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Abstract 

Perikymata, incremental growth lines visible on tooth enamel surfaces, differ in their distribution and 

number among hominin species, although with overlapping patterns. This study asks: (1) How does the 

distribution of perikymata along the lateral enamel surface of Homo naledi anterior teeth compare to 

that of other hominins? (2) When both perikymata distribution and number are analyzed together, how 

distinct is H. naledi from other hominins? A total of 19 permanent anterior teeth (incisors and canines) 

of H. naledi were compared, by tooth type, to permanent anterior teeth of other hominins: 

Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus, Paranthropus boisei, 

Homo ergaster/Homo erectus, other early Homo, Neandertals, and modern humans, with varying 

sample sizes. Repeated measures analyses of the percentage of perikymata per decile of reconstructed 

crown height yielded several statistically significant differences between H. naledi and other hominins. 

Canonical variates analysis of percentage of perikymata in the cervical half of the crown together with 

perikymata number revealed that in 8 of 19 cases, H. naledi teeth were significantly unlikely to be 

classified as other hominins, while exhibiting least difference from modern humans (especially southern 

Africans). In a cross-validated analysis, 68% of the H. naledi teeth were classified as such, while 32% 

were classified as modern human (most often southern African). Of 313 comparative teeth use for this 

analysis, only 1.9% were classified as H. naledi. What tends to differentiate H. naledi anterior tooth 

crowns from those of most other hominins, including some modern humans, is strongly skewed 

perikymata distributions combined with perikymata numbers that fall in the middle to lower ranges of 

hominin values. Homo naledi therefore tends toward a particular combination of these features that is 

less often seen in other hominins. Implications of these data for the growth and development of H. 

naledi anterior teeth are considered. 
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Introduction 

In the original description of the Dinaledi fossils, Berger et al. (2015) concluded that the skeletal 

and dental features of these small-brained and small-bodied hominins allowed their inclusion within the 

genus Homo, but were distinct enough to warrant a new species: Homo naledi. Paleoanthropologists 

generally accepted the first conclusion but, initially, some questioned the second (Randolph-Quinney, 

2015). Ensuing analyses supported the inclusion of the Dinaledi fossils into the genus Homo, as well as 

its distinctiveness as a species (Thackeray, 2015; Dembo et al., 2016; Garvin et al., 2017), but differed 

with respect to its affinities to other Homo species. Comparative analyses of dental morphology (e.g., 

Berthaume et al., in press; Irish et al., in review; Bailey et al., in review) have supported the conclusion 

that H. naledi is distinct from all other hominins and is best placed within the genus Homo. A recent 

study indicated that the remains of H. naledi from the Dinaledi Chamber were deposited between 236 

and 335 ka (Dirks et al., 2017). Additional fossils of H. naledi have recently been found nearby in the 

Lesedi Chamber (Hawks et al., 2017), but are not yet dated. 

The rich dental sample of H. naledi (Berger et al., 2015; Hawks et al., 2017) provides an 

opportunity not only for further analysis of the species’ morphometric affinities, but also of its dental 

growth and development. The present contribution addresses aspects of dental enamel growth in H. 

naledi from the non-destructive analysis of perikymata, growth increments on the enamel surface that 

are continuous with underlying striae of Retzius. The latter are dark lines visible in enamel ground 

sections that represent a rhythmic slowing in enamel matrix secretion (Hillson, 2014). In the lateral 

enamel of teeth (i.e., not at cusp tips), each stria of Retzius is continuous with a single perikyma, such 

that both structures form in response to the same growth rhythm (Fig. 1). The periodicity of this rhythm 

is constant within the permanent teeth of each individual (FitzGerald, 1998), ranging from six to 12 days 

in modern humans (Reid and Dean, 2006), with some studies reporting rare values of five days (Dean et 
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al., 1993; Huda and Bowman, 1994; Kawasaki et al., 1977). In earlier hominins, periodicities extend from 

five days at the low end of this spectrum to 13 days on the high end (Smith et al., 2015). 

The present study analyzes how perikymata are distributed on the enamel surfaces of H. naledi 

and how their distribution compares to that of other hominins. Perikymata distribution appears to differ 

among hominin species (though with overlap among species), likely reflecting differences in their 

patterns of enamel growth (Dean and Reid, 2001a; Guatelli-Steinberg et al., 2007, 2016; Xing et al., 

2015). In modern humans, the distribution of perikymata in the lateral enamel of teeth is related to 

changes in rates of enamel extension from cusp to cervix (Guatelli-Steinberg et al., 2012). Enamel 

extension rates are the rates at which crowns grow in height (Dean, 2009). More specifically, they are 

the rates at which ameloblasts (enamel-forming cells) differentiate from the inner enamel epithelium 

along what will become the enamel-dentine junction (EDJ) in the mature crown (Shellis, 1984). 

Modern humans (specifically, northern Europeans and southern Africans) exhibit both a 

decrease in rates of enamel extension as lateral enamel formation proceeds and an associated decrease 

in the spacing of perikymata (Guatelli-Steinberg et al., 2012). Furthermore, per decile of crown height, 

individuals with steeper declines in enamel extension rates tend to also have steeper declines in 

perikymata spacing. These findings demonstrate a relationship between the rates of enamel extension 

and distribution of perikymata on the crown surface in modern humans. Despite these findings, it is 

currently unknown if this relationship holds among hominin species, because a comparative study of the 

various factors that can affect perikymata distribution has yet to be undertaken across extinct species. 

Such factors include not only rates of enamel extension, but also the daily rate of enamel matrix 

secretion near both the EDJ (Shellis, 1984) and the outer enamel surface (Dean and Shellis, 1998), as 

well as the surface contour of a tooth (Hillson and Bond, 1997). Consequently, it is important to bear in 

mind that perikymata distribution differences across hominin species suggest enamel growth pattern 

differences, but the exact growth processes underlying them are unknown. 



 
 

5 
 

Dean and Reid (2001a) published the first comparative analysis of perikymata distribution in 

hominin anterior teeth. They plotted the number of days of estimated enamel formation time (using 

perikymata counts and estimated periodicities) per decile of crown height for various hominin species, 

with deciles numbered from the cusp tip (first decile) to the cervix (tenth decile; Fig. 2). For modern 

humans, the number of days to form each decile increased steeply at the start of the third decile, but 

then decreased in the last decile. With the exception of OH 7, the type specimen of Homo habilis, all 

other hominins were marked by more gradually increasing growth curves beginning at decile 3 and did 

not exhibit the same drop in the last decile. The most gradual growth curves, reflecting more evenly 

spaced perikymata along the deciles of crown height, were found in Paranthropus and in the pooled 

sample of Homo erectus and Homo rudolfensis. Australopithecus growth curves appeared to increase in 

steepness more rapidly than those of these taxa, but less rapidly than those of modern humans, and 

again did not exhibit the decline in decile 10 that modern humans do. 

To generalize, the most common pattern Dean and Reid (2001a) found in extinct hominins was 

that the number of perikymata per decile of crown height does not increase to the same extent as it 

does in modern humans. For each anterior tooth type, modern humans generally exhibit both a greater 

number of perikymata (Dean et al., 2001) and a perikymata distribution pattern in which their additional 

perikymata are packed preferentially into later deciles of the crown. Subsequent studies found that, 

although Neandertals do not appear to have more perikymata per tooth type than do modern humans 

(Guatelli-Steinberg et al., 2005, 2007), they have a more gradual increase in perikymata across their 

deciles of crown height than do modern humans (Ramirez-Rozzi and Bermúdez de Castro, 2004; 

Guatelli-Steinberg et al., 2007). Modesto et al. (2013) showed that the Sima de los Huesos hominins 

(dated to 430 ka; Arsuaga et al., 2014) were similar to Neandertals in this regard. 

Thus, although there are exceptions to be found in OH 7 (Dean and Reid, 2001a), and possibly 

also in the teeth of some other early Homo (Guatelli-Steinberg et al., 2016), a more uniform distribution 
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of perikymata is usually found in earlier hominins, even when the number of perikymata on their teeth 

is equivalent to that of modern humans (Xing et al., 2015; Guatelli-Steinberg et al., 2016). The latter 

finding suggests that perikymata distribution and perikymata number can be dissociated (i.e., 

equivalence in perikymata number does not imply equivalence in perikymata distribution pattern) and 

that different hominin species may have different combinations of the two (Xing et al., 2015; Guatelli-

Steinberg et al., 2016).  

The present study asks where H. naledi falls with respect to other hominins in its patterns of 

enamel growth. Does it exhibit a more uniform distribution of perikymata like most earlier hominins or 

does it exhibit a steeper increase in perikymata similar to that of modern humans? Furthermore, how 

does enamel growth compare to various species when both perikymata distribution and perikymata 

number are considered simultaneously? The present study represents a first step in characterizing the 

lateral enamel growth patterns of this species. 

 

Materials and methods 

Dental sample and perikymata counting 

The maximum number and type of permanent anterior teeth (incisors and canines) included in 

this study are given by taxon in Table 1: H. naledi (n = 19), and the comparative sample (total n = 328), 

comprising a pooled sample of Australopithecus afarensis and Australopithecus africanus, Paranthropus 

robustus, Paranthropus boisei, Homo ergaster/Homo erectus, early Homo (Homo habilis/H. rudolfensis), 

Neandertals (i.e., Homo neanderthalensis)1 and Homo sapiens (specifically, recent modern humans, 

including: Inupiaq, northern Europeans from Newcastle-Upon-Tyne, and southern Africans). Note that 

                                                           
1 Although Neandertals are customarily considered a distinct species (Homo neanderthalensis) from modern 
humans (Homo sapiens; see Harvati et al., 2004), some authors argue that the former may be a subspecies of the 
latter and that the taxonomic position of Neanderthals therefore remains unresolved (e.g., Ahern et al., 2005). 
Here, we follow Reich et al. (2010:1059), in using the term “Neandertals” in order to “refrain from any formal 
Linnaean taxonomic designations that would indicate species or subspecies status”. 
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different sets of analyses were performed on different subsamples, and these are reported along with 

the analyses to which they pertain.  

Samples were divided in the following manner: (1) Australopithecus samples were combined 

because of small sample sizes; (2) Paranthropus samples were separated, owing to previous analyses 

suggesting differences in their perikymata distribution (Dean, 1987); (3) H. ergaster/H. erectus was 

separated from other early Homo (i.e., H. habilis, H. rudolfensis) in order to directly compare H. naledi to 

H. ergaster/H. erectus (a taxon to which some have argued it may belong; see Randolph-Quinney, 2015). 

For this study, only H. naledi teeth from the Dinaledi chamber, site U.W. 101 (Berger et al., 2015), were 

considered, as the few anterior teeth from the Lesedi chamber, site U.W. 102 (Hawks et al., 2017), were 

either too worn or lacked enamel near the cervix because their crowns were not completely formed. For 

the comparative samples, the following data sources were used: Australopithecus and Paranthropus 

data are from Dean and Reid (2001b); early Homo and H. ergaster/H. erectus data were shared by 

Christopher Dean and Donald Reid, included in the Homo samples of Dean et al. (2001) and Dean and 

Reid (2001a), and published in Xing et al. (2015) and Guatelli-Steinberg et al. (2016); and Neandertal and 

modern human data are from Guatelli-Steinberg et al. (2005, 2007). It is important to note that the early 

Homo and H. ergaster/H. erectus sample sizes are small and include teeth from some individuals (e.g., 

KNM-ER 1590 and KNM-ER 820) on which perikymata are not as clear as they are on others (e.g., OH 7 

and KNM-WT 15000). No lower canine teeth were included in this study, as the enamel surface on H. 

naledi lower canines was often uneven, making it difficult to clearly distinguish perikymata from one 

another. 

 For the H. naledi sample, high-resolution impressions of labial surfaces were made (by D.G.S. 

and Mark F. Skinner) with President’s Jet Regular Body and cast (by D.G.S. and M.C.O.) in Struers’ Epofix, 

a high-resolution epoxy. Prior to casting, microcomputed tomography (µCT) images of the fragile teeth 

of H. naledi were screened for enamel cracks (by A.L.C. and M.C.O.), such that only those teeth without 
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enamel cracks running from the EDJ to the outer enamel surface were used (Le Cabec et al., in prep.). 

For the comparative samples, similar casting methods were used for Australopithecus, Paranthropus, 

early Homo (Dean and Reid, 2001a), Neandertals and Inupiaq (Guatelli-Steinberg et al., 2005, 2007). 

Histological samples were used for the southern African and Newcastle teeth (Reid and Dean, 2006). 

Only teeth estimated to have 80% of their crown heights intact were retained for analysis in this 

study. If both antimeres were present, the tooth with less occlusal wear was chosen. For the 

comparative samples, these estimates were made by eye, by comparing the morphology of worn teeth 

to that of unworn or minimally worn teeth (and for the histological samples, by visually extending the 

sides of the tooth sections). For the sample of H. naledi, a more precise method was used following that 

of Saunders et al. (2007) and originally designed for use in histological canine sections. (A recent study 

has also focused on reconstructing worn crowns, though in human molars; Modesto-Mata et al., 2017.) 

In the Saunders et al. (2007) method, tangent lines are drawn with the line tool in Adobe Photoshop® on 

either side of the crown. Then the pen tool is used to reconstruct the missing cusp tip of the crown by 

extending lines drawn tangent to the sloping sides of the crown and automatically filling in a rounded 

cusp between the extended lines.  

The same procedure was used here (by. M.C.O. using Adobe Photoshop® CC Version 2017.0.1) 

on 2D µCT slices of H. naledi teeth taken through the sharpest point of the dentine horn, essentially 

creating a digitally rendered sagittal section, like those used by Saunders et al. (2007). The method can 

be directly applied here because µCT cross sections of incisor have sloping sides that can be extended 

along a tangent to meet at the apex, just as a canine does. The reconstructed crown height was then 

measured in ImageJ 1.50e (Rasband, 2016) and compared to the crown height of the cast to obtain the 

percentage of crown height present (Fig. 3). Additional detail and validation of this reconstruction 

method using µCT data also for incisors is discussed in O’Hara et al. (in prep.), in which the average error 

was calculated by digitally removing cuspal portions of complete crowns and then reconstructing them 
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with the Saunders et al. (2007) method. The average error across tooth types was 0.30%, with upper 

canines showing the greatest error at 1.21%. The errors were not systematic: they were equally likely to 

under- as to overestimate the crown height. The fact that the error is small can largely be attributed to 

these causes: (1) consistency in how the lines tangent to the crown surface are drawn, (2) the fact that 

Adobe Photoshop® completes the missing portion according to where the tangent lines are drawn, and 

(3) the fact that the portion that is reconstructed (the cusp tip) represents only a small portion of the 

overall crown height. For the purpose of further documentation, we also include wear scores for the 

Homo naledi sample based on the method of Smith (1984) in Supplementary Online Material (SOM 

Table S1). 

Perikymata were counted in deciles of reconstructed crown height. In the comparative replica 

samples, perikymata were counted under a light microscope, with replicas oriented perpendicularly to 

the microscope’s optical axis (Dean and Reid, 2001a; Guatelli-Steinberg et al., 2007). Transmitted light 

microscopy was used for the histological samples. Perikymata were counted in these samples by 

counting striae of Retzius close to the outer enamel surface, where they emerge as perikymata, thus 

ensuring comparability between data derived from tooth replicas and histological samples (Reid and 

Dean, 2006; Guatelli-Steinberg et al., 2005, 2007). For the sample of H. naledi, perikymata were counted 

by clicking on each perikyma under a measuring microscope (Olympus U-CMAD 3 with VisionGauge 1.0 

software), recording the X, Y, and Z coordinates of each perikyma. In deciles of the crown where 

perikymata were difficult to discern under the measuring microscope (which has a shallow depth of 

field), counts were made under a Leica DMS 1000 digital monocular microscope. Magnifications ranged 

from 15× to 50×, depending on the density of perikymata on different teeth; where perikymata were 

denser, higher magnifications were necessary to clearly differentiate them. 

D.J.R. counted perikymata in all comparative samples, but in consultation with Christopher Dean 

for early Homo and H. ergaster/H. erectus and in consultation with D.G.S. for Neandertals. Perikymata 
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on the sample of H. naledi were counted by D.G.S. and M.C.O. An interobserver error test between 

D.J.R. and D.G.S. on four complete or nearly complete Neandertal crowns (selected on the basis of 

completeness) revealed no systematic differences across the 35 deciles over which counts were made. 

In other words, D.J.R. was not consistently higher in his counts than D.G.S. or vice versa. Per decile, 

average interobserver error between D.J.R. and D.G.S. was 1.5 perikymata. Expressed as a percentage of 

perikymata in each decile, on average the difference between the two observers is 10.5%. It is worth 

noting that Le Cabec et al. (2015:11) reported that repeated counts of perikymata per decile on 

synchrotron scans by the same and different observers gave “reasonable agreement,” with no 

statistically significant mean differences among three different observers. These authors noted that 

variability in perikymata counts appeared to arise from several factors, including regions of the crown 

where perikymata are less clearly visible (owing to, for example, differential taphonomic histories) or 

are more difficult to clearly differentiate (such as in the cervical region). 

For H. naledi, D.G.S. and M.C.O. first independently recorded XYZ coordinates for each perikyma 

on all crowns. Then, crown height measurement and decile counts were compared. If cast height 

measurement differences exceeded 0.5 mm, then they remeasured the crown height together and 

recorded that crown height. If their perikymata counts per decile differed by two or more, then they 

recounted that decile together. Otherwise, their counts were averaged for each decile and rounded to 

the nearest whole number (with 0.5 rounded up). There were deciles on some teeth for which neither 

D.G.S. nor M.C.O. could see perikymata clearly enough under the measuring microscope. For these 

teeth, D.G.S. and M.C.O. used the Leica DMS microscope to image teeth and counts were then made for 

the missing deciles, if perikymata could be clearly differentiated within them. Deciles were excluded 

from analysis if they were missing due to wear, if perikymata were not clearly visible, or if a consistent 

perikymata count could not be established. 
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Statistical analyses 

Because some H. naledi teeth were missing perikymata counts for the first one or two cuspal 

deciles (Table 2), the analysis focused on comparing teeth for deciles three through 10. Only teeth with 

complete perikymata counts in these eight deciles were used. The number of perikymata per decile was 

expressed as a percentage of the total number in deciles three through 10.  

A repeated measures analysis was used to analyze perikymata distribution using SAS PROC 

MIXED, the ‘MIXED’ procedure in SAS Institute 9.4. This is a likelihood-based approach that is well suited 

to small sample sizes, i.e., the procedure has greater power than other repeated measures analyses (SAS 

Institute Inc., 2008). For this analysis, the three recent modern human groups were sampled evenly and 

combined into one group called ‘modern humans.’ For each tooth type, the modern human sample was 

generated by randomly selecting a certain number of teeth from each group that was equivalent to the 

smallest group’s sample size (Table 1). The modern human sample size is recorded in Table 3 and varied 

by tooth type (I1: n = 24; I2: n =27; I1: n =24; I2: n = 15; C1: n = 9). The heterogeneous autoregressive 

variance-covariance structure best fits these data. This structure makes sense for perikymata counts per 

decile, because it assumes that repeated measures that are closer together are more highly correlated 

(autoregressive) and have changing variances (heterogeneous). For each sample, the SAS PROC MIXED 

procedure gave a quadratic equation for a predicted curve representing the y-intercept (sample), slope 

(decile by sample interaction) and quadratic curvature (decile by decile by sample interaction). The 

predicted curves for each sample were compared to one another. Significant results at α=0.05 were 

subjected to a conservative Bonferroni correction, i.e., dividing 0.05 by the number of groups. 

Bivariate plots of total perikymata number in deciles three through 10 vs. the percentage of the 

total number of perikymata in these deciles that are present in the cervical half (deciles 6 through 10) of 

the tooth are displayed for each sample for visual assessment (Table 1). This measure is similar to 

previous analyses in which the percentages of perikymata in the cervical half of the tooth were 
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compared between groups (Guatelli-Steinberg et al., 2007; Xing et al., 2015). In these previous analyses, 

modern humans were shown to generally have a higher proportion of their total perikymata in the 

cervical half of the tooth as compared to earlier hominins (Guatelli-Steinberg et al., 2007, 2016; Xing et 

al., 2015). The only difference here is that perikymata in the cervical half of the crown are being 

expressed as a percentage of the total number of perikymata in deciles 3 through 10, so that no 

perikymata estimates from missing deciles are included. Because of this difference, the percentages of 

perikymata in the cervical half of the tooth reported in this paper are uniformly greater than those given 

in previous papers (e.g., Guatelli-Steinberg et al., 2007, 2016; Xing et al., 2015).  

Finally, canonical variates analyses (CVA) were performed for each tooth type using IMB SPSS 

Statistics version 24. The purposes of these analyses were to: 1) assess the affinities of H. naledi to other 

groups, and 2) determine how consistently the teeth of H. naledi are classified as H. naledi. The variables 

were the total number of perikymata in deciles 3 through 10 and the percentage of perikymata in the 

cervical half of the tooth (as above, deciles 6 through 10). In the first set of these analyses, we asked, 

without a priori defining H. naledi as its own distinct group, where each H. naledi tooth would be 

classified if it were forced to be assigned to one of the six comparative groups. The purpose of this first 

is analysis was twofold: to assess the affinities H. naledi to other hominin groups and to determine 

whether H. naledi can be comfortably accommodated within existing comparative groups. In this first 

analysis, the groups used for classification varied by tooth type due to sample sizes (Table 4), but at 

maximum, those groups were Australopithecus spp., P. boisei, P. robustus, H. ergaster/H. erectus, 

Neandertals and the modern human samples (Inupiaq, northern Europeans from Newcastle-Upon-Tyne, 

and southern Africans). The data were transformed into discriminant functions, and group centroids 

were calculated. The H. naledi specimens were entered into the analysis as ‘unknown’ and were 

assigned to one of the comparative groups on the basis of their proximity to the nearest group centroid. 

Mahalanobis squared distances were recorded, and the probability that each H. naledi specimen 
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actually belonged to the group with the nearest centroid was calculated. In addition, the probability that 

a Homo naledi tooth could be classified into one of the a priori groups was recorded.  

Next, a second canonical variates analysis was conducted, but this time with H. naledi 

designated as its own group. The data were transformed into discriminant functions, and group 

centroids were calculated for each group by discriminant function. To cross-validate the results of the 

classification, each individual was removed from the analysis, all calculations were re-run, group 

centroids were re-established, and then that individual was assigned a classification based on the group 

centroids that were created without that individual’s influence. This procedure, called leave-one-out (or 

jackknifed) cross-validation, is done through as many iterations as individuals in the total sample. 

 

Results 

Table 5 summarizes the results of the SAS PROC MIXED repeated measures regression analyses. For 

each tooth type, there were four to six comparisons. When the sample size for a species was one (n = 1), 

it was not included in the analysis. H. habilis/H. rudolfensis was not included in the statistical analysis, 

owing to small sample sizes and uncertainties of classification for some specimens; however, graphs of 

the individual specimens are included in SOM Figure S1. Comparison of H. naledi to Australopithecus, P. 

robustus, P. boisei, H. ergaster/H. erectus, Neandertals and modern humans varied by tooth type. That 

is, for some tooth types (e.g., I1), comparisons of Homo naledi to all of these taxa/groups were possible, 

but for other tooth types (e.g., I2), sample sizes limited the number of groups/taxa to which H. naledi 

could be compared. Equal numbers of specimens belonging to each modern human group (Newcastle, 

Inupiaq, and southern African) comprised the combined ‘modern human’ samples. 

As is evident in Table 5, statistically significant differences between H. naledi and the other 

hominin samples (at the conventional p < 0.05 and using a conservative Bonferroni correction) vary by 

tooth type. Where there are statistically significant differences, they most often relate to quadratic 
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curvature. The I2 of H. naledi is especially notable in this regard, as its quadratic curvature coefficient is 

significantly different from that of all the other hominin I2s. In most cases (with the exception of the C1), 

the sign of the quadratic coefficient in H. naledi is positive, while the sign of the quadratic coefficients of 

the other extinct hominins tends to be negative (exceptions are the Neandertal I1 and I2, and the P. 

boisei I1), suggesting that the H. naledi curves tend to have less downward curvature than the extinct 

hominin samples. Although modern human quadratic curvatures have negative values, in some cases 

they are close to zero (for all but the I1), and in this respect the modern human sample is somewhat 

more like H. naledi than are the other hominin samples.  

The graphs of the predicted growth curves (Fig. 4) reflect this difference in curvature. Indeed, H. 

naledi has very little curvature (either upward or downward) in the predicted growth curve for all upper 

anterior tooth types (C1, I1, and I2), while for I1 and I2, the growth curves appear to have a slightly upward 

(positive) curvature, i.e., they exhibit a non-linear increase in perikymata numbers in the cervical deciles. 

These growth curve differences reflect the fact that the percentage of perikymata in early (cuspal) 

deciles in H. naledi teeth is much lower than the percentage found in later (cervical) deciles. Inspection 

of the predicted growth curves in Figure 4 indicates that this differential between cuspal and cervical 

deciles is greater for H. naledi than it is for the other extinct hominins. Modern humans tend to differ 

from the other extinct hominins in a similar way: they too tend to show a strong gradient from their 

cuspal to cervical deciles in the percentages of perikymata present within them. Yet, to varying degrees 

per tooth type, H. naledi seems to show an even stronger gradient than do modern humans. Indeed, 

statistically significant differences between H. naledi and modern humans were found for quadratic 

curvature in the I1, I1, and I2. Figure 5 gives an example of perikymata distribution on a lower lateral 

incisor of H. naledi. Additional examples are provided in SOM Figures S6–S9. Visually, it is quite clear 

that perikymata are extremely widely spaced in earlier deciles relative to later deciles. 
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The bivariate plots of percentage of perikymata in the cervical half of the tooth (deciles six 

through 10 divided by the sum of perikymata in deciles three through 10) vs. the total number of 

perikymata (sum of perikymata in deciles three through 10) for all samples are shown in Figure 6. In 

most cases, H. naledi appears at the top of modern human ranges (or exceeds them) for percentage of 

perikymata in the cervical half of the tooth, but falls in the middle to lower end of modern human 

ranges for perikymata number. Descriptive statistics corresponding to these bivariate plots are included 

in SOM Table S2. 

Results from the first set of CVA are in Tables 6 and 7. When entered as ‘unknown,’ the H. naledi 

teeth were classified based on their proximity to the nearest group centroid. On this basis, they were 

classified into Newcastle in one instance, P. robustus in one instance, P. boisei in two instances, and in 

southern African for the remainder (Table 6). However, for eight of the 19 H. naledi individuals, it was 

significantly unlikely (p < 0.05) that the teeth actually belonged to those groups with the nearest 

centroids. Table 7 lists the probability of each H. naledi tooth falling into each of the different groups, 

when forced to be assigned to one of them. To interpret these results, consider the case of the Homo 

naledi I2. All of the H. naledi I2s fall beyond the recorded modern human range of variation on the 

bivariate plots (Figure 6). The same data used to create the bivariate plots form the basis of the CVA. 

The H. naledi I2 teeth are closer to the modern human teeth than they are to those of any other group, 

thus making clear why they are most likely to be assigned to modern humans. Table 7 supports this with 

very high probability scores (ranging from 0.769 to 0.978) for classifying H. naledi in the southern African 

group as compared to the other groups. As shown in Table 6, the four H. naledi I2s all showed greatest 

proximity to the group centroid of modern human southern Africans; yet, in three of these four cases, 

they were significantly unlikely to actually belong to this group (see Table 6). 

When modern humans are combined into a single group (SOM Table S3), the H. naledi teeth 

were classified into P. boisei in two instances and all the rest were classified as modern human. For 
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seven of the 19 H. naledi individuals, it was significantly unlikely that the teeth could have actually 

belonged to the group they were classified as (SOM Table S4). SOM Table S5 lists the probability of each 

H. naledi tooth falling into each group; again, the probabilities for modern humans tend to be highest. 

The second set of canonical variates analysis, the cross-validated CVA, revealed that 13 of the 19 

H. naledi teeth were correctly classified as such (68%; Table 8). Six teeth (32%) of the H. naledi sample 

were identified as belonging to another group/taxon than H. naledi: one I1 was classified as P. boisei, 

one C1 was classified as Newcastle modern human, and one I2 and all three I1 were classified as southern 

African modern human. Six out of the 313 comparative teeth in the subsample used for this analysis 

(1.9% of the comparative sample) were misclassified as H. naledi, all of which were modern human 

teeth (two from Newcastle and four from southern Africa). Homo naledi was never classified as 

Australopithecus, P. robustus, H. ergaster/H. erectus or Neandertal, and no teeth from those groups 

were ever classified as H. naledi. Correct group classification (for all groups) obtained by the cross-

validated procedure ranges from 52.7% (I2) to 58.6% (C1). Note that this classification is based on 

separating the modern human groups. When modern humans are combined into a single group (SOM 

Table S3), the cross-validation improves, ranging from 61.8 to 73.2% (SOM Table S6). This improvement 

reflects the larger sample size and range of variation of the modern human group, which results in 

modern human teeth being consistently classified as such. As might be expected, given the overlap in 

modern human ranges on the bivariate plots, correct group classification obtained by the cross-

validated procedure improved when modern humans were combined into one group, from 61.8% (C1) 

correctly classified to 73.2% (I1 and I2) correctly classified. 

 

Discussion 

The analyses conducted here reveal that relative to both modern humans and earlier hominins, the 

anterior teeth of H. naledi tend to exhibit greater percentage increases in perikymata number across 
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deciles of crown height (from cusp to cervix). Thus, when the percentages of perikymata per decile are 

plotted from deciles 3 to 10 for different hominin taxa, predicted curves for H. naledi often exhibit 

statistically significant differences from other taxa in quadratic curvature. Homo naledi predicted curves 

often show either minimal curvature or positive curvature (Fig. 4). Predicted curves for the comparative 

samples are more likely to exhibit negative curvature, reflecting a greater tendency for perikymata 

numbers to plateau rather than continue to increase across deciles, as they do in H. naledi. The most 

distinctive difference in quadratic curvature is for the I2, for which H. naledi is statistically significantly 

different (with Bonferroni correction) from P. robustus, H. ergaster/H. erectus, Neandertals and extant 

modern humans. The least distinctive difference is for the C1, for which there is only one statistically 

significant difference in quadratic curvature, and that is between H. naledi and P. robustus. Although 

modern humans have negative quadratric curvatures, for most tooth types (with the exception of I1) 

their magnitudes are close to zero. Thus, like H. naledi, modern humans exhibit a strong gradient in the 

distribution of perikymata from cusp to cervix. However, unlike H. naledi, modern humans display 

gradients that are somewhat less pronounced. As noted, for three tooth types (I1, I2, and the I1), even 

though the quadratric coefficient differences between H. naledi and modern humans were small in 

magnitude, they were significantly different. 

Plotting the percentage of perikymata in the cervical half of the tooth (relative to the total 

number of perikymata between deciles 3 and 10; Fig. 6) revealed that H. naledi tends to fall into the 

upper left (I1, I2) to upper middle (I2, C1, I1) regions of these graphs. We note that for the I1, with a 

sample size of three, the hypoplastic defect in the cervical region of U.W. 101-1012 must have some 

effect on the perikymata count in the cervical half of this tooth. Thus, the I1 position of H. naledi on this 

graph may be expected to shift somewhat as more samples of H. naledi I1s become available. In general, 

the position of H. naledi on these graphs reflects its relatively high percentage of perikymata in the 

cervical region of the tooth, at the top of or exceeding modern human ranges, combined with its 



 
 

18 
 

relatively low to mid-range total number of perikymata (Fig. 6). In this regard, for some tooth types 

(especially I1 and I2), H. naledi might be said to reverse the Neandertal condition, in which there are 

relatively low percentages of perikymata in the cervical regions of teeth paired with total perikymata 

numbers that fall well within modern human ranges. Thus, the present results further support the view 

that the distribution of perikymata in teeth can evolve independently of the total number of perikymata 

in tooth crowns. Modern human teeth with more perikymata tend to pack them preferentially in their 

cervical regions, such that perikymata number and distribution tend to be correlated within our species 

(Reid and Ferrell, 2006). Dissociation between perikymata number and perikymata distribution only 

becomes evident when comparisons are made across taxa. 

The purpose of performing the CVA in this study was to assess the affinities and taxonomic 

distinctiveness of H. naledi. Results vary by tooth type, but the I2 provides an instructive example. All 

four of these H. naledi teeth were classified as southern African when H. naledi was entered as unknown 

(Tables 6 and 7) and three of the four were classified as southern African in the cross-validated analysis 

(Table 8). However, three of the four H. naledi I2s were significantly unlikely to actually belong to the 

southern African group on the basis of proximity to its centroid (Table 6). This suggests that Homo naledi 

I2s are generally distinct from those of southern Africans, but that of all the comparative samples, 

southern Africans show the least difference from Homo naledi. The CVA analyses therefore mirror the 

repeated measures analyses. Together these analyses suggest that the combination of relatively 

low/middle total perikymata numbers with relatively high percentages of perikymata in the cervical 

region is more often found in H. naledi than in other hominins. 

The cross-validation results of the CVA suggest that the combination of perikymata number and 

percentage of perikymata in the cervical half of the tooth can moderately discriminate among hominin 

species (Table 8). Only moderate discrimination was expected, as it has been noted that there is overlap 

among taxa when they are compared for these two variables (Xing et al., 2015) and the bivariate plots 
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clearly reveal that overlap (Fig. 6). However, it is important to note that what is primarily causing the 

misclassifications is the southern African sample, which is quite variable for perikymata number and 

percent perikymata in the cervical region of the crown. This can be seen in Tables 6–-7, SOM Tables S3–

S7, and Figure 6, where there is a noticeable degree of overlap between southern Africans and all other 

groups. It is also important to remember that other aspects of variation in perikymata distribution—

particularly patterns of distribution by decile—are not included in the CVA but can differ among species. 

For example, all three H. naledi I1s were classified as modern humans, but the SAS PROC MIXED 

predicted curves for H. naledi and modern human I1s differed significantly in their quadratic curvatures 

(Table 5 and Fig. 4). 

The somewhat greater affinity of Homo naledi to modern humans, and particularly to southern 

Africans, would seem to have to do not only with the variability of the southern African sample, but also 

with the strong gradient in perikymata distribution that modern humans exhibit from cusp to cervix. This 

is a feature that H. naledi shares with modern humans but tends to exhibit to a greater degree 

(especially for the I1, I1, and I2, as noted earlier). Similarities to southern Africans should not be 

overstated, given that there were significant differences between H. naledi and southern Africans in 

different sets of analyses. Given that histological analyses that could sort out homoplasies in perikymata 

number and distributions have yet to be accomplished, it seems premature to speculate about the 

causes of the greater affinity of Homo naledi to southern Africans than to other hominins. 

In light of speculation by some paleoanthropologists that H. naledi may be a form of H. erectus 

(see Randolph-Quinney, 2015), it is worth noting that H. erectus/H. ergaster is never classified as H. 

naledi or vice versa. In this study, there is only one tooth of Asian H. erectus included in the sample 

(Sangiran 4, C1), so comparisons are most often between H. naledi and H. ergaster. That H. naledi 

separates from H. ergaster in the present study supports the view that H. naledi is not simply a late 

surviving African form of H. erectus. However, it should be noted that the sample size for H. erectus is 
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small (n = 9 teeth) and, as previously noted, includes teeth from some individuals (e.g., KNM-ER 820) for 

which perikymata are not as distinct at the cervix as they are in other individuals (e.g., KNM-WT 15000). 

That Neandertals and H. naledi were never classified as each other is also of note, not because H. naledi 

has ever been claimed to be similar to Neandertals, but because Neandertals tend to exhibit the reverse 

combination of perikymata number and percentage of perikymata in the cervical region that H. naledi 

does. 

Overall, the analyses in this study characterize patterns of enamel growth by species as assessed 

from the enamel surface, with a particular focus on H. naledi. This study leaves the question open as to 

the specific enamel growth processes that underlie species differences in enamel growth. As noted 

earlier, within humans, differences between individuals in perikymata distribution across deciles are 

related to differences in extension rates across these same deciles (Guatelli-Steinberg et al., 2012). 

Those with a greater difference in perikymata number between earlier-forming and later-forming 

deciles exhibit a greater decline in extension rates across these deciles (Guatelli-Steinberg et al., 2012). 

To the degree that perikymata distribution reflects rates of enamel extension in H. naledi, then it would 

seem that, somewhat like modern humans, extension rates per decile are high early in crown formation 

in H. naledi and drop rapidly as ameloblasts continue to differentiate toward the cervix. However, as 

secretion rates and the surface contour of a tooth can affect perikymata distribution as well, examining 

these additional variables will be necessary to definitively establish the causes of H. naledi’s perikymata 

distribution pattern. 

In terms of perikymata numbers, H. naledi tends toward the low to middle range of hominin 

(including modern human) values. The total number of perikymata on a tooth is related to total time it 

takes for the tooth’s lateral enamel to form, as lateral enamel formation time is the product of 

periodicity times total perikymata number. To obtain periodicities for H. naledi, actual or virtual 

histology will be necessary. If H. naledi has periodicities that are like those of modern humans, then this 
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would suggest that lateral enamel formation is somewhat shorter in H. naledi relative to most modern 

humans, or at least at the shorter end of the modern human range. Given the small anterior tooth size 

of H. naledi (Berger et al., 2015; Delezene et al., in prep), relatively short lateral enamel formation times 

would not be surprising. Paranthropus robustus, like H. naledi, has small anterior teeth, and forms its 

lateral enamel in short periods of time (Dean et al., 2001). However, the teeth of P. robustus seem to 

form in a way that is quite different from those of H. naledi; in the former, perikymata are distributed 

nearly evenly along the lateral enamel surface (Beynon and Wood, 1987; Le Cabec et al., 2015; Fig. 4), 

while in the latter there is a steep gradient in perikymata distribution. Thus, the way that perikymata are 

distributed along the lateral enamel surfaces of hominin anterior tooth crowns seems unrelated to tooth 

size. 

To the extent that perikymata per decile reflect extension rates per decile (though it must be 

kept in mind that they can be affected by other factors) and number of perikymata per tooth is related 

to lateral enamel formation time, the dissociation of perikymata distribution and total perikymata 

number across species should be expected. Total enamel formation times and rates of enamel extension 

per decile are themselves dissociated across hominin species (Dean, 2009). That is because total enamel 

formation time depends not only on the rates of enamel extension but also on when enamel formation 

terminates. In other words, rates of enamel formation and the total duration of enamel formation are 

not necessarily linked. 

Further work on enamel growth in H. naledi should help to elucidate the patterns described 

here. If fine microstructural features are well-preserved in the H. naledi teeth, virtual or actual histology 

will make it possible to assess the specific enamel growth processes that underlie how perikymata are 

distributed in H. naledi and the length of time it took to form lateral (as well as cuspal) enamel on these 

teeth. In addition, it should be possible to use information gained from histological examination to 

assess age at death in juvenile members of this species, and then to compare their overall rates and 
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pattern of dental development with that of modern humans and other fossil hominin groups. It will be 

interesting to see if H. naledi, a small-brained hominin, is like other small-brained hominins in 

developing its dentition more rapidly than modern humans (Bromage and Dean, 1985; Beynon and 

Wood, 1987; Beynon and Dean, 1991; Dean et al., 2001; Smith et al., 2015) or at the rapid end of the 

modern human spectrum (Dean and Liversidge, 2015). The large dental sample of H. naledi, which 

includes both deciduous and permanent teeth, will provide an unparalleled opportunity to understand 

patterns and rates of dental growth and development in an extinct hominin species. 
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FIGURE CAPTIONS 

Figure 1. Virtual 2D section and 3D model of the enamel cap of the STS2 upper left canine (modified 

after Le Cabec et al., 2015:Fig. 9) showing the matching between the incremental growth lines in the 

enamel—Retzius lines—on the 2D section, with their manifestation on outer enamel surface as 

perikymata on the 3D model.  

Figure 2. The distribution of the number of days of growth per decile in hominoids (upper plot) and 

hominins (lower plot). Deciles are numbered from 1 (cusp tip) to 10 (cervix). The number of days was 

calculated by multiplying the number of perikymata in each decile by the species’ average periodicity. 

Error bars represent the 95% confidence limits of the mean. These graphs are from Dean and Reid 

(2001a:Fig. 2) and are published here with permission from John Wiley and Sons (License number 

4037780016882, Jan. 28, 2017). 

Figure 3. Method of reconstructing crown heights using the line tool on Adobe Photoshop®. A) U.W. 

101-1005b (I2) is slightly worn. B) The red lines and fill represent the area reconstructed using Adobe 

Photoshop®. C) The final, reconstructed, extent of the tooth that can then be measured. 

Figure 4. The distribution of perikymata (percent of perikymata per decile) for deciles 3–10 by tooth 

type and group. Thick, continuous lines represent the predicted growth curves modeled by the SAS 

PROC MIXED analysis for each group. Thin, jointed lines represent individual repeated measures for each 

tooth’s percent of perikymata per decile. Note that the Australopithecus I2 model curve is located just 

behind the MH curve. 

Figure 5. Lateral view of U.W. 101-1005b (I2). The enlarged image demonstrates the very tightly packed 

perikymata in the cervical deciles compared to the much more widely spaced perikymata toward the 

cusp tip. See SOM Figures S6–-S9 for additional examples. 
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Figure 6. Bivariate plots of the total number of perikymata in deciles 3–10 and the percent of that total 

found in the cervical half of the tooth (deciles 6–10). Fossils of unknown or contested species 

designation are marked individually. 

 

 


