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Running head: Model averaging in ecology
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coverage, prediction averaging, uncertainty

Abstract

In ecology, the true causal structure for a given problem is o�en not known, and

several plausible models and thus model predictions exist. It has been claimed that

using weighted averages of these models can reduce prediction error, as well as be�er

re�ect model selection uncertainty. �ese claims, however, are o�en demonstrated by

isolated examples. Analysts must be�er understand under which conditions model

averaging can improve predictions and their uncertainty estimates. Moreover, a large

range of di�erent model averaging methods exists, raising the question of how they

di�er regarding in their behaviour and performance.

Here, we review the mathematical foundations of model averaging along with the

diversity of approaches available. We explain that the error in model-averaged

predictions depends on each model’s predictive bias and variance, as well as the

covariance in predictions between models and uncertainty about model weights.

We show that model averaging is particularly useful if the predictive error of

contributing model predictions is dominated by variance, and if the covariance

between models is low. For noisy data, which predominate in ecology, these conditions

will o�en be met.

Many di�erent methods to derive averaging weights exist, from from Bayesian over

information-theoretical to cross-validation optimised and resampling approaches. A

general recommendation is di�cult, because the performance of methods is o�en

context-dependent. Importantly, estimating weights creates some additional
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uncertainty. As a result, estimated model weights may not always outperform arbitrary

�xed weights, such as equal weights for all models. When averaging a set of models

with many inadequate models, however, estimating model weights will typically be

superior to equal weights.

We also investigate the quality of the con�dence intervals calculated for

model-averaged predictions, showing that they di�er greatly in behaviour and seldom

manage to achieve nominal coverage. Our overall recommendations stress the

importance of non-parametric methods such as cross-validation for a reliable

uncertainty quanti�cation of model-averaged predictions.

1 Introduction

Models are an integral part of ecological research, representing alternative, possibly

overlapping, hypotheses (Chamberlin, 1890). �ey are also the standard approach to

making predictions about ecological systems (Mouquet et al., 2015). In many cases, it is

not possible to clearly identify a single most-appropriate model. For instance,

process-based models may di�er in the speci�c ways they represent ecological

mechanisms, without a clear empirical or theoretical reason to prefer one option over

the other. Statistical analyses rarely o�er a single solution, both because the limited

amount of data allows for several plausible combinations of predictors, and because

di�erent modelling approaches are available for statistical analysis (e.g. Hastie et al.,

2009; Kuhn and Johnson, 2013).

Model averaging seemingly solves this dilemma. Proponents of this approach have

claimed that calculating a weighted average of the predictions of all candidate models

will reduce prediction error through reduced variance and bias (the la�er based on

arguments described in Madigan and Ra�ery, 1994), as well as be�er represent

This article is protected by copyright. All rights reserved. 
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uncertainty about model parametrisation and structure (Wintle et al., 2003, see also

section 2.3). For some ecological examples of model averaging see �uiller (2004);

Richards (2005); Brook and Bradshaw (2006); Dormann et al. (2008); Diniz-Filho et al.

(2009); Le Lay et al. (2010); Garcia et al. (2012); Cariveau et al. (2013); Meller et al.

(2014), and Lauzeral et al. (2015).

Evaluating the utility of this approach is complicated by the large number of

di�erent method for model averaging and the subsequent uncertainty quanti�cation of

averaged predictions. Several previous reviews on model averaging in ecology and

evolution, focussed exclusively on ‘information-theoretical model averaging’ (Johnson

and Omland, 2004; Hobbs and Hilborn, 2006; Burnham et al., 2011; Freckleton, 2011;

Grueber et al., 2011; Nakagawa and Freckleton, 2011; Richards et al., 2011; Symonds

and Moussalli, 2011), probably under the in�uence of the AIC-weighted averaging

popularised by Burnham & Anderson (2002; Posada and Buckley 2004). Bayesian model

averaging has been used less frequently in ecology (for an example see Corani and

Migna�i, 2015), but for an excellent recent review of this topic in the context of

Bayesian model selection see Hooten and Hobbs (2015, see also Hoeting et al. 1999;

Ellison 2004; Link and Barker 2006). However, none of the above covers all available

model averaging approaches, together with a general discussion of advantages and

disadvantages.

Our aim is to provide such a comprehensive review in the light of developments

over the last 20 years, summarising the mathematical reasoning behind model

averaging, and o�ering an intuitive but technically sound entry to the �eld, illustrated

by case studies. We primarily address prediction averaging of correlative models,

although most of the points will similarly apply to mechanistic/process-based models

(see, e.g., Knu�i et al., 2010; Diks and Vrugt, 2010, for a review in the context of climate

and hydrological models, respectively). We do not consider averaging model

This article is protected by copyright. All rights reserved. 
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parameters, because we agree with the criticism summarised in Banner and Higgs

(2017): parameters (such as partial regression coe�cients) are estimated conditional on

the model structure; as the model structure changes, parameters may become

incommensurable (see Posada and Buckley, 2004; Cade, 2015; Banner and Higgs, 2017,

and Appendix S1.1 for short review of the parameter-averaging literature). Instead, our

focus is on prediction, and predictive inference (sensu Geisser, 1993), as exempli�ed by

model-averaged predictions of species potential occurence for reserve-site selection

(Meller et al., 2014) or the e�ect of roads on occupancy of ponds by frogs (Dai and

Wang, 2011). Also, we only focus on averaging sets of models that di�er in structure, as

opposed to mere di�erences in initial conditions or parameter values (Gibbs, 1902;

Johnson and Bowler, 2009). �e la�er case is called “ensemble” in the statistical and

physical sciences, while in ecology that term is used more loosely.

�is review is divided into �ve parts: �rst, we present the mathematical logic

behind model averaging, and why this alone puts severe constraints on how we do

model averaging. �en, in the second part, we review the di�erent ways through which

model-averaging weights can be derived, comparing Bayesian, information-theoretic,

and tactical perspectives (by tactical we mean heuristic approaches to model averaging

that are not explicitly based on statistical theory). �is is followed by a brief

exploration of how to quantify the uncertainty of model-averaged predictions. Finally,

we brie�y illustrate model averaging with two case studies, before closing with

unresolved challenges, and recommendations.

2 �e mathematics behind model averaging

In accordance with virtually all discussions of model averaging we encountered, we

�rst focus on how model averaging reduces prediction error, here quanti�ed as mean

This article is protected by copyright. All rights reserved. 
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squared error (MSE) of a prediction Ŷm of model m. As for any estimator, we can

decompose this error into contributions of bias and variance:

MSE(Ŷm) =
{

bias(Ŷm)
}2

+ var(Ŷm). (1)

Bias refers to a systematic model error that would not change if a new dataset for the

same system became available, while variance refers to the expected spread of model

predictions when �t with hypothetical new datasets for the same system.

We can use eqn 1 to examine the error of a weighted average Ỹ of the predictions

of several (M ) contributing models, Ŷ1, Ŷ2, . . . , ŶM :

Ỹ =
M∑

m=1

wmŶm , with
M∑

m=1

wm = 1. (2)

�e motivation for the weights wm is to adjust the average such that is has improved

properties over a simple average (with equal weights) or a single candidate models (all

weight on one model).

We can see from eqn 1 that bias, i.e. the di�erence between the expectation of the

averaged predictions and the truth (Ỹ − y∗), will depend directly on the bias of the

contributing models, as well as their weights (eqn 2). �e statistical model-averaging

literature o�en assumes that individual models have no bias, and therefore tends to be

less interested in its contribution (Bates and Granger, 1969; Buckland et al., 1997;

Burnham and Anderson, 2002). In contrast, for process models, reducing bias is o�en

names as one of the main motivations (e.g. Solomon et al., 2007; Gibbons et al., 2008;

Dietze, 2017). Implicitly, the assumption here is that model biases will tend to fall on

both sides of the truth, in which case they may cancel out in an average.

Prediction variance (arising from n hypothetical repeated samplings) is composed

of two terms, the variance of each contributing model’s prediction,

var(Ŷm) =
1

n− 1

n∑
i=1

(Ŷm − Ŷ i
m)2,

This article is protected by copyright. All rights reserved. 
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and the covariances between predictions of model m and m′:

cov(Ŷm, Ŷm′) =
1

n− 1

n∑
i=1

(Ŷm − Ŷ i
m)(Ŷm′ − Ŷ i

m′).

For the average of two predictions, Ŷ1 and Ŷ2, this yields:

var(Ỹ ) = w2
1var(Ŷ1) + w2

2var(Ŷ2) + 2w1w2cov(Ŷ1, Ŷ2). (3)

When averaging several models, we expand eqn (3) to:

var(Ỹ ) = var

 M∑
m=1

wmŶm

 =
M∑

m=1

w2
mvar(Ŷm) +

M∑
m=1

∑
m′ 6=m

wmwm′cov(Ŷm, Ŷm′)

=
M∑

m=1

M∑
m′=1

wmwm′cov(Ŷm, Ŷm′)

=
M∑

m=1

M∑
m′=1

wmwm′ρmm′var(Ŷm)var(Ŷm′), (4)

where ρmm′ is the correlation between Ŷm and Ŷm′ .

Combining eqns 1 and 3 we can see that the error of a model-averaged prediction

decomposes into

MSE(Ỹ ) =

 M∑
m=1

wm

(
E(Ŷm)− y∗

)2

+
M∑

m=1

M∑
n=1

wmwm′ρmm′var(Ŷm)var(Ŷm′),

(5)

where E(Ŷm)− y∗ = bias(Ŷm) represents prediction bias.

2.1 Understanding what in�uences the error of

model-averaged prediction

Equation 5 allows us to make a number of statements about the potential bene�ts of

model averaging. We shall �rst illustrate the fundamental e�ects of bias, variance and

covariance using simply toy examples. In the next sections, we shall then move from

this idealised examples to more realistic situations.

Firstly, when each model produces a distinct prediction, with variances

substantially lower than systematic di�erences between models, bias dominates (Fig. 1

This article is protected by copyright. All rights reserved. 
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top). How useful model averaging is in this situation depends on the biases of the

individual models (see also Fig. 2 top row). As model variance increases (or bias

decreases), the error term is increasingly dominated by variance, and assuming

covariances are low, the variance of the average (and therefore the mean error) will be

smaller than the variance of the single model (Fig. 1 bo�om). If the covariance of model

predictions is low, increasing the number of models in the average will generally

decrease the variance and therefore the prediction error, while the bias of the average

has no general connection to the number of averaged models (Fig. 2, right column).

[Fig. 1 approximately here.]

We thus conclude that as bias becomes large relative to prediction variance, model

averaging is less and less likely to be useful for reducing variance – but it may still be

useful for reducing bias (under the condition of bidirectional bias: Fig. 2, lower row).

[Fig. 2 approximately here.]

Downweighting of variances is the mathematical reason how model averaging

reduces the variance over single model predictions, as we brie�y explain now.

To understand these e�ects in more detail, consider the unlikely, but didactically

important case that model predictions are independent, meaning that their covariance

is 0 and the correlation matrix ρmn of eqn 5 becomes the identity matrix (or,

equivalently, the covariance term of eqn 4 vanishes). If we also assume both

predictions have equal variances, var(Ŷ1) = var(Ŷ2) = var(Ŷ ), since w2 = 1− w1,

the above equation simpli�es to var(Ỹ ) = (2w2
1 − 2w1 + 1)var(Ŷ ). If one model gets

all the weight, we have var(Ỹ ) = var(Ŷ ). If the two models receive equal weight, we

have var(Ỹ ) = (2 · 0.52 − 2 · 0.5 + 1)var(Ŷ ) = 0.5var(Ŷ ), a considerable

improvement in prediction variance (and the minimum of this equation). Other

weights fall in-between these values. In other words, model averaging can reduce

prediction error because weights enter as quadratic terms in eqn 3, rather than linearly.

This article is protected by copyright. All rights reserved. 
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Indeed, Bates and Granger (1969) showed that for unbiased models with uncorrelated

predictions, the variance in the average is never greater than the smaller of the

individual predictions (making the important assumption that the weights are known,

which will be discussed below).

�e next thing to note is that the correlation between model predictions, i.e. the

matrix (ρij) ∈ RM×M , substantially a�ects the bene�t of model averaging (see also

Fig. 3 and interactive tool in Data S1). In the best case, correlations between model

predictions are negative or at least absent, and the second term of eqn (5) is negative or

vanishes. Under these conditions, averaging can substantially increase the variance of

the predictions. As correlations between predictions increase, the covariance term

contributes more and more to the overall prediction error. In the extreme case of

perfectly correlated predictions of the single models, model averaging has no bene�t

for reducing prediction variance.

[Fig. 3 approximately here.]

�e e�ect of correlations on the potential reduction of prediction error has an

analogy in biodiversity studies, where it is called the ‘portfolio e�ect’

(e.g. �ibaut and Connolly, 2013). It states that the �uctuation in biomass of a

community is less than the �uctuations of biomass of its members, because the species

respond to the environment di�erently. �is asynchrony in response is analogous to

negative covariance in community members’ biomass, bu�ering the sum of their

biomasses.

�is point also provides some important insights about why machine learning

methods, which o�en average a large number of bad models, can work so well. When

averaging poor models, e.g. trees in a Random Forest, covariance is negligible, but the

variance of each model prediction is high. Because wm becomes very small with

hundreds of models (approximately 1/M ), the variance of many averaged poor models

This article is protected by copyright. All rights reserved. 
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(with similar variance) tends to be low: var(Ỹ ) =∑M

m=1
1

M2 var(Ŷm) + 1
M2

∑M
m=1

∑
m 6=n cov(Ŷm, Ŷn) ≈M 1

M2 var(Ŷ ) = 1
M var(Ŷ ),

where the second term disappears due to lack of correlations among predictions. We

may speculate that poor models typically also exhibit substantial but bidirectional bias,

which again would be reduced by averaging.

Pu�ing bias, variance and correlation together (Fig. 2), we note that model

averaging will deliver smaller prediction error when bias is bidirectional (i.e. model

predictions over- and underestimate the true value: bo�om row of Fig. 2) and

predictions are negatively correlated (Fig. 2 bo�om right). Uni-directional bias will

remain problematic (top row of Fig. 2), irrespective of covariances among predictions.

�us, for a given set of weights, the prediction error of model-averaged predictions

depends on three things: the bias of the model average, as emerging from the bias of

the individual models, the prediction variances of the individual models, and the

covariance of those predictions.

2.2 Estimating weights can thwart the bene�t of model

averaging

So far, we have assumed that weights have �xed values, or that weights are not random

variates, and thus there is no uncertainty about them. Yet, the aim of optimising

predictive performance suggests that weights need to be estimated from the data. But

estimation brings associated uncertainty with it, and this has implications for the

actual bene�ts of model averaging: estimated “optimal” weights will be suboptimal

(Nguefack-Tsague, 2014). With such an error, even for only mildly correlated

predictions, the averaged prediction will more likely be biased than if the (unknown)

truly optimal weights were used (Claeskens et al., 2016). It may in fact be o�en no

This article is protected by copyright. All rights reserved. 
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be�er than one obtained using arbitrary weights, e.g. equal weights (Clemen, 1989;

Smith et al., 2009; Graefe et al., 2014, 2015). �e “simple theoretical explanation”

provided by Claeskens et al. (2016) demonstrates that estimating weights introduces

additional variance into the prediction. As a consequence, the predictions averaged

with estimated weights may be worse than that of a single model (in contrast to the

assertion of Bates and Granger 1969; see Claeskens et al. 2016 for an example).

Apart from the error of the estimate, a further open problem is to obtain a good

estimator for the optimal weight in the �rst place. Currently no closed solution is

available, not even for linear models (Liang et al., 2011). Neither Bayesian nor

information-theoretical model weights are designed to minimise prediction error, and

their weights will in general not be optimal for that purpose. Some tactical approaches

estimate model weights explicitly to minimise prediction error on hold-out data (in

particular jackknife model averaging and stacking; see section 3.3). Only these

approaches are at least trying to estimate optimal weights for minimizing predictive

error. �e interactive tool we provide (Fig. 3) allows readers to explore this issue in a

simple 2-model case. It shows that, in this simple case, estimating weights substantially

reduces the parameter space where model averaging is superior to the best single

model. �us, the bias-variance trade-o� applies also to model averaging, in the sense

that weight estimation introduces additional parameters and therefore higher model

complexity to the analysis. It is therefore important to think carefully about when to

use model averaging, as it can add unnecessary complexity.

Uncertainty about the optimal weights does not imply that estimated weights are

of no use, or that the use of arbitrary weights (e.g. equal weights) is generally superior.

While uncertainty in estimated weights increases prediction error, the ability to

statistically downweight or wholly remove unsuitable models from the prediction set is

a substantial bene�t. In Claeskens et al. (2016) and similar simulations, all models

This article is protected by copyright. All rights reserved. 
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considered are “alright” (bias-free and with similar prediction variance), which

obviously need not be the case in practical applications. �us, the question is not if

estimated model weights are useful in general, but how useful they are beyond their

function of �ltering out inferior models from the average. We believe there is a bene�t

beyond this �lter function, but we recognise that there is a need for further research to

be�er demonstrate this bene�t, and understand when it occurs.

2.3 Model averaging (typically) reduces prediction errors

To complement these theoretical considerations, we examined 180 studies (a random

draws from the results of a systematic literature search: see Appendix S1.7) regarding

reported bene�ts from model averaging.

�e majority of studies we encountred used an empirical approach to assess

predictive performance, i.e. forecasting, hindcasting or cross-validation to observed

data (e.g. Namata et al., 2008; Marmion et al., 2009a,b; Grenouillet et al., 2010;

Montgomery et al., 2012; Smith et al., 2013; Engler et al., 2013; Edeling et al., 2014;

Trolle et al., 2014). Most Model averaging generally yielded lower prediction errors

than the individual contributing models. Most of these studies used test datasets to

estimate predictive success, and rely critically on the assumption of independence

between test and training datasets (Roberts et al., 2017). Few studies used simulated

data to examine the performance of model averaging under speci�c conditions (e.g.

small sample size, model structure uncertainty, missing data: Ghosh and Yuan, 2009;

Schomaker, 2012), and even fewer employ analytical mathematics (Shen and Huang,

2006; Potempski and Galmarini, 2009; Chen et al., 2012; Zhang et al., 2013).

This article is protected by copyright. All rights reserved. 
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2.4 �antifying uncertainty of model-averaged

predictions

So far, we have shown that model averaging can produce predictions with a smaller

error than any of the contributing models by averaging away their variance and bias.

�ose gains, however, generally decrease with i) increasing covariance of the

individual model predictions, and ii) increasing mean bias of the contributing models.

Moreover, iii) weighted averaging allows reducing the weight of models poorly

supported by data, but at the expense of introducing additional variance in the average,

induced by the weight estimation.

Besides having an estimate with low error, the second goal of most statistical

methods is to provide a measure of (un)certainty of that estimate. �e nature of this

measure di�ers between tactical, Bayesian, and frequentist approaches. Tactical

aproaches, such as machine learning, are usually satis�ed with providing an estimate

of predictive error on new data, typically obtained through cross-validation. �is

procedure can be directly extended to model-averaged predictions.

For Bayesian and frequentist methods, the issue of extending the conventional

methods for estimating uncertainty to model-averaging is somewhat more complicated.

Bayesian methods quantify uncertainty via the posterior distribution, which can be

summarized by a Bayesian credible interval. One would interpret a 95% credible

interval as displaying a 95% certainty for the true value to be contained in the interval.

Frequentist methods traditionally provide a con�dence interval. Under repeated

sampling of new data sets under identical conditions, a correctly de�ned 95%

con�dence interval should contain the true value in 95% of the cases.

To construct a frequentist con�dence interval for a model-averaged prediction, we

have to ask ourselves how this model-averaged prediction will spread around the true

This article is protected by copyright. All rights reserved. 
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value under repeated sampling. Fortunately, we have already derived this result in

eqs. 1-5. For simple cases, we can directly convert this into a con�dence interval. For

example, for an unbiased average, with uncorrelated models of equal weight and

variance, the standard deviation of the average, and thus its con�dence interval, should

decrease with one over the square root of the number of contributing models, times the

con�dence interval of the single models. In general, however, the calculation of the

con�dence interval of the average will have to take the con�dence intervals of all

contributing models, as well as their weights, covariance and bias into account.

Buckland et al. (1997) proposed a simpli�cation of eqn (5), which considers bias and

variance of the averaged models (for derivation see Burnham and Anderson, 2002,

p. 159-162):

var(Ỹ ) =

 M∑
m=1

wm

√
var(Ŷm) + γ2

m

2

. (6)

Misspeci�cation bias of model m is computed as γm = Ŷm − Ỹ , thus assuming

(explicitly on page 604 of Buckland et al. 1997) that the averaged point estimate Ỹ is

unbiased and can hence be used to compute the bias of the individual predictions. �is

assumption can be visualised in Fig. 2 as the situation where the empty triangles

always sit right on top of ‘truth’. �is assumption is problematic, as it cannot be met by

unidirectionally biased model predictions, nor when weights wm fail to get the

weighting exactly right and thus Ỹ remains biased. Less problematically, Buckland

et al. (1997) also assumed that predictions from di�erent models are perfectly

correlated, making the covariance term as large as possible, and variance estimation

conservative. �e distribution theory behind this approach has been criticised as “not

(even approximately) correct” (Claeskens and Hjort, 2008, p. 207), but shown to work

well in simulations (Lukacs et al., 2010; Fletcher and Dillingham, 2011).

Improving on eqn (6) requires knowledge of the covariance of model predictions

ρmm′ (eqn 5). �e key problem is that there is no analytical way to compute ρmm′ .
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Bootstrapping, although computationally costly, o�ers a good solution to this problem.

While the obstacles to calculate con�dence intervals for model-averaged

predictions may seem somewhat discouraging, it should be noted that alternatives to

model averaging do not necessarily fare be�er. Predictions from a selected single-best

model always underestimate the true prediction error (e.g. Namata et al., 2008; Fletcher

and Turek, 2012; Turek and Fletcher, 2012). �e reason is that the uncertainty about

which model is correct is not included in this �nal prediction: we predict as if we had

not carried out model selection but had known from the beginning which model would

be the best (as if the model had been “prescribed”: Harrell, 2001). �us, even if we were

able to choose, from our model set M , the model closest to truth, we would still need

to adjust the con�dence distribution for model selection; and a perfect adjustment was

analytically shown not to exist (Kabaila et al., 2015).

Accordingly, simulations studies that have suggested that model averaging may

improve coverage (Namata et al., 2008; Wintle et al., 2003; Zhao et al., 2013),

presumably because the process of averaging allows us to take into account model

uncertainty (Liang et al., 2011). Yet, given the diversity of approaches to computing

model weights encountered in section 3, these studies cannot be seen as conclusive,

only as suggestive, for the improvement of nominal coverage using model averaging.

For example Fletcher and Turek (2012) and Turek and Fletcher (2012) explore how

model averaging can improve the tail areas of the con�dence distribution. �ese two

studies, however, as well as those cited before, assumed that the full model, referring to

the model that includes all sub-models prior to any model selection (see Appendix

S1.3), is not in the set. �e approach by Fletcher and Turek (2012) and Turek and

Fletcher (2012) was re-analysed by Kabaila et al. (2015). �e key �nding of this la�er

study is that the full model coverage was still superior to all other model averaging

approaches, suggesting that the full model should currently be kept in mind, both for
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inference, minimal bias and correct prediction intervals (see also Harrell, 2001, p. 59).

Such �ndings sit uncomfortably with the bias-variance trade-o� (Hastie et al., 2009),

which states that overly complex models have poor predictive performance; and indeed

the full model has high prediction variance.

Regre�ably, such reasoning cannot be extended in an obvious way to non-nested

models, process models, or machine learning models. Here, model averaging seems

without alternative for propagating model selection uncertainty into prediction

uncertainty more fairly.

Our �nal option to quantify uncertainty, the Bayesian credible interval, can be

interpreted as a mixture distribution. In a two-step process, the model weights �rst

determine the probability of any model to be correct, and the uncertainty of each

model is then mixed additively into a averaged uncertainty. If the predictions of all

individual models are identical, the �nal distribution will remain the same. From the

perspective of 5, this is identical to assuming that the average models are maximally

correlated, although the logical motivation for the mixing is di�erent. If predictions

di�er widely, e.g. due to bias, the mixed con�dence distribution will be much wider and

possibly multi-modal.

To illustrate the various Bayesian and frequentist options, we calculated predictive

uncertainties and coverage for four di�erent options for a set of simple linear

regressions in Fig. 5:

1. Make the assumption that model-averaged predictions are unbiased. Use

bootstrapping to estimate covariances of predictions for each model. From these

estimates, compute prediction variance according to eqn (5). �is solution is

computer-intensive, but it takes into account covariance of model predictions.

On the other hand, it cannot account for bias, and should thus not be used when

bias of the estimator is suspected, for example from cross-validation.
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2. Make the assumption that model-averaged predictions are unbiased. Use

Buckland et al. (1997)’s approach (eqn 6). �is will yield wider estimates than

option 1, because assumptions about bias and correlation are more conservative.

3. Use a mixture distribution to compute the con�dence distribution of the average,

assuming e�ectively that predictions from di�erent models are perfectly

correlated, but possibly biased.

4. Fit the full model (if available) and use its con�dence distribution, which can

rarely be improved on (Kabaila et al., 2015).

[Figure 5 approximately here.]

When averaging models with largely independent (i.e. uncorrelated) predictions,

only the bootstrap-estimated covariance matrix (option 1 above) will also compute

lower variances (according to eqn 4). In our example (Fig. 5, see Data S1 for details),

“propagation” produced the tightest con�dence interval (and hence lowest coverage),

followed by “Buckland” and “mixing”. However, neither of these con�dence intervals

seemed large enough, as all had too low coverage. Only the full model produces

accurate con�dence intervals and coverage. Further simulations along these lines will

have to show how these approaches perform for more complex models and situations.

3 Approaches to estimating model-averaging

weights

So far, we have discussed the properties of a weighted model average, but we have not

discussed how to estimate the model-averaging weights. Estimating weights aims at

abating poorly ��ing, and elevating well-predicting models, and the actual method for

estimating weights has obvious fundamental importance for the quality of an averaged
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prediction. Di�erent perspectives on model-averaging weights have emerged (Table 1),

which can be broadly classi�ed into four categories of decreasing probabilistic

interpretability:

1. In the Bayesian perspective, model weights are probabilities that model Mi is the

‘true’ model (e.g. Link and Barker, 2006; Congdon, 2007).

2. In the information-theoretic framework, model weights are measures of how

closely the proposed models approximate the true model as measured by the

Kullback-Leibler divergence, relative to other models.

3. In a ‘tactical’ perspective, model weights are parameters to be chosen in such a

way as to achieve best predictive performance of the average. No speci�c

interpretation of the model is a�ached to the weights; they only have to work.

4. Assigning �xed, equal weights to all predictions can be seen as a reference naı̈ve

approach, representing the situation without adjusting for di�erences in models’

predictive abilities.

We shall address these four perspectives in turn, also hinting at relationships among

them.

[Table 1 approximately here.]

3.1 Bayesian model weights

�eory Bayes’ formula can be applied to choosing among models in much the same

way as to parameter values (Wasserman, 2000). To perform inference with multiple

models and their parameters at the same time, one can write down the joint posterior

probability P (Mi,Θi|D) of model Mi with parameter vector Θi, given the observed

data D, as
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P (Mi,Θi|D) ∝ L(D|Mi,Θi) · p(Θi) · p(Mi), (7)

where L(D|Mi,Θi) is the likelihood of model Mi, p(Θi) is the prior distribution of the

parameters of the respective model Mi, and p(Mi) is the prior weight on model Mi.

In practice, one is o�en interested in some simpli�ed statistics from this

distribution, such as the model with the highest posterior model probability, or the

distribution of a parameter or prediction including model selection uncertainty. To

obtain this information, we can marginalise (i.e. integrate) over parameter space, or

marginalise over model space.

If we marginalise over parameter space, we obtain posterior model weights that

represent the relative probability of each model (whilst marginalising over model space

yields averaged parameters, which we shall not address here). We can alternatively

calculate these weights by calculating the marginal likelihood of each model, de�ned as

the average of eqn (7) across all k parameters for any given model:

P (D|Mi) ∝
∫

Θ1

· · ·
∫

Θk

L(D|Mi,Θi)p(Θi)dΘ1 · · · dΘk. (8)

From the marginal likelihood, we can compare models via the Bayes factor, de�ned as

the ratio of their marginal likelihoods (e.g. Kass and Ra�ery, 1995):

BFi,j =
P (D|Mi)
P (D|Mj)

=
∫
L(D|Mi,Θi)p(Θi)dΘi∫
L(D|Mj ,Θj)p(Θj)dΘj

, (9)

with the multiple integral now pulled together for notational convenience. For more

than two models, however, it is more useful to standardise this quantity across all

models in question, calculating a Bayesian posterior model weight p(Mi|D) (including

model priors p(Mi): Kass and Ra�ery, 1995, ) as

posterior model weighti = p(Mi|D) =
P (D|Mi) p(Mi)∑
j P (D|Mj)p(Mj)

. (10)
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Estimation in practice While the de�nition of Bayesian model weights and

averaged parameters is straightforward, the estimation of these quantities can be

challenging. In practice, there are two options to numerically estimate the quantities

de�ned above, both with caveats.

�e �rst option is to sample directly from the joint posterior (eqn 7) of the models

and the parameters. Basic algorithms such as rejection sampling can do that without

any modi�cation (e.g. Toni et al., 2009), but they are ine�cient for higher-dimensional

parameter spaces. More sophisticated algorithms such as MCMC and SMC (see Hartig

et al., 2011, for a basic review) require modi�cations to deal with the issue of di�erent

number of parameters when changing between models. Such modi�cations (mostly the

reversible-jump MCMCs, rjMCMC: Green, 1995, see Appendix S1.5.1) are o�en

di�cult to program, tune and generalise, which is the reason why they are typically

only applied in specialised, well-de�ned se�ings. �e posterior model probabilities of

the rjMCMC are estimated as the proportion of time the algorithm spent with each

model, measured as the number of iterations the algorithm drew a particular model

divided by the total number of iterations.

�e second option is to approximate the marginal likelihood in eqn (8) of each

model independently, renormalise that into weights, and then average predictions

based on these weights. �e challenge here is to get a stable approximation of the

marginal likelihood, which can be problematic (Weinberg, 2012, see Appendix S1.5.1).

Still, because of the relatively simple implementation, this approach is a more common

choice than rjMCMC (e.g. Brandon and Wade, 2006).

In�uence of priors A problem for the computation of model weights when

performing Bayesian inference across multiple models is the in�uence of the choice of

parameter priors, especially “uninformative” ones (see section 5 in Hoeting et al., 1999;
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Chickering and Heckerman, 1997).

�e challenge arises because in eqns (8) and (9) the prior density p(θi) enters the

marginal likelihood and hence the Bayes factor multiplicatively. �is has the somewhat

unintuitive consequence that increasing the width of an uninformative parameter prior

will linearly decrease the model’s marginal likelihood (e.g. Link and Barker, 2006).

That Bayesian model weights are strongly dependent on the width of the prior choice

has sparked discussion of the appropriateness of this approach in situations with

uninformative priors. For example, in situations where multiple nested models are

compared, the width of the uninformative prior may completely determine the

complexity of models that are being selected. One suggestion that has been made is to

not perform multi-model inference at all with uninformative priors, or that at least

additional corrections are necessary to apply Bayes factors weights (O’Hagan, 1995;

Berger and Pericchi, 1996). One such correction is to calibrate the model on a part of

the data �rst, use the result as new priors and then perform the analysis described

above (intrinsic Bayes factor: Berger and Pericchi 1996, fractional Bayes factor:

O’Hagan 1995). If enough data are available so that the likelihood is su�ciently peaked

by the calibration step, this approach should eliminate any complication resulting from

the prior choice (for an ecological example see van Oijen et al., 2013).

Bayesian-�avoured approaches Apart from the natural Bayesian average (see

also Yao et al., 2017), there are a number of other approaches that are connected to or

inspired by Bayesian thinking.

In a set of in�uential publications, Ra�ery et al. (1997), Hoeting et al. (1999) and

Ra�ery et al. (2005) introduced post-hoc Bayesian model averaging, i.e. for vectors of

predictions from already ��ed models. �e key idea is to iteratively estimate the

proportion of times a model would yield the highest likelihood within the set of models
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(through expectation maximisation, see Appendix S1.5.2 for details), and use this

proportion as model weight. In the spirit of the inventors, we refer to this approach as

Bayesian model averaging using Expectation-Maximisation (BMA-EM), but

place it closer to a frequentist than a Bayesian approach, as the models were not

necessarily (and in none of their examples) ��ed within the Bayesian framework. It

has been used regularly, o�en for process models (e.g. Gneiting et al., 2005; Zhang

et al., 2009), where a rjMCMC-procedure would require substantial programming work

at li�le perceived bene�t, but also in data-poor situations in the political sciences

(Montgomery et al., 2012).

Chickering and Heckerman (1997) investigate approximations of the marginal

likelihood in eqn (9), such as the Bayesian Information Criterion (BIC, as de�ned

in the next section; see also Appendix S1.5.3) and �nd them to work well for model

selection, but not for model averaging. In contrast, Kass and Ra�ery (1995) state (on

p. 778) that eBIC is an acceptable approximation of the Bayes factor, and hence suitable

for model averaging, despite being biased even for large sample sizes. �ese

approximations may be improved when using more complex versions of BIC (SPBIC

and IBIC: Bollen et al., 2012).

�e “widely applicable information criterion” WAIC (Watanabe 2010 and an

equivalent WBIC: Watanabe 2013) are motivated and actually analytically derived in a

Bayesian framework (Gelman et al., 2014). With an uninformative prior, it can be seen

as a variation of AIC (see next section). �e WAIC is computed, for each model, from

two terms (Gelman et al., 2014): (1) the log pointwise predicted density (lppd) across

the posterior simulations for each of the n predicted values, de�ned as

lppd = log
∏n

i=1 pposterior(yi); and (2) a bias-correction term

pWAIC =
∑n

i=1 var(log(p(yi|θs))), where var is the sample variance over all S samples

of the posterior distributions of parameters θ. �e WAIC is then de�ned as
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WAIC = −2 lppd + 2 pWAIC. In other words, the WAIC is the likelihood of observing

the data under the posterior parameter distributions, corrected by a penalty of model

complexity proportional to the variance of these likelihoods across the MCMC samples.

Model weights are computed from WAIC analogously to equation 11 below.

3.2 Information-theoretic model weights

In the information-theoretic perspective, models closer to the data, as measured by the

Kullback-Leibler divergence, should receive more weight than those further away.

�ere are several approximations of the KL-divergence, most famously Akaike’s

Information Criterion (AIC: Akaike, 1973; Burnham and Anderson, 2002). AIC and

related indices can be computed only for likelihood-based models with known number

of parameters (pm), restricting the information-theoretic approach to GLM-like models

(incl. GAM):

AICm = −2`m + 2pm and wm =
e−0.5(AICm−AICmin)∑

i∈M e−0.5(AICi−AICmin)
, (11)

where `m is the log-likelihood of model m.

In the ecological literature, AIC (and its sample-size corrected version AICc, and its

adaptations to quasi-likelihood models such as QIC: Pan 2001; Claeskens and Hjort

2008) is by far the most common approach to determine model weights (for recent

examples see, e.g., Dwyer et al., 2014; Rovai et al., 2015), despite the fact that the

reasoning behin this choice is not entirely clear. AIC-weights (eqn 11) have been

interpreted as Bayesian model probabilities (Burnham and Anderson 2002, p. 75; Link

and Barker 2006), assuming a speci�c, model complexity and sample size-dependent,

“savvy prior” (Burnham and Anderson 2002, p. 302; see also Hooten and Hobbs 2015, p.

16, for reformulation as regularisation prior). An alternative interpretation is the

proportion of times a model would be chosen as the best model under repeated
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sampling (Hobbs and Hilborn, 2006), but such an interpretation is contentious

(Richards, 2005; Bolker, 2008; Claeskens and Hjort, 2008). In an anecdotal comparison,

Burnham and Anderson (2002, p. 178) showed that AIC-weights are substantially

di�erent from bootstrapped model weights. �e la�er were proposed by Buckland

et al. (1997) and represent the proportion of bootstraps a model is performing best in

terms of AIC: see case study 1 below. In simulations, AIC-weights did not reliably

identify the model with the known lowest KL-divergence or prediction error (Richards,

2005; Richards et al., 2011). Instead, Mallows’ model averaging (MMA) has been

shown to yield the lowest mean squared error for linear models (Hansen, 2007;

Schomaker et al., 2010). Mallows’ Cp penalises model complexity equivalent to

−2`m−n+ 2pm (for n data points; rather than AIC’s −2`m + 2pm, eqn 11).

Schwartz’ Bayesian Information Criterion was derived to �nd the most probable

model given the data (Schwartz, 1978; Shmueli, 2010), equivalent to having the largest

Bayes factor (see previous section). BIC uses log(n) rather than AIC’s “2” as

penalisation factor for model complexity (Appendix S1.5.3). A particularly noteworthy

modi�cation of the AIC exist, where the model �t is assessed with respect to a focal

predictor value, e.g. a speci�c age or temperature range, yielding the Focussed

Information Criterion (FIC: Claeskens and Hjort 2008). We are not aware of a

systematic simulation study comparing the performance of these model averaging

weights, but AIC’s dominance should not indicate its superiority (see also case study 1

below).

�e weighting procedure can additionally be wrapped into a cross-validation and

model pre-selection, which leads to the ARMS-procedure (Adaptive Regression by

Mixing with model Screening: Yang, 2001; Yuan and Yang, 2005; Yuan and Ghosh,

2008). We shall not present details on ARMS here (for cross-validation see next section),

because we regard model pre-selection as an unresolved issue (see section 5.3).
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3.3 Tactical approaches to computing model weights

Methods covered in this section share the “tactical” goal of choosing weights to

optimise prediction (e.g. reduce prediction error), without a speci�c reference to a

statistical theory such as Bayesian inference or information theory.

�e most straightforward approach in this area is to make the averaging weight

dependent on an estimate of the predictive error of each model, usually obtained by

cross-validation. Cross-validation approximates a model’s predictive performance on

new data by predicting to a hold-out part of the data (typically between 5 and 20 folds,

down to leave-one-out cross-validation, which omits each single data point in turn).

�e �t to the hold-out can be quanti�ed in di�erent ways. If the data can be reasonably

well described by a speci�c distribution with log-likelihood function ` (even if the

model algorithm itself is non-parametric), the log-likelihood of the data in the k folds

can be computed and summed (van der Laan et al., 2004; Wood, 2015, p. 36):

`mCV =
k∑

i=1

`(y[i]|θ̂m
y[−i]

), (12)

where the index [−i] indicates that the data y[i] in fold i were not used for ��ing model

m and estimating model parameters θ̂m
y[−i]

. It can be shown that leave-one-out

cross-validation log-likelihood is asymptotically equivalent to AIC and thus KL-distance

(Stone, 1977), albeit at a higher computational cost. Hence, computing model weights

wm
CV (Hauenstein et al., 2017):

wm
CV =

e`
m
CV∑

i∈M e`
i
CV

(13)

creates a weighting scheme very similar to AIC-weights, which implicitly penalises

over��ing.

Other measures of model �t to the hold-out folds have been used, largely as ad hoc

proxies for a likelihood function (e.g. in likelihood-free models): pseudo-R2 (e.g

Nagelkerke, 1991; Nakagawa and Schielzeth, 2013), area under the ROC-curve (AUC:
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Marmion et al., 2009a; Ordonez and Williams, 2013; Hannemann et al., 2015), or True

Skill Statistic (Diniz-Filho et al., 2009; Garcia et al., 2012; Engler et al., 2013; Meller

et al., 2014). In these cases, weights were computed by substituting `CV in eqn (13) by

the respective measure, or given a value of 1/S for a somewhat arbitrarily de�ned

subset of S (out of M ) models, e.g. those above an arbitrary threshold considered

minimal satisfactory performance (Crossman and Bass, 2008; Crimmins et al., 2013;

Ordonez and Williams, 2013).

Largely ignored by the ecological literature are two other non-parametric

approaches to compute model weights: stacking and jackknife model averaging (see

Appendix S1.4 for discussion of averaging within machine-learning algorithms). Both

are cross-validation based, but unlike simple cross-validation weights, which are based

on the performace of each contributing model on hold-out data, stacking and jacknife

model averaging explicitly optimise weights to reduce the error of the average on

hold-out data.

Stacking (Wolpert, 1992; Smyth and Wolpert, 1998; Ting and Wi�en, 1999) �nds

the optimised model weights to reduce prediction error (or maximise likelihood) on a

test hold-out of size H . �is is, for RMSE and likelihood, respectively:

arg min
wm


√√√√√ 1
H

H∑
i=1

y[i] −
M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m
[−i]

)2


(Hastie et al., 2009) and

arg max
wm

`
y[i]

∣∣∣∣∣∣
M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m
[−i]

)
 ,

where f̂(Xi|θ̂m
[−i]) is the prediction of model m, ��ed without using data i, to data i.

�is procedure is repeated many times, each time yielding a vector of optimised model

weights, wm, which are then averaged across repetitions and rescaled to sum to 1. Yao

et al. (2017) extend this approach also to Bayesian models to provide a clear
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prediction-error minimising goal. Smyth and Wolpert (1998) and Clarke (2003) report

stacking to generally outperform the cross-validation approach from two paragraphs

earlier, and Bayesian model averaging, respectively (see also the case studies in

section 4 and Appendix S5).

In Jackknife Model Averaging (JMA: Hansen and Racine, 2012), each data point

is omi�ed in turn from ��ing and then predicted to (thus actually a leave-one-out

cross-validation rather than a “jackknife”). �en, weights are optimised so as to

minimise RMSE (or maximise likelihood) between the observed and the ��ed value

across all N “jackknife” samples. �e optimisation function is the same as for stacking,

except that H = N . �us, in stacking, weights are optimised once for each run, while

for the jackknife only one optimisation over all N leave-one-out-cross-validations is

required (further details and examples with R-code are given in Appendix S1.5.6).

�e forecasting (i.e. time-predictions) literature (reviewed in Armstrong, 2001;

Stock and Watson, 2001; Timmermann, 2006) o�ers two further approaches. Bates and

Granger (1969)’s minimal variance approach a�ributes more weight to models with

low-variance predictions. More precisely, it uses the inverse of the variance-covariance

matrix of predictions, Σ−1, to compute model weights. In the multi-model

generalisation (Newbold and Granger, 1974) the weights-vector w is calculated as:

wminimal variance = (1′Σ−11)−11Σ−1, (14)

where 1 is an M -length vector of ones. �is is the analytical solution of eqn 5,

assuming no bias and ignoring the problem that weights are random variates, under

the weights-sum-to-one constraint. Equation 14 does not ensure all-positive weights,

nor is it obvious how to estimate Σ. One option (used in our case studies) is to base Σ

on the deviation from a prediction to test data in lieu of measure of past performance

(following recommendation of Bates and Granger, 1969).

Finally, Garthwaite and Mubwandarikwa (2010) devised a rarely used method,
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called the “cos-squared weighting scheme”, designed to adjust for correlation in

predictions by di�erent models. It was motivated by (i) giving lower weight to models

highly correlated with others (thereby reducing the prediction variance contributed

through covariances in eqn 5), (ii) division of weights when a new, near-identical

model prediction is added to the set, and (iii) reducing all weights when more models

are added to the set. Weights are computed as proportional to the amount of rotation

the predictions would require to make them orthogonal in prediction space, hence the

trigonometric name of their approach.

Modelling model weights

So far, weights were always constant. However, one might also consider making

weights dependent on other variables. �is approach, which we term “model-based

model combinations” (MBMC, also called “superensemble modelling”) was �rst

proposed by Granger and Ramanathan (1984). Here a statistical model f is used to

combine the predictions from di�erent models, as if they were predictors in a

regression: Ỹ ∼ f(Ŷ1, Ŷ2, . . . , Ŷm) (see Fig. 4 le�). �e regression-type model f can be

of any type, such as a linear model or a neural network. We call this regression the

“supra-model” in order to distinguish between di�erent modelling levels.

A very simple supra-model would compute the median of predictions for each

point Xi(e.g. Marmion et al., 2009a). Di�erent models are used in the “average”

without requiring any additional parameter estimation. Median predictions imply

varying weights, as the one or two models considered for computing the median may

change between di�erent Xi.

An ideal model combination could switch, or gently transition, between models

(such as manually constructed by Crisci et al., 2017). Since the predictions are combined

more or less freely in model-based model combinations to yield the best possible �t to
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the observed data, MBMC should be superior to any constant-weight-per-model

approach (see Fig. 4 right), as was indeed found by Diks and Vrugt (2010). �is

advantage comes with a severe drawback: a high proclivity to over��ing, as we �t the

same data twice (once to each model, then again to their prediction regression).

[Fig. 4 approximately here.]

�is does not seem to be recognised as a problem (despite being a key message of

Hastie et al., 2009), as all studies we found incorrectly cross-validate the supra-model

only, not the entire work�ow (if at all; e.g. Krishnamurti et al., 1999; �omson et al.,

2006; Diks and Vrugt, 2010; Breiner et al., 2015; Romero et al., 2016). To correctly

cross-validate MBMCs, one has to produce hold-outs before ��ing the contributing

models, and evaluate the MBMC prediction on this hold-out (Fig. 4, Appendix S5.9 and

case studies).

Note that supra-models may di�er substantially in their ability to harness the

contributing models. As it is a yet fairly unexplored �eld in model averaging, analysts

are advised to try di�erent supra-model types (Fig. 4).

3.4 Equal weights

Last, we discuss the most trivial weighting scheme: in many �elds of science (climate

modelling, economics, political sciences), model averaging proceeds with giving the

structurally di�erent models equal weight, i.e. 1/M (e.g. Johnson and Bowler, 2009;

Knu�i et al., 2010; Graefe et al., 2014; Rougier, 2016). In ecology, studies analysing

species distributions reported equal weights to be a very good choice when assessed

using cross-validation (Crossman and Bass, 2008; Marmion et al., 2009a; Rapacciuolo

et al., 2012), but no be�er than the single models on validation with independent data

(Crimmins et al., 2013). Equal weights may serve as a reference approach to see

whether estimating weights reduces prediction error for this speci�c set of models. In
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that sense, we may argue, all the above weight estimation approaches only serve to

separate the wheat from the cha�; once a set of reasonable models has been identi�ed,

equal weights are apparently a good approach.

4 Case studies

All methods discussed above can be applied to simple regression models, while some

explicitly rely on a model’s likelihood and can thus not be used for non-parametric

approaches. We therefore devised two case studies, the �rst being a rather simple

example to illustrate the use of all methods in Table 1, and the second a more

complicated species distribution case study based on a reduced set of methods. Note

that we do not include adaptive regression by mixing with model screening (ARMS:

Yang, 2001) because its more sophisticated variations (Yuan and Yang, 2005) are not

readily implemented in R, and the basic ARMS is barely di�erent from AIC-model

averaging for a preselected set of models.

4.1 Case study 1: Simulation with Gaussian response,

many models and few data points

In this �rst, simulation-based case study, we explore the variability of model-averaging

approaches in the common case where several partially nested models are �t (see Data

S1 for details and code). �e simulation was set up so that several of the ��ed models

have similar support as explanations for the data. �is was achieved by generating the

response di�erently in each of two groups (using similar, but not identical predictors).

We simulated 70 data points with 4 predictors yielding 24 = 16 candidate models, and

another 70 data points for validation. We computed model weights in 19 di�erent ways

(Table 1) and compared the prediction error of weighted averages as well as the
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individual models to the validation data points. Simulation and analyses were repeated

100 times.

Two results emerged from this simulation that are worth reporting. First,

prediction error (quanti�ed as RMSE) was similar across the 19 weight-computing

approaches, with a few noticeably poor exceptions (the two MBMC approaches,

minimal variance and the cos-squared scheme: Fig. 6), and most were no be�er than

those of the best nine single model predictions. Second, most averaging approaches

gave some weight (w > 0.01) to ten or more models (Table 2), despite models being

overlapping and partially nested, so that we have actually only �ve (more or less)

independent models (those containing only one predictor: m2, m3, m5, m9 and

intercept-only m1). In real data sets, such spreading of weight is the result of data

sparseness or extreme noise, making important e�ects stand out less; indeed, half of

our candidate models are not hugely di�erent, i.e. within ∆AIC < 4.

[Figure 6 approximately here.]

[Table 2 approximately here.]

4.2 Case study 2: Real species presence-absence data,

many data points and a moderate number of predictors

In the second case study, we use data on the real distribution of short-�nned eel

(Anguilla australis) in New Zealand (from Elith et al., 2008). �e data are provided in

the R-package dismo, already split into a 1000-rows training and a 500-rows test data

set, and featuring 10 predictors. We ran four di�erent model types (GAM, Random

Forest - rF, arti�cial neural network - ANN, support vector machine - SVM) using all 10

predictors, along with two variations of the GLM (best models selected by AIC and BIC

from the full model containing the 10 predictors, relevant quadratic terms and all
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�rst-order interactions). For details see Data S1.

�e number of averaging approaches that can be used to compute model weights is

smaller than in the previous case study, as three of the six models do not report a

likelihood or the number of parameters, precluding the use of rjMCMC, Bayes factor,

(W)AIC, BIC, and Mallows’ Cp. Because we do not know the underlying

data-generating model, we evaluate the models on the randomly pre-selected test data

provided.

[Table 3 approximately here.]

One interesting result is that model averaging was e�ectively a model selection tool

in several cases (Table 3). Stacking, bootstrapping, JMA, and to a lesser degree minimal

variance, BMA-EM and the model-based model combinations yielded non-zero weights

for only 1 (or 2) models. Apparently, these approaches yielded sub-optimal model

weights, as these “model selection”-outcomes of model averaging fared worse than

those that kept all models in the set (equal weight, leave-one-out and cos-squared).

Secondly, the best two model averaging algorithms in this case study, apart from

the median where varying weights are used, identi�ed an approximately equal

weighting as optimal strategy. �at is somewhat surprising, given that SVM performed

relatively poorly (and was excluded by BMA-EM, but favoured by cos-squared as a

more independent contribution). �e likely reason of high weights for the poor SVM is

that averaging-in less correlated predictions reduces covariances in eqn (5).

�e good performance of the median in both case studies suggests that using the

central value of each prediction, rather than give constant weights to the model itself,

may be even more e�ective in reducing variance and thus prediction error. Further

research is needed to clarify if this principle is indeed valid across many applications.
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5 Recommendations

In this review, we have �rstly explained the mechanisms by which model averaging

can improve model predictions, and secondly, we have discussed the large diversity of

methods that are available to compute averaging weights. While our general results

and outlook on this �eld are positive, in the sense that model averaging is o�en useful,

the complexity of the topic prevents us from providing �nal answers about the best

approach for ecologists. Surprisingly many issues seem to be statistically unresolved,

or addressed by quick-�xes and even fundamental questions remain open, which we

will discuss next. It is unsatisfactory to see the large variance in weights and

performance of the di�erent averaging approaches in our case studies, but also the

literature provides too few comparisons of model weights to provide robust advice. In

general, our recommendations are thus guided by reducing harm, rather than

suggesting an optimal solution.

5.1 Averaged prediction should be accompanied by

uncertainty estimates

Just like any other statistical approach, model averaging can be used wrongly.

Focussing entirely on the predictions, rather than their uncertainty, can be misleading,

as Knu�i et al. (2010) showed for combining precipitation predictions: spatial

heterogeneity cancelled out across models, giving the erroneous impression of li�le

change when in fact all models predict large changes (albeit in di�erent regions).

Similarly, King et al. (2008) found that averaging parameters from two competing

models led to no e�ect of two hypothesised impacts, although in both models a

(di�erent) driver was very in�uential. We thus strongly encourage including at least

model-averaged con�dence intervals alongside any prediction, possibly in addition to
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the individual model predictions, to prevent erroneous interpretation of averaged

predictions. Also, more a�ention should be paid to the full model. It has many desirable

properties (unbiased parameter estimates, very good coverage), but su�ers from

violation of the parsimony principle (“Occam’s razor”) and requires more consideration

in which form covariates should be �t. Its larger prediction error, compared to the

over-optimistic single-best partial model, is the reason for correct con�dence intervals.

5.2 Dependencies among model predictions should be

addressed

Statistical models, which aim to describe the data to which they are ��ed, will o�en

have correlated parameters and �ts; process models may overlap in modelled processes.

Having highly similar models in the model set will in�ate the cumulative weight given

to them (as illustrated in Appendix S1.6) . One way to handle in�ation of weights by

highly-related models is to assign prior model probabilities in a Bayesian framework.

Another approach would be to pre-select models of di�erent types (see next point).

Alternatively, the cos-square scheme of Garthwaite and Mubwandarikwa (2010) uses

the correlation matrix of model projections to appropriately change weights of

correlated models. Of the weighting schemes considered here, it is the only approach

doing so, but it should be noted that the performance of this approach in our case study

was rather poor (Fig. 6, Tables 2 and 3).

5.3 Validation-based weighting or validation-based

pre-selection of models

Madigan and Ra�ery (1994), Draper (1995), Burnham and Anderson (2002) and more

recently Yuan and Yang (2005) and Ghosh and Yuan (2009), have argued that only
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“good” models should be averaged. Di�erent ways of combining model averaging with

a model screening step have been proposed (Augustin et al., 2005; Yuan and Yang, 2005;

Ghosh and Yuan, 2009), in which model selection precedes averaging (pre-selection).

�is will happen implicitly, and in a single step, if any of the model weight algorithms

discussed above a�ributes a weight of e�ectively zero to a model, as happened in case

study 2. How prevalent this e�ect is in real world studies is unclear, as weights are

rarely reported.

In contrast, some studies select models a�er the predictions are made (e.g. �uiller,

2004; Forester et al., 2013). These studies have averaged models which predict in the

same direction (along the “consensus axis”: Grenouillet et al. 2010), which are the best

50% in the set (Marmion et al., 2009a), or however many one should combine to

minimise prediction error. Such approaches necessitate addressing the challenge of

using data twice (Lauzeral et al., 2015). Post-selection reduces the ability of “dissenting

voices” (i.e. less correlated predictions) to reduce prediction error and instead reinforce

the trend of the model type most represented in the set. As a consequence, their

uncertainty estimation will be overly optimistic. We do not advocate their use.

We suggest to employ validation-based methods of model averaging rather

than relying on model-based estimates of error. �at is, we recommend (leave-one out)

cross-validation and stacking rather than AIC (in line with recommendations of

Hooten and Hobbs, 2015). Using (semi-)independent test data gives us some capacity to

estimate predictive bias. In such a se�ing, it may be less relevant whether models are

pre-selected by validation-based estimates of error and then averaged with equal

weights or weighted by validation-based estimates of error without pre-selection. For

this to work, however, it is crucial that (cross)-validation strategies are designed to

ensure independence of the validation data, which is a non-trivial problem in many

practical ecological applications (Roberts et al., 2017).
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5.4 Process models are no di�erent

In �shery science, averaging process models is relatively common (Brodziak and Piner,

2010), as it is in weather and climate science (Krishnamurti et al., 1999; Knu�i et al.,

2010; Bauer et al., 2015). �ere are at least two connected challenges such enterprises

face: validation and weighting. O�en process models are tuned/calibrated on all sets of

data available, in the sensible a�empt to describe all relevant processes in the best

possible way. �at means, however, that no independent validation data are available,

so that we cannot use the prediction accuracy of di�erent models to compute model

weights. Consequently, all models receive the same weight (e.g. in IPCC reports, or for

economic models), or some reasonable but statistically ad-hoc construction of weights

is employed (e.g. Giorgi and Mearns, 2002). In recent years, hind-casting has gained in

popularity, i.e. evaluating models by predicting to past data. �is will only be a useful

approach if historic data were not already used to derive or tune model parameters,

and if hindcasting success is related to prediction success (which it need not be, if

processes or drivers change).

Cross-validation is o�en infeasible for large models, as run-times are prohibitively

long. However, the greatest obstacle to averaging process models is the absence of truly

equivalent alternative models, which predict the same state variable. Fishery science is

one of the few areas of ecology in which commensurable models exist and are being

averaged in a variety of ways (e.g. Stanley and Burnham, 1998; Brodziak and Legault,

2005; Brandon and Wade, 2006; Katsanevakis, 2006; Hill et al., 2007; Katsanevakis and

Maravelias, 2008; Jiao et al., 2009; Hollowed et al., 2009; Brodziak and Piner, 2010).

Carbon and biomass assessments are also moving in that direction (Hanson et al., 2004;

Butler et al., 2009; Wang et al., 2009; Picard et al., 2012). �ese �elds could pro�t from

exploring averaging methods such as minimal variance and cos-squared, which do not

require cross-validation and may perform be�er than either equal weights or BMA-EM,
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and probably be�er than MBMC’s potentially over��ed supra-models.

Finally, irrespective of the approach chosen, model averaging studies should report

model weights, and predictions should be accompanied by estimates of prediction

uncertainty.

5.5 Overall conclusion and recommendations

In conclusion, we �nd that:

1. Model averaging may, but need not necessarily reduce prediction errors. Model

averaging bene�ts generally increase with i) decreasing covariance of the

individual model predictions, and ii) decreasing mean bias of the contributing

models. Moreover, iii) while estimating model weights allows reducing the

weight of poor models, this comes at the expense of introducing additional

variance in the average, reducing the bene�ts of model averaging.

2. �ere are currently no generally reliable analytical methods to calculate

frequentist con�dence intervals (or p-values) on model-averaged predictions.

Non-parametric methods, however, such as cross-validation remain reliable for

estimating predictive errors, and should therefore be preferred for quantifying

predictive uncertainties of model averages. Bayesian credible intervals are in

principle valid as well, if the typical assumption for Bayesian model selection,

that the true model is among the candidates, is met.

3. From general considerations, we believe that non-parametric methods that

directly target predictive error (e.g. cross-validation or stacking) are a robust and

straightforward choice for choosing weights. Parametric methods such as AIC,

BIC are faster, but may not always perform equally well. Cross-validation can be

used to test if �xed or estimated weights perform be�er than the full or the best
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model.
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le Table 3: Model weights given to the six model types of case study 2 (GLM, GAM, Random For-

est, arti�cial neural networks and support vector machine) by di�erent weighting methods

(see Table 1 for abbreviations), arranged by decreasing �t of the averaged predictions to test

data, assessed as log-likelihood (`) (last column). LOO-CV: leave-one-out cross-validation

using R2 or RMSE as measure of model performance. For code see case study 2 in Data S1.
Method GLMAIC GLMBIC GAM rF ANN SVM `

median 1 (0.176) (0.216) (0.212) (0.162) (0.146) (0.088) −182.84

LOO-CV 0.168 0.168 0.166 0.169 0.165 0.164 −184.82

equal weight 0.167 0.167 0.167 0.167 0.167 0.167 −184.86

cos-squared 0.122 0.104 0.178 0.188 0.186 0.221 −185.02

BMA-EM 0.388 0.192 0.000 0.420 0.000 0.000 −185.24

stacking 0.000 0.000 0.000 1.000 0.000 0.000 −186.82

bootstrap 0.000 0.000 0.000 1.000 0.000 0.000 −186.83

minimal variance 0.155 0.469 −0.036 0.58 −0.026 −0.141 −188.45

MBMC (GAM) 3 – – * * – – −198.23

MBMC (rF) 3 – – – – – – −200.20

JMA 0.000 0.000 0.000 0.000 0.000 1.000 −214.68

MBMC (GLM) 3 – – * * – – −268.52

rF 2 0 0 0 1 0 0 −186.83

GAM 2 0 0 1 0 0 0 −193.40

ANN 2 0 0 0 0 1 0 −194.28

GLMAIC
2 1 0 0 0 0 0 −197.48

GLMBIC
2 0 1 0 0 0 0 −197.73

SVM 2 0 0 0 0 0 1 −214.68

1 Weights are proportion of times this model was actually used to compute the median value divided by two.
2 Prediction from individual model.
3 Weights are variable. Asterisk indicates that a model’s prediction was a signi�cant term in the supra-model.

GAM, rF and GLM refer to three di�erent types of supra-model: a generalised additive model, a Random

Forest, and a generalised linear model.
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le Figure 1: Conceptual depiction of the contributions of error to model averaging. A) Con-

tributing models have larger bias than variance. �en, the error of the average depends on

how the bias is averaged out. It can increase or decrease compared to the best model. Adding

a lot more models will not change the error, unless this reduces bias. B) Contributing models

have similar bias and variance. In this case, averaging an increasing number of models

can reduce the variance of the error, while the bias remains. C) Contributing models are

unbiased, but have large variance. In this case (assuming covariances between models are

low), an increasing number of models can, in principle, make the error arbitrarily small.

Figure 2: Conceptualised outcomes of model averaging. Sampling distributions of model

predictions are depicted as stylised empty triangle on the see-saw (wider means less certain).

Filled triangles represent the model predictions with unidirectionally bias (top row) or

straddling truth (bo�om row), and positive, no, or negative covariances among model

predictions in columns. In the top row, grey shaded quadrants indicate model combinations

with bias in the same direction, leading to a biased average (tilted see-saw). In the bo�om

row, grey shaded quadrants indicate opposite biases, which may lead to less biased averaged

prediction, assuming optimal model weights were found. Changes in prediction covariance

(columns) a�ect the uncertainty of the average, with negatively correlated predictions (right)

yielding lowest uncertainty.
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Figure 3: When averaging is optimal, in the simplest case of two models that make correlated

Gaussian predictions. �e models are here described by their biases (b1, b2, not shown), their

standard deviations (σ1, σ2), and by the correlation (ρ) between them. Each panel shows the

regions in the (σ1, ρ) plane where model 1 is best (blue shading and contour line), model

2 is best (orange shading and contour line), and where the optimal average is best (colour

gradient between blue and orange). Top row represents the case where weights are known

(i.e. without error: σw = 0), while the second row represents exactly the same se�ings, but

with estimated weights (with uncertainty σw = 0.2). Notice that when w is estimated with

uncertainty, the contours marking the transition between each single model and the average

move into the washed-out colours, i.e. deviate from the �xed w situation in the upper panels.

�ese curves now represent a level set at the values w̄∗1 = 1− σw (blue curve) and w̄∗2 = σw

(orange curve). As a consequence, the area where model averaging with estimated weights

is superior to the be�er single model decreases substantially relative to the �xed w case,

and disappears completely for σw ≥ 0.5. Formal derivations for the contours and the critical

weights is given in Appendix S1.2, the interactive tool itself in Data S1. Biases are set to

b1 = 3 and b2 = 2.

Figure 4: A simple model-based model combination example. Le�: �ree models (solid grey

lines: constant, linear and quadratic) ��ed separately to a data set (points, following the thin

black line). Using a linear model (with quadratic terms: red) to combine the three models’

�ts may improve �t, even more so than the full model (green), and with narrower con�dence

intervals. Do�ed lines indicate the weight that each model receives at each point in the

linear model. Such MBMC did not necessarily improve �t, as Random Forest-based model

combinations showed (blue). Right: Using 5-fold cross-validation around the entire work�ow

shows that the linear supra-model (Supra-LM) indeed improved prediction (decreased root

mean squared prediction error), while the Random Forest-supra-model (Supra-rF) did not.

�e full model (as reference) comprised all terms present in Supra-LM, but was ��ed directly.
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Figure 5: A comparison of di�erent approaches to quantifying uncertainty when combining

predictions from four linear models (dashed curves) with equal weights. Top: Estimates

of predictive uncertainty in a single example run. Truth is indicated by the vertical line.

Error propagation based on bootstrapped estimates for eqn (5), Buckland et al.’s correction

and model mixing yield (substantially) smaller uncertainties than the full model. Bo�om:

Histograms of the cumulative density of the estimated uncertainties at the true values. �e

numbers display the coverage for the 95% con�dence interval.

Figure 6: Prediction error of di�erent model averaging approaches (100 repetitions) for case

study 1. Box represents quartiles, white line the median. Approaches to the le� of the vertical

line are very similar, and no be�er than nine of the candidate models. See Table 1 for list of

approaches, and case study 1 in Data S1 for list and �ts of the individual models.
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