as claimed. Consider the case i+ 1 = j. For 1 ≤ i ≤ n− 1, we can write

Gi,i+1 =

n∑
k=1

LikUk,i+1 = LiiUi,i+1 = Ui,i+1 = yi.

Finally, we consider the case i = j + 1. For 1 ≤ i ≤ n− 1, we can write

Gi+1,i =

n∑
k=1

Li+1,kUki = Li+1,iUii =
zi
CBi

CBi = zi.

Also note that

G1n =

n∑
k=1

L1kUkn = U1n =
z0!δ

CB0 !
= δ and Gn1 =

n∑
k=1

LnkUk1 = Ln1U11 =
µy0!

CB1 !
CB1 = µ.

Thus the proof is complete for all the cases.

We also have the following Corollary.

5

Corollary 4. For n > 1,

detG = CBn !− (−1)
n

(µyn−1! + δzn−1!)− CBn−1!δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!
.

Proof. From Theorem 3, we have G = LU . Thus detG = det (LU). Since L is the unit triangular
matrix, we write

detG =

n∏
i=1

Uii = Unn

n−1∏
i=1

Uii = UnnC
B
n−1!

= CBn−1!

(
CBn − (−1)

n µyn−1! + δzn−1!

CBn−1!
− δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!

)

= CBn !− (−1)
n

(µyn−1! + δzn−1!)− CBn−1!δµ

n−1∑
k=1

zk−1!yk−1!

CBk !CBk−1!
,

which completes the proof.

We can also express detG in terms of {Pn} , {yn} and {zn}:

Corollary 5. For n > 1

detG = Pn − (−1)
n

(µyn−1! + δzn−1!)− δµPn−1

n−1∑
k=1

zk−1!yk−1!

Pk−1Pk−2
,

where {Pn} is given by (3.2).

Proof. From Theorem 3 and Corollary 4, we have detG = UnnC
B
n−1!. Using (3.4) then gives

detGn = UnnPn−1 (3.7)

= Pn − (−1)
n

(µyn−1! + δzn−1!)− δµPn−1

n−1∑
k=1

zk−1!yk−1!

Pk−1Pk−2
, (3.8)

as claimed.

4. Inverse of the tridiagonal matrix G

We may now use of backward continued fractions to compute the inverse matrix, G−1. First we
provide some results for the inverses of L and U starting with following Lemma.

Lemma 6. Denote the inverse of L by Q. Then

Qij =
(−1)

j

zj−1!CBi−1!

 (−1)
i
zi−1!CBj−1! if 1 ≤ j ≤ i ≤ n− 1,

µCBj−1!T (n, j)CBn−1! + (−1)
n
zn−1!CBj−1! if i = n,

0 if i < j,

where

T (n,m) =

n−1∑
t=m

yt−1!zt−1!

CBt !CBt−1!
(4.1)

with
∑m
i=n f (i) = 0 for n > m.

For odd n, the matrix Q takes the form

Q =



1 0 0 0 0 0
−d1!/d0! 1 0 0 0 0
d2!/d0! −d2!/d1! 1 0 0 0

...
...

. . .
. . . 0 0

−dn−2!/d0! dn−2!/d1! · · · · · · 1 0
Qn1 Qn2 Qn3 · · · Qn,n−1 1


,

6

where Qni is defined as before for 1 ≤ i ≤ n− 1 and dk =
zk
CBk

.

Now we give the proof of Lemma 6.

Proof. Denote LQ by R. If 1 ≤ j ≤ i ≤ n, then

Rii =

n∑
k=1

LikQki = LiiQii = 1.

If i+ 1 > j ≥ 1, then by the definitions of L and Q, for 1 < i < n

Rij =

n−1∑
k=1

LikQkj = Li,i−1Qi−1,j + LiiQij =
zi−1

CBi−1

vi−1,j + vij

= (−1)
i+j−1 zi−1C

B
j−1!zi−2!

CBi−1zj−1!CBi−2!
+ (−1)

i+j zi−1!CBj−1!

CBi−1!zj−1!

= (−1)
i+j−1 zi−1!CBj−1!

CBi−1!zj−1!
+ (−1)

i+j zi−1!CBj−1!

CBi−1!zj−1!
= 0,

as claimed. If i > j ≥ 1, then for i = n, we have

Rnj =

n∑
k=1

LnkQkj =

n−2∑
k=1

LnkQkj + Ln,n−1Qn−1,j +Qnj

=

n−2∑
k=j

(−1)
k+1 yk−1!µ

CBk !
(−1)

k+j zk−1!CBj−1!

zj−1!CBk−1!

+

(
zn−1

CBn−1

+ (−1)
n
µ
yn−2!

CBn−1!

)
(−1)

n−1+j zn−2!CBj−1!

zj−1!CBn−2!

+ µ (−1)
j C

B
j−1!

zj−1!

n−1∑
t=j

yt−1!zt−1!

CBt !CBt−1!
+ (−1)

n+j zn−1!CBj−1!

zj−1!CBn−1!

= µ (−1)
j+1 C

B
j−1!

zj−1!

n−2∑
t=j

yt−1!zt−1!

CBt !CBt−1!
+ µ (−1)

j C
B
j−1!

zj−1!

n−1∑
t=j

yt−1!zt−1!

CBt !CBt−1!

+

(
zn−1

CBn−1

+ (−1)
n µyn−2!

CBn−1!

)
(−1)

n−1+j zn−2!CBj−1!

zj−1!CBn−2!
+ (−1)

n+j zn−1!CBj−1!

zj−1!CBn−1!

= (−1)
n−1+j zn−1

CBn−1

zn−2!CBj−1!

zj−1!CBn−2!
+ (−1)

n
µ
yn−2!

CBn−1!
(−1)

n−1+j zn−2!CBj−1!

zj−1!CBn−2!

+ (−1)
n+j zn−1!CBj−1!

zj−1!CBn−1!
+ (−1)

j µyn−2!zn−2!CBj−1!

CBn−1!zj−1!CBn−2!
= 0,

as claimed. If i + 1 = j ≥ 1, then we immediately obtain Ri,i+1 = 0. It is also clear that rij = 0 when
i < j, whence, we obtain R = In where In is the n× n unit matrix and the proof is complete.

Lemma 7. Denote the inverse of U by H. Then

Hij =


(−1)

i Ci−1!qn,i
Cn−1!Unn

if j = n,

(−1)
i+j yj−1!Ci−1!

yi−1!Cj !
if i ≤ j ≤ n− 1,

0 if i > j,

where

qn,i =
δCBn−1!T (n, i) + (−1)

n
yn−1!

yi−1!
(4.2)

and T (n,m) is defined in Lemma 6.
7

Before the proof of Lemma 7, by the definitions of H and qn,n, we have that qn,n = (−1)
n

and so

Hnn = (−1)
n Cn−1!qn,n
Cn−1!Unn

= (−1)
n qn,n
Unn

=
1

Unn
.

Clearly the matrix H takes the form

H =



y0!CB0 !

y0!CB1 !
−y1!CB0 !

y0!CB2 !

y2!CB0 !

y0!CB3 !
· · · (−1)

n
yn−2!CB0 !

y0!Cn−1!
− CB0 !qn,1
CBn−1!Unn

0
y1!CB1 !

y1!CB2 !
−y2!CB1 !

y1!CB3 !
· · · (−1)

n−1
yn−2!CB1 !

y1!CBn−1!

CB1 !qn,2
CBn−1!Unn

0 0
y2!CB2 !

y2!CB3 !

. . .
...

...

0 0 0
. . . −

yn−2!CBn−3!

yn−3!CBn−1!

(−1)
n
CBn−3!qn,n−2

CBn−1!Unn

0 0 0 0
yn−2!CBn−2!

yn−2!CBn−1!

(−1)
n−1

CBn−2!qn,n−1

CBn−1!Unn

0 0 0 0 0
(−1)

n
CBn−1!qn,n

CBn−1!Unn



.

Proof. Denote UH by E. If i = j ≤ n− 1, then we obtain

Eii =

n∑
k=1

UikHkj = UiiHii = CBi (−1)
i+i yi−1!Ci−1!

yi−1!Ci!
=
yi−1!Ci−1!

yi−1!Ci−1!
= 1.

For the case i = j = n, by the definition of Hnn we may write

Enn = UnnHnn = Unn
1

Unn
= 1.

If 1 ≤ i ≤ n− 2, then

Eij =

n∑
k=1

UikHkj = UiiHij + Ui,i+1Hi+1,j

= CBi (−1)
i+j yj−1!CBi−1!

yi−1!CBj−1!
+ yi (−1)

i+1+j yj−1!CBi !

yi!CBj−1!

= (−1)
i+j yj−1!CBi !

yi−1!CBj−1!
+ (−1)

i+1+j yj−1!CBi !

yi−1!CBj−1!
= 0,

as claimed. If 1 ≤ i ≤ n− 2 and j = n, then

Ein =

n∑
k=1

UikHkj = UiiHin + Ui,i+1Hi+1,n + UinHnn

= CBi (−1)
i C

B
i−1!qn,i

CBn−1!Unn
+ yi (−1)

i+1 C
B
i !qn,i+1

CBn−1!Unn
+ δ

(−1)
i−1

zi−1!

CBi−1!Unn

= (−1)
i CBi !qn,i
CBn−1!Unn

+ yi (−1)
i+1 C

B
i !qn,i+1

CBn−1!Unn
+ δ

(−1)
i−1

zi−1!

CBi−1!Unn

=
(−1)

i
CBi !

CBn−1!Unn

[
qn,i − yiqn,i+1 −

δzi−1!CBn−1!

CBi−1!CBi !

]
.

8

Here note that

qn,i − yiqn,i+1

=
δCBn−1!

yi−1!

n−i−1∑
k=0

zk+i−1!yk−1+i!

CBk+i−1!CBk+i!
+ (−1)

n yn−1!

yi−1!

−
δyiC

B
n−1!

yi!

n−i−2∑
k=0

zk+i!yk+i!

CBk+i!C
B
k+i+1!

− (−1)
n
yi
yn−1!

yi!

= CBn−1!

(
δzn−2!yn−2!

CBn−2!yi−1!CBn−1!
+

δ

yi−1!

n−i−2∑
k=0

zk+i−1!yk−1+i!

CBk+i−1!CBk+i!

)

−
δyiC

B
n−1!

yi!

n−i−2∑
k=0

zk+i!yk+i!

CBk+i!C
B
k+i+1!

= CBn−1!

(
δzn−2!yn−2!

CBn−2!yi−1!CBn−1!
+

δ

yi−1!

n−i−2∑
k=0

zk+i−1!yk−1+i!

CBk+i−1!CBk+i!

)

−
δyiC

B
n−1!

yi!

n−i−2∑
k=0

zk+i!yk+i!

CBk+i!C
B
k+i+1!

=
δzn−2!yn−2!

Cn−2!yi−1!
+
δCBn−1!

yi−1!

n−i−2∑
k=0

zk+i−1!yk−1+i!

CBk+i−1!CBk+i!
−
yiC

B
n−1!

yi!

n−i−2∑
k=0

δzk+i!yk+i!

CBk+i!C
B
k+i+1!

=
δzn−2!yn−2!

Cn−2!yi−1!
+
δCBn−1!

yi−1!

n−i−2∑
k=0

(
zk+i−1!yk−1+i!

CBk+i−1!CBk+i!
− zk+i!yk+i!

CBk+i!C
B
k+i+1!

)
,

which, by creative telescoping, equals

δzn−2!

Cn−2!

yn−2!

yi−1!
+
δCBn−1!

yi−1!

(
zi−1!yi−1!

CBi−1!CBi !
− zn−2!yn−2!

CBn−2!CBn−1!

)
=
δCBn−1!zi−1!

CBi−1!CBi !
.

Whence

Ein =
(−1)

i
CBi !

CBn−1!Unn

[
qn,i − yiqn,i+1 −

δzi−1!CBn−1!

CBi−1!CBi !

]
=

(−1)
i
CBi !

CBn−1!Unn

[
δCBn−1!zi−1!

CBi−1!CBi !
−
δzi−1!CBn−1!

CBi−1!CBi !

]
= 0,

as claimed.
Now consider the case i = n− 1. In that case, we see that n− 1 ≤ j ≤ n and

En−1,j =

n∑
k=1

Un−1,kHkj = Un−1,n−1Hn−1,j + Un−1,nHnj .

For j = n− 1, we obtain

En−1,n−1 = Un−1,n−1Hn−1,n−1 = CBn−1

yn−2!CBn−2!

yn−2!CBn−1!
= 1,

as claimed. For j = n, we have

En−1,n = Un−1,n−1Hn−1,n + Un−1,nHnn

= CBn−1 (−1)
n−1 C

B
n−2!qn,n−1

CBn−1!Unn
+

(
yn−1 + (−1)

n−2 zn−2!δ

CBn−2!

)
1

Unn

= (−1)
n−1 qn,n−1

Unn
+
yn−1

Unn
− (−1)

n−1 zn−2!δ

CBn−2!Unn

=
1

Unn

[
(−1)

n−1
qn,n−1 + yn−1 − (−1)

n−1 zn−2!δ

CBn−2!

]
,

9

which, by the definition of qn,n−1, equals

(−1)
n−1

Unn

[(
δzn−2!yn−2!CBn−1!

Cn−2!yn−2!CBn−1!
+ (−1)

n yn−1!

yn−2!

)
+ yn−1 −

zn−2!δ

CBn−2!

]
=

(−1)
n−1

Unn

[
δzn−2!

CBn−2!
− yn−1! + yn−1 −

zn−2!δ

CBn−2!

]
=

(−1)
n−1

Unn

[
δzn−2!

CBn−2!
− zn−2!δ

CBn−2!

]
= 0,

as claimed. It is clear that Eij = 0 for the case i > j. Thus E = In and we are finished.

Suppose that yizi 6= 0 for 1 ≤ i ≤ n − 1. Then one of our main results is given by the following
Theorem.

Theorem 8. Denote the inverse of matrix G of order n by W . Then

Wij =
(−1)

i+j
CBi−1!CBj−1!

zj−1!CBn−1!Unn

 Dn (i, i; i) if i = j,
Dn (j, j; i) if i < j,
Dn (i, j; i) if i > j,

where

Dn (a, b; i) =
CBn−1!Unn

yi−1!
T (n, a) + µqn,iT (n, b) +

(−1)
n
qn,izn−1!

CBn−1!
(4.3)

and the qn,i are defined by (4.2).

Here note that

Win = (−1)
i C

B
i−1!qn,i

CBn−1!Unn
and, specifically, Wnn =

1

Unn
,

and

Wnj =
(−1)

n+j
CBj−1!

(
CBn−1! + µyn−1!

)
T (n, j)

zj−1!yn−1!
+

(−1)
j
zn−1!CBj−1!

zj−1!CBn−1!
.

Proof. There are three subcases. First, consider i = j. Since Hij = 0 for i > j and W = (LU)
−1

= HQ,
we have

Wii =

n∑
k=1

HikQki =

n∑
k=i

HikQki =

n−1∑
k=i

HikQki +HinQni

=

n−1∑
k=i

(−1)
i+k yk−1!CBi−1!

yi−1!CBk !
(−1)

k+i zk−1!CBi−1!

zi−1!CBk−1!
+ (−1)

i C
B
i−1!qn,i

CBn−1!Unn

×

(
µ (−1)

i
CBi−1!

zi−1!

n−1∑
t=i

yt−1!zt−1!

CBt !CBt−1!
+ (−1)

n+i zn−1!CBi−1!

zi−1!CBn−1!

)

=

((
CBi−1!

)2
yi−1!zi−1!

+
µqn,i

(
CBi−1!

)2
zi−1!CBn−1!Unn

)
T (n, i) + (−1)

n

(
CBi−1!

CBn−1!

)2
qn,izn−1!

Unnzi−1!
.

For i = n, we examine the formula:

Wnn =

(
CBn−1!

)2
zn−1!

(
1

yn−1!
+

µqn,n
CBn−1!Unn

) n−1∑
k=n

yk−1!zk−1!

CBk !CBk−1!
+ (−1)

n

(
CBn−1!

CBn−1!

)2
qn,nzn−1!

Unnzn−1!
,

which, since the empty sum is 0 and by the definition of qn,n, leads to

Wnn = (−1)
n qn,n
Unn

=
(−1)

n

Unn

(−1∑
k=0

δzk+n−1!

CBk+n−1!

yk−1+n!

yi−1!

CBn−1!

CBk+i!
+ (−1)

n yn−1!

yn−1!

)
=

1

Unn
.

For i < j, we may write

Wij =

n∑
k=1

HikQkj =

n∑
k=j

HikQkj =

n−1∑
k=j

HikQkj +HinQnj ,

10

which, after some rearrangement, gives

Wij = (−1)
i+j C

B
i−1!CBj−1!

zj−1!

(
1

yi−1!
+

µqn,i
CBn−1!Unn

)
T (n, j) + (−1)

n+i+j zn−1!CBj−1!CBi−1!qn,i

zj−1!CBn−1!CBn−1!Unn

=
(−1)

i+j
CBi−1!CBj−1!

zj−1!CBn−1!Unn

[(
CBn−1!Unn

yi−1!
+ µqn,i

)
T (n, j) + (−1)

n zn−1!qn,i
CBn−1!

]
.

For j = n, we have T (n, n) = 0 and hence

Win = (−1)
i C

B
i−1!qn,i

CBn−1!Unn
.

We consider the last case i > j. By the definition of H, we see that

Wij =

n∑
k=1

HikQkj =

n∑
k=i

HikQkj =

n−1∑
k=i

HikQkj +HinQnj

= (−1)
i+j C

B
i−1!CBj−1!

yi−1!zj−1!

n−1∑
k=i

yk−1!zk−1!

CBk !CBk−1!
+ µ (−1)

i+j C
B
i−1!CBj−1!qn,i

CBn−1!zj−1!Unn

×
n−1∑
t=j

yt−1!zt−1!

CBt !CBt−1!
+ (−1)

n+i+j qn,izn−1!CBi−1!CBj−1!

zj−1!Unn
(
CBn−1!

)2
= (−1)

i+j C
B
i−1!CBj−1!

zj−1!

×

 1

yi−1!

n−1∑
k=i

yk−1!zk−1!

CBk !CBk−1!
+

µqn,i
CBn−1!Unn

n−1∑
t=j

yt−1!zt−1!

CBt !CBt−1!
+

(−1)
n
qn,izn−1!

Unn
(
CBn−1!

)2
 ,

as claimed and we have the required result for all three cases.

Using (3.4), the following Corollary may be used to calculate the inverse matrix, W = G−1, more
easily.

Corollary 9. Let W denote the inverse of G. Then

Wij =
(−1)

i+j
Pi−1Pj−1

zj−1!Pn−1Unn

 Dn (i, i; i) if i = j,
Dn (j, j; i) if i < j,
Dn (i, j; i) if i > j,

(4.4)

where D (a, b; i) is defined as before.

Consequently we see that the D (a, b; i) are key to computing the entries of W .

5. An illustrative example

As a simple example, we consider the matrix

G =


2 1 0 −1
3 3 1 0
0 2 4 1
5 0 1 1


and show in detail the steps required to compute the determinant of G and the inverse matrix, W = G−1.

Here δ = −1, µ = 5, y1 = y2 = y3 = 1; z1 = 3, z2 = 2, z3 = 1; and, x1 = 2, x2 = 3, x3 = x4 = 1.

1. Compute yi! and zi! for 1 ≤ i ≤ 3 as

y1! = y2! = y3! = 1; z1! = 3, z2! = z3! = 6.

11

2. Compute Pi for 0 ≤ i ≤ 4 using (3.2)

P0 = 1, P1 = 2, P2 = 3, P3 = 8 and P4 = 5.

3. Compute the T (4,m) values for 1 ≤ m ≤ 3 using (4.1) and noting that CBt = Pt, etc., whence

T (4, 1) =
5

4
, T (4, 2) =

3

4
, T (4, 3) =

1

4
.

4. We may now compute the determinant of G using (3.8) and (4.1)

detG = P4 − δµP3T (4, 1)− (−1)4(µy3! + δz3!)

= 56

5. Compute the qn,i for 1 ≤ i ≤ 4 using (4.2) and noting that CBn−1! = Pn−1 by (3.4) to give

q4,1 = −9, q4,2 = −5, q4,3 = −1, q44 = 1.

6. By Theorem 8, we can write the inverse matrix W = G−1 as

W =



1
56D4 (1, 1; 1) − 1

84D4 (2, 2; 1) 1
112D4 (3, 3; 1) − 1

42D4 (4, 4; 1)

− 1
28D4 (2, 1; 2) 1

42D4 (2, 2; 2) − 1
56D4 (3, 3; 2) 1

21D4 (4, 4; 2)

3
56D4 (3, 1; 3) − 1

28D4 (3, 2; 3) 3
112D4 (3, 3; 3) − 1

14D4 (4, 4; 3)

− 1
7D4 (4, 1; 4) 2

21D4 (4, 2; 4) − 1
14D4 (4, 3; 4) 4

21D4 (4, 4; 4)


,

where we can compute the required D(a, b; i) using (4.3) to give

D4 (a, b; i) = 56T (4, a) + 5q4,iT (4, b) +
3

4
q4,i.

Whence
D4 (1, 1; 1) D4 (2, 2; 1) D4 (3, 3; 1) D4 (4, 4; 1)
D4 (2, 1; 2) D4 (2, 2; 2) D4 (3, 3; 2) D4 (4, 4; 2)
D4 (3, 1; 3) D4 (3, 2; 3) D4 (3, 3; 3) D4 (4, 4; 3)
D4 (4, 1; 4) D4 (4, 2; 4) D4 (4, 3; 4) D4 (4, 4; 4)

 =


7 3/2 −4 −27/4
7 39/2 4 −15/4
7 19/2 12 −3/4
7 9/2 2 3/4


and the inverse matrix follows as

W =


1
8 − 1

56 − 1
28

9
56

− 1
4

13
28 − 1

14 − 5
28

3
8 − 19

56
9
28

3
56

−1 3
7 − 1

7
1
7

 .

6. Computational Implementations

In this section we consider the effectiveness of the proposed algorithm (KA) as a computational
method and compare its performance with both El-Shehawey’s algorithm (ESA) and a pair of Maple
procedures.

We look to compare the number of basic arithmetic operations required by each of the two algorithms
(ESA and KA). For this exercise we assume that add/subtract and multiply/divide may be considered
comparable operations. Whilst this approach often gives a good indication of how well an implementation
will perform against a competing method when using floating point arithmetic, such comparisons are not
generally as helpful when comparing computer algebra implementations. This is because, unlike floating
point arithmetic, the time taken to perform a basic arithmetic operation on a particular platform is not

12

constant but depends on the algebraic complexity of the two operands; note that this is even the case
for operations between rational numbers as the cpu time taken to reduce results to their simplest form is
not constant. However, it is still useful to perform the comparison, if only to distinguish between order
of magnitude differences.

We also consider how we can easily save operations by not recomputing either useful intermediate or
reusable results. Here we are trading the extra storage required for these values against the execution
time required to recompute them. For floating point computations the amount of additional storage
necessary may be calculated in advance, but for algebraic computation this is not the case. Indeed the
amount of extra storage is dependant on the individual problem and could be large if the intermediate
results are algebraically complex.

We begin by looking in detail at the ESA implementation [25, p132–133] and show how we may
reduce the number of operations performed from O(n3) to O(n2). For the implementation of KA and
ESA we then seek to optimize the number of arithmetic operations by storing reusable computation as
far as possible.

6.1. The Implementation of El-Shehawey’s Algorithm

Both a pseudocode version of the algorithm and a Maple implementation are presented in [25]. The
published code contains an error in line 12 of the procedure continuant which should read

d[k+1] := -A[k+1, k]:

In addition, the determinant given as the true value of their example matrix is incorrect; it should read
D = a2(a2 + 4).

This algorithm requires the computation of the determinants of submatrices of the tridiagonal matrix
obtained by setting the elements δ and µ in (1.1) to zero:

∆j
i = det(T (i : j, i : j)); j ≥ i, i = 1, . . . , n (6.1)

During the computation of the inverse all values of the ∆j
i are used more than once with the exception

of ∆n
1 (not used) and ∆n

2 (used only once).
In their implementation El-Shehawey et. al. compute each value of ∆j

i from scratch as it is required
by the computation; this leads to an O(n3) algorithm. The run time efficiency of their algorithm may
be improved dramatically by trading improved execution time against extra storage and computing
all the values of ∆j

i for 1 ≤ i ≤ n; i ≤ j ≤ n and storing them in the upper triangular portion of
a workspace array. Starting with the diagonal element, ∆i

i = xi, each successive element in the row,

∆j
i , j = i+1, . . . , n, may be computed in turn using just 3 multiplies and an add, giving a total operation

count for all the required ∆j
i of 3n(n+ 1)/2 multiplies and n(n+ 1)/2 adds along with n(n+ 1)/2 extra

storage elements. This reduces the overall complexity of the method to O(n2).
By storing an extra 4n+ 4 elements of storage and eliminating other repeated product computations

we may further reduce the operation count of this algorithm to 1
2 (21n2 + 15n − 10) multiplies and

1
2n(5n− 1) additions.

The use of the recurrence relationship [25, (3.7, 3.8)]

∆j
i =

j∏
k=i

γk (6.2)

γk =

{
xi, k = i

xk + yk−1zk−1

γk−1
, k = i+ 1, . . . , j

results in a divide by zero if any of the γk = 0 for k = i, . . . , j − 1. This situation does not signal the
non-existence of the inverse; it is purely a result of the way in which the computation is performed. In
their Maple implementation, El-Shehawey et. al. ‘fix’ the problem by replacing the zero with an algebraic
quantity, x, and continuing the computation. When the inverse has been computed the value zero is
substituted for x and the final expressions simplified. This could prove to be an extremely inefficient
ploy as the computation is carrying algebraic expressions which are actually zero but, until the final
substitution, are just adding complexity to both intermediate results and the elements of the inverse.

The problem may be avoided by using the alternative three-term recurrence [25, (3.6)]:

13

∆j
i = xj∆

j−1
i − zj−1yj−1∆j−2

i (6.3)

with ∆i−1
i = 1, ∆k

i = 0 for k < i− 2 and ∆i
i = xi.

Incorporating all the above improvements leads to the pseudocode algorithm given in Algorithm 1;
the main procedure uses two supplementary functions that are provided in Algorithm 2.

6.2. The Implementation of the Proposed New Algorithm

A pseudocode version of KA is given in Figure 3. This version has been constructed in a similar
way to the ESA method described in the previous section in that we have attempted to save reusable
computations as far as is sensible. This has involved the use of twelve additional local arrays totalling
12n+2 elements to store reusable values compared to the (n2 +11n)/2 required by ESA. We repeat here
that this does not guarantee the KA will run faster than ESA since the complexity of the operands to
these basic operations is both algorithm and problem dependent and will also be affected by the degree
to which intermediate computed expressions simplify.

The operation count for the implemented version of KA is 3n2+21n−4 multiplications and n2+5n−1
additions which is lower than our re-implementation of ESA.

We note here that the implementation of KA imposes a number of restrictions on the structure of
the matrix whose inverse is desired. Specifically,

1. yi, zi 6= 0; i = 1, . . . , n− 1, and

2. x1 6= 0, and

3. the determinants of all the principal minors of G must be non-zero; i.e., pi 6= 0, i = 1, . . . , n − 1.
Condition 2. above is a consequence of this requirement.

Checks of all these conditions may be made at the outset of the implementation.
None of the above conditions on their own signify a non-singular matrix; however, their presence will

cause a divide by zero at some stage of the computation. It may be possible to lift some or all of these
restrictions by rearranging the calculations but we were unable to discover how to do this.

We note here the importance of restricting the complexity of expressions generated during symbolic
algebraic computations. Failure to do this will often lead to an explosive increase in the number of
terms in both intermediate and final results with an associated increase in execution time. El-Shehawey
et al. [25] in their code only perform a simplification step on their final result and this can (and does)
cause the operation to take an excessive amount of computation time to generate a compact result. It
is generally far better to simplify intermediate computations in the hope of restricting the complexity of
future calculations.

6.3. Testing

The two algorithms, KA and ESA, were both implemented using Maple. A number of test matrices
composed of both rational and algebraic elements were used to verify the implementation and to com-
pare the efficiency of the two procedures. The inverses generated were compared against either known
inverses or the inverses obtained by using the Maple library routines, LinearAlgebra:-MatrixInverse and
LinearAlgebra:-Determinant.

We also tested a reworked version of the original ESA algorithm. This version keeps the original body
of code but rewrites the procedure interface to make it consistent with the two new versions. Doing this
will not effect the execution time of the procedure; it just allows us to re-use the testing and timing code.

6.3.1. Test Problems

Test 1

Our simplest test was the symmetric tridiagonal inverse of the Lehmer matrix [35] whose elements
are all rational values with

Gij =



4i3

4i2 − 1
i = j, 1 ≤ i < n

n2

2n− 1
i = j = n

− i(i+ 1)

2i+ 1
j = i+ 1, 1 ≤ i ≤ n− 1 and j = i− 1, 2 ≤ i ≤ n

0 otherwise.

(6.4)

14

Its inverse is the Lehmer matrix defined by

G−1
ij =

{
i/j, i ≤ j
j/i, i > j

= min(i, j)/max(i, j) (6.5)

for 1 ≤ i, j ≤ n.
While this is obviously a special case (symmetric and δ = µ = 0), it did provide an easily verifiable

sanity check of all the implementations.

Test 2

This is another test involving rational values which is non-symmetric and periodic; the example does
not have a simple closed form inverse.

Gij =



4i3

4i2 − 1
i = j, 1 ≤ i ≤ n

n2

2n− 1
i = j = n

− i(i+ 1)

2i+ 1
j = i+ 1, 1 ≤ i ≤ n− 1

i(i+ 1)

2(2i+ 1)
j = i− 1, 2 ≤ i ≤ n

0 otherwise

(6.6)

with δ =
3n

4
and µ =

3n

2
. For this example the results were verified by comparing them to the inverse

computed by the Maple library functions.

Test 3

This is an algebraic test matrix and represents an extension to the test case given in [25]

Gij =


a i = j, 1 ≤ i < n

1 j = i+ 1, 1 ≤ i ≤ n− 1

−1 j = i− 1, 2 ≤ i ≤ n
0 otherwise

(6.7)

with δ = −1 and µ = 1.
Here again a closed form inverse is not know and the implementations were checked by comparing

their results with those generated by the Maple library functions.

Tests 4 and 5

Here we consider the tridiagonal inverse of the general KMS matrix [28, pp. E190–E191] defined by

Gij =



1/(1− σρ) i = j = 1, n

(1 + σρ)/(1− σρ) i = j = 2, . . . , n− 1

−σ/(1− σρ) j = i− 1, 2 ≤ i ≤ n
−ρ/(1− σρ) j = i+ 1, 1 ≤ i ≤ n− 1

0 otherwise

(6.8)

whose inverse is given, in the same article, as

G−1
ij =


ρj−i i < j; i, j = 1, . . . , n

σi−j i > j; i, j = 1, . . . , n

1 i = j

(6.9)

For Test 4 we use the symmetric version obtained by setting σ = ρ and for Test 5 we consider the
non-symmetric case as given above.

15

Test 6

For this test we generate a periodic, non-symmetric, tridiagonal matrix by using Test 5 above with
δ = σ2 and µ = σρ. This does not have a known simple closed form.

6.4. Performance of the Implementations

All reported timings were obtained using Maple 17 running under Ubuntu 14.04 on an 8 core Intel (R)
Core i7-3840QM, 2.8GHz CPU with 16Gb of memory. The tests were run on an isolated machine (i.e.,
no network connection) that was as lightly loaded as possible (a single terminal window for executing the
run scripts). The tests were run for a range of values of n, the order of the input matrix, and generated
determinant values and inverse matrices were checked with the results returned by the Maple general
matrix procedures.

To obtain execution timings Maple provides a library procedure, CodeTools:-Usage which may be
used to calculate the cpu time required to run a procedure. In order to iron out minor deviations it is
recommended that the procedure is executed multiple times, using the iterations parameter, to obtain an
average. For larger problems the time spent in the Maple system’s garbage collector (GC) may constitute
a sizeable fraction of the reported total execution time. The frequency and occurrence of calls to the GC
are not controllable by the user and are dependent on many factors. We have chosen to remove the time
spent in the GC from the overall timings we obtained from Usage for each test case. We believe that this
provides a clearer picture of the effectiveness of the underlying algorithms. We also think these timings
provide a better indicator of which algorithm to choose as the starting point for an implementation of a
periodic, tridiagonal matrix inversion code written in another SA language.

Figure 1 provides a comparison of the execution times taken by two versions of KA; the first (KASS)
performs just a single simplification step on the generated inverse while the second (KA) attempts to
reduce complexity by simplifying the results of all intermediate computations as they are calculated.
Using timings obtained for Test 3 and 4 we clearly show the dramatic reduction in the execution times
obtained from early simplification. For very small and/or simple problems this approach may be counter-
productive but the gains, for a general solver, far outweigh these minor additional overheads.

Test 3 Test 4
n KASS KA n KASS KA
10 0.037 0.008 10 0.055 0.005
15 0.741 0.028 15 1.788 0.008
20 14.451 0.033 20 34.291 0.012

Figure 1: Comparison of execution times for KA showing the effect of simplifying expressions as soon as they are generated.

Figure 2 compares the execution times for the originally published version of the ESA (with the
interface changed so that it could interact with the test suite) and our reworked version which uses less
operations and simplifies expressions as they are computed. The improved version clearly shows the
benefits of an O(n2) implementation over an O(n3) one.

Test 2 Test 3 Test 6
n ESAOP ESA n ESAOP ESA n ESAOP ESA
50 0.758 0.134 30 0.649 0.050 10 0.025 0.013
60 1.359 0.207 40 2.287 0.109 20 1.018 0.054
70 2.263 0.303 50 10.444 0.155 30 16.537 0.119

Figure 2: Comparison of execution times for ESA showing the efficiency gains obtained by storing and reusing calculations.

Figure 3 provides sample execution times for Tests 2, 3, 5 and 6 when running implementations of the
new proposed algorithm (KA), the El-Shehawey et al [25] algorithm with the efficiency upgrades described
in 6.1 (ESA) and for the Maple library procedures LinearAlgebra:-MatrixInverse and LinearAlgebra:-
Determinant (MAPLE). Since both KA and ESA return the inverse and the determinant our Maple
comparison timings record the combined execution time of the two procedures. The timings obtained
for Test 4 exhibit very similar trends to those of Test 5 for both KA and MAPLE; for ESA the rapid
increase in cpu time starts at a lower value of n and increases faster than for Test 4. We thus choose to
present only the results for Test 5 here.

16

KA fares extremely well on Test 5 where, for n = 150 it executes 10 times faster than MAPLE and
200+ times faster than ESA. However, this is almost reversed for Test 3 where ESA is clearly the most
efficient especially for larger values of n. Finally, for Test 6 MAPLE is far more efficient than ESA and,
after being comparable with KA to n = 100, is faster than KA thereafter.

These results show very clearly how difficult it is, for SA systems, to identify an algorithm and its
implementation that will perform well on general algebraic problems. As far as the basic operations
counts are concerned the order of improving performance should be KA, ESA, MAPLE; however, our
data shows that there is no clear cut winner. The performance is very dependent on the individual
problem being solved.

Test 2 Test 3
n MAPLE ESA KA n MAPLE ESA KA
50 0.119 0.133 0.077 30 0.724 0.050 0.071
80 0.426 0.418 0.237 50 3.187 0.156 0.274

100 0.784 0.721 0.431 60 9.827 0.403 1.180
150 3.222 1.958 1.227 100 n/a 2.081 18.659

Test 5 Test 6
n MAPLE ESA KA n MAPLE ESA KA
50 0.212 0.161 0.057 50 0.292 0.568 0.328
80 0.745 0.907 0.147 80 1.836 10.261 1.416

100 1.398 7.244 0.203 100 3.787 65.097 6.253
150 4.533 94.694 0.447

Figure 3: Comparison of execution times for MAPLE, ESA and KA on a variety of test problems

It is not surprising that the Maple procedures are generally outperformed by KA and/or ESA since
they are designed to invert and find the determinant of a general n × n matrix and, therefore, cannot
explicitly exploit the structure of a periodic, tridiagonal matrix. The test most closely in line with the
operations counts is Test 2 where all the elements are rational number; here the execution times are less
likely to be affected by an explosion in complexity that can occur when manipulating general algebraic
expressions. Even so, KA is less than a factor of 2 faster than ESA; this may be due to more fortuitous
cancellation in intermediate values in ESA.

Overall the proposed method (KA) could be considered as a good substitute to the Maple routine for
inverting periodic, tridiagonal equations since in all tests, apart from Test 6, it was, at worst, a factor
of 2 faster and more often a factor of 10+ better than the Maple library procedures. Even for Test 6
it was superior up to order 80. In addition, for larger problems, it requires substantially less storage of
reusable data than ESA.

Further testing also showed that we can use both KA and ESA to invert matrices of larger orders
efficiently. Figure 4 gives the order of matrix we can invert using a maximum of 10 seconds cpu time on
our test platform.

Test MAPLE ESA KA
1 240 400 650
2 210 280 310
3 50 175 100
5 190 105 560
6 155 75 100

Figure 4: Comparison of the maximum order of various test examples that can be inverted in less than 10 seconds.

Finally, it is interesting to look at the overheads of garbage collection on the total execution times
(TET) of the test cases as returned by CodeTools:-Usage.

First we consider the ESA implementation; for Tests 1, 2, 3 and 4 with n ≤ 150 around 10% of TET
is spent in GC with the number of calls rising from a maximum of 3 for Tests 1 and 2 to around 10 for
Tests 3 and 4. For Tests 5 and 6 both the frequency of calls and the time spent in GC increases rapidly
with n; for example, for Test 5, n = 150, GC is called around 80 times per test and constitutes a massive
76% of TET (263 out of 355 seconds).

KA initiates far fewer calls to GC compared to ESA; even for very large problems the number of

17

calls rarely exceeds 10. Although the percentage of TET can be as high as 45% (Test 1, n = 650), it is
between 5 and 13% for n ≤ 150 for all Tests 1-6.

Finally, we consider the Maple library procedures. For all Tests (other than Test 3), n ≤ 150, the
number of GC calls is uniformly low (less than 3 per test) accounting for a maximum of 10% of TET.
In the case of Test 3, the number of GC calls steadily increases with n reaching 33 per test for n = 70;
interestingly, the time spent in GC remains constant at about 20% of TET.

6.5. Floating Point Performance

As far as floating point calculations are concerned neither the KA or ESA are competitive with, for
example, the method proposed by [27]. In addition, both KA and ESA can have problems with an
uncontrollable increase in the intermediate values produced during the computation.

When attempting to generate the inverse of the matrix defined as Test 1 (Section 6.4 above) Fortran
double precision versions of KA and ESA both failed through floating-point overflows for n = 193 and
n = 195 respectively. For KA the overflow occurs when computing one of the temporary values used in
calculating the D(a, b; i) values and for ESA when computing the circulant values.

7. Conclusions and Future Work

We have shown how backward continued fractions may be used to obtain explicit formulae for the
elements of the inverse of a periodic, tridiagonal matrix. From these we have constructed an efficient
algorithm and an implementation in Maple.

The performance results show how difficult it is to identify an algorithm and its implementation that
will perform well on general algebraic problems. As far as operation counts are concerned the proposed
method should be more efficient than both the improved El-Shehawey algorithm [25] (see Section 6.1)
and the Maple library procedures. However our performance results show that there is no clear ‘best’
procedure when comparing execution times.

That said the performance comparisons have shown that our proposed method would be a worth-
while first choice as an inversion procedure for both tridiagonal and periodic, tridiagonal matrices. Our
implementation is also shown to be effective for solving problems of order up to several hundred in a
relatively short time on a moderately powerful laptop.

Both our implementation and our improved version of the El-Shehawey et al code show that efficiency
gains can be made over Maple library routines for computing inversions of specialized matrices.

In the future we intend to implement several other published algorithms for computing the inverse
of both tridiagonal and periodic, tridiagonal matrices, and to exercise them on an extended set of test
examples. We also intend to perform detailed profiling analyses of these implementations in an attempt
to discover exactly where execution time is being spent and the circumstances under which excessive run
times occur. These insights would then be used to identify potential improvements to the implementations
and, perhaps, an optimal coding for computing the inverse of these particular matrices.

18

ALGORITHM 1: Pseudocode for ESA using temporary storage to save reusable computations. This imple-

mentation uses O(n2) arithmetic operations rather than O(n3) in the original presentation.

Procedure ElS(x, y, z, δ, µ);
Input: x1..n, y1..n−1, z1..n−1, δ, µ
Output: sing, det, A−1

#

sing = FALSE; c1..n = [y1..n−1, µ]; d1..n = [δ, z1..n−1];
Compute all circulant values(
∆i

i = xi; ∆i−1
i = 1; ∆i

i−1 = 0; i = 1..n
)
;

∆n
n+1 = 1 ;(

∆j
1 = xj∆

j−1
1 − djcj−1∆j−2

1 , j = 2..n− 1
)
;

for i = 2, (n− 1) do(
∆j

i = xj∆
j−1
i − djcj−1∆j−2

i , j = i+ 1..n
)
;

end
p0..n = vecProd1ton(c, 1, n); q0..n = vecProd1ton(−d, 1, n);
Compute determinant and deal with possible singular matrix

det = xn∆n−1
1 − δµ∆n−1

2 − dncn−1∆n−2
1 − (−1)npn − qn ;

if det == 0 then return (TRUE, det,NULL)
s1..n = vecProdkton(−d, 1, n);
Form the upper triangular portion of the inverse

for k = 1, n do

[f, g, h] =
[
∆k−1

1 ,∆k−1
2 , qk

]
/det;

rk−1..n−1 = vecProd1ton(c, k, n− 1);
sgn = 1;
for j = k, n do

A−1
k,j = sgn× rj−1

(
f∆n

j+1 − gδµ∆n−1
j+1

)
+ hsj∆

j−1
k+1 ;

sgn = −sgn;

end

end
Form the lower triangular portion of the inverse

r1..n = vecProdkton(c, 1, n);
for k = 2, n do

[f, g, h] =
[
∆n

k+1,∆
n−1
k+1 , rk−1

]
/det ;

s2..k = vecProdkton(−d, 2, k); s1 = −d2s2;
sgn = 1;
if n+ k mod 2 == 0 then sgn = −1;
for j = 1, k − 1 do

A−1
k,j = sj

(
f∆j−1

1 − gδµ∆j−1
2

)
+ sgn× hpj−1∆k−1

j+1 ;
sgn = −sgn;

end

end
return (FALSE, det, A−1);

19

ALGORITHM 2: Subsidiary procedures used by the efficient ESA implementation

Procedure vecProdkton(v, i, j);
Input: vi..j , i, j
Output: rj = 1; rk =

∏j
m=k+1 vm, k = i..j − 1

ri−1 = 1;
for k = j − 1, i, −1 do

rk = rk+1vk+1;
end
return ri..j ;
Procedure vecProd1ton(v, i, j);
Input: vi..j , i, j
Output: ri−1 = 1; rk =

∏k
m=i vm, k = i..j

ri−1 = 1;
for k = i, j do

rk = rk−1vk;
end
return ri−1..j ;

20

ALGORITHM 3: Pseudocode for the KA using temporary storage to save reusable computations.

Procedure KA(x, y, z, δ, µ);
Input: x1..n, y1..n−1, z1..n−1, δ, µ
Output: sing, det, A−1

#

sing = FALSE; sg = −1;
if n mod 2 == 0 then sg = 1;
(b0, w0, p0, p1) = (1, 1, 1, x1);
b[i]← yi!, w[i]← zi!, p[i] as defined by (3.2)

for i = 1, n− 1 do
bi = bi−1yi; wi = wi−1zi;
pi+1 = xi+1pi − yizipi−1;

end
Using (4.1), t[i]← T (n, i) and, using (4.2), q[i]← qn,i

(tn, qn) = (0, sg);
for i = n− 1, 1, −1 do

ti = ti+1 + bi−1wi−1/(pipi−1);
qi = (δpn−1ti + sg × bn−1/bi−1);

end
Using (3.8) and (4.1)

det = pn − δµt1pn−1 − sg × (µbn−1 + δwn−1);
if det == 0 then return (TRUE, 0, NULL);
r1..n = det/b0..n−1; f1..n = µq1..n; g1..n = (sg × wn−1/pn−1)q1..n;
h1..n−1 = r1..n−1 + f1..n−1; r1..n = f1..nt1..n + g1..n;
c1..n = p0..n−1/det; d1..n = p0..n−1/w0..n−1;
v1..n+1 = 1;
for i = 2, n+ 1, 2 do

vi = −1;
end
The leading three multipliers djv1+jval..j−1+jvalc1..j−1 in the next two

for loops form the leading multiplier of the D(a, b; i) values in (4.4)

jval = 1;
for j = 2, n do

A−1
1..j−1,j = djv1+jval..j−1+jvalc1..j−1 (tjh1..j−1 + g1..j−1);

jval = 1− jval;
end
jval = 0;
for j = 1, n do

A−1
j..n,j = djvj+jval..n+jvalcj..n (tjfj..n + rj..n);

jval = 1− jval;
end
return (FALSE, det, A−1)

21

References

[1] M. G. Beker, G. Cella, R. DeSalvo, M. Doets, H. Grote, J. Harms, E. Hennes, V. Mandic, D. S. Rabeling, J. F. J.
van den Brand, C. M. van Leeuwen, Improving the sensitivity of future GW observatories in the 1–10 Hz band:
Newtonian and seismic noise, General Relativity and Gravitation 43 (2) (2011) 623–656.

[2] R. Bustos-Marún, E. Coronado, H. Pastawski, Buffering plasmons in nanoparticle wave guides at the virtual-localized
transition, Phys. Rev. B 82 (3) (2010) 035434.

[3] B. Choudhury, Diffusion of heat in multidimensional composite spherical body, IMA J. Appl. Math. 78 (3) (2013)
474–493.

[4] S. Dursun, A. Grigoryan, Nonlinear l2-by-3 transform for PAPR reduction in OFDM systems, Computers & Electrical
Engin. 36 (6) (2010) 1055–1065.

[5] P.-L. Giscard, S. J. Thwaite, D. Jaksch, Evaluating matrix functions by resummations on graphs: The method of
path-sums, SIAM. J. Matrix Anal. & Appl. 34 (2) (2013) 445–469.

[6] N. Huang, An enhanced Hill cipher and its application in software copy protection, J. Networks 9 (10) (2014) 2582–
2590.

[7] S. Ma, L. Yang, A jump-detecting procedure based on spline estimation, J. Nonparametric Stat. 23 (1) (2011) 67–81.
[8] N. Perel, U. Yechiali, The Israeli queue with a general group-joining policy, Ann. Oper. Res. (2015) 1–

34doi:10.1007/s10479-015-1942-1.
[9] A. Bunse-Gerstner, R. Byers, V. Mehrmann, A chart of numerical methods for structured eigenvalue problems, SIAM

J. Matrix Anal. Appl. 13 (2) (1992) 419–453.
[10] C. Fischer, R. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems,

SIAM J. Numer. Anal. 6 (1) (1969) 127–142.
[11] E. Kılıç, D. Tasci, Factorizations and representations of the backward second-order linear recurrences, J. Comput.

Appl. Math. 201 (1) (2007) 182–197.
[12] R. Mattheij, M. Smooke, Estimates for the inverse of tridiagonal matrices arising in boundary-value problems, Linear

Algebra Appl. 73 (1986) 33–57.
[13] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal.

Appl. 13 (3) (1992) 707–728.
[14] S.-F. Xu, On the Jacobi matrix inverse eigenvalue problem with mixed given data, SIAM J. Matrix Anal. Appl. 17 (3)

(1996) 632–639.
[15] R. Burden, J. Fairs, A. Reynolds, Numerical analysis, 2nd Edition, Weber & Schmidt, Boston, MA, 1982.
[16] C. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math. 200 (1) (2007) 283–286.
[17] M. El-Mikkawy, A. Karawia, Inversion of general tridiagonal matrices, Appl. Math. Letters 19 (8) (2006) 712–720.
[18] D. Evans, S. Okolie, A quotient-difference algorithm for the determination of eigenvalues of periodic tridiagonal

matrices, Comput. & Math. Appl. 8 (2) (1982) 157–164.
[19] W. Hager, Applied numerical linear algebra, Prentice-Hall International Editions, Englewood Cliffs, NJ, 1988.
[20] R. Hagger, The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators,

J. Funct. Analysis 269 (5) (2015) 1563–1570.
[21] A. Yalçiner, The LU factorizations and determinants of the k-tridiagonal matrices, Asian-Eur. J. Math. 4 (1) (2011)

187–197.
[22] W.-C. Yueh, S. Cheng, Explicit eigenvalues and inverses of several Toeplitz matrices, The ANZIAM Journal 4 (1)

(2006) 73–97.
[23] M. Chawla, R. Khazal, A parallel elimination method for ‘periodic’ tridiagonal systems, Inter. J. Computer Math.

79 (4) (2002) 473–484.
[24] M. El-Mikkawy, A new computational algorithm for solving periodic tri-diagonal linear systems, Appl. Math. Comput.

161 (2) (2005) 691–696.
[25] M. El-Shehawey, G. El-Shreef, A. Al-Henawy, Analytical inversion of general periodic tridiagonal matrices, J. Math.

Anal. Appl. 345 (2008) 123–134.
[26] T. Sogabe, New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems, Appl. Math.

Comput. 202 (2) (2008) 850–856.
[27] C. Temperton, Algorithms for the solution of cyclic tridiagonal systems, Journal of Computational Physics 19 (3)

(1975) 317 – 323. doi:http://dx.doi.org/10.1016/0021-9991(75)90081-9.
URL http://www.sciencedirect.com/science/article/pii/0021999175900819

[28] M. Dow, Explicit inverses of Toeplitz and associated matrices, ANZIAM Journal 44 (2008) E185–E215.
URL http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/493

[29] R. Mallik, The inverse of a tridiagonal matrix, Linear Algebra Appl. 253 (1-3) (2001) 109–139.
[30] Maplesoft, a division of Waterloo Maple Inc., Maple 2017, waterloo, Ontario, Canada.
[31] Wolfram Research, Inc., Mathematica, Version 11.2, champaign, IL, 2017.
[32] E. Kılıç, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions, Appl. Math. Comput.

197 (1) (2008) 345–357.
[33] W. Jones, W. Thron, Continued fraction, analytic theory and applications, Addison Wesley, Reading, MA, 1980.
[34] H. Zhao, G. Zhu, P. Xiao, A backward three-term recurrence relation for vector valued continued fractions and its

applications, J. Comput. Appl. Math. 142 (2) (2002) 389–400.
[35] D. H. Lehmer, D. M. Smiley, M. F. Smiley, J. Williamson, Solution to problem E710, The American Mathematical

Monthly 53 (9) (1946) 534–535. doi:10.2307/2305078.

22

