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Abstract 22 
The recent West African Ebola virus pandemic, which affected >28,000 individuals increased 23 
interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the 24 
requirements for a prophylactic vaccination program based on the basic reproductive number 25 
(R0, i.e. the number of secondary cases that result from an individual infection). Published R0 26 
values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥4 27 
realistically reflected the critical early outbreak phases and superspreading events. Based on 28 
the R0, the herd immunity threshold (Ic) was calculated using the equation Ic=1–(1/R0). The 29 
critical vaccination coverage (Vc) needed to provide herd immunity was determined by 30 
including the vaccine effectiveness (E) using the equation Vc=Ic/E. At an R0 of 4, the Ic is 31 
75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish 32 
herd immunity. Such vaccination rates are currently unrealistic because of resistance against 33 
vaccinations, financial/ logistical challenges, and a lack of vaccines that provide long-term 34 
protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for 35 
the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates 36 
are only available for Ebola viruses. Their use will need to be focused on health care workers, 37 
potentially in combination with ring vaccination approaches. 38 
 39 
Key words: Ebola virus; Ebolavirus; Vaccines; Herd immunity; Basic Reproduction Number 40 
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Introduction 41 
The genus Ebolavirus contains five species: Zaire ebolavirus (type virus: Ebola virus), Sudan 42 
ebolavirus (type virus: Sudan virus), Bundibugyo ebolavirus (type virus: Bundibugyo virus), 43 
Taϊ Forest ebolavirus (type virus: Taϊ Forest virus, previously also referred to by names such 44 
as Côte d'Ivoire ebolavirus or Ivory Coast ebolavirus), Reston ebolavirus (type virus: Reston 45 
virus) (1). Four Ebolaviruses (Ebola virus, Sudan virus, Bundibugyo virus, Taï Forrest virus) 46 
are endemic to Africa and can cause severe disease in humans (2). Reston viruses are 47 
endemic to Asia and considered to be non-pathogenic in humans (2). However, very few 48 
genetic changes may result in human-pathogenic Reston viruses (2-4). Since the discovery of 49 
the first two members of the Ebolavirus family in 1976 in Sudan (today South Sudan) and 50 
Zaïre (today Democratic Republic of Congo), Ebolaviruses had until 2013 only caused small 51 
outbreaks in humans affecting up to a few hundred individuals (5,6). The recent Ebola virus 52 
outbreak in West Africa (2013-2016) resulted in 28,616 confirmed, probable, and suspected 53 
cases of Ebola virus disease and 11,310 deaths (6), which may still underestimate the actual 54 
numbers (7). It was the first Ebolavirus outbreak that affected multiple countries, was 55 
introduced to another country via air travel, and resulted in a significant number of human 56 
disease cases outside of Africa (5,6). Prior to this outbreak, only isolated human cases were 57 
treated outside of Africa. A scientist who had become infected by Taϊ Forest virus after an 58 
autopsy of a Chimpanzee was treated in Switzerland (8), and two laboratory infections were 59 
reported in Russia (9,10). In addition, Reston virus-infected non-human primates were 60 
exported from the Philippines to the US and Italy (11). Finally, Marburg virus (which belongs 61 
like the Ebolaviruses to the Filoviruses) was exported out of Africa (12,13) and was 62 
associated with laboratory infections (14,15). Due to its unique size, the West African Ebola 63 
virus outbreak emphasized the health threats posed by Ebolaviruses and the importance of 64 
protection strategies (6,7). 65 
 66 
Vaccination programs are effective in controlling infectious diseases, as demonstrated by the 67 
WHO-driven smallpox eradication (16). However, eradication is likely to be more difficult 68 
for zoonotic viruses like the Ebolaviruses that circulate in animal reservoirs (17). Only herd 69 
immunity could prevent future outbreaks and protect individuals that cannot be vaccinated 70 
due to health issues (16). The herd immunity threshold (lc) describes the number of society 71 
members that need to be protected (18) to prevent outbreaks. It is based on the basic 72 
reproductive number R0 (number of secondary cases caused per primary case) of a pathogen 73 
(18-22). 74 

 75 
Here, we performed a systematic analysis to determine the critical vaccine coverage (Vc) 76 
required to prevent Ebolavirus outbreaks by a prophylactic mass vaccination program based 77 
on the R0 associated with Ebolavirus infection in humans. The results were further critically 78 
considered in the context of 1) the status of current Ebolavirus vaccine candidates and 2) the 79 
feasibility of a large-scale prophylactic Ebolavirus vaccination program taking into account 80 
a) the preparedness to participate in vaccination programs in the affected societies, b) logistic 81 
challenges, and c) costs. 82 
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Methods 83 
 84 

Identification of studies that report on the basic reproductive number (R0) of 85 
Ebolaviruses 86 
To identify scientific articles that have calculated the basic reproductive number (R0) for 87 
Ebolaviruses, we performed a literature search using PubMed 88 
(www.ncbi.nlm.nih.gov/pubmed) for the search term combinations “Ebola R0”, “Ebola basic 89 
reproductive number”, and “Ebola basic reproduction number” (retrieved on 29th September 90 
2017).  91 
 92 

Determination of herd immunity thresholds and their implications for Ebolavirus 93 
diseases prevention strategies 94 
Based on the basic reproductive number R0, i.e. the number of secondary cases that result 95 
from an individual infection, the herd immunity threshold (Ic) was calculated using equation 96 
1  97 

Ic = 1 – (1/R0)      (eqn 1) 98 
 99 
where Ic indicates the proportion of a society that needs to be protected from infection to 100 
achieve herd immunity. Next, the critical vaccination coverage (Vc) that is needed to provide 101 
herd immunity was determined by including the vaccine effectiveness (E) using equation 2   102 

Vc = Ic / E = [1 – (1/R0)]/ E    (eqn 2)  103 
(18-22).   104 
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Results 105 

 106 

Basic reproductive number (R0) values for Ebolaviruses 107 
The PubMed search for “Ebola R0” provided 18 hits, the search for “Ebola basic 108 
reproductive number” provided 42 hits, and the search for “Ebola basic reproduction 109 
number” provided 35 hits (Figure 1; Data Sheet 1). After removal of the overlaps and 110 
inclusion of an additional article (identified from the reference list of (21)) this resulted in 51 111 
articles, 35 of which provided relevant information on Ebolavirus R0 values (Figure 1; Data 112 
Sheet 1). 113 
 114 
R0 data were only available for Ebola virus and Sudan virus outbreaks. (Data Sheet 1). 29/35 115 
studies analyzed data from the recent West African Ebola virus outbreak (Data Sheet 1). The 116 
others reported on Ebola virus outbreaks in the Democratic Republic of Congo. Four studies 117 
also included data from the Sudan virus outbreak 2000/2001 in Gulu, Uganda. We also 118 
considered a review that summarized all available data until February 2015 (5) (Data Sheet 119 
1). 120 
 121 
R0 indicates the number of new infections caused by an infected individual, and when greater 122 
than 1 an outbreak will spread. Different approaches to calculate R0s lead to varying results 123 
(22). Accordantly, R0 values calculated for the Sudan virus outbreak 2000/ 2001 in Gulu 124 
using identical data ranged from 1.34 to 3.54 (Data Sheet 1, Data Sheet 2). Small outbreak 125 
sizes may also limit the accuracy of the calculated R0 values. Additionally, virus transmission 126 
is influenced by socio-economic and behavioral factors including the health care response, 127 
society perceptions, religious practices, population density, and/ or infrastructure (22,23). 128 
Concordantly, R0s that were determined by the same methodology in different districts of 129 
Guinea, Liberia, and Sierra Leone during the West African Ebola virus epidemic ranged from 130 
0.36 to 3.37 (24). Three studies directly compared the Ebola virus outbreak in Kikwit (1995, 131 
DR Congo) and the Sudan virus outbreak in Gulu (2000/ 2001, Uganda) (25-27), but did not 132 
reveal fundamental differences between the R0s of the viruses (Data Sheet 1, Data Sheet 2). 133 
Across all relevant studies, R0s ranged from 0.36 to 12 for Ebola virus and from 1.34 to 3.54 134 
for Sudan virus (Data Sheet 1). 9 of the 35 studies that provided R0 values showed that 135 
Ebolaviruses can spread with an R0 >3, and 5 studies suggested that Ebolaviruses can spread 136 

with R0 values >4. High reproductive numbers (³4) are typically observed at the beginning of 137 
Ebolavirus outbreaks, prior to the implementation of control measures (28-31). Also, the 138 
spread of Ebolaviruses may be substantially driven by “superspreaders” who infect a high 139 
number (up to 15-20) of individuals (23,32-35). Studies from the West African Ebola virus 140 
outbreak suggested that relatively small numbers of superspreaders may have been 141 
responsible for the majority of cases (35,36). Since the available data suggest that Ebolavirus 142 
transmission can occur with R0 values of 3, 4, or even higher, a prophylactic vaccination 143 
program should establish herd immunity against Ebolaviruses that spread at such levels. 144 
 145 

Herd immunity threshold (Ic)  146 
At an R0 of 3, the Ic (eqn 1) is 67%, which means that 67% of a population need to be 147 
immune to provide herd immunity (Figure 2A, Data Sheet 3). The Ic further rises to 75% at 148 
an R0 of 4, to 80% at an R0 of 5, to 90% at an R0 of 10, and to 95% R0 of 20 (Figure 2A, Data 149 
Sheet 3). This shows that high proportions of a population need to be immune to establish 150 
effective herd immunity.  151 
 152 
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Critical vaccine coverage (Vc) 153 
As there is currently no approved vaccine for the prevention of Ebolavirus disease, we 154 
calculated a range of Vc (eqn 2) scenarios that reflect the efficacy range covered by approved 155 
vaccines. Attenuated replication-competent measles virus vaccines have been reported to 156 
protect up to 95% of individuals from disease after one dose, which increased to up to 99% 157 
after a second dose (37). The efficacy of varicella zoster virus vaccines, another attenuated 158 
replication-competent vaccine, was recently calculated to be 81.9% after one dose and 94.4% 159 
after two doses (38). Inactivated seasonal influenza virus split vaccines have been reported to 160 
have a substantially lower efficiency of 50-60% (39-41). Hence, we considered a Vc range 161 
between 50% and 100% (Figure 2B, Data Sheet 3). Vaccines, which provide high protection 162 
(ideally after a single vaccination), and high vaccination rates are required for prophylactic 163 
vaccination programs that establish a level of herd immunity that prevents Ebolavirus 164 
outbreaks. If we assume an R0 of 3 and a vaccination efficacy E of 90%, more than 70% of a 165 
population need to be vaccinated to establish herd immunity. At an R0 of 4 and a vaccination 166 
efficacy E of 90%, more than 80% of a population need to be vaccinated. If the R0 rises to 5 a 167 
vaccine coverage of 80% would be required, even if a vaccine with 100% efficacy was 168 
available (Figure 2B, Data Sheet 3).  169 
  170 
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Discussion 171 
 172 
We performed an analysis of the Ebolavirus vaccine requirements to achieve the Vc needed 173 
for prophylactic mass vaccination programs. A number of studies suggested that Ebolavirus 174 
transmission can occur with R0 values of 3, 4, or even higher, in particular during early 175 
outbreak stages (prior to the implementation of control measures) and/ or as consequence of 176 
superspreading events (23,24,28-36). Therefore, a prophylactic vaccination program should 177 
establish herd immunity against Ebolaviruses that spread at such levels. At an R0 of 3, >70% 178 
of individuals and at an R0 of 4, >80% of individuals need to be vaccinated with a 179 
vaccination efficacy of 90% to achieve herd immunity. Hence, highly effective vaccines and 180 
a high vaccination coverage are essential for successful prophylactic mass vaccination 181 
programs against Ebolaviruses. 182 
 183 
Clinical vaccine candidates providing protection against all three to four human-pathogenic 184 
Ebolaviruses (Ebola virus, Sudan virus, Bundibugyo virus, potentially Taï Forest virus) do 185 
not currently exist (Data Sheet 4), although pre-clinical data suggest that the development of 186 
such vaccines may be feasible (6). Current vaccine candidates may also not provide the long-187 

term protective immunity (³10 years) necessary for sustainable protection against spillover 188 
events from animal reservoirs. Two studies reported immune responses 12 months after 189 
vaccination with different Ebola virus vaccine candidates (42,43). One of them described 190 
seroconversion in >90% of individuals after a single injection of rVSV-ZEBOV, a vesicular 191 
stomatitis virus-based Ebola virus vaccine. No or only a minor drop in antibody titers and 192 
neutralization capacity was reported 360 days after vaccination (42). A study investigating 193 
rVSV-ZEBOV and ChAd3-EBO-Z, a chimpanzee adenovirus type-3 vector-based Ebola 194 
virus vaccine, found lower seroconversion rates (rVSV-ZEBOV: 83.7%; ChAd3-EBO-Z: 195 
70.8%) and reported the highest antibody response after one month and a decline afterwards 196 
(43). Thus, it is not clear, whether the vaccine-induced immunity covers the time frame of 197 
two years (or perhaps even longer) that Ebolavirus survivors may remain contagious for 198 
(6,42,43-52). It is also not clear whether (and if yes, to which extent) immunity to 199 
Ebolaviruses is mediated by cell-mediated and/ or humoral immune responses (53). A 200 
challenge study using non-human primates suggested that protection by adenovirus-based 201 
vaccines is cell-mediated (54). This means that antigen binding and/ or neutralization titers 202 
may not always correlate with protection from disease. Consequently, the efficacy levels of 203 
vaccines cannot be determined with certainty based on antibody responses at various time 204 
points post vaccination. Thus, it remains unknown whether current vaccine candidates offer 205 
the long-term protection necessary for mass vaccination programs that effectively prevent 206 
zoonotic Ebolavirus outbreaks. Ebola virus recurrences and reinfections indicate that, 207 
although natural Ebolavirus infections are generally assumed to provide long-term protection, 208 
natural infections may not always result in sustained protective immunity in every survivor, 209 
which may further complicate the development of vaccines that provide long-term protection 210 
(55,56). In this context, the establishment of long-term immunity may be influenced by the 211 
disease treatment. In a case of relapse nine months after discharge, it was speculated whether 212 
the treatment of the initial disease with convalescent plasma and monoclonal antibodies 213 
might have contributed to the recurrence (55). 214 
 215 
Limited acceptance of vaccinations may also limit Ebolavirus vaccination programs. In a 216 
rVSV-ZEBOV ring vaccination trial, only 5,837/ 11,841 patient contacts could be vaccinated. 217 
34% of the contacts refused the vaccination (57). In a survey in Sierra Leone during the West 218 
African Ebola epidemic, 106/ 400 respondents (26.6%) were prepared to pay for a 219 
vaccination, while 290 respondents (72.5%) would have accepted a free vaccination (58). 220 



 8 

Since 74% of the population need to be vaccinated by a vaccine with a 90% efficacy to 221 
prevent an outbreak that spreads with an R0 of 3 and 83% of the population to prevent an 222 
outbreak that spreads with an R0 of 4 (Data Sheet 3), such levels of vaccine coverage seem 223 
currently unachievable, even under the threat of an ongoing epidemic, although attitudes may 224 
change in the future if more (clinical) data becomes available. Therefore, more differentiated 225 
vaccination strategies with a focus on healthcare workers and patient contacts appear more 226 
feasible. 227 
 228 
The median maximum fee that survey participants in Sierra Leone during the West African 229 
Ebola epidemic were prepared to pay for a vaccine was about 5,000 leones ($0.65 as of 11th 230 
January 2018) (58). The international organization GAVI (www.gavi.org) is providing $5 231 
million for the development of rVSV-ZEBOV, which is expected to pay for 300,000 vaccine 232 
doses (about $16.70/ dose) (59). Within a rVSV-ZEBOV ring vaccination trial, 11,841 233 
contacts requiring vaccination from 117 clusters were identified over a ten-month period, i.e. 234 
about 101 individuals per confirmed Ebola virus disease patient (57). Hence, 300,000 doses 235 
will enable vaccination of the contacts of approximately 2,970 Ebola virus disease patients. If 236 
an effective vaccine (which provided protection against all human-pathogenic Ebolaviruses) 237 
was available, a vaccination program would comprise about 462 million individuals in the 238 
countries that have been affected by Ebolavirus outbreaks (Data Sheet 5). Notably, the 239 
countries, which have been affected by Ebolavirus outbreaks so far, have large rural 240 
populations ranging from 13% (Gabon) to 84% (Uganda) (Data Sheet 5). Vaccination 241 
programs in rural areas are associated with logistical issues including transport difficulties, 242 
lack of equipment and trained medical specialists, and cultural and language barriers (60,61).  243 
 244 
In conclusion, the achievement of a Vc of 75% that is necessary to prevent an outbreak that 245 
spreads with an R0 of 4 with a vaccine that has an efficacy of 100% is currently unrealistic 246 
because of limited vaccine acceptance in the affected populations and because of financial 247 
and logistical challenges. In addition, concurrent diseases such as HIV and cancer, along with 248 
potential side effects of vaccination, may remove significant numbers of potential vaccinees 249 
(6,62). Alternative vaccination strategies will be required for such patients. Replication-250 
deficient vaccines such as DNA vaccines, virus-like particles, nanoparticle-based vaccines, 251 
and viral vectors (e.g. Modified Vaccinia Ankara (MVA), which was already demonstrated to 252 
be safe in immunocompromised individuals) may be safer alternatives (6,63).  Moreover, 253 
vaccines that provide long-term immunity against all three (or including Taï Forest virus, 254 
four) human-pathogenic Ebolaviruses, which would be needed to protect populations 255 
effectively from large Ebolavirus outbreaks in endemic areas, do not exist. Therefore, 256 
outbreak control of Ebolaviruses will for the foreseeable future depend on surveillance and 257 
the isolation of cases. Clinical vaccine candidates are only available for Ebola viruses and 258 
will need to be focused on health care workers, who are often involved in disease 259 
transmission (30), potentially in combination with the vaccination of patient contacts. Hence, 260 
our findings support the conclusions of the WHO Strategic Advisory Group of Experts on 261 
immunization (SAGE) at the WHO SAGE meeting on 25th to 27th April 2017 (64). SAGE 262 
acknowledged the need for further research on Ebolavirus vaccines, including the generation 263 
of conclusive data on the duration of protection provided by Ebolavirus vaccine candidates. 264 
In case of future Ebolavirus outbreaks, SAGE recommended the use of rVSV-ZEBOV ring 265 
vaccination strategies (64).  266 
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Figure legends 450 
 451 
Figure 1. Summary of the literature search using PubMed (www.ncbi.nlm.nih.gov/pubmed) 452 
to identify articles that report on the basic reproductive number (R0) of Ebolaviruses. 453 
 454 
Figure 2. Herd immunity thresholds (Ic) and Critical vaccine coverage (Vc) values in 455 
dependence of the basic reproductive number (R0) and the vaccine efficacy (E). A) Ic values 456 
based on a range of R0 values that cover the range reported for Ebolaviruses. B) Vc values 457 
based on R0 values that cover the range reported for Ebolaviruses and E values that are in the 458 
range of those reported for approved vaccines. The respective numerical data are presented in 459 
Data Sheet 3. 460 


